Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : #include <linux/perf_event.h>
3 : #include <linux/export.h>
4 : #include <linux/types.h>
5 : #include <linux/init.h>
6 : #include <linux/slab.h>
7 : #include <linux/delay.h>
8 : #include <linux/jiffies.h>
9 : #include <asm/apicdef.h>
10 : #include <asm/nmi.h>
11 :
12 : #include "../perf_event.h"
13 :
14 : static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
15 : static unsigned long perf_nmi_window;
16 :
17 : /* AMD Event 0xFFF: Merge. Used with Large Increment per Cycle events */
18 : #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
19 : #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
20 :
21 : static __initconst const u64 amd_hw_cache_event_ids
22 : [PERF_COUNT_HW_CACHE_MAX]
23 : [PERF_COUNT_HW_CACHE_OP_MAX]
24 : [PERF_COUNT_HW_CACHE_RESULT_MAX] =
25 : {
26 : [ C(L1D) ] = {
27 : [ C(OP_READ) ] = {
28 : [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
29 : [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
30 : },
31 : [ C(OP_WRITE) ] = {
32 : [ C(RESULT_ACCESS) ] = 0,
33 : [ C(RESULT_MISS) ] = 0,
34 : },
35 : [ C(OP_PREFETCH) ] = {
36 : [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
37 : [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
38 : },
39 : },
40 : [ C(L1I ) ] = {
41 : [ C(OP_READ) ] = {
42 : [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
43 : [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
44 : },
45 : [ C(OP_WRITE) ] = {
46 : [ C(RESULT_ACCESS) ] = -1,
47 : [ C(RESULT_MISS) ] = -1,
48 : },
49 : [ C(OP_PREFETCH) ] = {
50 : [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
51 : [ C(RESULT_MISS) ] = 0,
52 : },
53 : },
54 : [ C(LL ) ] = {
55 : [ C(OP_READ) ] = {
56 : [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
57 : [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
58 : },
59 : [ C(OP_WRITE) ] = {
60 : [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
61 : [ C(RESULT_MISS) ] = 0,
62 : },
63 : [ C(OP_PREFETCH) ] = {
64 : [ C(RESULT_ACCESS) ] = 0,
65 : [ C(RESULT_MISS) ] = 0,
66 : },
67 : },
68 : [ C(DTLB) ] = {
69 : [ C(OP_READ) ] = {
70 : [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
71 : [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
72 : },
73 : [ C(OP_WRITE) ] = {
74 : [ C(RESULT_ACCESS) ] = 0,
75 : [ C(RESULT_MISS) ] = 0,
76 : },
77 : [ C(OP_PREFETCH) ] = {
78 : [ C(RESULT_ACCESS) ] = 0,
79 : [ C(RESULT_MISS) ] = 0,
80 : },
81 : },
82 : [ C(ITLB) ] = {
83 : [ C(OP_READ) ] = {
84 : [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
85 : [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
86 : },
87 : [ C(OP_WRITE) ] = {
88 : [ C(RESULT_ACCESS) ] = -1,
89 : [ C(RESULT_MISS) ] = -1,
90 : },
91 : [ C(OP_PREFETCH) ] = {
92 : [ C(RESULT_ACCESS) ] = -1,
93 : [ C(RESULT_MISS) ] = -1,
94 : },
95 : },
96 : [ C(BPU ) ] = {
97 : [ C(OP_READ) ] = {
98 : [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
99 : [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
100 : },
101 : [ C(OP_WRITE) ] = {
102 : [ C(RESULT_ACCESS) ] = -1,
103 : [ C(RESULT_MISS) ] = -1,
104 : },
105 : [ C(OP_PREFETCH) ] = {
106 : [ C(RESULT_ACCESS) ] = -1,
107 : [ C(RESULT_MISS) ] = -1,
108 : },
109 : },
110 : [ C(NODE) ] = {
111 : [ C(OP_READ) ] = {
112 : [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
113 : [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
114 : },
115 : [ C(OP_WRITE) ] = {
116 : [ C(RESULT_ACCESS) ] = -1,
117 : [ C(RESULT_MISS) ] = -1,
118 : },
119 : [ C(OP_PREFETCH) ] = {
120 : [ C(RESULT_ACCESS) ] = -1,
121 : [ C(RESULT_MISS) ] = -1,
122 : },
123 : },
124 : };
125 :
126 : static __initconst const u64 amd_hw_cache_event_ids_f17h
127 : [PERF_COUNT_HW_CACHE_MAX]
128 : [PERF_COUNT_HW_CACHE_OP_MAX]
129 : [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
130 : [C(L1D)] = {
131 : [C(OP_READ)] = {
132 : [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
133 : [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */
134 : },
135 : [C(OP_WRITE)] = {
136 : [C(RESULT_ACCESS)] = 0,
137 : [C(RESULT_MISS)] = 0,
138 : },
139 : [C(OP_PREFETCH)] = {
140 : [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
141 : [C(RESULT_MISS)] = 0,
142 : },
143 : },
144 : [C(L1I)] = {
145 : [C(OP_READ)] = {
146 : [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */
147 : [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */
148 : },
149 : [C(OP_WRITE)] = {
150 : [C(RESULT_ACCESS)] = -1,
151 : [C(RESULT_MISS)] = -1,
152 : },
153 : [C(OP_PREFETCH)] = {
154 : [C(RESULT_ACCESS)] = 0,
155 : [C(RESULT_MISS)] = 0,
156 : },
157 : },
158 : [C(LL)] = {
159 : [C(OP_READ)] = {
160 : [C(RESULT_ACCESS)] = 0,
161 : [C(RESULT_MISS)] = 0,
162 : },
163 : [C(OP_WRITE)] = {
164 : [C(RESULT_ACCESS)] = 0,
165 : [C(RESULT_MISS)] = 0,
166 : },
167 : [C(OP_PREFETCH)] = {
168 : [C(RESULT_ACCESS)] = 0,
169 : [C(RESULT_MISS)] = 0,
170 : },
171 : },
172 : [C(DTLB)] = {
173 : [C(OP_READ)] = {
174 : [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
175 : [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */
176 : },
177 : [C(OP_WRITE)] = {
178 : [C(RESULT_ACCESS)] = 0,
179 : [C(RESULT_MISS)] = 0,
180 : },
181 : [C(OP_PREFETCH)] = {
182 : [C(RESULT_ACCESS)] = 0,
183 : [C(RESULT_MISS)] = 0,
184 : },
185 : },
186 : [C(ITLB)] = {
187 : [C(OP_READ)] = {
188 : [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
189 : [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */
190 : },
191 : [C(OP_WRITE)] = {
192 : [C(RESULT_ACCESS)] = -1,
193 : [C(RESULT_MISS)] = -1,
194 : },
195 : [C(OP_PREFETCH)] = {
196 : [C(RESULT_ACCESS)] = -1,
197 : [C(RESULT_MISS)] = -1,
198 : },
199 : },
200 : [C(BPU)] = {
201 : [C(OP_READ)] = {
202 : [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */
203 : [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */
204 : },
205 : [C(OP_WRITE)] = {
206 : [C(RESULT_ACCESS)] = -1,
207 : [C(RESULT_MISS)] = -1,
208 : },
209 : [C(OP_PREFETCH)] = {
210 : [C(RESULT_ACCESS)] = -1,
211 : [C(RESULT_MISS)] = -1,
212 : },
213 : },
214 : [C(NODE)] = {
215 : [C(OP_READ)] = {
216 : [C(RESULT_ACCESS)] = 0,
217 : [C(RESULT_MISS)] = 0,
218 : },
219 : [C(OP_WRITE)] = {
220 : [C(RESULT_ACCESS)] = -1,
221 : [C(RESULT_MISS)] = -1,
222 : },
223 : [C(OP_PREFETCH)] = {
224 : [C(RESULT_ACCESS)] = -1,
225 : [C(RESULT_MISS)] = -1,
226 : },
227 : },
228 : };
229 :
230 : /*
231 : * AMD Performance Monitor K7 and later, up to and including Family 16h:
232 : */
233 : static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
234 : {
235 : [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
236 : [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
237 : [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
238 : [PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
239 : [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
240 : [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
241 : [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
242 : [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
243 : };
244 :
245 : /*
246 : * AMD Performance Monitor Family 17h and later:
247 : */
248 : static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
249 : {
250 : [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
251 : [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
252 : [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
253 : [PERF_COUNT_HW_CACHE_MISSES] = 0x0964,
254 : [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
255 : [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
256 : [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
257 : [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187,
258 : };
259 :
260 0 : static u64 amd_pmu_event_map(int hw_event)
261 : {
262 0 : if (boot_cpu_data.x86 >= 0x17)
263 0 : return amd_f17h_perfmon_event_map[hw_event];
264 :
265 0 : return amd_perfmon_event_map[hw_event];
266 : }
267 :
268 : /*
269 : * Previously calculated offsets
270 : */
271 : static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
272 : static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
273 :
274 : /*
275 : * Legacy CPUs:
276 : * 4 counters starting at 0xc0010000 each offset by 1
277 : *
278 : * CPUs with core performance counter extensions:
279 : * 6 counters starting at 0xc0010200 each offset by 2
280 : */
281 0 : static inline int amd_pmu_addr_offset(int index, bool eventsel)
282 : {
283 0 : int offset;
284 :
285 0 : if (!index)
286 : return index;
287 :
288 0 : if (eventsel)
289 0 : offset = event_offsets[index];
290 : else
291 0 : offset = count_offsets[index];
292 :
293 0 : if (offset)
294 : return offset;
295 :
296 0 : if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
297 : offset = index;
298 : else
299 0 : offset = index << 1;
300 :
301 0 : if (eventsel)
302 0 : event_offsets[index] = offset;
303 : else
304 0 : count_offsets[index] = offset;
305 :
306 : return offset;
307 : }
308 :
309 : /*
310 : * AMD64 events are detected based on their event codes.
311 : */
312 0 : static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
313 : {
314 0 : return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
315 : }
316 :
317 0 : static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
318 : {
319 0 : if (!(x86_pmu.flags & PMU_FL_PAIR))
320 : return false;
321 :
322 0 : switch (amd_get_event_code(hwc)) {
323 : case 0x003: return true; /* Retired SSE/AVX FLOPs */
324 0 : default: return false;
325 : }
326 : }
327 :
328 0 : static int amd_core_hw_config(struct perf_event *event)
329 : {
330 0 : if (event->attr.exclude_host && event->attr.exclude_guest)
331 : /*
332 : * When HO == GO == 1 the hardware treats that as GO == HO == 0
333 : * and will count in both modes. We don't want to count in that
334 : * case so we emulate no-counting by setting US = OS = 0.
335 : */
336 0 : event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
337 : ARCH_PERFMON_EVENTSEL_OS);
338 0 : else if (event->attr.exclude_host)
339 0 : event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
340 0 : else if (event->attr.exclude_guest)
341 0 : event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
342 :
343 0 : if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
344 0 : event->hw.flags |= PERF_X86_EVENT_PAIR;
345 :
346 0 : return 0;
347 : }
348 :
349 0 : static inline int amd_is_nb_event(struct hw_perf_event *hwc)
350 : {
351 0 : return (hwc->config & 0xe0) == 0xe0;
352 : }
353 :
354 0 : static inline int amd_has_nb(struct cpu_hw_events *cpuc)
355 : {
356 0 : struct amd_nb *nb = cpuc->amd_nb;
357 :
358 0 : return nb && nb->nb_id != -1;
359 : }
360 :
361 0 : static int amd_pmu_hw_config(struct perf_event *event)
362 : {
363 0 : int ret;
364 :
365 : /* pass precise event sampling to ibs: */
366 0 : if (event->attr.precise_ip && get_ibs_caps())
367 : return -ENOENT;
368 :
369 0 : if (has_branch_stack(event))
370 : return -EOPNOTSUPP;
371 :
372 0 : ret = x86_pmu_hw_config(event);
373 0 : if (ret)
374 : return ret;
375 :
376 0 : if (event->attr.type == PERF_TYPE_RAW)
377 0 : event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
378 :
379 0 : return amd_core_hw_config(event);
380 : }
381 :
382 0 : static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
383 : struct perf_event *event)
384 : {
385 0 : struct amd_nb *nb = cpuc->amd_nb;
386 0 : int i;
387 :
388 : /*
389 : * need to scan whole list because event may not have
390 : * been assigned during scheduling
391 : *
392 : * no race condition possible because event can only
393 : * be removed on one CPU at a time AND PMU is disabled
394 : * when we come here
395 : */
396 0 : for (i = 0; i < x86_pmu.num_counters; i++) {
397 0 : if (cmpxchg(nb->owners + i, event, NULL) == event)
398 : break;
399 : }
400 0 : }
401 :
402 : /*
403 : * AMD64 NorthBridge events need special treatment because
404 : * counter access needs to be synchronized across all cores
405 : * of a package. Refer to BKDG section 3.12
406 : *
407 : * NB events are events measuring L3 cache, Hypertransport
408 : * traffic. They are identified by an event code >= 0xe00.
409 : * They measure events on the NorthBride which is shared
410 : * by all cores on a package. NB events are counted on a
411 : * shared set of counters. When a NB event is programmed
412 : * in a counter, the data actually comes from a shared
413 : * counter. Thus, access to those counters needs to be
414 : * synchronized.
415 : *
416 : * We implement the synchronization such that no two cores
417 : * can be measuring NB events using the same counters. Thus,
418 : * we maintain a per-NB allocation table. The available slot
419 : * is propagated using the event_constraint structure.
420 : *
421 : * We provide only one choice for each NB event based on
422 : * the fact that only NB events have restrictions. Consequently,
423 : * if a counter is available, there is a guarantee the NB event
424 : * will be assigned to it. If no slot is available, an empty
425 : * constraint is returned and scheduling will eventually fail
426 : * for this event.
427 : *
428 : * Note that all cores attached the same NB compete for the same
429 : * counters to host NB events, this is why we use atomic ops. Some
430 : * multi-chip CPUs may have more than one NB.
431 : *
432 : * Given that resources are allocated (cmpxchg), they must be
433 : * eventually freed for others to use. This is accomplished by
434 : * calling __amd_put_nb_event_constraints()
435 : *
436 : * Non NB events are not impacted by this restriction.
437 : */
438 : static struct event_constraint *
439 0 : __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
440 : struct event_constraint *c)
441 : {
442 0 : struct hw_perf_event *hwc = &event->hw;
443 0 : struct amd_nb *nb = cpuc->amd_nb;
444 0 : struct perf_event *old;
445 0 : int idx, new = -1;
446 :
447 0 : if (!c)
448 0 : c = &unconstrained;
449 :
450 0 : if (cpuc->is_fake)
451 : return c;
452 :
453 : /*
454 : * detect if already present, if so reuse
455 : *
456 : * cannot merge with actual allocation
457 : * because of possible holes
458 : *
459 : * event can already be present yet not assigned (in hwc->idx)
460 : * because of successive calls to x86_schedule_events() from
461 : * hw_perf_group_sched_in() without hw_perf_enable()
462 : */
463 0 : for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
464 0 : if (new == -1 || hwc->idx == idx)
465 : /* assign free slot, prefer hwc->idx */
466 0 : old = cmpxchg(nb->owners + idx, NULL, event);
467 0 : else if (nb->owners[idx] == event)
468 : /* event already present */
469 : old = event;
470 : else
471 0 : continue;
472 :
473 0 : if (old && old != event)
474 0 : continue;
475 :
476 : /* reassign to this slot */
477 0 : if (new != -1)
478 0 : cmpxchg(nb->owners + new, event, NULL);
479 0 : new = idx;
480 :
481 : /* already present, reuse */
482 0 : if (old == event)
483 : break;
484 : }
485 :
486 0 : if (new == -1)
487 : return &emptyconstraint;
488 :
489 0 : return &nb->event_constraints[new];
490 : }
491 :
492 0 : static struct amd_nb *amd_alloc_nb(int cpu)
493 : {
494 0 : struct amd_nb *nb;
495 0 : int i;
496 :
497 0 : nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
498 0 : if (!nb)
499 : return NULL;
500 :
501 0 : nb->nb_id = -1;
502 :
503 : /*
504 : * initialize all possible NB constraints
505 : */
506 0 : for (i = 0; i < x86_pmu.num_counters; i++) {
507 0 : __set_bit(i, nb->event_constraints[i].idxmsk);
508 0 : nb->event_constraints[i].weight = 1;
509 : }
510 : return nb;
511 : }
512 :
513 0 : static int amd_pmu_cpu_prepare(int cpu)
514 : {
515 0 : struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
516 :
517 0 : WARN_ON_ONCE(cpuc->amd_nb);
518 :
519 0 : if (!x86_pmu.amd_nb_constraints)
520 : return 0;
521 :
522 0 : cpuc->amd_nb = amd_alloc_nb(cpu);
523 0 : if (!cpuc->amd_nb)
524 0 : return -ENOMEM;
525 :
526 : return 0;
527 : }
528 :
529 0 : static void amd_pmu_cpu_starting(int cpu)
530 : {
531 0 : struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
532 0 : void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
533 0 : struct amd_nb *nb;
534 0 : int i, nb_id;
535 :
536 0 : cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
537 :
538 0 : if (!x86_pmu.amd_nb_constraints)
539 : return;
540 :
541 0 : nb_id = topology_die_id(cpu);
542 0 : WARN_ON_ONCE(nb_id == BAD_APICID);
543 :
544 0 : for_each_online_cpu(i) {
545 0 : nb = per_cpu(cpu_hw_events, i).amd_nb;
546 0 : if (WARN_ON_ONCE(!nb))
547 0 : continue;
548 :
549 0 : if (nb->nb_id == nb_id) {
550 0 : *onln = cpuc->amd_nb;
551 0 : cpuc->amd_nb = nb;
552 0 : break;
553 : }
554 : }
555 :
556 0 : cpuc->amd_nb->nb_id = nb_id;
557 0 : cpuc->amd_nb->refcnt++;
558 : }
559 :
560 0 : static void amd_pmu_cpu_dead(int cpu)
561 : {
562 0 : struct cpu_hw_events *cpuhw;
563 :
564 0 : if (!x86_pmu.amd_nb_constraints)
565 : return;
566 :
567 0 : cpuhw = &per_cpu(cpu_hw_events, cpu);
568 :
569 0 : if (cpuhw->amd_nb) {
570 0 : struct amd_nb *nb = cpuhw->amd_nb;
571 :
572 0 : if (nb->nb_id == -1 || --nb->refcnt == 0)
573 0 : kfree(nb);
574 :
575 0 : cpuhw->amd_nb = NULL;
576 : }
577 : }
578 :
579 : /*
580 : * When a PMC counter overflows, an NMI is used to process the event and
581 : * reset the counter. NMI latency can result in the counter being updated
582 : * before the NMI can run, which can result in what appear to be spurious
583 : * NMIs. This function is intended to wait for the NMI to run and reset
584 : * the counter to avoid possible unhandled NMI messages.
585 : */
586 : #define OVERFLOW_WAIT_COUNT 50
587 :
588 0 : static void amd_pmu_wait_on_overflow(int idx)
589 : {
590 0 : unsigned int i;
591 0 : u64 counter;
592 :
593 : /*
594 : * Wait for the counter to be reset if it has overflowed. This loop
595 : * should exit very, very quickly, but just in case, don't wait
596 : * forever...
597 : */
598 0 : for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
599 0 : rdmsrl(x86_pmu_event_addr(idx), counter);
600 0 : if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
601 : break;
602 :
603 : /* Might be in IRQ context, so can't sleep */
604 0 : udelay(1);
605 : }
606 0 : }
607 :
608 0 : static void amd_pmu_disable_all(void)
609 : {
610 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
611 0 : int idx;
612 :
613 0 : x86_pmu_disable_all();
614 :
615 : /*
616 : * This shouldn't be called from NMI context, but add a safeguard here
617 : * to return, since if we're in NMI context we can't wait for an NMI
618 : * to reset an overflowed counter value.
619 : */
620 0 : if (in_nmi())
621 : return;
622 :
623 : /*
624 : * Check each counter for overflow and wait for it to be reset by the
625 : * NMI if it has overflowed. This relies on the fact that all active
626 : * counters are always enabled when this function is caled and
627 : * ARCH_PERFMON_EVENTSEL_INT is always set.
628 : */
629 0 : for (idx = 0; idx < x86_pmu.num_counters; idx++) {
630 0 : if (!test_bit(idx, cpuc->active_mask))
631 0 : continue;
632 :
633 0 : amd_pmu_wait_on_overflow(idx);
634 : }
635 : }
636 :
637 0 : static void amd_pmu_disable_event(struct perf_event *event)
638 : {
639 0 : x86_pmu_disable_event(event);
640 :
641 : /*
642 : * This can be called from NMI context (via x86_pmu_stop). The counter
643 : * may have overflowed, but either way, we'll never see it get reset
644 : * by the NMI if we're already in the NMI. And the NMI latency support
645 : * below will take care of any pending NMI that might have been
646 : * generated by the overflow.
647 : */
648 0 : if (in_nmi())
649 : return;
650 :
651 0 : amd_pmu_wait_on_overflow(event->hw.idx);
652 : }
653 :
654 : /*
655 : * Because of NMI latency, if multiple PMC counters are active or other sources
656 : * of NMIs are received, the perf NMI handler can handle one or more overflowed
657 : * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
658 : * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
659 : * back-to-back NMI support won't be active. This PMC handler needs to take into
660 : * account that this can occur, otherwise this could result in unknown NMI
661 : * messages being issued. Examples of this is PMC overflow while in the NMI
662 : * handler when multiple PMCs are active or PMC overflow while handling some
663 : * other source of an NMI.
664 : *
665 : * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
666 : * received during this window will be claimed. This prevents extending the
667 : * window past when it is possible that latent NMIs should be received. The
668 : * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
669 : * handled a counter. When an un-handled NMI is received, it will be claimed
670 : * only if arriving within that window.
671 : */
672 0 : static int amd_pmu_handle_irq(struct pt_regs *regs)
673 : {
674 0 : int handled;
675 :
676 : /* Process any counter overflows */
677 0 : handled = x86_pmu_handle_irq(regs);
678 :
679 : /*
680 : * If a counter was handled, record a timestamp such that un-handled
681 : * NMIs will be claimed if arriving within that window.
682 : */
683 0 : if (handled) {
684 0 : this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
685 :
686 0 : return handled;
687 : }
688 :
689 0 : if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
690 0 : return NMI_DONE;
691 :
692 : return NMI_HANDLED;
693 : }
694 :
695 : static struct event_constraint *
696 0 : amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
697 : struct perf_event *event)
698 : {
699 : /*
700 : * if not NB event or no NB, then no constraints
701 : */
702 0 : if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
703 : return &unconstrained;
704 :
705 0 : return __amd_get_nb_event_constraints(cpuc, event, NULL);
706 : }
707 :
708 0 : static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
709 : struct perf_event *event)
710 : {
711 0 : if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
712 0 : __amd_put_nb_event_constraints(cpuc, event);
713 0 : }
714 :
715 0 : PMU_FORMAT_ATTR(event, "config:0-7,32-35");
716 0 : PMU_FORMAT_ATTR(umask, "config:8-15" );
717 0 : PMU_FORMAT_ATTR(edge, "config:18" );
718 0 : PMU_FORMAT_ATTR(inv, "config:23" );
719 0 : PMU_FORMAT_ATTR(cmask, "config:24-31" );
720 :
721 : static struct attribute *amd_format_attr[] = {
722 : &format_attr_event.attr,
723 : &format_attr_umask.attr,
724 : &format_attr_edge.attr,
725 : &format_attr_inv.attr,
726 : &format_attr_cmask.attr,
727 : NULL,
728 : };
729 :
730 : /* AMD Family 15h */
731 :
732 : #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
733 :
734 : #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
735 : #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
736 : #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
737 : #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
738 : #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
739 : #define AMD_EVENT_EX_LS 0x000000C0ULL
740 : #define AMD_EVENT_DE 0x000000D0ULL
741 : #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
742 :
743 : /*
744 : * AMD family 15h event code/PMC mappings:
745 : *
746 : * type = event_code & 0x0F0:
747 : *
748 : * 0x000 FP PERF_CTL[5:3]
749 : * 0x010 FP PERF_CTL[5:3]
750 : * 0x020 LS PERF_CTL[5:0]
751 : * 0x030 LS PERF_CTL[5:0]
752 : * 0x040 DC PERF_CTL[5:0]
753 : * 0x050 DC PERF_CTL[5:0]
754 : * 0x060 CU PERF_CTL[2:0]
755 : * 0x070 CU PERF_CTL[2:0]
756 : * 0x080 IC/DE PERF_CTL[2:0]
757 : * 0x090 IC/DE PERF_CTL[2:0]
758 : * 0x0A0 ---
759 : * 0x0B0 ---
760 : * 0x0C0 EX/LS PERF_CTL[5:0]
761 : * 0x0D0 DE PERF_CTL[2:0]
762 : * 0x0E0 NB NB_PERF_CTL[3:0]
763 : * 0x0F0 NB NB_PERF_CTL[3:0]
764 : *
765 : * Exceptions:
766 : *
767 : * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
768 : * 0x003 FP PERF_CTL[3]
769 : * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
770 : * 0x00B FP PERF_CTL[3]
771 : * 0x00D FP PERF_CTL[3]
772 : * 0x023 DE PERF_CTL[2:0]
773 : * 0x02D LS PERF_CTL[3]
774 : * 0x02E LS PERF_CTL[3,0]
775 : * 0x031 LS PERF_CTL[2:0] (**)
776 : * 0x043 CU PERF_CTL[2:0]
777 : * 0x045 CU PERF_CTL[2:0]
778 : * 0x046 CU PERF_CTL[2:0]
779 : * 0x054 CU PERF_CTL[2:0]
780 : * 0x055 CU PERF_CTL[2:0]
781 : * 0x08F IC PERF_CTL[0]
782 : * 0x187 DE PERF_CTL[0]
783 : * 0x188 DE PERF_CTL[0]
784 : * 0x0DB EX PERF_CTL[5:0]
785 : * 0x0DC LS PERF_CTL[5:0]
786 : * 0x0DD LS PERF_CTL[5:0]
787 : * 0x0DE LS PERF_CTL[5:0]
788 : * 0x0DF LS PERF_CTL[5:0]
789 : * 0x1C0 EX PERF_CTL[5:3]
790 : * 0x1D6 EX PERF_CTL[5:0]
791 : * 0x1D8 EX PERF_CTL[5:0]
792 : *
793 : * (*) depending on the umask all FPU counters may be used
794 : * (**) only one unitmask enabled at a time
795 : */
796 :
797 : static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
798 : static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
799 : static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
800 : static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
801 : static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
802 : static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
803 :
804 : static struct event_constraint *
805 0 : amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
806 : struct perf_event *event)
807 : {
808 0 : struct hw_perf_event *hwc = &event->hw;
809 0 : unsigned int event_code = amd_get_event_code(hwc);
810 :
811 0 : switch (event_code & AMD_EVENT_TYPE_MASK) {
812 0 : case AMD_EVENT_FP:
813 0 : switch (event_code) {
814 0 : case 0x000:
815 0 : if (!(hwc->config & 0x0000F000ULL))
816 : break;
817 0 : if (!(hwc->config & 0x00000F00ULL))
818 : break;
819 : return &amd_f15_PMC3;
820 0 : case 0x004:
821 0 : if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
822 : break;
823 : return &amd_f15_PMC3;
824 : case 0x003:
825 : case 0x00B:
826 : case 0x00D:
827 : return &amd_f15_PMC3;
828 : }
829 0 : return &amd_f15_PMC53;
830 0 : case AMD_EVENT_LS:
831 : case AMD_EVENT_DC:
832 : case AMD_EVENT_EX_LS:
833 0 : switch (event_code) {
834 : case 0x023:
835 : case 0x043:
836 : case 0x045:
837 : case 0x046:
838 : case 0x054:
839 : case 0x055:
840 : return &amd_f15_PMC20;
841 0 : case 0x02D:
842 0 : return &amd_f15_PMC3;
843 0 : case 0x02E:
844 0 : return &amd_f15_PMC30;
845 0 : case 0x031:
846 0 : if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
847 0 : return &amd_f15_PMC20;
848 : return &emptyconstraint;
849 0 : case 0x1C0:
850 0 : return &amd_f15_PMC53;
851 0 : default:
852 0 : return &amd_f15_PMC50;
853 : }
854 0 : case AMD_EVENT_CU:
855 : case AMD_EVENT_IC_DE:
856 : case AMD_EVENT_DE:
857 0 : switch (event_code) {
858 : case 0x08F:
859 : case 0x187:
860 : case 0x188:
861 : return &amd_f15_PMC0;
862 0 : case 0x0DB ... 0x0DF:
863 : case 0x1D6:
864 : case 0x1D8:
865 0 : return &amd_f15_PMC50;
866 0 : default:
867 0 : return &amd_f15_PMC20;
868 : }
869 : case AMD_EVENT_NB:
870 : /* moved to uncore.c */
871 : return &emptyconstraint;
872 : default:
873 : return &emptyconstraint;
874 : }
875 : }
876 :
877 : static struct event_constraint pair_constraint;
878 :
879 : static struct event_constraint *
880 0 : amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
881 : struct perf_event *event)
882 : {
883 0 : struct hw_perf_event *hwc = &event->hw;
884 :
885 0 : if (amd_is_pair_event_code(hwc))
886 0 : return &pair_constraint;
887 :
888 : return &unconstrained;
889 : }
890 :
891 0 : static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
892 : struct perf_event *event)
893 : {
894 0 : struct hw_perf_event *hwc = &event->hw;
895 :
896 0 : if (is_counter_pair(hwc))
897 0 : --cpuc->n_pair;
898 0 : }
899 :
900 0 : static ssize_t amd_event_sysfs_show(char *page, u64 config)
901 : {
902 0 : u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
903 0 : (config & AMD64_EVENTSEL_EVENT) >> 24;
904 :
905 0 : return x86_event_sysfs_show(page, config, event);
906 : }
907 :
908 : static __initconst const struct x86_pmu amd_pmu = {
909 : .name = "AMD",
910 : .handle_irq = amd_pmu_handle_irq,
911 : .disable_all = amd_pmu_disable_all,
912 : .enable_all = x86_pmu_enable_all,
913 : .enable = x86_pmu_enable_event,
914 : .disable = amd_pmu_disable_event,
915 : .hw_config = amd_pmu_hw_config,
916 : .schedule_events = x86_schedule_events,
917 : .eventsel = MSR_K7_EVNTSEL0,
918 : .perfctr = MSR_K7_PERFCTR0,
919 : .addr_offset = amd_pmu_addr_offset,
920 : .event_map = amd_pmu_event_map,
921 : .max_events = ARRAY_SIZE(amd_perfmon_event_map),
922 : .num_counters = AMD64_NUM_COUNTERS,
923 : .cntval_bits = 48,
924 : .cntval_mask = (1ULL << 48) - 1,
925 : .apic = 1,
926 : /* use highest bit to detect overflow */
927 : .max_period = (1ULL << 47) - 1,
928 : .get_event_constraints = amd_get_event_constraints,
929 : .put_event_constraints = amd_put_event_constraints,
930 :
931 : .format_attrs = amd_format_attr,
932 : .events_sysfs_show = amd_event_sysfs_show,
933 :
934 : .cpu_prepare = amd_pmu_cpu_prepare,
935 : .cpu_starting = amd_pmu_cpu_starting,
936 : .cpu_dead = amd_pmu_cpu_dead,
937 :
938 : .amd_nb_constraints = 1,
939 : };
940 :
941 0 : static int __init amd_core_pmu_init(void)
942 : {
943 0 : u64 even_ctr_mask = 0ULL;
944 0 : int i;
945 :
946 0 : if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
947 : return 0;
948 :
949 : /* Avoid calculating the value each time in the NMI handler */
950 0 : perf_nmi_window = msecs_to_jiffies(100);
951 :
952 : /*
953 : * If core performance counter extensions exists, we must use
954 : * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
955 : * amd_pmu_addr_offset().
956 : */
957 0 : x86_pmu.eventsel = MSR_F15H_PERF_CTL;
958 0 : x86_pmu.perfctr = MSR_F15H_PERF_CTR;
959 0 : x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
960 : /*
961 : * AMD Core perfctr has separate MSRs for the NB events, see
962 : * the amd/uncore.c driver.
963 : */
964 0 : x86_pmu.amd_nb_constraints = 0;
965 :
966 0 : if (boot_cpu_data.x86 == 0x15) {
967 0 : pr_cont("Fam15h ");
968 0 : x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
969 : }
970 0 : if (boot_cpu_data.x86 >= 0x17) {
971 0 : pr_cont("Fam17h+ ");
972 : /*
973 : * Family 17h and compatibles have constraints for Large
974 : * Increment per Cycle events: they may only be assigned an
975 : * even numbered counter that has a consecutive adjacent odd
976 : * numbered counter following it.
977 : */
978 0 : for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
979 0 : even_ctr_mask |= 1 << i;
980 :
981 0 : pair_constraint = (struct event_constraint)
982 0 : __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
983 : x86_pmu.num_counters / 2, 0,
984 : PERF_X86_EVENT_PAIR);
985 :
986 0 : x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
987 0 : x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
988 0 : x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
989 0 : x86_pmu.flags |= PMU_FL_PAIR;
990 : }
991 :
992 0 : pr_cont("core perfctr, ");
993 0 : return 0;
994 : }
995 :
996 0 : __init int amd_pmu_init(void)
997 : {
998 0 : int ret;
999 :
1000 : /* Performance-monitoring supported from K7 and later: */
1001 0 : if (boot_cpu_data.x86 < 6)
1002 : return -ENODEV;
1003 :
1004 0 : x86_pmu = amd_pmu;
1005 :
1006 0 : ret = amd_core_pmu_init();
1007 0 : if (ret)
1008 : return ret;
1009 :
1010 0 : if (num_possible_cpus() == 1) {
1011 : /*
1012 : * No point in allocating data structures to serialize
1013 : * against other CPUs, when there is only the one CPU.
1014 : */
1015 0 : x86_pmu.amd_nb_constraints = 0;
1016 : }
1017 :
1018 0 : if (boot_cpu_data.x86 >= 0x17)
1019 0 : memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1020 : else
1021 0 : memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1022 :
1023 : return 0;
1024 : }
1025 :
1026 0 : void amd_pmu_enable_virt(void)
1027 : {
1028 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1029 :
1030 0 : cpuc->perf_ctr_virt_mask = 0;
1031 :
1032 : /* Reload all events */
1033 0 : amd_pmu_disable_all();
1034 0 : x86_pmu_enable_all(0);
1035 0 : }
1036 : EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1037 :
1038 0 : void amd_pmu_disable_virt(void)
1039 : {
1040 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1041 :
1042 : /*
1043 : * We only mask out the Host-only bit so that host-only counting works
1044 : * when SVM is disabled. If someone sets up a guest-only counter when
1045 : * SVM is disabled the Guest-only bits still gets set and the counter
1046 : * will not count anything.
1047 : */
1048 0 : cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1049 :
1050 : /* Reload all events */
1051 0 : amd_pmu_disable_all();
1052 0 : x86_pmu_enable_all(0);
1053 0 : }
1054 : EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
|