Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : #include <linux/perf_event.h>
3 : #include <linux/types.h>
4 :
5 : #include <asm/perf_event.h>
6 : #include <asm/msr.h>
7 : #include <asm/insn.h>
8 :
9 : #include "../perf_event.h"
10 :
11 : static const enum {
12 : LBR_EIP_FLAGS = 1,
13 : LBR_TSX = 2,
14 : } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
15 : [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
16 : [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
17 : };
18 :
19 : /*
20 : * Intel LBR_SELECT bits
21 : * Intel Vol3a, April 2011, Section 16.7 Table 16-10
22 : *
23 : * Hardware branch filter (not available on all CPUs)
24 : */
25 : #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
26 : #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
27 : #define LBR_JCC_BIT 2 /* do not capture conditional branches */
28 : #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
29 : #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
30 : #define LBR_RETURN_BIT 5 /* do not capture near returns */
31 : #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
32 : #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
33 : #define LBR_FAR_BIT 8 /* do not capture far branches */
34 : #define LBR_CALL_STACK_BIT 9 /* enable call stack */
35 :
36 : /*
37 : * Following bit only exists in Linux; we mask it out before writing it to
38 : * the actual MSR. But it helps the constraint perf code to understand
39 : * that this is a separate configuration.
40 : */
41 : #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
42 :
43 : #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
44 : #define LBR_USER (1 << LBR_USER_BIT)
45 : #define LBR_JCC (1 << LBR_JCC_BIT)
46 : #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
47 : #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
48 : #define LBR_RETURN (1 << LBR_RETURN_BIT)
49 : #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
50 : #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
51 : #define LBR_FAR (1 << LBR_FAR_BIT)
52 : #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
53 : #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
54 :
55 : #define LBR_PLM (LBR_KERNEL | LBR_USER)
56 :
57 : #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
58 : #define LBR_NOT_SUPP -1 /* LBR filter not supported */
59 : #define LBR_IGN 0 /* ignored */
60 :
61 : #define LBR_ANY \
62 : (LBR_JCC |\
63 : LBR_REL_CALL |\
64 : LBR_IND_CALL |\
65 : LBR_RETURN |\
66 : LBR_REL_JMP |\
67 : LBR_IND_JMP |\
68 : LBR_FAR)
69 :
70 : #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
71 : #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
72 : #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
73 :
74 : #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
75 :
76 : /*
77 : * x86control flow change classification
78 : * x86control flow changes include branches, interrupts, traps, faults
79 : */
80 : enum {
81 : X86_BR_NONE = 0, /* unknown */
82 :
83 : X86_BR_USER = 1 << 0, /* branch target is user */
84 : X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
85 :
86 : X86_BR_CALL = 1 << 2, /* call */
87 : X86_BR_RET = 1 << 3, /* return */
88 : X86_BR_SYSCALL = 1 << 4, /* syscall */
89 : X86_BR_SYSRET = 1 << 5, /* syscall return */
90 : X86_BR_INT = 1 << 6, /* sw interrupt */
91 : X86_BR_IRET = 1 << 7, /* return from interrupt */
92 : X86_BR_JCC = 1 << 8, /* conditional */
93 : X86_BR_JMP = 1 << 9, /* jump */
94 : X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
95 : X86_BR_IND_CALL = 1 << 11,/* indirect calls */
96 : X86_BR_ABORT = 1 << 12,/* transaction abort */
97 : X86_BR_IN_TX = 1 << 13,/* in transaction */
98 : X86_BR_NO_TX = 1 << 14,/* not in transaction */
99 : X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
100 : X86_BR_CALL_STACK = 1 << 16,/* call stack */
101 : X86_BR_IND_JMP = 1 << 17,/* indirect jump */
102 :
103 : X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */
104 :
105 : };
106 :
107 : #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
108 : #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
109 :
110 : #define X86_BR_ANY \
111 : (X86_BR_CALL |\
112 : X86_BR_RET |\
113 : X86_BR_SYSCALL |\
114 : X86_BR_SYSRET |\
115 : X86_BR_INT |\
116 : X86_BR_IRET |\
117 : X86_BR_JCC |\
118 : X86_BR_JMP |\
119 : X86_BR_IRQ |\
120 : X86_BR_ABORT |\
121 : X86_BR_IND_CALL |\
122 : X86_BR_IND_JMP |\
123 : X86_BR_ZERO_CALL)
124 :
125 : #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
126 :
127 : #define X86_BR_ANY_CALL \
128 : (X86_BR_CALL |\
129 : X86_BR_IND_CALL |\
130 : X86_BR_ZERO_CALL |\
131 : X86_BR_SYSCALL |\
132 : X86_BR_IRQ |\
133 : X86_BR_INT)
134 :
135 : /*
136 : * Intel LBR_CTL bits
137 : *
138 : * Hardware branch filter for Arch LBR
139 : */
140 : #define ARCH_LBR_KERNEL_BIT 1 /* capture at ring0 */
141 : #define ARCH_LBR_USER_BIT 2 /* capture at ring > 0 */
142 : #define ARCH_LBR_CALL_STACK_BIT 3 /* enable call stack */
143 : #define ARCH_LBR_JCC_BIT 16 /* capture conditional branches */
144 : #define ARCH_LBR_REL_JMP_BIT 17 /* capture relative jumps */
145 : #define ARCH_LBR_IND_JMP_BIT 18 /* capture indirect jumps */
146 : #define ARCH_LBR_REL_CALL_BIT 19 /* capture relative calls */
147 : #define ARCH_LBR_IND_CALL_BIT 20 /* capture indirect calls */
148 : #define ARCH_LBR_RETURN_BIT 21 /* capture near returns */
149 : #define ARCH_LBR_OTHER_BRANCH_BIT 22 /* capture other branches */
150 :
151 : #define ARCH_LBR_KERNEL (1ULL << ARCH_LBR_KERNEL_BIT)
152 : #define ARCH_LBR_USER (1ULL << ARCH_LBR_USER_BIT)
153 : #define ARCH_LBR_CALL_STACK (1ULL << ARCH_LBR_CALL_STACK_BIT)
154 : #define ARCH_LBR_JCC (1ULL << ARCH_LBR_JCC_BIT)
155 : #define ARCH_LBR_REL_JMP (1ULL << ARCH_LBR_REL_JMP_BIT)
156 : #define ARCH_LBR_IND_JMP (1ULL << ARCH_LBR_IND_JMP_BIT)
157 : #define ARCH_LBR_REL_CALL (1ULL << ARCH_LBR_REL_CALL_BIT)
158 : #define ARCH_LBR_IND_CALL (1ULL << ARCH_LBR_IND_CALL_BIT)
159 : #define ARCH_LBR_RETURN (1ULL << ARCH_LBR_RETURN_BIT)
160 : #define ARCH_LBR_OTHER_BRANCH (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
161 :
162 : #define ARCH_LBR_ANY \
163 : (ARCH_LBR_JCC |\
164 : ARCH_LBR_REL_JMP |\
165 : ARCH_LBR_IND_JMP |\
166 : ARCH_LBR_REL_CALL |\
167 : ARCH_LBR_IND_CALL |\
168 : ARCH_LBR_RETURN |\
169 : ARCH_LBR_OTHER_BRANCH)
170 :
171 : #define ARCH_LBR_CTL_MASK 0x7f000e
172 :
173 : static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
174 :
175 0 : static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
176 : {
177 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR))
178 0 : return !!(config & ARCH_LBR_CALL_STACK);
179 :
180 0 : return !!(config & LBR_CALL_STACK);
181 : }
182 :
183 : /*
184 : * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
185 : * otherwise it becomes near impossible to get a reliable stack.
186 : */
187 :
188 0 : static void __intel_pmu_lbr_enable(bool pmi)
189 : {
190 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
191 0 : u64 debugctl, lbr_select = 0, orig_debugctl;
192 :
193 : /*
194 : * No need to unfreeze manually, as v4 can do that as part
195 : * of the GLOBAL_STATUS ack.
196 : */
197 0 : if (pmi && x86_pmu.version >= 4)
198 : return;
199 :
200 : /*
201 : * No need to reprogram LBR_SELECT in a PMI, as it
202 : * did not change.
203 : */
204 0 : if (cpuc->lbr_sel)
205 0 : lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
206 0 : if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
207 0 : wrmsrl(MSR_LBR_SELECT, lbr_select);
208 :
209 0 : rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
210 0 : orig_debugctl = debugctl;
211 :
212 0 : if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
213 0 : debugctl |= DEBUGCTLMSR_LBR;
214 : /*
215 : * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
216 : * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
217 : * may cause superfluous increase/decrease of LBR_TOS.
218 : */
219 0 : if (is_lbr_call_stack_bit_set(lbr_select))
220 0 : debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
221 : else
222 0 : debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
223 :
224 0 : if (orig_debugctl != debugctl)
225 0 : wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
226 :
227 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR))
228 0 : wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
229 : }
230 :
231 0 : static void __intel_pmu_lbr_disable(void)
232 : {
233 0 : u64 debugctl;
234 :
235 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
236 0 : wrmsrl(MSR_ARCH_LBR_CTL, 0);
237 0 : return;
238 : }
239 :
240 0 : rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
241 0 : debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
242 0 : wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
243 : }
244 :
245 0 : void intel_pmu_lbr_reset_32(void)
246 : {
247 0 : int i;
248 :
249 0 : for (i = 0; i < x86_pmu.lbr_nr; i++)
250 0 : wrmsrl(x86_pmu.lbr_from + i, 0);
251 0 : }
252 :
253 0 : void intel_pmu_lbr_reset_64(void)
254 : {
255 0 : int i;
256 :
257 0 : for (i = 0; i < x86_pmu.lbr_nr; i++) {
258 0 : wrmsrl(x86_pmu.lbr_from + i, 0);
259 0 : wrmsrl(x86_pmu.lbr_to + i, 0);
260 0 : if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
261 0 : wrmsrl(x86_pmu.lbr_info + i, 0);
262 : }
263 0 : }
264 :
265 0 : static void intel_pmu_arch_lbr_reset(void)
266 : {
267 : /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
268 0 : wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
269 0 : }
270 :
271 4 : void intel_pmu_lbr_reset(void)
272 : {
273 4 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
274 :
275 4 : if (!x86_pmu.lbr_nr)
276 : return;
277 :
278 0 : x86_pmu.lbr_reset();
279 :
280 0 : cpuc->last_task_ctx = NULL;
281 0 : cpuc->last_log_id = 0;
282 : }
283 :
284 : /*
285 : * TOS = most recently recorded branch
286 : */
287 0 : static inline u64 intel_pmu_lbr_tos(void)
288 : {
289 0 : u64 tos;
290 :
291 0 : rdmsrl(x86_pmu.lbr_tos, tos);
292 0 : return tos;
293 : }
294 :
295 : enum {
296 : LBR_NONE,
297 : LBR_VALID,
298 : };
299 :
300 : /*
301 : * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
302 : * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
303 : * TSX is not supported they have no consistent behavior:
304 : *
305 : * - For wrmsr(), bits 61:62 are considered part of the sign extension.
306 : * - For HW updates (branch captures) bits 61:62 are always OFF and are not
307 : * part of the sign extension.
308 : *
309 : * Therefore, if:
310 : *
311 : * 1) LBR has TSX format
312 : * 2) CPU has no TSX support enabled
313 : *
314 : * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
315 : * value from rdmsr() must be converted to have a 61 bits sign extension,
316 : * ignoring the TSX flags.
317 : */
318 1 : static inline bool lbr_from_signext_quirk_needed(void)
319 : {
320 1 : int lbr_format = x86_pmu.intel_cap.lbr_format;
321 1 : bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
322 1 : boot_cpu_has(X86_FEATURE_RTM);
323 :
324 1 : return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
325 : }
326 :
327 : static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
328 :
329 : /* If quirk is enabled, ensure sign extension is 63 bits: */
330 0 : inline u64 lbr_from_signext_quirk_wr(u64 val)
331 : {
332 0 : if (static_branch_unlikely(&lbr_from_quirk_key)) {
333 : /*
334 : * Sign extend into bits 61:62 while preserving bit 63.
335 : *
336 : * Quirk is enabled when TSX is disabled. Therefore TSX bits
337 : * in val are always OFF and must be changed to be sign
338 : * extension bits. Since bits 59:60 are guaranteed to be
339 : * part of the sign extension bits, we can just copy them
340 : * to 61:62.
341 : */
342 0 : val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
343 : }
344 0 : return val;
345 : }
346 :
347 : /*
348 : * If quirk is needed, ensure sign extension is 61 bits:
349 : */
350 0 : static u64 lbr_from_signext_quirk_rd(u64 val)
351 : {
352 0 : if (static_branch_unlikely(&lbr_from_quirk_key)) {
353 : /*
354 : * Quirk is on when TSX is not enabled. Therefore TSX
355 : * flags must be read as OFF.
356 : */
357 0 : val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
358 : }
359 0 : return val;
360 : }
361 :
362 0 : static __always_inline void wrlbr_from(unsigned int idx, u64 val)
363 : {
364 0 : val = lbr_from_signext_quirk_wr(val);
365 0 : wrmsrl(x86_pmu.lbr_from + idx, val);
366 : }
367 :
368 0 : static __always_inline void wrlbr_to(unsigned int idx, u64 val)
369 : {
370 0 : wrmsrl(x86_pmu.lbr_to + idx, val);
371 : }
372 :
373 0 : static __always_inline void wrlbr_info(unsigned int idx, u64 val)
374 : {
375 0 : wrmsrl(x86_pmu.lbr_info + idx, val);
376 0 : }
377 :
378 0 : static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
379 : {
380 0 : u64 val;
381 :
382 0 : if (lbr)
383 0 : return lbr->from;
384 :
385 0 : rdmsrl(x86_pmu.lbr_from + idx, val);
386 :
387 0 : return lbr_from_signext_quirk_rd(val);
388 : }
389 :
390 0 : static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
391 : {
392 0 : u64 val;
393 :
394 0 : if (lbr)
395 0 : return lbr->to;
396 :
397 0 : rdmsrl(x86_pmu.lbr_to + idx, val);
398 :
399 0 : return val;
400 : }
401 :
402 0 : static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
403 : {
404 0 : u64 val;
405 :
406 0 : if (lbr)
407 0 : return lbr->info;
408 :
409 0 : rdmsrl(x86_pmu.lbr_info + idx, val);
410 :
411 0 : return val;
412 : }
413 :
414 : static inline void
415 0 : wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
416 : {
417 0 : wrlbr_from(idx, lbr->from);
418 0 : wrlbr_to(idx, lbr->to);
419 0 : if (need_info)
420 0 : wrlbr_info(idx, lbr->info);
421 0 : }
422 :
423 : static inline bool
424 0 : rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
425 : {
426 0 : u64 from = rdlbr_from(idx, NULL);
427 :
428 : /* Don't read invalid entry */
429 0 : if (!from)
430 : return false;
431 :
432 0 : lbr->from = from;
433 0 : lbr->to = rdlbr_to(idx, NULL);
434 0 : if (need_info)
435 0 : lbr->info = rdlbr_info(idx, NULL);
436 :
437 : return true;
438 : }
439 :
440 0 : void intel_pmu_lbr_restore(void *ctx)
441 : {
442 0 : bool need_info = x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO;
443 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
444 0 : struct x86_perf_task_context *task_ctx = ctx;
445 0 : int i;
446 0 : unsigned lbr_idx, mask;
447 0 : u64 tos = task_ctx->tos;
448 :
449 0 : mask = x86_pmu.lbr_nr - 1;
450 0 : for (i = 0; i < task_ctx->valid_lbrs; i++) {
451 0 : lbr_idx = (tos - i) & mask;
452 0 : wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
453 : }
454 :
455 0 : for (; i < x86_pmu.lbr_nr; i++) {
456 0 : lbr_idx = (tos - i) & mask;
457 0 : wrlbr_from(lbr_idx, 0);
458 0 : wrlbr_to(lbr_idx, 0);
459 0 : if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
460 0 : wrlbr_info(lbr_idx, 0);
461 : }
462 :
463 0 : wrmsrl(x86_pmu.lbr_tos, tos);
464 :
465 0 : if (cpuc->lbr_select)
466 0 : wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
467 0 : }
468 :
469 0 : static void intel_pmu_arch_lbr_restore(void *ctx)
470 : {
471 0 : struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
472 0 : struct lbr_entry *entries = task_ctx->entries;
473 0 : int i;
474 :
475 : /* Fast reset the LBRs before restore if the call stack is not full. */
476 0 : if (!entries[x86_pmu.lbr_nr - 1].from)
477 0 : intel_pmu_arch_lbr_reset();
478 :
479 0 : for (i = 0; i < x86_pmu.lbr_nr; i++) {
480 0 : if (!entries[i].from)
481 : break;
482 0 : wrlbr_all(&entries[i], i, true);
483 : }
484 0 : }
485 :
486 : /*
487 : * Restore the Architecture LBR state from the xsave area in the perf
488 : * context data for the task via the XRSTORS instruction.
489 : */
490 0 : static void intel_pmu_arch_lbr_xrstors(void *ctx)
491 : {
492 0 : struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
493 :
494 0 : copy_kernel_to_dynamic_supervisor(&task_ctx->xsave, XFEATURE_MASK_LBR);
495 0 : }
496 :
497 0 : static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
498 : {
499 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR))
500 0 : return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
501 :
502 0 : return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
503 : }
504 :
505 0 : static void __intel_pmu_lbr_restore(void *ctx)
506 : {
507 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
508 :
509 0 : if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
510 0 : task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
511 0 : intel_pmu_lbr_reset();
512 0 : return;
513 : }
514 :
515 : /*
516 : * Does not restore the LBR registers, if
517 : * - No one else touched them, and
518 : * - Was not cleared in Cstate
519 : */
520 0 : if ((ctx == cpuc->last_task_ctx) &&
521 0 : (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
522 0 : !lbr_is_reset_in_cstate(ctx)) {
523 0 : task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
524 0 : return;
525 : }
526 :
527 0 : x86_pmu.lbr_restore(ctx);
528 :
529 0 : task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
530 : }
531 :
532 0 : void intel_pmu_lbr_save(void *ctx)
533 : {
534 0 : bool need_info = x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO;
535 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
536 0 : struct x86_perf_task_context *task_ctx = ctx;
537 0 : unsigned lbr_idx, mask;
538 0 : u64 tos;
539 0 : int i;
540 :
541 0 : mask = x86_pmu.lbr_nr - 1;
542 0 : tos = intel_pmu_lbr_tos();
543 0 : for (i = 0; i < x86_pmu.lbr_nr; i++) {
544 0 : lbr_idx = (tos - i) & mask;
545 0 : if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
546 : break;
547 : }
548 0 : task_ctx->valid_lbrs = i;
549 0 : task_ctx->tos = tos;
550 :
551 0 : if (cpuc->lbr_select)
552 0 : rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
553 0 : }
554 :
555 0 : static void intel_pmu_arch_lbr_save(void *ctx)
556 : {
557 0 : struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
558 0 : struct lbr_entry *entries = task_ctx->entries;
559 0 : int i;
560 :
561 0 : for (i = 0; i < x86_pmu.lbr_nr; i++) {
562 0 : if (!rdlbr_all(&entries[i], i, true))
563 : break;
564 : }
565 :
566 : /* LBR call stack is not full. Reset is required in restore. */
567 0 : if (i < x86_pmu.lbr_nr)
568 0 : entries[x86_pmu.lbr_nr - 1].from = 0;
569 0 : }
570 :
571 : /*
572 : * Save the Architecture LBR state to the xsave area in the perf
573 : * context data for the task via the XSAVES instruction.
574 : */
575 0 : static void intel_pmu_arch_lbr_xsaves(void *ctx)
576 : {
577 0 : struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
578 :
579 0 : copy_dynamic_supervisor_to_kernel(&task_ctx->xsave, XFEATURE_MASK_LBR);
580 0 : }
581 :
582 0 : static void __intel_pmu_lbr_save(void *ctx)
583 : {
584 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
585 :
586 0 : if (task_context_opt(ctx)->lbr_callstack_users == 0) {
587 0 : task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
588 0 : return;
589 : }
590 :
591 0 : x86_pmu.lbr_save(ctx);
592 :
593 0 : task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
594 :
595 0 : cpuc->last_task_ctx = ctx;
596 0 : cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
597 : }
598 :
599 0 : void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev,
600 : struct perf_event_context *next)
601 : {
602 0 : void *prev_ctx_data, *next_ctx_data;
603 :
604 0 : swap(prev->task_ctx_data, next->task_ctx_data);
605 :
606 : /*
607 : * Architecture specific synchronization makes sense in
608 : * case both prev->task_ctx_data and next->task_ctx_data
609 : * pointers are allocated.
610 : */
611 :
612 0 : prev_ctx_data = next->task_ctx_data;
613 0 : next_ctx_data = prev->task_ctx_data;
614 :
615 0 : if (!prev_ctx_data || !next_ctx_data)
616 : return;
617 :
618 0 : swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
619 : task_context_opt(next_ctx_data)->lbr_callstack_users);
620 : }
621 :
622 0 : void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
623 : {
624 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
625 0 : void *task_ctx;
626 :
627 0 : if (!cpuc->lbr_users)
628 : return;
629 :
630 : /*
631 : * If LBR callstack feature is enabled and the stack was saved when
632 : * the task was scheduled out, restore the stack. Otherwise flush
633 : * the LBR stack.
634 : */
635 0 : task_ctx = ctx ? ctx->task_ctx_data : NULL;
636 0 : if (task_ctx) {
637 0 : if (sched_in)
638 0 : __intel_pmu_lbr_restore(task_ctx);
639 : else
640 0 : __intel_pmu_lbr_save(task_ctx);
641 0 : return;
642 : }
643 :
644 : /*
645 : * Since a context switch can flip the address space and LBR entries
646 : * are not tagged with an identifier, we need to wipe the LBR, even for
647 : * per-cpu events. You simply cannot resolve the branches from the old
648 : * address space.
649 : */
650 0 : if (sched_in)
651 0 : intel_pmu_lbr_reset();
652 : }
653 :
654 0 : static inline bool branch_user_callstack(unsigned br_sel)
655 : {
656 0 : return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
657 : }
658 :
659 0 : void intel_pmu_lbr_add(struct perf_event *event)
660 : {
661 0 : struct kmem_cache *kmem_cache = event->pmu->task_ctx_cache;
662 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
663 :
664 0 : if (!x86_pmu.lbr_nr)
665 : return;
666 :
667 0 : if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
668 0 : cpuc->lbr_select = 1;
669 :
670 0 : cpuc->br_sel = event->hw.branch_reg.reg;
671 :
672 0 : if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data)
673 0 : task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users++;
674 :
675 : /*
676 : * Request pmu::sched_task() callback, which will fire inside the
677 : * regular perf event scheduling, so that call will:
678 : *
679 : * - restore or wipe; when LBR-callstack,
680 : * - wipe; otherwise,
681 : *
682 : * when this is from __perf_event_task_sched_in().
683 : *
684 : * However, if this is from perf_install_in_context(), no such callback
685 : * will follow and we'll need to reset the LBR here if this is the
686 : * first LBR event.
687 : *
688 : * The problem is, we cannot tell these cases apart... but we can
689 : * exclude the biggest chunk of cases by looking at
690 : * event->total_time_running. An event that has accrued runtime cannot
691 : * be 'new'. Conversely, a new event can get installed through the
692 : * context switch path for the first time.
693 : */
694 0 : if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
695 0 : cpuc->lbr_pebs_users++;
696 0 : perf_sched_cb_inc(event->ctx->pmu);
697 0 : if (!cpuc->lbr_users++ && !event->total_time_running)
698 0 : intel_pmu_lbr_reset();
699 :
700 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
701 0 : kmem_cache && !cpuc->lbr_xsave &&
702 0 : (cpuc->lbr_users != cpuc->lbr_pebs_users))
703 0 : cpuc->lbr_xsave = kmem_cache_alloc(kmem_cache, GFP_KERNEL);
704 : }
705 :
706 0 : void release_lbr_buffers(void)
707 : {
708 0 : struct kmem_cache *kmem_cache = x86_get_pmu()->task_ctx_cache;
709 0 : struct cpu_hw_events *cpuc;
710 0 : int cpu;
711 :
712 0 : if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
713 : return;
714 :
715 0 : for_each_possible_cpu(cpu) {
716 0 : cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
717 0 : if (kmem_cache && cpuc->lbr_xsave) {
718 0 : kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
719 0 : cpuc->lbr_xsave = NULL;
720 : }
721 : }
722 : }
723 :
724 0 : void intel_pmu_lbr_del(struct perf_event *event)
725 : {
726 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
727 :
728 0 : if (!x86_pmu.lbr_nr)
729 : return;
730 :
731 0 : if (branch_user_callstack(cpuc->br_sel) &&
732 0 : event->ctx->task_ctx_data)
733 0 : task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users--;
734 :
735 0 : if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
736 0 : cpuc->lbr_select = 0;
737 :
738 0 : if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
739 0 : cpuc->lbr_pebs_users--;
740 0 : cpuc->lbr_users--;
741 0 : WARN_ON_ONCE(cpuc->lbr_users < 0);
742 0 : WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
743 0 : perf_sched_cb_dec(event->ctx->pmu);
744 : }
745 :
746 0 : static inline bool vlbr_exclude_host(void)
747 : {
748 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
749 :
750 0 : return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
751 0 : (unsigned long *)&cpuc->intel_ctrl_guest_mask);
752 : }
753 :
754 0 : void intel_pmu_lbr_enable_all(bool pmi)
755 : {
756 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
757 :
758 0 : if (cpuc->lbr_users && !vlbr_exclude_host())
759 0 : __intel_pmu_lbr_enable(pmi);
760 0 : }
761 :
762 0 : void intel_pmu_lbr_disable_all(void)
763 : {
764 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
765 :
766 0 : if (cpuc->lbr_users && !vlbr_exclude_host())
767 0 : __intel_pmu_lbr_disable();
768 0 : }
769 :
770 0 : void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
771 : {
772 0 : unsigned long mask = x86_pmu.lbr_nr - 1;
773 0 : u64 tos = intel_pmu_lbr_tos();
774 0 : int i;
775 :
776 0 : for (i = 0; i < x86_pmu.lbr_nr; i++) {
777 0 : unsigned long lbr_idx = (tos - i) & mask;
778 0 : union {
779 : struct {
780 : u32 from;
781 : u32 to;
782 : };
783 : u64 lbr;
784 : } msr_lastbranch;
785 :
786 0 : rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
787 :
788 0 : cpuc->lbr_entries[i].from = msr_lastbranch.from;
789 0 : cpuc->lbr_entries[i].to = msr_lastbranch.to;
790 0 : cpuc->lbr_entries[i].mispred = 0;
791 0 : cpuc->lbr_entries[i].predicted = 0;
792 0 : cpuc->lbr_entries[i].in_tx = 0;
793 0 : cpuc->lbr_entries[i].abort = 0;
794 0 : cpuc->lbr_entries[i].cycles = 0;
795 0 : cpuc->lbr_entries[i].type = 0;
796 0 : cpuc->lbr_entries[i].reserved = 0;
797 : }
798 0 : cpuc->lbr_stack.nr = i;
799 0 : cpuc->lbr_stack.hw_idx = tos;
800 0 : }
801 :
802 : /*
803 : * Due to lack of segmentation in Linux the effective address (offset)
804 : * is the same as the linear address, allowing us to merge the LIP and EIP
805 : * LBR formats.
806 : */
807 0 : void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
808 : {
809 0 : bool need_info = false, call_stack = false;
810 0 : unsigned long mask = x86_pmu.lbr_nr - 1;
811 0 : int lbr_format = x86_pmu.intel_cap.lbr_format;
812 0 : u64 tos = intel_pmu_lbr_tos();
813 0 : int i;
814 0 : int out = 0;
815 0 : int num = x86_pmu.lbr_nr;
816 :
817 0 : if (cpuc->lbr_sel) {
818 0 : need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
819 0 : if (cpuc->lbr_sel->config & LBR_CALL_STACK)
820 0 : call_stack = true;
821 : }
822 :
823 0 : for (i = 0; i < num; i++) {
824 0 : unsigned long lbr_idx = (tos - i) & mask;
825 0 : u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
826 0 : int skip = 0;
827 0 : u16 cycles = 0;
828 0 : int lbr_flags = lbr_desc[lbr_format];
829 :
830 0 : from = rdlbr_from(lbr_idx, NULL);
831 0 : to = rdlbr_to(lbr_idx, NULL);
832 :
833 : /*
834 : * Read LBR call stack entries
835 : * until invalid entry (0s) is detected.
836 : */
837 0 : if (call_stack && !from)
838 : break;
839 :
840 0 : if (lbr_format == LBR_FORMAT_INFO && need_info) {
841 0 : u64 info;
842 :
843 0 : info = rdlbr_info(lbr_idx, NULL);
844 0 : mis = !!(info & LBR_INFO_MISPRED);
845 0 : pred = !mis;
846 0 : in_tx = !!(info & LBR_INFO_IN_TX);
847 0 : abort = !!(info & LBR_INFO_ABORT);
848 0 : cycles = (info & LBR_INFO_CYCLES);
849 : }
850 :
851 0 : if (lbr_format == LBR_FORMAT_TIME) {
852 0 : mis = !!(from & LBR_FROM_FLAG_MISPRED);
853 0 : pred = !mis;
854 0 : skip = 1;
855 0 : cycles = ((to >> 48) & LBR_INFO_CYCLES);
856 :
857 0 : to = (u64)((((s64)to) << 16) >> 16);
858 : }
859 :
860 0 : if (lbr_flags & LBR_EIP_FLAGS) {
861 0 : mis = !!(from & LBR_FROM_FLAG_MISPRED);
862 0 : pred = !mis;
863 0 : skip = 1;
864 : }
865 0 : if (lbr_flags & LBR_TSX) {
866 0 : in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
867 0 : abort = !!(from & LBR_FROM_FLAG_ABORT);
868 0 : skip = 3;
869 : }
870 0 : from = (u64)((((s64)from) << skip) >> skip);
871 :
872 : /*
873 : * Some CPUs report duplicated abort records,
874 : * with the second entry not having an abort bit set.
875 : * Skip them here. This loop runs backwards,
876 : * so we need to undo the previous record.
877 : * If the abort just happened outside the window
878 : * the extra entry cannot be removed.
879 : */
880 0 : if (abort && x86_pmu.lbr_double_abort && out > 0)
881 0 : out--;
882 :
883 0 : cpuc->lbr_entries[out].from = from;
884 0 : cpuc->lbr_entries[out].to = to;
885 0 : cpuc->lbr_entries[out].mispred = mis;
886 0 : cpuc->lbr_entries[out].predicted = pred;
887 0 : cpuc->lbr_entries[out].in_tx = in_tx;
888 0 : cpuc->lbr_entries[out].abort = abort;
889 0 : cpuc->lbr_entries[out].cycles = cycles;
890 0 : cpuc->lbr_entries[out].type = 0;
891 0 : cpuc->lbr_entries[out].reserved = 0;
892 0 : out++;
893 : }
894 0 : cpuc->lbr_stack.nr = out;
895 0 : cpuc->lbr_stack.hw_idx = tos;
896 0 : }
897 :
898 0 : static __always_inline int get_lbr_br_type(u64 info)
899 : {
900 0 : if (!static_cpu_has(X86_FEATURE_ARCH_LBR) || !x86_pmu.lbr_br_type)
901 : return 0;
902 :
903 0 : return (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
904 : }
905 :
906 0 : static __always_inline bool get_lbr_mispred(u64 info)
907 : {
908 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR) && !x86_pmu.lbr_mispred)
909 : return 0;
910 :
911 0 : return !!(info & LBR_INFO_MISPRED);
912 : }
913 :
914 0 : static __always_inline bool get_lbr_predicted(u64 info)
915 : {
916 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR) && !x86_pmu.lbr_mispred)
917 : return 0;
918 :
919 0 : return !(info & LBR_INFO_MISPRED);
920 : }
921 :
922 0 : static __always_inline u16 get_lbr_cycles(u64 info)
923 : {
924 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
925 0 : !(x86_pmu.lbr_timed_lbr && info & LBR_INFO_CYC_CNT_VALID))
926 : return 0;
927 :
928 0 : return info & LBR_INFO_CYCLES;
929 : }
930 :
931 0 : static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
932 : struct lbr_entry *entries)
933 : {
934 0 : struct perf_branch_entry *e;
935 0 : struct lbr_entry *lbr;
936 0 : u64 from, to, info;
937 0 : int i;
938 :
939 0 : for (i = 0; i < x86_pmu.lbr_nr; i++) {
940 0 : lbr = entries ? &entries[i] : NULL;
941 0 : e = &cpuc->lbr_entries[i];
942 :
943 0 : from = rdlbr_from(i, lbr);
944 : /*
945 : * Read LBR entries until invalid entry (0s) is detected.
946 : */
947 0 : if (!from)
948 : break;
949 :
950 0 : to = rdlbr_to(i, lbr);
951 0 : info = rdlbr_info(i, lbr);
952 :
953 0 : e->from = from;
954 0 : e->to = to;
955 0 : e->mispred = get_lbr_mispred(info);
956 0 : e->predicted = get_lbr_predicted(info);
957 0 : e->in_tx = !!(info & LBR_INFO_IN_TX);
958 0 : e->abort = !!(info & LBR_INFO_ABORT);
959 0 : e->cycles = get_lbr_cycles(info);
960 0 : e->type = get_lbr_br_type(info);
961 0 : e->reserved = 0;
962 : }
963 :
964 0 : cpuc->lbr_stack.nr = i;
965 0 : }
966 :
967 0 : static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
968 : {
969 0 : intel_pmu_store_lbr(cpuc, NULL);
970 0 : }
971 :
972 0 : static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
973 : {
974 0 : struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
975 :
976 0 : if (!xsave) {
977 0 : intel_pmu_store_lbr(cpuc, NULL);
978 0 : return;
979 : }
980 0 : copy_dynamic_supervisor_to_kernel(&xsave->xsave, XFEATURE_MASK_LBR);
981 :
982 0 : intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
983 : }
984 :
985 0 : void intel_pmu_lbr_read(void)
986 : {
987 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
988 :
989 : /*
990 : * Don't read when all LBRs users are using adaptive PEBS.
991 : *
992 : * This could be smarter and actually check the event,
993 : * but this simple approach seems to work for now.
994 : */
995 0 : if (!cpuc->lbr_users || vlbr_exclude_host() ||
996 0 : cpuc->lbr_users == cpuc->lbr_pebs_users)
997 0 : return;
998 :
999 0 : x86_pmu.lbr_read(cpuc);
1000 :
1001 0 : intel_pmu_lbr_filter(cpuc);
1002 : }
1003 :
1004 : /*
1005 : * SW filter is used:
1006 : * - in case there is no HW filter
1007 : * - in case the HW filter has errata or limitations
1008 : */
1009 0 : static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1010 : {
1011 0 : u64 br_type = event->attr.branch_sample_type;
1012 0 : int mask = 0;
1013 :
1014 0 : if (br_type & PERF_SAMPLE_BRANCH_USER)
1015 : mask |= X86_BR_USER;
1016 :
1017 0 : if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1018 0 : mask |= X86_BR_KERNEL;
1019 :
1020 : /* we ignore BRANCH_HV here */
1021 :
1022 0 : if (br_type & PERF_SAMPLE_BRANCH_ANY)
1023 0 : mask |= X86_BR_ANY;
1024 :
1025 0 : if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1026 0 : mask |= X86_BR_ANY_CALL;
1027 :
1028 0 : if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1029 0 : mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1030 :
1031 0 : if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1032 0 : mask |= X86_BR_IND_CALL;
1033 :
1034 0 : if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1035 0 : mask |= X86_BR_ABORT;
1036 :
1037 0 : if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1038 0 : mask |= X86_BR_IN_TX;
1039 :
1040 0 : if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1041 0 : mask |= X86_BR_NO_TX;
1042 :
1043 0 : if (br_type & PERF_SAMPLE_BRANCH_COND)
1044 0 : mask |= X86_BR_JCC;
1045 :
1046 0 : if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1047 0 : if (!x86_pmu_has_lbr_callstack())
1048 : return -EOPNOTSUPP;
1049 0 : if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1050 : return -EINVAL;
1051 0 : mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1052 : X86_BR_CALL_STACK;
1053 : }
1054 :
1055 0 : if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1056 0 : mask |= X86_BR_IND_JMP;
1057 :
1058 0 : if (br_type & PERF_SAMPLE_BRANCH_CALL)
1059 0 : mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1060 :
1061 0 : if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1062 0 : mask |= X86_BR_TYPE_SAVE;
1063 :
1064 : /*
1065 : * stash actual user request into reg, it may
1066 : * be used by fixup code for some CPU
1067 : */
1068 0 : event->hw.branch_reg.reg = mask;
1069 0 : return 0;
1070 : }
1071 :
1072 : /*
1073 : * setup the HW LBR filter
1074 : * Used only when available, may not be enough to disambiguate
1075 : * all branches, may need the help of the SW filter
1076 : */
1077 0 : static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1078 : {
1079 0 : struct hw_perf_event_extra *reg;
1080 0 : u64 br_type = event->attr.branch_sample_type;
1081 0 : u64 mask = 0, v;
1082 0 : int i;
1083 :
1084 0 : for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1085 0 : if (!(br_type & (1ULL << i)))
1086 0 : continue;
1087 :
1088 0 : v = x86_pmu.lbr_sel_map[i];
1089 0 : if (v == LBR_NOT_SUPP)
1090 : return -EOPNOTSUPP;
1091 :
1092 0 : if (v != LBR_IGN)
1093 0 : mask |= v;
1094 : }
1095 :
1096 0 : reg = &event->hw.branch_reg;
1097 0 : reg->idx = EXTRA_REG_LBR;
1098 :
1099 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1100 0 : reg->config = mask;
1101 0 : return 0;
1102 : }
1103 :
1104 : /*
1105 : * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1106 : * in suppress mode. So LBR_SELECT should be set to
1107 : * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1108 : * But the 10th bit LBR_CALL_STACK does not operate
1109 : * in suppress mode.
1110 : */
1111 0 : reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1112 :
1113 0 : if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1114 0 : (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1115 0 : (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
1116 0 : reg->config |= LBR_NO_INFO;
1117 :
1118 : return 0;
1119 : }
1120 :
1121 0 : int intel_pmu_setup_lbr_filter(struct perf_event *event)
1122 : {
1123 0 : int ret = 0;
1124 :
1125 : /*
1126 : * no LBR on this PMU
1127 : */
1128 0 : if (!x86_pmu.lbr_nr)
1129 : return -EOPNOTSUPP;
1130 :
1131 : /*
1132 : * setup SW LBR filter
1133 : */
1134 0 : ret = intel_pmu_setup_sw_lbr_filter(event);
1135 0 : if (ret)
1136 : return ret;
1137 :
1138 : /*
1139 : * setup HW LBR filter, if any
1140 : */
1141 0 : if (x86_pmu.lbr_sel_map)
1142 0 : ret = intel_pmu_setup_hw_lbr_filter(event);
1143 :
1144 : return ret;
1145 : }
1146 :
1147 : /*
1148 : * return the type of control flow change at address "from"
1149 : * instruction is not necessarily a branch (in case of interrupt).
1150 : *
1151 : * The branch type returned also includes the priv level of the
1152 : * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
1153 : *
1154 : * If a branch type is unknown OR the instruction cannot be
1155 : * decoded (e.g., text page not present), then X86_BR_NONE is
1156 : * returned.
1157 : */
1158 0 : static int branch_type(unsigned long from, unsigned long to, int abort)
1159 : {
1160 0 : struct insn insn;
1161 0 : void *addr;
1162 0 : int bytes_read, bytes_left;
1163 0 : int ret = X86_BR_NONE;
1164 0 : int ext, to_plm, from_plm;
1165 0 : u8 buf[MAX_INSN_SIZE];
1166 0 : int is64 = 0;
1167 :
1168 0 : to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1169 0 : from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
1170 :
1171 : /*
1172 : * maybe zero if lbr did not fill up after a reset by the time
1173 : * we get a PMU interrupt
1174 : */
1175 0 : if (from == 0 || to == 0)
1176 : return X86_BR_NONE;
1177 :
1178 0 : if (abort)
1179 0 : return X86_BR_ABORT | to_plm;
1180 :
1181 0 : if (from_plm == X86_BR_USER) {
1182 : /*
1183 : * can happen if measuring at the user level only
1184 : * and we interrupt in a kernel thread, e.g., idle.
1185 : */
1186 0 : if (!current->mm)
1187 : return X86_BR_NONE;
1188 :
1189 : /* may fail if text not present */
1190 0 : bytes_left = copy_from_user_nmi(buf, (void __user *)from,
1191 : MAX_INSN_SIZE);
1192 0 : bytes_read = MAX_INSN_SIZE - bytes_left;
1193 0 : if (!bytes_read)
1194 : return X86_BR_NONE;
1195 :
1196 : addr = buf;
1197 : } else {
1198 : /*
1199 : * The LBR logs any address in the IP, even if the IP just
1200 : * faulted. This means userspace can control the from address.
1201 : * Ensure we don't blindy read any address by validating it is
1202 : * a known text address.
1203 : */
1204 0 : if (kernel_text_address(from)) {
1205 0 : addr = (void *)from;
1206 : /*
1207 : * Assume we can get the maximum possible size
1208 : * when grabbing kernel data. This is not
1209 : * _strictly_ true since we could possibly be
1210 : * executing up next to a memory hole, but
1211 : * it is very unlikely to be a problem.
1212 : */
1213 0 : bytes_read = MAX_INSN_SIZE;
1214 : } else {
1215 : return X86_BR_NONE;
1216 : }
1217 : }
1218 :
1219 : /*
1220 : * decoder needs to know the ABI especially
1221 : * on 64-bit systems running 32-bit apps
1222 : */
1223 : #ifdef CONFIG_X86_64
1224 0 : is64 = kernel_ip((unsigned long)addr) || any_64bit_mode(current_pt_regs());
1225 : #endif
1226 0 : insn_init(&insn, addr, bytes_read, is64);
1227 0 : insn_get_opcode(&insn);
1228 0 : if (!insn.opcode.got)
1229 : return X86_BR_ABORT;
1230 :
1231 0 : switch (insn.opcode.bytes[0]) {
1232 0 : case 0xf:
1233 0 : switch (insn.opcode.bytes[1]) {
1234 : case 0x05: /* syscall */
1235 : case 0x34: /* sysenter */
1236 : ret = X86_BR_SYSCALL;
1237 : break;
1238 0 : case 0x07: /* sysret */
1239 : case 0x35: /* sysexit */
1240 0 : ret = X86_BR_SYSRET;
1241 0 : break;
1242 0 : case 0x80 ... 0x8f: /* conditional */
1243 0 : ret = X86_BR_JCC;
1244 0 : break;
1245 0 : default:
1246 0 : ret = X86_BR_NONE;
1247 : }
1248 : break;
1249 : case 0x70 ... 0x7f: /* conditional */
1250 : ret = X86_BR_JCC;
1251 : break;
1252 0 : case 0xc2: /* near ret */
1253 : case 0xc3: /* near ret */
1254 : case 0xca: /* far ret */
1255 : case 0xcb: /* far ret */
1256 0 : ret = X86_BR_RET;
1257 0 : break;
1258 0 : case 0xcf: /* iret */
1259 0 : ret = X86_BR_IRET;
1260 0 : break;
1261 0 : case 0xcc ... 0xce: /* int */
1262 0 : ret = X86_BR_INT;
1263 0 : break;
1264 0 : case 0xe8: /* call near rel */
1265 0 : insn_get_immediate(&insn);
1266 0 : if (insn.immediate1.value == 0) {
1267 : /* zero length call */
1268 : ret = X86_BR_ZERO_CALL;
1269 : break;
1270 : }
1271 : fallthrough;
1272 : case 0x9a: /* call far absolute */
1273 : ret = X86_BR_CALL;
1274 : break;
1275 : case 0xe0 ... 0xe3: /* loop jmp */
1276 : ret = X86_BR_JCC;
1277 : break;
1278 0 : case 0xe9 ... 0xeb: /* jmp */
1279 0 : ret = X86_BR_JMP;
1280 0 : break;
1281 0 : case 0xff: /* call near absolute, call far absolute ind */
1282 0 : insn_get_modrm(&insn);
1283 0 : ext = (insn.modrm.bytes[0] >> 3) & 0x7;
1284 0 : switch (ext) {
1285 0 : case 2: /* near ind call */
1286 : case 3: /* far ind call */
1287 0 : ret = X86_BR_IND_CALL;
1288 0 : break;
1289 0 : case 4:
1290 : case 5:
1291 0 : ret = X86_BR_IND_JMP;
1292 0 : break;
1293 : }
1294 : break;
1295 0 : default:
1296 0 : ret = X86_BR_NONE;
1297 : }
1298 : /*
1299 : * interrupts, traps, faults (and thus ring transition) may
1300 : * occur on any instructions. Thus, to classify them correctly,
1301 : * we need to first look at the from and to priv levels. If they
1302 : * are different and to is in the kernel, then it indicates
1303 : * a ring transition. If the from instruction is not a ring
1304 : * transition instr (syscall, systenter, int), then it means
1305 : * it was a irq, trap or fault.
1306 : *
1307 : * we have no way of detecting kernel to kernel faults.
1308 : */
1309 0 : if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
1310 0 : && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
1311 : ret = X86_BR_IRQ;
1312 :
1313 : /*
1314 : * branch priv level determined by target as
1315 : * is done by HW when LBR_SELECT is implemented
1316 : */
1317 0 : if (ret != X86_BR_NONE)
1318 0 : ret |= to_plm;
1319 :
1320 : return ret;
1321 : }
1322 :
1323 : #define X86_BR_TYPE_MAP_MAX 16
1324 :
1325 : static int branch_map[X86_BR_TYPE_MAP_MAX] = {
1326 : PERF_BR_CALL, /* X86_BR_CALL */
1327 : PERF_BR_RET, /* X86_BR_RET */
1328 : PERF_BR_SYSCALL, /* X86_BR_SYSCALL */
1329 : PERF_BR_SYSRET, /* X86_BR_SYSRET */
1330 : PERF_BR_UNKNOWN, /* X86_BR_INT */
1331 : PERF_BR_UNKNOWN, /* X86_BR_IRET */
1332 : PERF_BR_COND, /* X86_BR_JCC */
1333 : PERF_BR_UNCOND, /* X86_BR_JMP */
1334 : PERF_BR_UNKNOWN, /* X86_BR_IRQ */
1335 : PERF_BR_IND_CALL, /* X86_BR_IND_CALL */
1336 : PERF_BR_UNKNOWN, /* X86_BR_ABORT */
1337 : PERF_BR_UNKNOWN, /* X86_BR_IN_TX */
1338 : PERF_BR_UNKNOWN, /* X86_BR_NO_TX */
1339 : PERF_BR_CALL, /* X86_BR_ZERO_CALL */
1340 : PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */
1341 : PERF_BR_IND, /* X86_BR_IND_JMP */
1342 : };
1343 :
1344 : static int
1345 0 : common_branch_type(int type)
1346 : {
1347 0 : int i;
1348 :
1349 0 : type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
1350 :
1351 0 : if (type) {
1352 0 : i = __ffs(type);
1353 0 : if (i < X86_BR_TYPE_MAP_MAX)
1354 0 : return branch_map[i];
1355 : }
1356 :
1357 : return PERF_BR_UNKNOWN;
1358 : }
1359 :
1360 : enum {
1361 : ARCH_LBR_BR_TYPE_JCC = 0,
1362 : ARCH_LBR_BR_TYPE_NEAR_IND_JMP = 1,
1363 : ARCH_LBR_BR_TYPE_NEAR_REL_JMP = 2,
1364 : ARCH_LBR_BR_TYPE_NEAR_IND_CALL = 3,
1365 : ARCH_LBR_BR_TYPE_NEAR_REL_CALL = 4,
1366 : ARCH_LBR_BR_TYPE_NEAR_RET = 5,
1367 : ARCH_LBR_BR_TYPE_KNOWN_MAX = ARCH_LBR_BR_TYPE_NEAR_RET,
1368 :
1369 : ARCH_LBR_BR_TYPE_MAP_MAX = 16,
1370 : };
1371 :
1372 : static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1373 : [ARCH_LBR_BR_TYPE_JCC] = X86_BR_JCC,
1374 : [ARCH_LBR_BR_TYPE_NEAR_IND_JMP] = X86_BR_IND_JMP,
1375 : [ARCH_LBR_BR_TYPE_NEAR_REL_JMP] = X86_BR_JMP,
1376 : [ARCH_LBR_BR_TYPE_NEAR_IND_CALL] = X86_BR_IND_CALL,
1377 : [ARCH_LBR_BR_TYPE_NEAR_REL_CALL] = X86_BR_CALL,
1378 : [ARCH_LBR_BR_TYPE_NEAR_RET] = X86_BR_RET,
1379 : };
1380 :
1381 : /*
1382 : * implement actual branch filter based on user demand.
1383 : * Hardware may not exactly satisfy that request, thus
1384 : * we need to inspect opcodes. Mismatched branches are
1385 : * discarded. Therefore, the number of branches returned
1386 : * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1387 : */
1388 : static void
1389 0 : intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1390 : {
1391 0 : u64 from, to;
1392 0 : int br_sel = cpuc->br_sel;
1393 0 : int i, j, type, to_plm;
1394 0 : bool compress = false;
1395 :
1396 : /* if sampling all branches, then nothing to filter */
1397 0 : if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1398 : ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1399 : return;
1400 :
1401 0 : for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1402 :
1403 0 : from = cpuc->lbr_entries[i].from;
1404 0 : to = cpuc->lbr_entries[i].to;
1405 0 : type = cpuc->lbr_entries[i].type;
1406 :
1407 : /*
1408 : * Parse the branch type recorded in LBR_x_INFO MSR.
1409 : * Doesn't support OTHER_BRANCH decoding for now.
1410 : * OTHER_BRANCH branch type still rely on software decoding.
1411 : */
1412 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1413 : type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1414 0 : to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1415 0 : type = arch_lbr_br_type_map[type] | to_plm;
1416 : } else
1417 0 : type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1418 0 : if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1419 0 : if (cpuc->lbr_entries[i].in_tx)
1420 0 : type |= X86_BR_IN_TX;
1421 : else
1422 0 : type |= X86_BR_NO_TX;
1423 : }
1424 :
1425 : /* if type does not correspond, then discard */
1426 0 : if (type == X86_BR_NONE || (br_sel & type) != type) {
1427 0 : cpuc->lbr_entries[i].from = 0;
1428 0 : compress = true;
1429 : }
1430 :
1431 0 : if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1432 0 : cpuc->lbr_entries[i].type = common_branch_type(type);
1433 : }
1434 :
1435 0 : if (!compress)
1436 : return;
1437 :
1438 : /* remove all entries with from=0 */
1439 0 : for (i = 0; i < cpuc->lbr_stack.nr; ) {
1440 0 : if (!cpuc->lbr_entries[i].from) {
1441 : j = i;
1442 0 : while (++j < cpuc->lbr_stack.nr)
1443 0 : cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1444 0 : cpuc->lbr_stack.nr--;
1445 0 : if (!cpuc->lbr_entries[i].from)
1446 0 : continue;
1447 : }
1448 0 : i++;
1449 : }
1450 : }
1451 :
1452 0 : void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1453 : {
1454 0 : struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1455 :
1456 : /* Cannot get TOS for large PEBS and Arch LBR */
1457 0 : if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1458 0 : (cpuc->n_pebs == cpuc->n_large_pebs))
1459 0 : cpuc->lbr_stack.hw_idx = -1ULL;
1460 : else
1461 0 : cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1462 :
1463 0 : intel_pmu_store_lbr(cpuc, lbr);
1464 0 : intel_pmu_lbr_filter(cpuc);
1465 0 : }
1466 :
1467 : /*
1468 : * Map interface branch filters onto LBR filters
1469 : */
1470 : static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1471 : [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1472 : [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1473 : [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1474 : [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1475 : [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
1476 : | LBR_IND_JMP | LBR_FAR,
1477 : /*
1478 : * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1479 : */
1480 : [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1481 : LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1482 : /*
1483 : * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1484 : */
1485 : [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1486 : [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1487 : [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1488 : };
1489 :
1490 : static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1491 : [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1492 : [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1493 : [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1494 : [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1495 : [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1496 : [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1497 : | LBR_FAR,
1498 : [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1499 : [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1500 : [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1501 : [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1502 : };
1503 :
1504 : static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1505 : [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1506 : [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1507 : [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1508 : [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1509 : [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1510 : [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1511 : | LBR_FAR,
1512 : [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1513 : [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1514 : [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1515 : | LBR_RETURN | LBR_CALL_STACK,
1516 : [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1517 : [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1518 : };
1519 :
1520 : static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1521 : [PERF_SAMPLE_BRANCH_ANY_SHIFT] = ARCH_LBR_ANY,
1522 : [PERF_SAMPLE_BRANCH_USER_SHIFT] = ARCH_LBR_USER,
1523 : [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = ARCH_LBR_KERNEL,
1524 : [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1525 : [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = ARCH_LBR_RETURN |
1526 : ARCH_LBR_OTHER_BRANCH,
1527 : [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = ARCH_LBR_REL_CALL |
1528 : ARCH_LBR_IND_CALL |
1529 : ARCH_LBR_OTHER_BRANCH,
1530 : [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = ARCH_LBR_IND_CALL,
1531 : [PERF_SAMPLE_BRANCH_COND_SHIFT] = ARCH_LBR_JCC,
1532 : [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = ARCH_LBR_REL_CALL |
1533 : ARCH_LBR_IND_CALL |
1534 : ARCH_LBR_RETURN |
1535 : ARCH_LBR_CALL_STACK,
1536 : [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = ARCH_LBR_IND_JMP,
1537 : [PERF_SAMPLE_BRANCH_CALL_SHIFT] = ARCH_LBR_REL_CALL,
1538 : };
1539 :
1540 : /* core */
1541 0 : void __init intel_pmu_lbr_init_core(void)
1542 : {
1543 0 : x86_pmu.lbr_nr = 4;
1544 0 : x86_pmu.lbr_tos = MSR_LBR_TOS;
1545 0 : x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1546 0 : x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1547 :
1548 : /*
1549 : * SW branch filter usage:
1550 : * - compensate for lack of HW filter
1551 : */
1552 0 : }
1553 :
1554 : /* nehalem/westmere */
1555 0 : void __init intel_pmu_lbr_init_nhm(void)
1556 : {
1557 0 : x86_pmu.lbr_nr = 16;
1558 0 : x86_pmu.lbr_tos = MSR_LBR_TOS;
1559 0 : x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1560 0 : x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1561 :
1562 0 : x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1563 0 : x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1564 :
1565 : /*
1566 : * SW branch filter usage:
1567 : * - workaround LBR_SEL errata (see above)
1568 : * - support syscall, sysret capture.
1569 : * That requires LBR_FAR but that means far
1570 : * jmp need to be filtered out
1571 : */
1572 0 : }
1573 :
1574 : /* sandy bridge */
1575 0 : void __init intel_pmu_lbr_init_snb(void)
1576 : {
1577 0 : x86_pmu.lbr_nr = 16;
1578 0 : x86_pmu.lbr_tos = MSR_LBR_TOS;
1579 0 : x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1580 0 : x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1581 :
1582 0 : x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1583 0 : x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1584 :
1585 : /*
1586 : * SW branch filter usage:
1587 : * - support syscall, sysret capture.
1588 : * That requires LBR_FAR but that means far
1589 : * jmp need to be filtered out
1590 : */
1591 0 : }
1592 :
1593 : static inline struct kmem_cache *
1594 1 : create_lbr_kmem_cache(size_t size, size_t align)
1595 : {
1596 1 : return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1597 : }
1598 :
1599 : /* haswell */
1600 1 : void intel_pmu_lbr_init_hsw(void)
1601 : {
1602 1 : size_t size = sizeof(struct x86_perf_task_context);
1603 :
1604 1 : x86_pmu.lbr_nr = 16;
1605 1 : x86_pmu.lbr_tos = MSR_LBR_TOS;
1606 1 : x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1607 1 : x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1608 :
1609 1 : x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1610 1 : x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1611 :
1612 1 : x86_get_pmu()->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1613 :
1614 1 : if (lbr_from_signext_quirk_needed())
1615 0 : static_branch_enable(&lbr_from_quirk_key);
1616 1 : }
1617 :
1618 : /* skylake */
1619 0 : __init void intel_pmu_lbr_init_skl(void)
1620 : {
1621 0 : size_t size = sizeof(struct x86_perf_task_context);
1622 :
1623 0 : x86_pmu.lbr_nr = 32;
1624 0 : x86_pmu.lbr_tos = MSR_LBR_TOS;
1625 0 : x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1626 0 : x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1627 0 : x86_pmu.lbr_info = MSR_LBR_INFO_0;
1628 :
1629 0 : x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1630 0 : x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1631 :
1632 0 : x86_get_pmu()->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1633 :
1634 : /*
1635 : * SW branch filter usage:
1636 : * - support syscall, sysret capture.
1637 : * That requires LBR_FAR but that means far
1638 : * jmp need to be filtered out
1639 : */
1640 0 : }
1641 :
1642 : /* atom */
1643 0 : void __init intel_pmu_lbr_init_atom(void)
1644 : {
1645 : /*
1646 : * only models starting at stepping 10 seems
1647 : * to have an operational LBR which can freeze
1648 : * on PMU interrupt
1649 : */
1650 0 : if (boot_cpu_data.x86_model == 28
1651 0 : && boot_cpu_data.x86_stepping < 10) {
1652 0 : pr_cont("LBR disabled due to erratum");
1653 0 : return;
1654 : }
1655 :
1656 0 : x86_pmu.lbr_nr = 8;
1657 0 : x86_pmu.lbr_tos = MSR_LBR_TOS;
1658 0 : x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1659 0 : x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1660 :
1661 : /*
1662 : * SW branch filter usage:
1663 : * - compensate for lack of HW filter
1664 : */
1665 : }
1666 :
1667 : /* slm */
1668 0 : void __init intel_pmu_lbr_init_slm(void)
1669 : {
1670 0 : x86_pmu.lbr_nr = 8;
1671 0 : x86_pmu.lbr_tos = MSR_LBR_TOS;
1672 0 : x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1673 0 : x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1674 :
1675 0 : x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1676 0 : x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1677 :
1678 : /*
1679 : * SW branch filter usage:
1680 : * - compensate for lack of HW filter
1681 : */
1682 0 : pr_cont("8-deep LBR, ");
1683 0 : }
1684 :
1685 : /* Knights Landing */
1686 0 : void intel_pmu_lbr_init_knl(void)
1687 : {
1688 0 : x86_pmu.lbr_nr = 8;
1689 0 : x86_pmu.lbr_tos = MSR_LBR_TOS;
1690 0 : x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1691 0 : x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1692 :
1693 0 : x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1694 0 : x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1695 :
1696 : /* Knights Landing does have MISPREDICT bit */
1697 0 : if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1698 0 : x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1699 0 : }
1700 :
1701 : /*
1702 : * LBR state size is variable based on the max number of registers.
1703 : * This calculates the expected state size, which should match
1704 : * what the hardware enumerates for the size of XFEATURE_LBR.
1705 : */
1706 0 : static inline unsigned int get_lbr_state_size(void)
1707 : {
1708 0 : return sizeof(struct arch_lbr_state) +
1709 0 : x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1710 : }
1711 :
1712 0 : static bool is_arch_lbr_xsave_available(void)
1713 : {
1714 0 : if (!boot_cpu_has(X86_FEATURE_XSAVES))
1715 : return false;
1716 :
1717 : /*
1718 : * Check the LBR state with the corresponding software structure.
1719 : * Disable LBR XSAVES support if the size doesn't match.
1720 : */
1721 0 : if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1722 0 : return false;
1723 :
1724 : return true;
1725 : }
1726 :
1727 0 : void __init intel_pmu_arch_lbr_init(void)
1728 : {
1729 0 : struct pmu *pmu = x86_get_pmu();
1730 0 : union cpuid28_eax eax;
1731 0 : union cpuid28_ebx ebx;
1732 0 : union cpuid28_ecx ecx;
1733 0 : unsigned int unused_edx;
1734 0 : bool arch_lbr_xsave;
1735 0 : size_t size;
1736 0 : u64 lbr_nr;
1737 :
1738 : /* Arch LBR Capabilities */
1739 0 : cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1740 :
1741 0 : lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1742 0 : if (!lbr_nr)
1743 0 : goto clear_arch_lbr;
1744 :
1745 : /* Apply the max depth of Arch LBR */
1746 0 : if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1747 0 : goto clear_arch_lbr;
1748 :
1749 0 : x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1750 0 : x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1751 0 : x86_pmu.lbr_lip = eax.split.lbr_lip;
1752 0 : x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1753 0 : x86_pmu.lbr_filter = ebx.split.lbr_filter;
1754 0 : x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1755 0 : x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1756 0 : x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1757 0 : x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1758 0 : x86_pmu.lbr_nr = lbr_nr;
1759 :
1760 :
1761 0 : arch_lbr_xsave = is_arch_lbr_xsave_available();
1762 0 : if (arch_lbr_xsave) {
1763 0 : size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1764 0 : get_lbr_state_size();
1765 0 : pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1766 : XSAVE_ALIGNMENT);
1767 : }
1768 :
1769 0 : if (!pmu->task_ctx_cache) {
1770 0 : arch_lbr_xsave = false;
1771 :
1772 0 : size = sizeof(struct x86_perf_task_context_arch_lbr) +
1773 0 : lbr_nr * sizeof(struct lbr_entry);
1774 0 : pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1775 : }
1776 :
1777 0 : x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1778 0 : x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1779 0 : x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1780 :
1781 : /* LBR callstack requires both CPL and Branch Filtering support */
1782 0 : if (!x86_pmu.lbr_cpl ||
1783 0 : !x86_pmu.lbr_filter ||
1784 : !x86_pmu.lbr_call_stack)
1785 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1786 :
1787 0 : if (!x86_pmu.lbr_cpl) {
1788 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1789 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1790 0 : } else if (!x86_pmu.lbr_filter) {
1791 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1792 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1793 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1794 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1795 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1796 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1797 0 : arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1798 : }
1799 :
1800 0 : x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1801 0 : x86_pmu.lbr_ctl_map = arch_lbr_ctl_map;
1802 :
1803 0 : if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1804 0 : x86_pmu.lbr_ctl_map = NULL;
1805 :
1806 0 : x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1807 0 : if (arch_lbr_xsave) {
1808 0 : x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1809 0 : x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1810 0 : x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1811 0 : pr_cont("XSAVE ");
1812 : } else {
1813 0 : x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1814 0 : x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1815 0 : x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1816 : }
1817 :
1818 0 : pr_cont("Architectural LBR, ");
1819 :
1820 0 : return;
1821 :
1822 0 : clear_arch_lbr:
1823 0 : clear_cpu_cap(&boot_cpu_data, X86_FEATURE_ARCH_LBR);
1824 : }
1825 :
1826 : /**
1827 : * x86_perf_get_lbr - get the LBR records information
1828 : *
1829 : * @lbr: the caller's memory to store the LBR records information
1830 : *
1831 : * Returns: 0 indicates the LBR info has been successfully obtained
1832 : */
1833 0 : int x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1834 : {
1835 0 : int lbr_fmt = x86_pmu.intel_cap.lbr_format;
1836 :
1837 0 : lbr->nr = x86_pmu.lbr_nr;
1838 0 : lbr->from = x86_pmu.lbr_from;
1839 0 : lbr->to = x86_pmu.lbr_to;
1840 0 : lbr->info = (lbr_fmt == LBR_FORMAT_INFO) ? x86_pmu.lbr_info : 0;
1841 :
1842 0 : return 0;
1843 : }
1844 : EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1845 :
1846 : struct event_constraint vlbr_constraint =
1847 : __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1848 : FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
|