Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Routines to identify caches on Intel CPU.
4 : *
5 : * Changes:
6 : * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
7 : * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
8 : * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
9 : */
10 :
11 : #include <linux/slab.h>
12 : #include <linux/cacheinfo.h>
13 : #include <linux/cpu.h>
14 : #include <linux/sched.h>
15 : #include <linux/capability.h>
16 : #include <linux/sysfs.h>
17 : #include <linux/pci.h>
18 :
19 : #include <asm/cpufeature.h>
20 : #include <asm/cacheinfo.h>
21 : #include <asm/amd_nb.h>
22 : #include <asm/smp.h>
23 :
24 : #include "cpu.h"
25 :
26 : #define LVL_1_INST 1
27 : #define LVL_1_DATA 2
28 : #define LVL_2 3
29 : #define LVL_3 4
30 : #define LVL_TRACE 5
31 :
32 : struct _cache_table {
33 : unsigned char descriptor;
34 : char cache_type;
35 : short size;
36 : };
37 :
38 : #define MB(x) ((x) * 1024)
39 :
40 : /* All the cache descriptor types we care about (no TLB or
41 : trace cache entries) */
42 :
43 : static const struct _cache_table cache_table[] =
44 : {
45 : { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
46 : { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
47 : { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
48 : { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
49 : { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
50 : { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
51 : { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */
52 : { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
53 : { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
54 : { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
55 : { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
56 : { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
57 : { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
58 : { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
59 : { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
60 : { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
61 : { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
62 : { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
63 : { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
64 : { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
65 : { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
66 : { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
67 : { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
68 : { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
69 : { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */
70 : { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */
71 : { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */
72 : { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */
73 : { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */
74 : { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
75 : { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */
76 : { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
77 : { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */
78 : { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */
79 : { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */
80 : { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
81 : { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
82 : { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
83 : { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
84 : { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
85 : { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
86 : { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
87 : { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
88 : { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */
89 : { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
90 : { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
91 : { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
92 : { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
93 : { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */
94 : { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
95 : { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */
96 : { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
97 : { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
98 : { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */
99 : { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */
100 : { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
101 : { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */
102 : { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
103 : { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */
104 : { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */
105 : { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */
106 : { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */
107 : { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
108 : { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */
109 : { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
110 : { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */
111 : { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */
112 : { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
113 : { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
114 : { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */
115 : { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */
116 : { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */
117 : { 0x00, 0, 0}
118 : };
119 :
120 :
121 : enum _cache_type {
122 : CTYPE_NULL = 0,
123 : CTYPE_DATA = 1,
124 : CTYPE_INST = 2,
125 : CTYPE_UNIFIED = 3
126 : };
127 :
128 : union _cpuid4_leaf_eax {
129 : struct {
130 : enum _cache_type type:5;
131 : unsigned int level:3;
132 : unsigned int is_self_initializing:1;
133 : unsigned int is_fully_associative:1;
134 : unsigned int reserved:4;
135 : unsigned int num_threads_sharing:12;
136 : unsigned int num_cores_on_die:6;
137 : } split;
138 : u32 full;
139 : };
140 :
141 : union _cpuid4_leaf_ebx {
142 : struct {
143 : unsigned int coherency_line_size:12;
144 : unsigned int physical_line_partition:10;
145 : unsigned int ways_of_associativity:10;
146 : } split;
147 : u32 full;
148 : };
149 :
150 : union _cpuid4_leaf_ecx {
151 : struct {
152 : unsigned int number_of_sets:32;
153 : } split;
154 : u32 full;
155 : };
156 :
157 : struct _cpuid4_info_regs {
158 : union _cpuid4_leaf_eax eax;
159 : union _cpuid4_leaf_ebx ebx;
160 : union _cpuid4_leaf_ecx ecx;
161 : unsigned int id;
162 : unsigned long size;
163 : struct amd_northbridge *nb;
164 : };
165 :
166 : static unsigned short num_cache_leaves;
167 :
168 : /* AMD doesn't have CPUID4. Emulate it here to report the same
169 : information to the user. This makes some assumptions about the machine:
170 : L2 not shared, no SMT etc. that is currently true on AMD CPUs.
171 :
172 : In theory the TLBs could be reported as fake type (they are in "dummy").
173 : Maybe later */
174 : union l1_cache {
175 : struct {
176 : unsigned line_size:8;
177 : unsigned lines_per_tag:8;
178 : unsigned assoc:8;
179 : unsigned size_in_kb:8;
180 : };
181 : unsigned val;
182 : };
183 :
184 : union l2_cache {
185 : struct {
186 : unsigned line_size:8;
187 : unsigned lines_per_tag:4;
188 : unsigned assoc:4;
189 : unsigned size_in_kb:16;
190 : };
191 : unsigned val;
192 : };
193 :
194 : union l3_cache {
195 : struct {
196 : unsigned line_size:8;
197 : unsigned lines_per_tag:4;
198 : unsigned assoc:4;
199 : unsigned res:2;
200 : unsigned size_encoded:14;
201 : };
202 : unsigned val;
203 : };
204 :
205 : static const unsigned short assocs[] = {
206 : [1] = 1,
207 : [2] = 2,
208 : [4] = 4,
209 : [6] = 8,
210 : [8] = 16,
211 : [0xa] = 32,
212 : [0xb] = 48,
213 : [0xc] = 64,
214 : [0xd] = 96,
215 : [0xe] = 128,
216 : [0xf] = 0xffff /* fully associative - no way to show this currently */
217 : };
218 :
219 : static const unsigned char levels[] = { 1, 1, 2, 3 };
220 : static const unsigned char types[] = { 1, 2, 3, 3 };
221 :
222 : static const enum cache_type cache_type_map[] = {
223 : [CTYPE_NULL] = CACHE_TYPE_NOCACHE,
224 : [CTYPE_DATA] = CACHE_TYPE_DATA,
225 : [CTYPE_INST] = CACHE_TYPE_INST,
226 : [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
227 : };
228 :
229 : static void
230 0 : amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
231 : union _cpuid4_leaf_ebx *ebx,
232 : union _cpuid4_leaf_ecx *ecx)
233 : {
234 0 : unsigned dummy;
235 0 : unsigned line_size, lines_per_tag, assoc, size_in_kb;
236 0 : union l1_cache l1i, l1d;
237 0 : union l2_cache l2;
238 0 : union l3_cache l3;
239 0 : union l1_cache *l1 = &l1d;
240 :
241 0 : eax->full = 0;
242 0 : ebx->full = 0;
243 0 : ecx->full = 0;
244 :
245 0 : cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
246 0 : cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
247 :
248 0 : switch (leaf) {
249 0 : case 1:
250 0 : l1 = &l1i;
251 0 : fallthrough;
252 0 : case 0:
253 0 : if (!l1->val)
254 0 : return;
255 0 : assoc = assocs[l1->assoc];
256 0 : line_size = l1->line_size;
257 0 : lines_per_tag = l1->lines_per_tag;
258 0 : size_in_kb = l1->size_in_kb;
259 0 : break;
260 0 : case 2:
261 0 : if (!l2.val)
262 : return;
263 0 : assoc = assocs[l2.assoc];
264 0 : line_size = l2.line_size;
265 0 : lines_per_tag = l2.lines_per_tag;
266 : /* cpu_data has errata corrections for K7 applied */
267 0 : size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
268 0 : break;
269 0 : case 3:
270 0 : if (!l3.val)
271 : return;
272 0 : assoc = assocs[l3.assoc];
273 0 : line_size = l3.line_size;
274 0 : lines_per_tag = l3.lines_per_tag;
275 0 : size_in_kb = l3.size_encoded * 512;
276 0 : if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
277 0 : size_in_kb = size_in_kb >> 1;
278 0 : assoc = assoc >> 1;
279 : }
280 : break;
281 : default:
282 : return;
283 : }
284 :
285 0 : eax->split.is_self_initializing = 1;
286 0 : eax->split.type = types[leaf];
287 0 : eax->split.level = levels[leaf];
288 0 : eax->split.num_threads_sharing = 0;
289 0 : eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;
290 :
291 :
292 0 : if (assoc == 0xffff)
293 0 : eax->split.is_fully_associative = 1;
294 0 : ebx->split.coherency_line_size = line_size - 1;
295 0 : ebx->split.ways_of_associativity = assoc - 1;
296 0 : ebx->split.physical_line_partition = lines_per_tag - 1;
297 0 : ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
298 0 : (ebx->split.ways_of_associativity + 1) - 1;
299 : }
300 :
301 : #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
302 :
303 : /*
304 : * L3 cache descriptors
305 : */
306 : static void amd_calc_l3_indices(struct amd_northbridge *nb)
307 : {
308 : struct amd_l3_cache *l3 = &nb->l3_cache;
309 : unsigned int sc0, sc1, sc2, sc3;
310 : u32 val = 0;
311 :
312 : pci_read_config_dword(nb->misc, 0x1C4, &val);
313 :
314 : /* calculate subcache sizes */
315 : l3->subcaches[0] = sc0 = !(val & BIT(0));
316 : l3->subcaches[1] = sc1 = !(val & BIT(4));
317 :
318 : if (boot_cpu_data.x86 == 0x15) {
319 : l3->subcaches[0] = sc0 += !(val & BIT(1));
320 : l3->subcaches[1] = sc1 += !(val & BIT(5));
321 : }
322 :
323 : l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9));
324 : l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
325 :
326 : l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
327 : }
328 :
329 : /*
330 : * check whether a slot used for disabling an L3 index is occupied.
331 : * @l3: L3 cache descriptor
332 : * @slot: slot number (0..1)
333 : *
334 : * @returns: the disabled index if used or negative value if slot free.
335 : */
336 : static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
337 : {
338 : unsigned int reg = 0;
339 :
340 : pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®);
341 :
342 : /* check whether this slot is activated already */
343 : if (reg & (3UL << 30))
344 : return reg & 0xfff;
345 :
346 : return -1;
347 : }
348 :
349 : static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
350 : unsigned int slot)
351 : {
352 : int index;
353 : struct amd_northbridge *nb = this_leaf->priv;
354 :
355 : index = amd_get_l3_disable_slot(nb, slot);
356 : if (index >= 0)
357 : return sprintf(buf, "%d\n", index);
358 :
359 : return sprintf(buf, "FREE\n");
360 : }
361 :
362 : #define SHOW_CACHE_DISABLE(slot) \
363 : static ssize_t \
364 : cache_disable_##slot##_show(struct device *dev, \
365 : struct device_attribute *attr, char *buf) \
366 : { \
367 : struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
368 : return show_cache_disable(this_leaf, buf, slot); \
369 : }
370 : SHOW_CACHE_DISABLE(0)
371 : SHOW_CACHE_DISABLE(1)
372 :
373 : static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
374 : unsigned slot, unsigned long idx)
375 : {
376 : int i;
377 :
378 : idx |= BIT(30);
379 :
380 : /*
381 : * disable index in all 4 subcaches
382 : */
383 : for (i = 0; i < 4; i++) {
384 : u32 reg = idx | (i << 20);
385 :
386 : if (!nb->l3_cache.subcaches[i])
387 : continue;
388 :
389 : pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
390 :
391 : /*
392 : * We need to WBINVD on a core on the node containing the L3
393 : * cache which indices we disable therefore a simple wbinvd()
394 : * is not sufficient.
395 : */
396 : wbinvd_on_cpu(cpu);
397 :
398 : reg |= BIT(31);
399 : pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
400 : }
401 : }
402 :
403 : /*
404 : * disable a L3 cache index by using a disable-slot
405 : *
406 : * @l3: L3 cache descriptor
407 : * @cpu: A CPU on the node containing the L3 cache
408 : * @slot: slot number (0..1)
409 : * @index: index to disable
410 : *
411 : * @return: 0 on success, error status on failure
412 : */
413 : static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
414 : unsigned slot, unsigned long index)
415 : {
416 : int ret = 0;
417 :
418 : /* check if @slot is already used or the index is already disabled */
419 : ret = amd_get_l3_disable_slot(nb, slot);
420 : if (ret >= 0)
421 : return -EEXIST;
422 :
423 : if (index > nb->l3_cache.indices)
424 : return -EINVAL;
425 :
426 : /* check whether the other slot has disabled the same index already */
427 : if (index == amd_get_l3_disable_slot(nb, !slot))
428 : return -EEXIST;
429 :
430 : amd_l3_disable_index(nb, cpu, slot, index);
431 :
432 : return 0;
433 : }
434 :
435 : static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
436 : const char *buf, size_t count,
437 : unsigned int slot)
438 : {
439 : unsigned long val = 0;
440 : int cpu, err = 0;
441 : struct amd_northbridge *nb = this_leaf->priv;
442 :
443 : if (!capable(CAP_SYS_ADMIN))
444 : return -EPERM;
445 :
446 : cpu = cpumask_first(&this_leaf->shared_cpu_map);
447 :
448 : if (kstrtoul(buf, 10, &val) < 0)
449 : return -EINVAL;
450 :
451 : err = amd_set_l3_disable_slot(nb, cpu, slot, val);
452 : if (err) {
453 : if (err == -EEXIST)
454 : pr_warn("L3 slot %d in use/index already disabled!\n",
455 : slot);
456 : return err;
457 : }
458 : return count;
459 : }
460 :
461 : #define STORE_CACHE_DISABLE(slot) \
462 : static ssize_t \
463 : cache_disable_##slot##_store(struct device *dev, \
464 : struct device_attribute *attr, \
465 : const char *buf, size_t count) \
466 : { \
467 : struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
468 : return store_cache_disable(this_leaf, buf, count, slot); \
469 : }
470 : STORE_CACHE_DISABLE(0)
471 : STORE_CACHE_DISABLE(1)
472 :
473 : static ssize_t subcaches_show(struct device *dev,
474 : struct device_attribute *attr, char *buf)
475 : {
476 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
477 : int cpu = cpumask_first(&this_leaf->shared_cpu_map);
478 :
479 : return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
480 : }
481 :
482 : static ssize_t subcaches_store(struct device *dev,
483 : struct device_attribute *attr,
484 : const char *buf, size_t count)
485 : {
486 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
487 : int cpu = cpumask_first(&this_leaf->shared_cpu_map);
488 : unsigned long val;
489 :
490 : if (!capable(CAP_SYS_ADMIN))
491 : return -EPERM;
492 :
493 : if (kstrtoul(buf, 16, &val) < 0)
494 : return -EINVAL;
495 :
496 : if (amd_set_subcaches(cpu, val))
497 : return -EINVAL;
498 :
499 : return count;
500 : }
501 :
502 : static DEVICE_ATTR_RW(cache_disable_0);
503 : static DEVICE_ATTR_RW(cache_disable_1);
504 : static DEVICE_ATTR_RW(subcaches);
505 :
506 : static umode_t
507 : cache_private_attrs_is_visible(struct kobject *kobj,
508 : struct attribute *attr, int unused)
509 : {
510 : struct device *dev = kobj_to_dev(kobj);
511 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
512 : umode_t mode = attr->mode;
513 :
514 : if (!this_leaf->priv)
515 : return 0;
516 :
517 : if ((attr == &dev_attr_subcaches.attr) &&
518 : amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
519 : return mode;
520 :
521 : if ((attr == &dev_attr_cache_disable_0.attr ||
522 : attr == &dev_attr_cache_disable_1.attr) &&
523 : amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
524 : return mode;
525 :
526 : return 0;
527 : }
528 :
529 : static struct attribute_group cache_private_group = {
530 : .is_visible = cache_private_attrs_is_visible,
531 : };
532 :
533 : static void init_amd_l3_attrs(void)
534 : {
535 : int n = 1;
536 : static struct attribute **amd_l3_attrs;
537 :
538 : if (amd_l3_attrs) /* already initialized */
539 : return;
540 :
541 : if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
542 : n += 2;
543 : if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
544 : n += 1;
545 :
546 : amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
547 : if (!amd_l3_attrs)
548 : return;
549 :
550 : n = 0;
551 : if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
552 : amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
553 : amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
554 : }
555 : if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
556 : amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
557 :
558 : cache_private_group.attrs = amd_l3_attrs;
559 : }
560 :
561 : const struct attribute_group *
562 : cache_get_priv_group(struct cacheinfo *this_leaf)
563 : {
564 : struct amd_northbridge *nb = this_leaf->priv;
565 :
566 : if (this_leaf->level < 3 || !nb)
567 : return NULL;
568 :
569 : if (nb && nb->l3_cache.indices)
570 : init_amd_l3_attrs();
571 :
572 : return &cache_private_group;
573 : }
574 :
575 : static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
576 : {
577 : int node;
578 :
579 : /* only for L3, and not in virtualized environments */
580 : if (index < 3)
581 : return;
582 :
583 : node = topology_die_id(smp_processor_id());
584 : this_leaf->nb = node_to_amd_nb(node);
585 : if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
586 : amd_calc_l3_indices(this_leaf->nb);
587 : }
588 : #else
589 : #define amd_init_l3_cache(x, y)
590 : #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */
591 :
592 : static int
593 32 : cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
594 : {
595 32 : union _cpuid4_leaf_eax eax;
596 32 : union _cpuid4_leaf_ebx ebx;
597 32 : union _cpuid4_leaf_ecx ecx;
598 32 : unsigned edx;
599 :
600 32 : if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
601 0 : if (boot_cpu_has(X86_FEATURE_TOPOEXT))
602 0 : cpuid_count(0x8000001d, index, &eax.full,
603 : &ebx.full, &ecx.full, &edx);
604 : else
605 0 : amd_cpuid4(index, &eax, &ebx, &ecx);
606 : amd_init_l3_cache(this_leaf, index);
607 32 : } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
608 0 : cpuid_count(0x8000001d, index, &eax.full,
609 : &ebx.full, &ecx.full, &edx);
610 : amd_init_l3_cache(this_leaf, index);
611 : } else {
612 32 : cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
613 : }
614 :
615 32 : if (eax.split.type == CTYPE_NULL)
616 : return -EIO; /* better error ? */
617 :
618 32 : this_leaf->eax = eax;
619 32 : this_leaf->ebx = ebx;
620 32 : this_leaf->ecx = ecx;
621 32 : this_leaf->size = (ecx.split.number_of_sets + 1) *
622 32 : (ebx.split.coherency_line_size + 1) *
623 32 : (ebx.split.physical_line_partition + 1) *
624 32 : (ebx.split.ways_of_associativity + 1);
625 32 : return 0;
626 : }
627 :
628 1 : static int find_num_cache_leaves(struct cpuinfo_x86 *c)
629 : {
630 1 : unsigned int eax, ebx, ecx, edx, op;
631 1 : union _cpuid4_leaf_eax cache_eax;
632 1 : int i = -1;
633 :
634 1 : if (c->x86_vendor == X86_VENDOR_AMD ||
635 : c->x86_vendor == X86_VENDOR_HYGON)
636 1 : op = 0x8000001d;
637 : else
638 1 : op = 4;
639 :
640 5 : do {
641 5 : ++i;
642 : /* Do cpuid(op) loop to find out num_cache_leaves */
643 5 : cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
644 5 : cache_eax.full = eax;
645 5 : } while (cache_eax.split.type != CTYPE_NULL);
646 1 : return i;
647 : }
648 :
649 0 : void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu)
650 : {
651 : /*
652 : * We may have multiple LLCs if L3 caches exist, so check if we
653 : * have an L3 cache by looking at the L3 cache CPUID leaf.
654 : */
655 0 : if (!cpuid_edx(0x80000006))
656 : return;
657 :
658 0 : if (c->x86 < 0x17) {
659 : /* LLC is at the node level. */
660 0 : per_cpu(cpu_llc_id, cpu) = c->cpu_die_id;
661 0 : } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) {
662 : /*
663 : * LLC is at the core complex level.
664 : * Core complex ID is ApicId[3] for these processors.
665 : */
666 0 : per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
667 : } else {
668 : /*
669 : * LLC ID is calculated from the number of threads sharing the
670 : * cache.
671 : * */
672 0 : u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
673 0 : u32 llc_index = find_num_cache_leaves(c) - 1;
674 :
675 0 : cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
676 0 : if (eax)
677 0 : num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
678 :
679 0 : if (num_sharing_cache) {
680 0 : int bits = get_count_order(num_sharing_cache);
681 :
682 0 : per_cpu(cpu_llc_id, cpu) = c->apicid >> bits;
683 : }
684 : }
685 : }
686 :
687 0 : void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c, int cpu)
688 : {
689 : /*
690 : * We may have multiple LLCs if L3 caches exist, so check if we
691 : * have an L3 cache by looking at the L3 cache CPUID leaf.
692 : */
693 0 : if (!cpuid_edx(0x80000006))
694 : return;
695 :
696 : /*
697 : * LLC is at the core complex level.
698 : * Core complex ID is ApicId[3] for these processors.
699 : */
700 0 : per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
701 : }
702 :
703 0 : void init_amd_cacheinfo(struct cpuinfo_x86 *c)
704 : {
705 :
706 0 : if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
707 0 : num_cache_leaves = find_num_cache_leaves(c);
708 0 : } else if (c->extended_cpuid_level >= 0x80000006) {
709 0 : if (cpuid_edx(0x80000006) & 0xf000)
710 0 : num_cache_leaves = 4;
711 : else
712 0 : num_cache_leaves = 3;
713 : }
714 0 : }
715 :
716 0 : void init_hygon_cacheinfo(struct cpuinfo_x86 *c)
717 : {
718 0 : num_cache_leaves = find_num_cache_leaves(c);
719 0 : }
720 :
721 4 : void init_intel_cacheinfo(struct cpuinfo_x86 *c)
722 : {
723 : /* Cache sizes */
724 4 : unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
725 4 : unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
726 4 : unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
727 4 : unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
728 : #ifdef CONFIG_SMP
729 4 : unsigned int cpu = c->cpu_index;
730 : #endif
731 :
732 4 : if (c->cpuid_level > 3) {
733 4 : static int is_initialized;
734 :
735 4 : if (is_initialized == 0) {
736 : /* Init num_cache_leaves from boot CPU */
737 1 : num_cache_leaves = find_num_cache_leaves(c);
738 1 : is_initialized++;
739 : }
740 :
741 : /*
742 : * Whenever possible use cpuid(4), deterministic cache
743 : * parameters cpuid leaf to find the cache details
744 : */
745 20 : for (i = 0; i < num_cache_leaves; i++) {
746 16 : struct _cpuid4_info_regs this_leaf = {};
747 16 : int retval;
748 :
749 16 : retval = cpuid4_cache_lookup_regs(i, &this_leaf);
750 16 : if (retval < 0)
751 0 : continue;
752 :
753 16 : switch (this_leaf.eax.split.level) {
754 8 : case 1:
755 8 : if (this_leaf.eax.split.type == CTYPE_DATA)
756 4 : new_l1d = this_leaf.size/1024;
757 4 : else if (this_leaf.eax.split.type == CTYPE_INST)
758 4 : new_l1i = this_leaf.size/1024;
759 : break;
760 4 : case 2:
761 4 : new_l2 = this_leaf.size/1024;
762 4 : num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
763 4 : index_msb = get_count_order(num_threads_sharing);
764 4 : l2_id = c->apicid & ~((1 << index_msb) - 1);
765 4 : break;
766 4 : case 3:
767 4 : new_l3 = this_leaf.size/1024;
768 4 : num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
769 4 : index_msb = get_count_order(num_threads_sharing);
770 4 : l3_id = c->apicid & ~((1 << index_msb) - 1);
771 4 : break;
772 : default:
773 : break;
774 : }
775 : }
776 : }
777 : /*
778 : * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
779 : * trace cache
780 : */
781 4 : if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
782 : /* supports eax=2 call */
783 0 : int j, n;
784 0 : unsigned int regs[4];
785 0 : unsigned char *dp = (unsigned char *)regs;
786 0 : int only_trace = 0;
787 :
788 0 : if (num_cache_leaves != 0 && c->x86 == 15)
789 0 : only_trace = 1;
790 :
791 : /* Number of times to iterate */
792 0 : n = cpuid_eax(2) & 0xFF;
793 :
794 0 : for (i = 0 ; i < n ; i++) {
795 0 : cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
796 :
797 : /* If bit 31 is set, this is an unknown format */
798 0 : for (j = 0 ; j < 3 ; j++)
799 0 : if (regs[j] & (1 << 31))
800 0 : regs[j] = 0;
801 :
802 : /* Byte 0 is level count, not a descriptor */
803 0 : for (j = 1 ; j < 16 ; j++) {
804 0 : unsigned char des = dp[j];
805 0 : unsigned char k = 0;
806 :
807 : /* look up this descriptor in the table */
808 0 : while (cache_table[k].descriptor != 0) {
809 0 : if (cache_table[k].descriptor == des) {
810 0 : if (only_trace && cache_table[k].cache_type != LVL_TRACE)
811 : break;
812 0 : switch (cache_table[k].cache_type) {
813 0 : case LVL_1_INST:
814 0 : l1i += cache_table[k].size;
815 0 : break;
816 0 : case LVL_1_DATA:
817 0 : l1d += cache_table[k].size;
818 0 : break;
819 0 : case LVL_2:
820 0 : l2 += cache_table[k].size;
821 0 : break;
822 0 : case LVL_3:
823 0 : l3 += cache_table[k].size;
824 0 : break;
825 : case LVL_TRACE:
826 0 : trace += cache_table[k].size;
827 : break;
828 : }
829 :
830 : break;
831 : }
832 :
833 0 : k++;
834 : }
835 : }
836 : }
837 : }
838 :
839 4 : if (new_l1d)
840 4 : l1d = new_l1d;
841 :
842 4 : if (new_l1i)
843 4 : l1i = new_l1i;
844 :
845 4 : if (new_l2) {
846 4 : l2 = new_l2;
847 : #ifdef CONFIG_SMP
848 4 : per_cpu(cpu_llc_id, cpu) = l2_id;
849 : #endif
850 : }
851 :
852 4 : if (new_l3) {
853 4 : l3 = new_l3;
854 : #ifdef CONFIG_SMP
855 4 : per_cpu(cpu_llc_id, cpu) = l3_id;
856 : #endif
857 : }
858 :
859 : #ifdef CONFIG_SMP
860 : /*
861 : * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in
862 : * turns means that the only possibility is SMT (as indicated in
863 : * cpuid1). Since cpuid2 doesn't specify shared caches, and we know
864 : * that SMT shares all caches, we can unconditionally set cpu_llc_id to
865 : * c->phys_proc_id.
866 : */
867 4 : if (per_cpu(cpu_llc_id, cpu) == BAD_APICID)
868 0 : per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
869 : #endif
870 :
871 4 : c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
872 :
873 4 : if (!l2)
874 0 : cpu_detect_cache_sizes(c);
875 4 : }
876 :
877 0 : static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
878 : struct _cpuid4_info_regs *base)
879 : {
880 0 : struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
881 0 : struct cacheinfo *this_leaf;
882 0 : int i, sibling;
883 :
884 : /*
885 : * For L3, always use the pre-calculated cpu_llc_shared_mask
886 : * to derive shared_cpu_map.
887 : */
888 0 : if (index == 3) {
889 0 : for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
890 0 : this_cpu_ci = get_cpu_cacheinfo(i);
891 0 : if (!this_cpu_ci->info_list)
892 0 : continue;
893 0 : this_leaf = this_cpu_ci->info_list + index;
894 0 : for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
895 0 : if (!cpu_online(sibling))
896 0 : continue;
897 0 : cpumask_set_cpu(sibling,
898 0 : &this_leaf->shared_cpu_map);
899 : }
900 : }
901 0 : } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
902 0 : unsigned int apicid, nshared, first, last;
903 :
904 0 : nshared = base->eax.split.num_threads_sharing + 1;
905 0 : apicid = cpu_data(cpu).apicid;
906 0 : first = apicid - (apicid % nshared);
907 0 : last = first + nshared - 1;
908 :
909 0 : for_each_online_cpu(i) {
910 0 : this_cpu_ci = get_cpu_cacheinfo(i);
911 0 : if (!this_cpu_ci->info_list)
912 0 : continue;
913 :
914 0 : apicid = cpu_data(i).apicid;
915 0 : if ((apicid < first) || (apicid > last))
916 0 : continue;
917 :
918 0 : this_leaf = this_cpu_ci->info_list + index;
919 :
920 0 : for_each_online_cpu(sibling) {
921 0 : apicid = cpu_data(sibling).apicid;
922 0 : if ((apicid < first) || (apicid > last))
923 0 : continue;
924 0 : cpumask_set_cpu(sibling,
925 0 : &this_leaf->shared_cpu_map);
926 : }
927 : }
928 : } else
929 : return 0;
930 :
931 : return 1;
932 : }
933 :
934 16 : static void __cache_cpumap_setup(unsigned int cpu, int index,
935 : struct _cpuid4_info_regs *base)
936 : {
937 16 : struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
938 16 : struct cacheinfo *this_leaf, *sibling_leaf;
939 16 : unsigned long num_threads_sharing;
940 16 : int index_msb, i;
941 16 : struct cpuinfo_x86 *c = &cpu_data(cpu);
942 :
943 16 : if (c->x86_vendor == X86_VENDOR_AMD ||
944 : c->x86_vendor == X86_VENDOR_HYGON) {
945 0 : if (__cache_amd_cpumap_setup(cpu, index, base))
946 : return;
947 : }
948 :
949 16 : this_leaf = this_cpu_ci->info_list + index;
950 16 : num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
951 :
952 16 : cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
953 16 : if (num_threads_sharing == 1)
954 : return;
955 :
956 0 : index_msb = get_count_order(num_threads_sharing);
957 :
958 0 : for_each_online_cpu(i)
959 0 : if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) {
960 0 : struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
961 :
962 0 : if (i == cpu || !sib_cpu_ci->info_list)
963 0 : continue;/* skip if itself or no cacheinfo */
964 0 : sibling_leaf = sib_cpu_ci->info_list + index;
965 0 : cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
966 0 : cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
967 : }
968 : }
969 :
970 16 : static void ci_leaf_init(struct cacheinfo *this_leaf,
971 : struct _cpuid4_info_regs *base)
972 : {
973 16 : this_leaf->id = base->id;
974 16 : this_leaf->attributes = CACHE_ID;
975 16 : this_leaf->level = base->eax.split.level;
976 16 : this_leaf->type = cache_type_map[base->eax.split.type];
977 16 : this_leaf->coherency_line_size =
978 16 : base->ebx.split.coherency_line_size + 1;
979 16 : this_leaf->ways_of_associativity =
980 16 : base->ebx.split.ways_of_associativity + 1;
981 16 : this_leaf->size = base->size;
982 16 : this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
983 16 : this_leaf->physical_line_partition =
984 16 : base->ebx.split.physical_line_partition + 1;
985 16 : this_leaf->priv = base->nb;
986 16 : }
987 :
988 4 : static int __init_cache_level(unsigned int cpu)
989 : {
990 4 : struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
991 :
992 4 : if (!num_cache_leaves)
993 : return -ENOENT;
994 4 : if (!this_cpu_ci)
995 : return -EINVAL;
996 4 : this_cpu_ci->num_levels = 3;
997 4 : this_cpu_ci->num_leaves = num_cache_leaves;
998 4 : return 0;
999 : }
1000 :
1001 : /*
1002 : * The max shared threads number comes from CPUID.4:EAX[25-14] with input
1003 : * ECX as cache index. Then right shift apicid by the number's order to get
1004 : * cache id for this cache node.
1005 : */
1006 16 : static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs)
1007 : {
1008 16 : struct cpuinfo_x86 *c = &cpu_data(cpu);
1009 16 : unsigned long num_threads_sharing;
1010 16 : int index_msb;
1011 :
1012 16 : num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing;
1013 16 : index_msb = get_count_order(num_threads_sharing);
1014 16 : id4_regs->id = c->apicid >> index_msb;
1015 16 : }
1016 :
1017 4 : static int __populate_cache_leaves(unsigned int cpu)
1018 : {
1019 4 : unsigned int idx, ret;
1020 4 : struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
1021 4 : struct cacheinfo *this_leaf = this_cpu_ci->info_list;
1022 4 : struct _cpuid4_info_regs id4_regs = {};
1023 :
1024 20 : for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
1025 16 : ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
1026 16 : if (ret)
1027 0 : return ret;
1028 16 : get_cache_id(cpu, &id4_regs);
1029 16 : ci_leaf_init(this_leaf++, &id4_regs);
1030 16 : __cache_cpumap_setup(cpu, idx, &id4_regs);
1031 : }
1032 4 : this_cpu_ci->cpu_map_populated = true;
1033 :
1034 4 : return 0;
1035 : }
1036 :
1037 8 : DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level)
1038 8 : DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)
|