LCOV - code coverage report
Current view: top level - arch/x86/kernel/cpu - intel.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 121 354 34.2 %
Date: 2021-04-22 12:43:58 Functions: 13 23 56.5 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : #include <linux/kernel.h>
       3             : #include <linux/pgtable.h>
       4             : 
       5             : #include <linux/string.h>
       6             : #include <linux/bitops.h>
       7             : #include <linux/smp.h>
       8             : #include <linux/sched.h>
       9             : #include <linux/sched/clock.h>
      10             : #include <linux/thread_info.h>
      11             : #include <linux/init.h>
      12             : #include <linux/uaccess.h>
      13             : 
      14             : #include <asm/cpufeature.h>
      15             : #include <asm/msr.h>
      16             : #include <asm/bugs.h>
      17             : #include <asm/cpu.h>
      18             : #include <asm/intel-family.h>
      19             : #include <asm/microcode_intel.h>
      20             : #include <asm/hwcap2.h>
      21             : #include <asm/elf.h>
      22             : #include <asm/cpu_device_id.h>
      23             : #include <asm/cmdline.h>
      24             : #include <asm/traps.h>
      25             : #include <asm/resctrl.h>
      26             : #include <asm/numa.h>
      27             : #include <asm/thermal.h>
      28             : 
      29             : #ifdef CONFIG_X86_64
      30             : #include <linux/topology.h>
      31             : #endif
      32             : 
      33             : #include "cpu.h"
      34             : 
      35             : #ifdef CONFIG_X86_LOCAL_APIC
      36             : #include <asm/mpspec.h>
      37             : #include <asm/apic.h>
      38             : #endif
      39             : 
      40             : enum split_lock_detect_state {
      41             :         sld_off = 0,
      42             :         sld_warn,
      43             :         sld_fatal,
      44             : };
      45             : 
      46             : /*
      47             :  * Default to sld_off because most systems do not support split lock detection
      48             :  * split_lock_setup() will switch this to sld_warn on systems that support
      49             :  * split lock detect, unless there is a command line override.
      50             :  */
      51             : static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
      52             : static u64 msr_test_ctrl_cache __ro_after_init;
      53             : 
      54             : /*
      55             :  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
      56             :  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
      57             :  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
      58             :  */
      59             : static bool cpu_model_supports_sld __ro_after_init;
      60             : 
      61             : /*
      62             :  * Processors which have self-snooping capability can handle conflicting
      63             :  * memory type across CPUs by snooping its own cache. However, there exists
      64             :  * CPU models in which having conflicting memory types still leads to
      65             :  * unpredictable behavior, machine check errors, or hangs. Clear this
      66             :  * feature to prevent its use on machines with known erratas.
      67             :  */
      68           5 : static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
      69             : {
      70           5 :         switch (c->x86_model) {
      71           0 :         case INTEL_FAM6_CORE_YONAH:
      72             :         case INTEL_FAM6_CORE2_MEROM:
      73             :         case INTEL_FAM6_CORE2_MEROM_L:
      74             :         case INTEL_FAM6_CORE2_PENRYN:
      75             :         case INTEL_FAM6_CORE2_DUNNINGTON:
      76             :         case INTEL_FAM6_NEHALEM:
      77             :         case INTEL_FAM6_NEHALEM_G:
      78             :         case INTEL_FAM6_NEHALEM_EP:
      79             :         case INTEL_FAM6_NEHALEM_EX:
      80             :         case INTEL_FAM6_WESTMERE:
      81             :         case INTEL_FAM6_WESTMERE_EP:
      82             :         case INTEL_FAM6_SANDYBRIDGE:
      83           0 :                 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
      84             :         }
      85           5 : }
      86             : 
      87             : static bool ring3mwait_disabled __read_mostly;
      88             : 
      89           0 : static int __init ring3mwait_disable(char *__unused)
      90             : {
      91           0 :         ring3mwait_disabled = true;
      92           0 :         return 0;
      93             : }
      94             : __setup("ring3mwait=disable", ring3mwait_disable);
      95             : 
      96           4 : static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
      97             : {
      98             :         /*
      99             :          * Ring 3 MONITOR/MWAIT feature cannot be detected without
     100             :          * cpu model and family comparison.
     101             :          */
     102           4 :         if (c->x86 != 6)
     103             :                 return;
     104           4 :         switch (c->x86_model) {
     105             :         case INTEL_FAM6_XEON_PHI_KNL:
     106             :         case INTEL_FAM6_XEON_PHI_KNM:
     107           0 :                 break;
     108             :         default:
     109             :                 return;
     110             :         }
     111             : 
     112           0 :         if (ring3mwait_disabled)
     113             :                 return;
     114             : 
     115           0 :         set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
     116           0 :         this_cpu_or(msr_misc_features_shadow,
     117             :                     1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
     118             : 
     119           0 :         if (c == &boot_cpu_data)
     120           0 :                 ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
     121             : }
     122             : 
     123             : /*
     124             :  * Early microcode releases for the Spectre v2 mitigation were broken.
     125             :  * Information taken from;
     126             :  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
     127             :  * - https://kb.vmware.com/s/article/52345
     128             :  * - Microcode revisions observed in the wild
     129             :  * - Release note from 20180108 microcode release
     130             :  */
     131             : struct sku_microcode {
     132             :         u8 model;
     133             :         u8 stepping;
     134             :         u32 microcode;
     135             : };
     136             : static const struct sku_microcode spectre_bad_microcodes[] = {
     137             :         { INTEL_FAM6_KABYLAKE,          0x0B,   0x80 },
     138             :         { INTEL_FAM6_KABYLAKE,          0x0A,   0x80 },
     139             :         { INTEL_FAM6_KABYLAKE,          0x09,   0x80 },
     140             :         { INTEL_FAM6_KABYLAKE_L,        0x0A,   0x80 },
     141             :         { INTEL_FAM6_KABYLAKE_L,        0x09,   0x80 },
     142             :         { INTEL_FAM6_SKYLAKE_X,         0x03,   0x0100013e },
     143             :         { INTEL_FAM6_SKYLAKE_X,         0x04,   0x0200003c },
     144             :         { INTEL_FAM6_BROADWELL,         0x04,   0x28 },
     145             :         { INTEL_FAM6_BROADWELL_G,       0x01,   0x1b },
     146             :         { INTEL_FAM6_BROADWELL_D,       0x02,   0x14 },
     147             :         { INTEL_FAM6_BROADWELL_D,       0x03,   0x07000011 },
     148             :         { INTEL_FAM6_BROADWELL_X,       0x01,   0x0b000025 },
     149             :         { INTEL_FAM6_HASWELL_L,         0x01,   0x21 },
     150             :         { INTEL_FAM6_HASWELL_G,         0x01,   0x18 },
     151             :         { INTEL_FAM6_HASWELL,           0x03,   0x23 },
     152             :         { INTEL_FAM6_HASWELL_X,         0x02,   0x3b },
     153             :         { INTEL_FAM6_HASWELL_X,         0x04,   0x10 },
     154             :         { INTEL_FAM6_IVYBRIDGE_X,       0x04,   0x42a },
     155             :         /* Observed in the wild */
     156             :         { INTEL_FAM6_SANDYBRIDGE_X,     0x06,   0x61b },
     157             :         { INTEL_FAM6_SANDYBRIDGE_X,     0x07,   0x712 },
     158             : };
     159             : 
     160           5 : static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
     161             : {
     162           5 :         int i;
     163             : 
     164             :         /*
     165             :          * We know that the hypervisor lie to us on the microcode version so
     166             :          * we may as well hope that it is running the correct version.
     167             :          */
     168           5 :         if (cpu_has(c, X86_FEATURE_HYPERVISOR))
     169             :                 return false;
     170             : 
     171           0 :         if (c->x86 != 6)
     172             :                 return false;
     173             : 
     174           0 :         for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
     175           0 :                 if (c->x86_model == spectre_bad_microcodes[i].model &&
     176           0 :                     c->x86_stepping == spectre_bad_microcodes[i].stepping)
     177           0 :                         return (c->microcode <= spectre_bad_microcodes[i].microcode);
     178             :         }
     179             :         return false;
     180             : }
     181             : 
     182           5 : static void early_init_intel(struct cpuinfo_x86 *c)
     183             : {
     184           5 :         u64 misc_enable;
     185             : 
     186             :         /* Unmask CPUID levels if masked: */
     187           5 :         if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
     188           5 :                 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
     189             :                                   MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
     190           0 :                         c->cpuid_level = cpuid_eax(0);
     191           0 :                         get_cpu_cap(c);
     192             :                 }
     193             :         }
     194             : 
     195           5 :         if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
     196           5 :                 (c->x86 == 0x6 && c->x86_model >= 0x0e))
     197           5 :                 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
     198             : 
     199           5 :         if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
     200           5 :                 c->microcode = intel_get_microcode_revision();
     201             : 
     202             :         /* Now if any of them are set, check the blacklist and clear the lot */
     203           5 :         if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
     204           0 :              cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
     205           0 :              cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
     206           5 :              cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
     207           0 :                 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
     208           0 :                 setup_clear_cpu_cap(X86_FEATURE_IBRS);
     209           0 :                 setup_clear_cpu_cap(X86_FEATURE_IBPB);
     210           0 :                 setup_clear_cpu_cap(X86_FEATURE_STIBP);
     211           0 :                 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
     212           0 :                 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
     213           0 :                 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
     214           0 :                 setup_clear_cpu_cap(X86_FEATURE_SSBD);
     215           0 :                 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
     216             :         }
     217             : 
     218             :         /*
     219             :          * Atom erratum AAE44/AAF40/AAG38/AAH41:
     220             :          *
     221             :          * A race condition between speculative fetches and invalidating
     222             :          * a large page.  This is worked around in microcode, but we
     223             :          * need the microcode to have already been loaded... so if it is
     224             :          * not, recommend a BIOS update and disable large pages.
     225             :          */
     226           5 :         if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
     227           0 :             c->microcode < 0x20e) {
     228           0 :                 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
     229           0 :                 clear_cpu_cap(c, X86_FEATURE_PSE);
     230             :         }
     231             : 
     232             : #ifdef CONFIG_X86_64
     233           5 :         set_cpu_cap(c, X86_FEATURE_SYSENTER32);
     234             : #else
     235             :         /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
     236             :         if (c->x86 == 15 && c->x86_cache_alignment == 64)
     237             :                 c->x86_cache_alignment = 128;
     238             : #endif
     239             : 
     240             :         /* CPUID workaround for 0F33/0F34 CPU */
     241           5 :         if (c->x86 == 0xF && c->x86_model == 0x3
     242           0 :             && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
     243           0 :                 c->x86_phys_bits = 36;
     244             : 
     245             :         /*
     246             :          * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
     247             :          * with P/T states and does not stop in deep C-states.
     248             :          *
     249             :          * It is also reliable across cores and sockets. (but not across
     250             :          * cabinets - we turn it off in that case explicitly.)
     251             :          */
     252           5 :         if (c->x86_power & (1 << 8)) {
     253           0 :                 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
     254           0 :                 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
     255             :         }
     256             : 
     257             :         /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
     258           5 :         if (c->x86 == 6) {
     259           5 :                 switch (c->x86_model) {
     260           0 :                 case INTEL_FAM6_ATOM_SALTWELL_MID:
     261             :                 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
     262             :                 case INTEL_FAM6_ATOM_SILVERMONT_MID:
     263             :                 case INTEL_FAM6_ATOM_AIRMONT_NP:
     264           0 :                         set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
     265           0 :                         break;
     266             :                 default:
     267             :                         break;
     268             :                 }
     269           0 :         }
     270             : 
     271             :         /*
     272             :          * There is a known erratum on Pentium III and Core Solo
     273             :          * and Core Duo CPUs.
     274             :          * " Page with PAT set to WC while associated MTRR is UC
     275             :          *   may consolidate to UC "
     276             :          * Because of this erratum, it is better to stick with
     277             :          * setting WC in MTRR rather than using PAT on these CPUs.
     278             :          *
     279             :          * Enable PAT WC only on P4, Core 2 or later CPUs.
     280             :          */
     281           5 :         if (c->x86 == 6 && c->x86_model < 15)
     282           0 :                 clear_cpu_cap(c, X86_FEATURE_PAT);
     283             : 
     284             :         /*
     285             :          * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
     286             :          * clear the fast string and enhanced fast string CPU capabilities.
     287             :          */
     288           5 :         if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
     289           5 :                 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
     290           5 :                 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
     291           0 :                         pr_info("Disabled fast string operations\n");
     292           0 :                         setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
     293           0 :                         setup_clear_cpu_cap(X86_FEATURE_ERMS);
     294             :                 }
     295             :         }
     296             : 
     297             :         /*
     298             :          * Intel Quark Core DevMan_001.pdf section 6.4.11
     299             :          * "The operating system also is required to invalidate (i.e., flush)
     300             :          *  the TLB when any changes are made to any of the page table entries.
     301             :          *  The operating system must reload CR3 to cause the TLB to be flushed"
     302             :          *
     303             :          * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
     304             :          * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
     305             :          * to be modified.
     306             :          */
     307           5 :         if (c->x86 == 5 && c->x86_model == 9) {
     308           0 :                 pr_info("Disabling PGE capability bit\n");
     309           0 :                 setup_clear_cpu_cap(X86_FEATURE_PGE);
     310             :         }
     311             : 
     312           5 :         if (c->cpuid_level >= 0x00000001) {
     313           5 :                 u32 eax, ebx, ecx, edx;
     314             : 
     315           5 :                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
     316             :                 /*
     317             :                  * If HTT (EDX[28]) is set EBX[16:23] contain the number of
     318             :                  * apicids which are reserved per package. Store the resulting
     319             :                  * shift value for the package management code.
     320             :                  */
     321           5 :                 if (edx & (1U << 28))
     322           0 :                         c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
     323             :         }
     324             : 
     325           5 :         check_memory_type_self_snoop_errata(c);
     326             : 
     327             :         /*
     328             :          * Get the number of SMT siblings early from the extended topology
     329             :          * leaf, if available. Otherwise try the legacy SMT detection.
     330             :          */
     331           5 :         if (detect_extended_topology_early(c) < 0)
     332           0 :                 detect_ht_early(c);
     333           5 : }
     334             : 
     335           1 : static void bsp_init_intel(struct cpuinfo_x86 *c)
     336             : {
     337           1 :         resctrl_cpu_detect(c);
     338           1 : }
     339             : 
     340             : #ifdef CONFIG_X86_32
     341             : /*
     342             :  *      Early probe support logic for ppro memory erratum #50
     343             :  *
     344             :  *      This is called before we do cpu ident work
     345             :  */
     346             : 
     347             : int ppro_with_ram_bug(void)
     348             : {
     349             :         /* Uses data from early_cpu_detect now */
     350             :         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
     351             :             boot_cpu_data.x86 == 6 &&
     352             :             boot_cpu_data.x86_model == 1 &&
     353             :             boot_cpu_data.x86_stepping < 8) {
     354             :                 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
     355             :                 return 1;
     356             :         }
     357             :         return 0;
     358             : }
     359             : 
     360             : static void intel_smp_check(struct cpuinfo_x86 *c)
     361             : {
     362             :         /* calling is from identify_secondary_cpu() ? */
     363             :         if (!c->cpu_index)
     364             :                 return;
     365             : 
     366             :         /*
     367             :          * Mask B, Pentium, but not Pentium MMX
     368             :          */
     369             :         if (c->x86 == 5 &&
     370             :             c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
     371             :             c->x86_model <= 3) {
     372             :                 /*
     373             :                  * Remember we have B step Pentia with bugs
     374             :                  */
     375             :                 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
     376             :                                     "with B stepping processors.\n");
     377             :         }
     378             : }
     379             : 
     380             : static int forcepae;
     381             : static int __init forcepae_setup(char *__unused)
     382             : {
     383             :         forcepae = 1;
     384             :         return 1;
     385             : }
     386             : __setup("forcepae", forcepae_setup);
     387             : 
     388             : static void intel_workarounds(struct cpuinfo_x86 *c)
     389             : {
     390             : #ifdef CONFIG_X86_F00F_BUG
     391             :         /*
     392             :          * All models of Pentium and Pentium with MMX technology CPUs
     393             :          * have the F0 0F bug, which lets nonprivileged users lock up the
     394             :          * system. Announce that the fault handler will be checking for it.
     395             :          * The Quark is also family 5, but does not have the same bug.
     396             :          */
     397             :         clear_cpu_bug(c, X86_BUG_F00F);
     398             :         if (c->x86 == 5 && c->x86_model < 9) {
     399             :                 static int f00f_workaround_enabled;
     400             : 
     401             :                 set_cpu_bug(c, X86_BUG_F00F);
     402             :                 if (!f00f_workaround_enabled) {
     403             :                         pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
     404             :                         f00f_workaround_enabled = 1;
     405             :                 }
     406             :         }
     407             : #endif
     408             : 
     409             :         /*
     410             :          * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
     411             :          * model 3 mask 3
     412             :          */
     413             :         if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
     414             :                 clear_cpu_cap(c, X86_FEATURE_SEP);
     415             : 
     416             :         /*
     417             :          * PAE CPUID issue: many Pentium M report no PAE but may have a
     418             :          * functionally usable PAE implementation.
     419             :          * Forcefully enable PAE if kernel parameter "forcepae" is present.
     420             :          */
     421             :         if (forcepae) {
     422             :                 pr_warn("PAE forced!\n");
     423             :                 set_cpu_cap(c, X86_FEATURE_PAE);
     424             :                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
     425             :         }
     426             : 
     427             :         /*
     428             :          * P4 Xeon erratum 037 workaround.
     429             :          * Hardware prefetcher may cause stale data to be loaded into the cache.
     430             :          */
     431             :         if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
     432             :                 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
     433             :                                 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
     434             :                         pr_info("CPU: C0 stepping P4 Xeon detected.\n");
     435             :                         pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
     436             :                 }
     437             :         }
     438             : 
     439             :         /*
     440             :          * See if we have a good local APIC by checking for buggy Pentia,
     441             :          * i.e. all B steppings and the C2 stepping of P54C when using their
     442             :          * integrated APIC (see 11AP erratum in "Pentium Processor
     443             :          * Specification Update").
     444             :          */
     445             :         if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
     446             :             (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
     447             :                 set_cpu_bug(c, X86_BUG_11AP);
     448             : 
     449             : 
     450             : #ifdef CONFIG_X86_INTEL_USERCOPY
     451             :         /*
     452             :          * Set up the preferred alignment for movsl bulk memory moves
     453             :          */
     454             :         switch (c->x86) {
     455             :         case 4:         /* 486: untested */
     456             :                 break;
     457             :         case 5:         /* Old Pentia: untested */
     458             :                 break;
     459             :         case 6:         /* PII/PIII only like movsl with 8-byte alignment */
     460             :                 movsl_mask.mask = 7;
     461             :                 break;
     462             :         case 15:        /* P4 is OK down to 8-byte alignment */
     463             :                 movsl_mask.mask = 7;
     464             :                 break;
     465             :         }
     466             : #endif
     467             : 
     468             :         intel_smp_check(c);
     469             : }
     470             : #else
     471           4 : static void intel_workarounds(struct cpuinfo_x86 *c)
     472             : {
     473           4 : }
     474             : #endif
     475             : 
     476           4 : static void srat_detect_node(struct cpuinfo_x86 *c)
     477             : {
     478             : #ifdef CONFIG_NUMA
     479           4 :         unsigned node;
     480           4 :         int cpu = smp_processor_id();
     481             : 
     482             :         /* Don't do the funky fallback heuristics the AMD version employs
     483             :            for now. */
     484           4 :         node = numa_cpu_node(cpu);
     485           4 :         if (node == NUMA_NO_NODE || !node_online(node)) {
     486             :                 /* reuse the value from init_cpu_to_node() */
     487           4 :                 node = cpu_to_node(cpu);
     488             :         }
     489           4 :         numa_set_node(cpu, node);
     490             : #endif
     491           4 : }
     492             : 
     493             : #define MSR_IA32_TME_ACTIVATE           0x982
     494             : 
     495             : /* Helpers to access TME_ACTIVATE MSR */
     496             : #define TME_ACTIVATE_LOCKED(x)          (x & 0x1)
     497             : #define TME_ACTIVATE_ENABLED(x)         (x & 0x2)
     498             : 
     499             : #define TME_ACTIVATE_POLICY(x)          ((x >> 4) & 0xf)      /* Bits 7:4 */
     500             : #define TME_ACTIVATE_POLICY_AES_XTS_128 0
     501             : 
     502             : #define TME_ACTIVATE_KEYID_BITS(x)      ((x >> 32) & 0xf)     /* Bits 35:32 */
     503             : 
     504             : #define TME_ACTIVATE_CRYPTO_ALGS(x)     ((x >> 48) & 0xffff)  /* Bits 63:48 */
     505             : #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
     506             : 
     507             : /* Values for mktme_status (SW only construct) */
     508             : #define MKTME_ENABLED                   0
     509             : #define MKTME_DISABLED                  1
     510             : #define MKTME_UNINITIALIZED             2
     511             : static int mktme_status = MKTME_UNINITIALIZED;
     512             : 
     513           0 : static void detect_tme(struct cpuinfo_x86 *c)
     514             : {
     515           0 :         u64 tme_activate, tme_policy, tme_crypto_algs;
     516           0 :         int keyid_bits = 0, nr_keyids = 0;
     517           0 :         static u64 tme_activate_cpu0 = 0;
     518             : 
     519           0 :         rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
     520             : 
     521           0 :         if (mktme_status != MKTME_UNINITIALIZED) {
     522           0 :                 if (tme_activate != tme_activate_cpu0) {
     523             :                         /* Broken BIOS? */
     524           0 :                         pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
     525           0 :                         pr_err_once("x86/tme: MKTME is not usable\n");
     526           0 :                         mktme_status = MKTME_DISABLED;
     527             : 
     528             :                         /* Proceed. We may need to exclude bits from x86_phys_bits. */
     529             :                 }
     530             :         } else {
     531           0 :                 tme_activate_cpu0 = tme_activate;
     532             :         }
     533             : 
     534           0 :         if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
     535           0 :                 pr_info_once("x86/tme: not enabled by BIOS\n");
     536           0 :                 mktme_status = MKTME_DISABLED;
     537           0 :                 return;
     538             :         }
     539             : 
     540           0 :         if (mktme_status != MKTME_UNINITIALIZED)
     541           0 :                 goto detect_keyid_bits;
     542             : 
     543           0 :         pr_info("x86/tme: enabled by BIOS\n");
     544             : 
     545           0 :         tme_policy = TME_ACTIVATE_POLICY(tme_activate);
     546           0 :         if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
     547           0 :                 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
     548             : 
     549           0 :         tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
     550           0 :         if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
     551           0 :                 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
     552             :                                 tme_crypto_algs);
     553           0 :                 mktme_status = MKTME_DISABLED;
     554             :         }
     555           0 : detect_keyid_bits:
     556           0 :         keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
     557           0 :         nr_keyids = (1UL << keyid_bits) - 1;
     558           0 :         if (nr_keyids) {
     559           0 :                 pr_info_once("x86/mktme: enabled by BIOS\n");
     560           0 :                 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
     561             :         } else {
     562           0 :                 pr_info_once("x86/mktme: disabled by BIOS\n");
     563             :         }
     564             : 
     565           0 :         if (mktme_status == MKTME_UNINITIALIZED) {
     566             :                 /* MKTME is usable */
     567           0 :                 mktme_status = MKTME_ENABLED;
     568             :         }
     569             : 
     570             :         /*
     571             :          * KeyID bits effectively lower the number of physical address
     572             :          * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
     573             :          */
     574           0 :         c->x86_phys_bits -= keyid_bits;
     575             : }
     576             : 
     577           4 : static void init_cpuid_fault(struct cpuinfo_x86 *c)
     578             : {
     579           4 :         u64 msr;
     580             : 
     581           4 :         if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
     582           4 :                 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
     583           4 :                         set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
     584             :         }
     585           4 : }
     586             : 
     587           4 : static void init_intel_misc_features(struct cpuinfo_x86 *c)
     588             : {
     589           4 :         u64 msr;
     590             : 
     591           4 :         if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
     592           4 :                 return;
     593             : 
     594             :         /* Clear all MISC features */
     595           4 :         this_cpu_write(msr_misc_features_shadow, 0);
     596             : 
     597             :         /* Check features and update capabilities and shadow control bits */
     598           4 :         init_cpuid_fault(c);
     599           4 :         probe_xeon_phi_r3mwait(c);
     600             : 
     601           4 :         msr = this_cpu_read(msr_misc_features_shadow);
     602           4 :         wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
     603             : }
     604             : 
     605             : static void split_lock_init(void);
     606             : 
     607           4 : static void init_intel(struct cpuinfo_x86 *c)
     608             : {
     609           4 :         early_init_intel(c);
     610             : 
     611           4 :         intel_workarounds(c);
     612             : 
     613             :         /*
     614             :          * Detect the extended topology information if available. This
     615             :          * will reinitialise the initial_apicid which will be used
     616             :          * in init_intel_cacheinfo()
     617             :          */
     618           4 :         detect_extended_topology(c);
     619             : 
     620           4 :         if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
     621             :                 /*
     622             :                  * let's use the legacy cpuid vector 0x1 and 0x4 for topology
     623             :                  * detection.
     624             :                  */
     625           0 :                 detect_num_cpu_cores(c);
     626             : #ifdef CONFIG_X86_32
     627             :                 detect_ht(c);
     628             : #endif
     629             :         }
     630             : 
     631           4 :         init_intel_cacheinfo(c);
     632             : 
     633           4 :         if (c->cpuid_level > 9) {
     634           4 :                 unsigned eax = cpuid_eax(10);
     635             :                 /* Check for version and the number of counters */
     636           4 :                 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
     637           4 :                         set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
     638             :         }
     639             : 
     640           4 :         if (cpu_has(c, X86_FEATURE_XMM2))
     641           4 :                 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
     642             : 
     643           4 :         if (boot_cpu_has(X86_FEATURE_DS)) {
     644           0 :                 unsigned int l1, l2;
     645             : 
     646           0 :                 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
     647           0 :                 if (!(l1 & (1<<11)))
     648           0 :                         set_cpu_cap(c, X86_FEATURE_BTS);
     649           0 :                 if (!(l1 & (1<<12)))
     650           0 :                         set_cpu_cap(c, X86_FEATURE_PEBS);
     651             :         }
     652             : 
     653           8 :         if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
     654           4 :             (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
     655           0 :                 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
     656             : 
     657           8 :         if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
     658           0 :                 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
     659           0 :                 set_cpu_bug(c, X86_BUG_MONITOR);
     660             : 
     661             : #ifdef CONFIG_X86_64
     662           4 :         if (c->x86 == 15)
     663           0 :                 c->x86_cache_alignment = c->x86_clflush_size * 2;
     664           4 :         if (c->x86 == 6)
     665           4 :                 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
     666             : #else
     667             :         /*
     668             :          * Names for the Pentium II/Celeron processors
     669             :          * detectable only by also checking the cache size.
     670             :          * Dixon is NOT a Celeron.
     671             :          */
     672             :         if (c->x86 == 6) {
     673             :                 unsigned int l2 = c->x86_cache_size;
     674             :                 char *p = NULL;
     675             : 
     676             :                 switch (c->x86_model) {
     677             :                 case 5:
     678             :                         if (l2 == 0)
     679             :                                 p = "Celeron (Covington)";
     680             :                         else if (l2 == 256)
     681             :                                 p = "Mobile Pentium II (Dixon)";
     682             :                         break;
     683             : 
     684             :                 case 6:
     685             :                         if (l2 == 128)
     686             :                                 p = "Celeron (Mendocino)";
     687             :                         else if (c->x86_stepping == 0 || c->x86_stepping == 5)
     688             :                                 p = "Celeron-A";
     689             :                         break;
     690             : 
     691             :                 case 8:
     692             :                         if (l2 == 128)
     693             :                                 p = "Celeron (Coppermine)";
     694             :                         break;
     695             :                 }
     696             : 
     697             :                 if (p)
     698             :                         strcpy(c->x86_model_id, p);
     699             :         }
     700             : 
     701             :         if (c->x86 == 15)
     702             :                 set_cpu_cap(c, X86_FEATURE_P4);
     703             :         if (c->x86 == 6)
     704             :                 set_cpu_cap(c, X86_FEATURE_P3);
     705             : #endif
     706             : 
     707             :         /* Work around errata */
     708           4 :         srat_detect_node(c);
     709             : 
     710           4 :         init_ia32_feat_ctl(c);
     711             : 
     712           4 :         if (cpu_has(c, X86_FEATURE_TME))
     713           0 :                 detect_tme(c);
     714             : 
     715           4 :         init_intel_misc_features(c);
     716             : 
     717           4 :         if (tsx_ctrl_state == TSX_CTRL_ENABLE)
     718           0 :                 tsx_enable();
     719           4 :         if (tsx_ctrl_state == TSX_CTRL_DISABLE)
     720           0 :                 tsx_disable();
     721             : 
     722           4 :         split_lock_init();
     723             : 
     724           4 :         intel_init_thermal(c);
     725           4 : }
     726             : 
     727             : #ifdef CONFIG_X86_32
     728             : static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
     729             : {
     730             :         /*
     731             :          * Intel PIII Tualatin. This comes in two flavours.
     732             :          * One has 256kb of cache, the other 512. We have no way
     733             :          * to determine which, so we use a boottime override
     734             :          * for the 512kb model, and assume 256 otherwise.
     735             :          */
     736             :         if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
     737             :                 size = 256;
     738             : 
     739             :         /*
     740             :          * Intel Quark SoC X1000 contains a 4-way set associative
     741             :          * 16K cache with a 16 byte cache line and 256 lines per tag
     742             :          */
     743             :         if ((c->x86 == 5) && (c->x86_model == 9))
     744             :                 size = 16;
     745             :         return size;
     746             : }
     747             : #endif
     748             : 
     749             : #define TLB_INST_4K     0x01
     750             : #define TLB_INST_4M     0x02
     751             : #define TLB_INST_2M_4M  0x03
     752             : 
     753             : #define TLB_INST_ALL    0x05
     754             : #define TLB_INST_1G     0x06
     755             : 
     756             : #define TLB_DATA_4K     0x11
     757             : #define TLB_DATA_4M     0x12
     758             : #define TLB_DATA_2M_4M  0x13
     759             : #define TLB_DATA_4K_4M  0x14
     760             : 
     761             : #define TLB_DATA_1G     0x16
     762             : 
     763             : #define TLB_DATA0_4K    0x21
     764             : #define TLB_DATA0_4M    0x22
     765             : #define TLB_DATA0_2M_4M 0x23
     766             : 
     767             : #define STLB_4K         0x41
     768             : #define STLB_4K_2M      0x42
     769             : 
     770             : static const struct _tlb_table intel_tlb_table[] = {
     771             :         { 0x01, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages, 4-way set associative" },
     772             :         { 0x02, TLB_INST_4M,            2,      " TLB_INST 4 MByte pages, full associative" },
     773             :         { 0x03, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way set associative" },
     774             :         { 0x04, TLB_DATA_4M,            8,      " TLB_DATA 4 MByte pages, 4-way set associative" },
     775             :         { 0x05, TLB_DATA_4M,            32,     " TLB_DATA 4 MByte pages, 4-way set associative" },
     776             :         { 0x0b, TLB_INST_4M,            4,      " TLB_INST 4 MByte pages, 4-way set associative" },
     777             :         { 0x4f, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages" },
     778             :         { 0x50, TLB_INST_ALL,           64,     " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
     779             :         { 0x51, TLB_INST_ALL,           128,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
     780             :         { 0x52, TLB_INST_ALL,           256,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
     781             :         { 0x55, TLB_INST_2M_4M,         7,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
     782             :         { 0x56, TLB_DATA0_4M,           16,     " TLB_DATA0 4 MByte pages, 4-way set associative" },
     783             :         { 0x57, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, 4-way associative" },
     784             :         { 0x59, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, fully associative" },
     785             :         { 0x5a, TLB_DATA0_2M_4M,        32,     " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
     786             :         { 0x5b, TLB_DATA_4K_4M,         64,     " TLB_DATA 4 KByte and 4 MByte pages" },
     787             :         { 0x5c, TLB_DATA_4K_4M,         128,    " TLB_DATA 4 KByte and 4 MByte pages" },
     788             :         { 0x5d, TLB_DATA_4K_4M,         256,    " TLB_DATA 4 KByte and 4 MByte pages" },
     789             :         { 0x61, TLB_INST_4K,            48,     " TLB_INST 4 KByte pages, full associative" },
     790             :         { 0x63, TLB_DATA_1G,            4,      " TLB_DATA 1 GByte pages, 4-way set associative" },
     791             :         { 0x6b, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 8-way associative" },
     792             :         { 0x6c, TLB_DATA_2M_4M,         128,    " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
     793             :         { 0x6d, TLB_DATA_1G,            16,     " TLB_DATA 1 GByte pages, fully associative" },
     794             :         { 0x76, TLB_INST_2M_4M,         8,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
     795             :         { 0xb0, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 4-way set associative" },
     796             :         { 0xb1, TLB_INST_2M_4M,         4,      " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
     797             :         { 0xb2, TLB_INST_4K,            64,     " TLB_INST 4KByte pages, 4-way set associative" },
     798             :         { 0xb3, TLB_DATA_4K,            128,    " TLB_DATA 4 KByte pages, 4-way set associative" },
     799             :         { 0xb4, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 4-way associative" },
     800             :         { 0xb5, TLB_INST_4K,            64,     " TLB_INST 4 KByte pages, 8-way set associative" },
     801             :         { 0xb6, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 8-way set associative" },
     802             :         { 0xba, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way associative" },
     803             :         { 0xc0, TLB_DATA_4K_4M,         8,      " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
     804             :         { 0xc1, STLB_4K_2M,             1024,   " STLB 4 KByte and 2 MByte pages, 8-way associative" },
     805             :         { 0xc2, TLB_DATA_2M_4M,         16,     " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
     806             :         { 0xca, STLB_4K,                512,    " STLB 4 KByte pages, 4-way associative" },
     807             :         { 0x00, 0, 0 }
     808             : };
     809             : 
     810          15 : static void intel_tlb_lookup(const unsigned char desc)
     811             : {
     812          15 :         unsigned char k;
     813          15 :         if (desc == 0)
     814             :                 return;
     815             : 
     816             :         /* look up this descriptor in the table */
     817         148 :         for (k = 0; intel_tlb_table[k].descriptor != desc &&
     818         144 :              intel_tlb_table[k].descriptor != 0; k++)
     819         144 :                 ;
     820             : 
     821           4 :         if (intel_tlb_table[k].tlb_type == 0)
     822             :                 return;
     823             : 
     824           0 :         switch (intel_tlb_table[k].tlb_type) {
     825           0 :         case STLB_4K:
     826           0 :                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
     827           0 :                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
     828           0 :                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
     829           0 :                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
     830             :                 break;
     831           0 :         case STLB_4K_2M:
     832           0 :                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
     833           0 :                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
     834           0 :                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
     835           0 :                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
     836           0 :                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
     837           0 :                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
     838           0 :                 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
     839           0 :                         tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
     840           0 :                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
     841           0 :                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
     842           0 :                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
     843           0 :                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
     844             :                 break;
     845           0 :         case TLB_INST_ALL:
     846           0 :                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
     847           0 :                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
     848           0 :                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
     849           0 :                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
     850           0 :                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
     851           0 :                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
     852             :                 break;
     853           0 :         case TLB_INST_4K:
     854           0 :                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
     855           0 :                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
     856             :                 break;
     857           0 :         case TLB_INST_4M:
     858           0 :                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
     859           0 :                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
     860             :                 break;
     861           0 :         case TLB_INST_2M_4M:
     862           0 :                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
     863           0 :                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
     864           0 :                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
     865           0 :                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
     866             :                 break;
     867           0 :         case TLB_DATA_4K:
     868             :         case TLB_DATA0_4K:
     869           0 :                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
     870           0 :                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
     871             :                 break;
     872           0 :         case TLB_DATA_4M:
     873             :         case TLB_DATA0_4M:
     874           0 :                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
     875           0 :                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
     876             :                 break;
     877           0 :         case TLB_DATA_2M_4M:
     878             :         case TLB_DATA0_2M_4M:
     879           0 :                 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
     880           0 :                         tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
     881           0 :                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
     882           0 :                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
     883             :                 break;
     884           0 :         case TLB_DATA_4K_4M:
     885           0 :                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
     886           0 :                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
     887           0 :                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
     888           0 :                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
     889             :                 break;
     890           0 :         case TLB_DATA_1G:
     891           0 :                 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
     892           0 :                         tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
     893             :                 break;
     894             :         }
     895          15 : }
     896             : 
     897           1 : static void intel_detect_tlb(struct cpuinfo_x86 *c)
     898             : {
     899           1 :         int i, j, n;
     900           1 :         unsigned int regs[4];
     901           1 :         unsigned char *desc = (unsigned char *)regs;
     902             : 
     903           1 :         if (c->cpuid_level < 2)
     904           0 :                 return;
     905             : 
     906             :         /* Number of times to iterate */
     907           1 :         n = cpuid_eax(2) & 0xFF;
     908             : 
     909           2 :         for (i = 0 ; i < n ; i++) {
     910           1 :                 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
     911             : 
     912             :                 /* If bit 31 is set, this is an unknown format */
     913           5 :                 for (j = 0 ; j < 3 ; j++)
     914           3 :                         if (regs[j] & (1 << 31))
     915           0 :                                 regs[j] = 0;
     916             : 
     917             :                 /* Byte 0 is level count, not a descriptor */
     918          16 :                 for (j = 1 ; j < 16 ; j++)
     919          15 :                         intel_tlb_lookup(desc[j]);
     920             :         }
     921             : }
     922             : 
     923             : static const struct cpu_dev intel_cpu_dev = {
     924             :         .c_vendor       = "Intel",
     925             :         .c_ident        = { "GenuineIntel" },
     926             : #ifdef CONFIG_X86_32
     927             :         .legacy_models = {
     928             :                 { .family = 4, .model_names =
     929             :                   {
     930             :                           [0] = "486 DX-25/33",
     931             :                           [1] = "486 DX-50",
     932             :                           [2] = "486 SX",
     933             :                           [3] = "486 DX/2",
     934             :                           [4] = "486 SL",
     935             :                           [5] = "486 SX/2",
     936             :                           [7] = "486 DX/2-WB",
     937             :                           [8] = "486 DX/4",
     938             :                           [9] = "486 DX/4-WB"
     939             :                   }
     940             :                 },
     941             :                 { .family = 5, .model_names =
     942             :                   {
     943             :                           [0] = "Pentium 60/66 A-step",
     944             :                           [1] = "Pentium 60/66",
     945             :                           [2] = "Pentium 75 - 200",
     946             :                           [3] = "OverDrive PODP5V83",
     947             :                           [4] = "Pentium MMX",
     948             :                           [7] = "Mobile Pentium 75 - 200",
     949             :                           [8] = "Mobile Pentium MMX",
     950             :                           [9] = "Quark SoC X1000",
     951             :                   }
     952             :                 },
     953             :                 { .family = 6, .model_names =
     954             :                   {
     955             :                           [0] = "Pentium Pro A-step",
     956             :                           [1] = "Pentium Pro",
     957             :                           [3] = "Pentium II (Klamath)",
     958             :                           [4] = "Pentium II (Deschutes)",
     959             :                           [5] = "Pentium II (Deschutes)",
     960             :                           [6] = "Mobile Pentium II",
     961             :                           [7] = "Pentium III (Katmai)",
     962             :                           [8] = "Pentium III (Coppermine)",
     963             :                           [10] = "Pentium III (Cascades)",
     964             :                           [11] = "Pentium III (Tualatin)",
     965             :                   }
     966             :                 },
     967             :                 { .family = 15, .model_names =
     968             :                   {
     969             :                           [0] = "Pentium 4 (Unknown)",
     970             :                           [1] = "Pentium 4 (Willamette)",
     971             :                           [2] = "Pentium 4 (Northwood)",
     972             :                           [4] = "Pentium 4 (Foster)",
     973             :                           [5] = "Pentium 4 (Foster)",
     974             :                   }
     975             :                 },
     976             :         },
     977             :         .legacy_cache_size = intel_size_cache,
     978             : #endif
     979             :         .c_detect_tlb   = intel_detect_tlb,
     980             :         .c_early_init   = early_init_intel,
     981             :         .c_bsp_init     = bsp_init_intel,
     982             :         .c_init         = init_intel,
     983             :         .c_x86_vendor   = X86_VENDOR_INTEL,
     984             : };
     985             : 
     986             : cpu_dev_register(intel_cpu_dev);
     987             : 
     988             : #undef pr_fmt
     989             : #define pr_fmt(fmt) "x86/split lock detection: " fmt
     990             : 
     991             : static const struct {
     992             :         const char                      *option;
     993             :         enum split_lock_detect_state    state;
     994             : } sld_options[] __initconst = {
     995             :         { "off",      sld_off   },
     996             :         { "warn",     sld_warn  },
     997             :         { "fatal",    sld_fatal },
     998             : };
     999             : 
    1000           0 : static inline bool match_option(const char *arg, int arglen, const char *opt)
    1001             : {
    1002           0 :         int len = strlen(opt);
    1003             : 
    1004           0 :         return len == arglen && !strncmp(arg, opt, len);
    1005             : }
    1006             : 
    1007           0 : static bool split_lock_verify_msr(bool on)
    1008             : {
    1009           0 :         u64 ctrl, tmp;
    1010             : 
    1011           0 :         if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
    1012             :                 return false;
    1013           0 :         if (on)
    1014           0 :                 ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
    1015             :         else
    1016           0 :                 ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
    1017           0 :         if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
    1018             :                 return false;
    1019           0 :         rdmsrl(MSR_TEST_CTRL, tmp);
    1020           0 :         return ctrl == tmp;
    1021             : }
    1022             : 
    1023           0 : static void __init split_lock_setup(void)
    1024             : {
    1025           0 :         enum split_lock_detect_state state = sld_warn;
    1026           0 :         char arg[20];
    1027           0 :         int i, ret;
    1028             : 
    1029           0 :         if (!split_lock_verify_msr(false)) {
    1030           0 :                 pr_info("MSR access failed: Disabled\n");
    1031           0 :                 return;
    1032             :         }
    1033             : 
    1034           0 :         ret = cmdline_find_option(boot_command_line, "split_lock_detect",
    1035             :                                   arg, sizeof(arg));
    1036           0 :         if (ret >= 0) {
    1037           0 :                 for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
    1038           0 :                         if (match_option(arg, ret, sld_options[i].option)) {
    1039           0 :                                 state = sld_options[i].state;
    1040           0 :                                 break;
    1041             :                         }
    1042             :                 }
    1043             :         }
    1044             : 
    1045           0 :         switch (state) {
    1046           0 :         case sld_off:
    1047           0 :                 pr_info("disabled\n");
    1048           0 :                 return;
    1049           0 :         case sld_warn:
    1050           0 :                 pr_info("warning about user-space split_locks\n");
    1051           0 :                 break;
    1052           0 :         case sld_fatal:
    1053           0 :                 pr_info("sending SIGBUS on user-space split_locks\n");
    1054           0 :                 break;
    1055             :         }
    1056             : 
    1057           0 :         rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
    1058             : 
    1059           0 :         if (!split_lock_verify_msr(true)) {
    1060           0 :                 pr_info("MSR access failed: Disabled\n");
    1061           0 :                 return;
    1062             :         }
    1063             : 
    1064           0 :         sld_state = state;
    1065           0 :         setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
    1066             : }
    1067             : 
    1068             : /*
    1069             :  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
    1070             :  * is not implemented as one thread could undo the setting of the other
    1071             :  * thread immediately after dropping the lock anyway.
    1072             :  */
    1073           0 : static void sld_update_msr(bool on)
    1074             : {
    1075           0 :         u64 test_ctrl_val = msr_test_ctrl_cache;
    1076             : 
    1077           0 :         if (on)
    1078           0 :                 test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
    1079             : 
    1080           0 :         wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
    1081           0 : }
    1082             : 
    1083           4 : static void split_lock_init(void)
    1084             : {
    1085           4 :         if (cpu_model_supports_sld)
    1086           0 :                 split_lock_verify_msr(sld_state != sld_off);
    1087           4 : }
    1088             : 
    1089           0 : static void split_lock_warn(unsigned long ip)
    1090             : {
    1091           0 :         pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
    1092             :                             current->comm, current->pid, ip);
    1093             : 
    1094             :         /*
    1095             :          * Disable the split lock detection for this task so it can make
    1096             :          * progress and set TIF_SLD so the detection is re-enabled via
    1097             :          * switch_to_sld() when the task is scheduled out.
    1098             :          */
    1099           0 :         sld_update_msr(false);
    1100           0 :         set_tsk_thread_flag(current, TIF_SLD);
    1101           0 : }
    1102             : 
    1103           0 : bool handle_guest_split_lock(unsigned long ip)
    1104             : {
    1105           0 :         if (sld_state == sld_warn) {
    1106           0 :                 split_lock_warn(ip);
    1107           0 :                 return true;
    1108             :         }
    1109             : 
    1110           0 :         pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
    1111             :                      current->comm, current->pid,
    1112             :                      sld_state == sld_fatal ? "fatal" : "bogus", ip);
    1113             : 
    1114           0 :         current->thread.error_code = 0;
    1115           0 :         current->thread.trap_nr = X86_TRAP_AC;
    1116           0 :         force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
    1117           0 :         return false;
    1118             : }
    1119             : EXPORT_SYMBOL_GPL(handle_guest_split_lock);
    1120             : 
    1121           0 : bool handle_user_split_lock(struct pt_regs *regs, long error_code)
    1122             : {
    1123           0 :         if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
    1124             :                 return false;
    1125           0 :         split_lock_warn(regs->ip);
    1126           0 :         return true;
    1127             : }
    1128             : 
    1129             : /*
    1130             :  * This function is called only when switching between tasks with
    1131             :  * different split-lock detection modes. It sets the MSR for the
    1132             :  * mode of the new task. This is right most of the time, but since
    1133             :  * the MSR is shared by hyperthreads on a physical core there can
    1134             :  * be glitches when the two threads need different modes.
    1135             :  */
    1136           0 : void switch_to_sld(unsigned long tifn)
    1137             : {
    1138           0 :         sld_update_msr(!(tifn & _TIF_SLD));
    1139           0 : }
    1140             : 
    1141             : /*
    1142             :  * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
    1143             :  * only be trusted if it is confirmed that a CPU model implements a
    1144             :  * specific feature at a particular bit position.
    1145             :  *
    1146             :  * The possible driver data field values:
    1147             :  *
    1148             :  * - 0: CPU models that are known to have the per-core split-lock detection
    1149             :  *      feature even though they do not enumerate IA32_CORE_CAPABILITIES.
    1150             :  *
    1151             :  * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
    1152             :  *      bit 5 to enumerate the per-core split-lock detection feature.
    1153             :  */
    1154             : static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
    1155             :         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,           0),
    1156             :         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,           0),
    1157             :         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,           0),
    1158             :         X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,        1),
    1159             :         X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,      1),
    1160             :         X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,      1),
    1161             :         X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,         1),
    1162             :         X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,           1),
    1163             :         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,    1),
    1164             :         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,           1),
    1165             :         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,         1),
    1166             :         {}
    1167             : };
    1168             : 
    1169           1 : void __init cpu_set_core_cap_bits(struct cpuinfo_x86 *c)
    1170             : {
    1171           1 :         const struct x86_cpu_id *m;
    1172           1 :         u64 ia32_core_caps;
    1173             : 
    1174           1 :         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
    1175             :                 return;
    1176             : 
    1177           0 :         m = x86_match_cpu(split_lock_cpu_ids);
    1178           0 :         if (!m)
    1179             :                 return;
    1180             : 
    1181           0 :         switch (m->driver_data) {
    1182             :         case 0:
    1183             :                 break;
    1184           0 :         case 1:
    1185           0 :                 if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
    1186             :                         return;
    1187           0 :                 rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
    1188           0 :                 if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
    1189             :                         return;
    1190             :                 break;
    1191             :         default:
    1192             :                 return;
    1193             :         }
    1194             : 
    1195           0 :         cpu_model_supports_sld = true;
    1196           0 :         split_lock_setup();
    1197             : }

Generated by: LCOV version 1.14