Line data Source code
1 : /*
2 : * Copyright (C) 1991, 1992 Linus Torvalds
3 : * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 : */
5 : #include <linux/kallsyms.h>
6 : #include <linux/kprobes.h>
7 : #include <linux/uaccess.h>
8 : #include <linux/utsname.h>
9 : #include <linux/hardirq.h>
10 : #include <linux/kdebug.h>
11 : #include <linux/module.h>
12 : #include <linux/ptrace.h>
13 : #include <linux/sched/debug.h>
14 : #include <linux/sched/task_stack.h>
15 : #include <linux/ftrace.h>
16 : #include <linux/kexec.h>
17 : #include <linux/bug.h>
18 : #include <linux/nmi.h>
19 : #include <linux/sysfs.h>
20 : #include <linux/kasan.h>
21 :
22 : #include <asm/cpu_entry_area.h>
23 : #include <asm/stacktrace.h>
24 : #include <asm/unwind.h>
25 :
26 : int panic_on_unrecovered_nmi;
27 : int panic_on_io_nmi;
28 : static int die_counter;
29 :
30 : static struct pt_regs exec_summary_regs;
31 :
32 7452239 : bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
33 : struct stack_info *info)
34 : {
35 7452239 : unsigned long *begin = task_stack_page(task);
36 7452239 : unsigned long *end = task_stack_page(task) + THREAD_SIZE;
37 :
38 7452239 : if (stack < begin || stack >= end)
39 : return false;
40 :
41 6652733 : info->type = STACK_TYPE_TASK;
42 6652733 : info->begin = begin;
43 6652733 : info->end = end;
44 6652733 : info->next_sp = NULL;
45 :
46 6652733 : return true;
47 : }
48 :
49 : /* Called from get_stack_info_noinstr - so must be noinstr too */
50 0 : bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
51 : {
52 0 : struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
53 :
54 0 : void *begin = ss;
55 0 : void *end = ss + 1;
56 :
57 0 : if ((void *)stack < begin || (void *)stack >= end)
58 : return false;
59 :
60 0 : info->type = STACK_TYPE_ENTRY;
61 0 : info->begin = begin;
62 0 : info->end = end;
63 0 : info->next_sp = NULL;
64 :
65 0 : return true;
66 : }
67 :
68 34 : static void printk_stack_address(unsigned long address, int reliable,
69 : const char *log_lvl)
70 : {
71 34 : touch_nmi_watchdog();
72 52 : printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
73 34 : }
74 :
75 2 : static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
76 : unsigned int nbytes)
77 : {
78 2 : if (!user_mode(regs))
79 1 : return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
80 :
81 : /* The user space code from other tasks cannot be accessed. */
82 1 : if (regs != task_pt_regs(current))
83 : return -EPERM;
84 : /*
85 : * Make sure userspace isn't trying to trick us into dumping kernel
86 : * memory by pointing the userspace instruction pointer at it.
87 : */
88 2 : if (__chk_range_not_ok(src, nbytes, TASK_SIZE_MAX))
89 : return -EINVAL;
90 :
91 : /*
92 : * Even if named copy_from_user_nmi() this can be invoked from
93 : * other contexts and will not try to resolve a pagefault, which is
94 : * the correct thing to do here as this code can be called from any
95 : * context.
96 : */
97 1 : return copy_from_user_nmi(buf, (void __user *)src, nbytes);
98 : }
99 :
100 : /*
101 : * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
102 : *
103 : * In case where we don't have the exact kernel image (which, if we did, we can
104 : * simply disassemble and navigate to the RIP), the purpose of the bigger
105 : * prologue is to have more context and to be able to correlate the code from
106 : * the different toolchains better.
107 : *
108 : * In addition, it helps in recreating the register allocation of the failing
109 : * kernel and thus make sense of the register dump.
110 : *
111 : * What is more, the additional complication of a variable length insn arch like
112 : * x86 warrants having longer byte sequence before rIP so that the disassembler
113 : * can "sync" up properly and find instruction boundaries when decoding the
114 : * opcode bytes.
115 : *
116 : * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
117 : * guesstimate in attempt to achieve all of the above.
118 : */
119 2 : void show_opcodes(struct pt_regs *regs, const char *loglvl)
120 : {
121 : #define PROLOGUE_SIZE 42
122 : #define EPILOGUE_SIZE 21
123 : #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
124 2 : u8 opcodes[OPCODE_BUFSIZE];
125 2 : unsigned long prologue = regs->ip - PROLOGUE_SIZE;
126 :
127 2 : switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
128 2 : case 0:
129 2 : printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
130 : __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
131 2 : opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
132 2 : break;
133 : case -EPERM:
134 : /* No access to the user space stack of other tasks. Ignore. */
135 : break;
136 0 : default:
137 0 : printk("%sCode: Unable to access opcode bytes at RIP 0x%lx.\n",
138 : loglvl, prologue);
139 0 : break;
140 : }
141 2 : }
142 :
143 2 : void show_ip(struct pt_regs *regs, const char *loglvl)
144 : {
145 : #ifdef CONFIG_X86_32
146 : printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
147 : #else
148 2 : printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
149 : #endif
150 2 : show_opcodes(regs, loglvl);
151 2 : }
152 :
153 2 : void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
154 : {
155 2 : show_ip(regs, log_lvl);
156 2 : printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
157 : regs->sp, regs->flags);
158 2 : }
159 :
160 1 : static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
161 : bool partial, const char *log_lvl)
162 : {
163 : /*
164 : * These on_stack() checks aren't strictly necessary: the unwind code
165 : * has already validated the 'regs' pointer. The checks are done for
166 : * ordering reasons: if the registers are on the next stack, we don't
167 : * want to print them out yet. Otherwise they'll be shown as part of
168 : * the wrong stack. Later, when show_trace_log_lvl() switches to the
169 : * next stack, this function will be called again with the same regs so
170 : * they can be printed in the right context.
171 : */
172 1 : if (!partial && on_stack(info, regs, sizeof(*regs))) {
173 1 : __show_regs(regs, SHOW_REGS_SHORT, log_lvl);
174 :
175 0 : } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
176 : IRET_FRAME_SIZE)) {
177 : /*
178 : * When an interrupt or exception occurs in entry code, the
179 : * full pt_regs might not have been saved yet. In that case
180 : * just print the iret frame.
181 : */
182 0 : show_iret_regs(regs, log_lvl);
183 : }
184 1 : }
185 :
186 1 : static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
187 : unsigned long *stack, const char *log_lvl)
188 : {
189 1 : struct unwind_state state;
190 1 : struct stack_info stack_info = {0};
191 1 : unsigned long visit_mask = 0;
192 1 : int graph_idx = 0;
193 1 : bool partial = false;
194 :
195 1 : printk("%sCall Trace:\n", log_lvl);
196 :
197 1 : unwind_start(&state, task, regs, stack);
198 1 : stack = stack ? : get_stack_pointer(task, regs);
199 1 : regs = unwind_get_entry_regs(&state, &partial);
200 :
201 : /*
202 : * Iterate through the stacks, starting with the current stack pointer.
203 : * Each stack has a pointer to the next one.
204 : *
205 : * x86-64 can have several stacks:
206 : * - task stack
207 : * - interrupt stack
208 : * - HW exception stacks (double fault, nmi, debug, mce)
209 : * - entry stack
210 : *
211 : * x86-32 can have up to four stacks:
212 : * - task stack
213 : * - softirq stack
214 : * - hardirq stack
215 : * - entry stack
216 : */
217 2 : for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
218 1 : const char *stack_name;
219 :
220 1 : if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
221 : /*
222 : * We weren't on a valid stack. It's possible that
223 : * we overflowed a valid stack into a guard page.
224 : * See if the next page up is valid so that we can
225 : * generate some kind of backtrace if this happens.
226 : */
227 0 : stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
228 0 : if (get_stack_info(stack, task, &stack_info, &visit_mask))
229 : break;
230 : }
231 :
232 1 : stack_name = stack_type_name(stack_info.type);
233 1 : if (stack_name)
234 0 : printk("%s <%s>\n", log_lvl, stack_name);
235 :
236 1 : if (regs)
237 0 : show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
238 :
239 : /*
240 : * Scan the stack, printing any text addresses we find. At the
241 : * same time, follow proper stack frames with the unwinder.
242 : *
243 : * Addresses found during the scan which are not reported by
244 : * the unwinder are considered to be additional clues which are
245 : * sometimes useful for debugging and are prefixed with '?'.
246 : * This also serves as a failsafe option in case the unwinder
247 : * goes off in the weeds.
248 : */
249 232 : for (; stack < stack_info.end; stack++) {
250 231 : unsigned long real_addr;
251 231 : int reliable = 0;
252 231 : unsigned long addr = READ_ONCE_NOCHECK(*stack);
253 231 : unsigned long *ret_addr_p =
254 231 : unwind_get_return_address_ptr(&state);
255 :
256 231 : if (!__kernel_text_address(addr))
257 197 : continue;
258 :
259 : /*
260 : * Don't print regs->ip again if it was already printed
261 : * by show_regs_if_on_stack().
262 : */
263 34 : if (regs && stack == ®s->ip)
264 0 : goto next;
265 :
266 34 : if (stack == ret_addr_p)
267 16 : reliable = 1;
268 :
269 : /*
270 : * When function graph tracing is enabled for a
271 : * function, its return address on the stack is
272 : * replaced with the address of an ftrace handler
273 : * (return_to_handler). In that case, before printing
274 : * the "real" address, we want to print the handler
275 : * address as an "unreliable" hint that function graph
276 : * tracing was involved.
277 : */
278 34 : real_addr = ftrace_graph_ret_addr(task, &graph_idx,
279 : addr, stack);
280 34 : if (real_addr != addr)
281 : printk_stack_address(addr, 0, log_lvl);
282 34 : printk_stack_address(real_addr, reliable, log_lvl);
283 :
284 34 : if (!reliable)
285 18 : continue;
286 :
287 16 : next:
288 : /*
289 : * Get the next frame from the unwinder. No need to
290 : * check for an error: if anything goes wrong, the rest
291 : * of the addresses will just be printed as unreliable.
292 : */
293 16 : unwind_next_frame(&state);
294 :
295 : /* if the frame has entry regs, print them */
296 247 : regs = unwind_get_entry_regs(&state, &partial);
297 16 : if (regs)
298 1 : show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
299 : }
300 :
301 1 : if (stack_name)
302 0 : printk("%s </%s>\n", log_lvl, stack_name);
303 : }
304 1 : }
305 :
306 0 : void show_stack(struct task_struct *task, unsigned long *sp,
307 : const char *loglvl)
308 : {
309 0 : task = task ? : current;
310 :
311 : /*
312 : * Stack frames below this one aren't interesting. Don't show them
313 : * if we're printing for %current.
314 : */
315 0 : if (!sp && task == current)
316 0 : sp = get_stack_pointer(current, NULL);
317 :
318 0 : show_trace_log_lvl(task, NULL, sp, loglvl);
319 0 : }
320 :
321 0 : void show_stack_regs(struct pt_regs *regs)
322 : {
323 0 : show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
324 0 : }
325 :
326 : static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
327 : static int die_owner = -1;
328 : static unsigned int die_nest_count;
329 :
330 0 : unsigned long oops_begin(void)
331 : {
332 0 : int cpu;
333 0 : unsigned long flags;
334 :
335 0 : oops_enter();
336 :
337 : /* racy, but better than risking deadlock. */
338 0 : raw_local_irq_save(flags);
339 0 : cpu = smp_processor_id();
340 0 : if (!arch_spin_trylock(&die_lock)) {
341 0 : if (cpu == die_owner)
342 : /* nested oops. should stop eventually */;
343 : else
344 0 : arch_spin_lock(&die_lock);
345 : }
346 0 : die_nest_count++;
347 0 : die_owner = cpu;
348 0 : console_verbose();
349 0 : bust_spinlocks(1);
350 0 : return flags;
351 : }
352 : NOKPROBE_SYMBOL(oops_begin);
353 :
354 : void __noreturn rewind_stack_do_exit(int signr);
355 :
356 0 : void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
357 : {
358 0 : if (regs && kexec_should_crash(current))
359 0 : crash_kexec(regs);
360 :
361 0 : bust_spinlocks(0);
362 0 : die_owner = -1;
363 0 : add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
364 0 : die_nest_count--;
365 0 : if (!die_nest_count)
366 : /* Nest count reaches zero, release the lock. */
367 0 : arch_spin_unlock(&die_lock);
368 0 : raw_local_irq_restore(flags);
369 0 : oops_exit();
370 :
371 : /* Executive summary in case the oops scrolled away */
372 0 : __show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
373 :
374 0 : if (!signr)
375 0 : return;
376 0 : if (in_interrupt())
377 0 : panic("Fatal exception in interrupt");
378 0 : if (panic_on_oops)
379 0 : panic("Fatal exception");
380 :
381 : /*
382 : * We're not going to return, but we might be on an IST stack or
383 : * have very little stack space left. Rewind the stack and kill
384 : * the task.
385 : * Before we rewind the stack, we have to tell KASAN that we're going to
386 : * reuse the task stack and that existing poisons are invalid.
387 : */
388 0 : kasan_unpoison_task_stack(current);
389 0 : rewind_stack_do_exit(signr);
390 : }
391 : NOKPROBE_SYMBOL(oops_end);
392 :
393 0 : static void __die_header(const char *str, struct pt_regs *regs, long err)
394 : {
395 0 : const char *pr = "";
396 :
397 : /* Save the regs of the first oops for the executive summary later. */
398 0 : if (!die_counter)
399 0 : exec_summary_regs = *regs;
400 :
401 0 : if (IS_ENABLED(CONFIG_PREEMPTION))
402 : pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
403 :
404 0 : printk(KERN_DEFAULT
405 : "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
406 : pr,
407 : IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
408 : debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
409 : IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "",
410 : IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
411 : (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
412 0 : }
413 : NOKPROBE_SYMBOL(__die_header);
414 :
415 0 : static int __die_body(const char *str, struct pt_regs *regs, long err)
416 : {
417 0 : show_regs(regs);
418 0 : print_modules();
419 :
420 0 : if (notify_die(DIE_OOPS, str, regs, err,
421 0 : current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
422 0 : return 1;
423 :
424 : return 0;
425 : }
426 : NOKPROBE_SYMBOL(__die_body);
427 :
428 0 : int __die(const char *str, struct pt_regs *regs, long err)
429 : {
430 0 : __die_header(str, regs, err);
431 0 : return __die_body(str, regs, err);
432 : }
433 : NOKPROBE_SYMBOL(__die);
434 :
435 : /*
436 : * This is gone through when something in the kernel has done something bad
437 : * and is about to be terminated:
438 : */
439 0 : void die(const char *str, struct pt_regs *regs, long err)
440 : {
441 0 : unsigned long flags = oops_begin();
442 0 : int sig = SIGSEGV;
443 :
444 0 : if (__die(str, regs, err))
445 0 : sig = 0;
446 0 : oops_end(flags, regs, sig);
447 0 : }
448 :
449 0 : void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
450 : {
451 0 : unsigned long flags = oops_begin();
452 0 : int sig = SIGSEGV;
453 :
454 0 : __die_header(str, regs, err);
455 0 : if (gp_addr)
456 0 : kasan_non_canonical_hook(gp_addr);
457 0 : if (__die_body(str, regs, err))
458 0 : sig = 0;
459 0 : oops_end(flags, regs, sig);
460 0 : }
461 :
462 1 : void show_regs(struct pt_regs *regs)
463 : {
464 1 : enum show_regs_mode print_kernel_regs;
465 :
466 1 : show_regs_print_info(KERN_DEFAULT);
467 :
468 1 : print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
469 1 : __show_regs(regs, print_kernel_regs, KERN_DEFAULT);
470 :
471 : /*
472 : * When in-kernel, we also print out the stack at the time of the fault..
473 : */
474 1 : if (!user_mode(regs))
475 1 : show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
476 1 : }
|