Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Copyright (C) 1994 Linus Torvalds
4 : *
5 : * Pentium III FXSR, SSE support
6 : * General FPU state handling cleanups
7 : * Gareth Hughes <gareth@valinux.com>, May 2000
8 : */
9 : #include <asm/fpu/internal.h>
10 : #include <asm/fpu/regset.h>
11 : #include <asm/fpu/signal.h>
12 : #include <asm/fpu/types.h>
13 : #include <asm/traps.h>
14 : #include <asm/irq_regs.h>
15 :
16 : #include <linux/hardirq.h>
17 : #include <linux/pkeys.h>
18 :
19 : #define CREATE_TRACE_POINTS
20 : #include <asm/trace/fpu.h>
21 :
22 : /*
23 : * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24 : * depending on the FPU hardware format:
25 : */
26 : union fpregs_state init_fpstate __read_mostly;
27 :
28 : /*
29 : * Track whether the kernel is using the FPU state
30 : * currently.
31 : *
32 : * This flag is used:
33 : *
34 : * - by IRQ context code to potentially use the FPU
35 : * if it's unused.
36 : *
37 : * - to debug kernel_fpu_begin()/end() correctness
38 : */
39 : static DEFINE_PER_CPU(bool, in_kernel_fpu);
40 :
41 : /*
42 : * Track which context is using the FPU on the CPU:
43 : */
44 : DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45 :
46 0 : static bool kernel_fpu_disabled(void)
47 : {
48 0 : return this_cpu_read(in_kernel_fpu);
49 : }
50 :
51 0 : static bool interrupted_kernel_fpu_idle(void)
52 : {
53 0 : return !kernel_fpu_disabled();
54 : }
55 :
56 : /*
57 : * Were we in user mode (or vm86 mode) when we were
58 : * interrupted?
59 : *
60 : * Doing kernel_fpu_begin/end() is ok if we are running
61 : * in an interrupt context from user mode - we'll just
62 : * save the FPU state as required.
63 : */
64 0 : static bool interrupted_user_mode(void)
65 : {
66 0 : struct pt_regs *regs = get_irq_regs();
67 0 : return regs && user_mode(regs);
68 : }
69 :
70 : /*
71 : * Can we use the FPU in kernel mode with the
72 : * whole "kernel_fpu_begin/end()" sequence?
73 : *
74 : * It's always ok in process context (ie "not interrupt")
75 : * but it is sometimes ok even from an irq.
76 : */
77 0 : bool irq_fpu_usable(void)
78 : {
79 0 : return !in_interrupt() ||
80 0 : interrupted_user_mode() ||
81 0 : interrupted_kernel_fpu_idle();
82 : }
83 : EXPORT_SYMBOL(irq_fpu_usable);
84 :
85 : /*
86 : * These must be called with preempt disabled. Returns
87 : * 'true' if the FPU state is still intact and we can
88 : * keep registers active.
89 : *
90 : * The legacy FNSAVE instruction cleared all FPU state
91 : * unconditionally, so registers are essentially destroyed.
92 : * Modern FPU state can be kept in registers, if there are
93 : * no pending FP exceptions.
94 : */
95 17149 : int copy_fpregs_to_fpstate(struct fpu *fpu)
96 : {
97 34300 : if (likely(use_xsave())) {
98 17151 : copy_xregs_to_kernel(&fpu->state.xsave);
99 :
100 : /*
101 : * AVX512 state is tracked here because its use is
102 : * known to slow the max clock speed of the core.
103 : */
104 17150 : if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
105 0 : fpu->avx512_timestamp = jiffies;
106 17150 : return 1;
107 : }
108 :
109 0 : if (likely(use_fxsr())) {
110 0 : copy_fxregs_to_kernel(fpu);
111 0 : return 1;
112 : }
113 :
114 : /*
115 : * Legacy FPU register saving, FNSAVE always clears FPU registers,
116 : * so we have to mark them inactive:
117 : */
118 : asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
119 :
120 : return 0;
121 : }
122 : EXPORT_SYMBOL(copy_fpregs_to_fpstate);
123 :
124 0 : void kernel_fpu_begin_mask(unsigned int kfpu_mask)
125 : {
126 0 : preempt_disable();
127 :
128 0 : WARN_ON_FPU(!irq_fpu_usable());
129 0 : WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
130 :
131 0 : this_cpu_write(in_kernel_fpu, true);
132 :
133 0 : if (!(current->flags & PF_KTHREAD) &&
134 0 : !test_thread_flag(TIF_NEED_FPU_LOAD)) {
135 0 : set_thread_flag(TIF_NEED_FPU_LOAD);
136 : /*
137 : * Ignore return value -- we don't care if reg state
138 : * is clobbered.
139 : */
140 0 : copy_fpregs_to_fpstate(¤t->thread.fpu);
141 : }
142 0 : __cpu_invalidate_fpregs_state();
143 :
144 : /* Put sane initial values into the control registers. */
145 0 : if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
146 0 : ldmxcsr(MXCSR_DEFAULT);
147 :
148 0 : if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
149 0 : asm volatile ("fninit");
150 0 : }
151 : EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
152 :
153 0 : void kernel_fpu_end(void)
154 : {
155 0 : WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
156 :
157 0 : this_cpu_write(in_kernel_fpu, false);
158 0 : preempt_enable();
159 0 : }
160 : EXPORT_SYMBOL_GPL(kernel_fpu_end);
161 :
162 : /*
163 : * Save the FPU state (mark it for reload if necessary):
164 : *
165 : * This only ever gets called for the current task.
166 : */
167 0 : void fpu__save(struct fpu *fpu)
168 : {
169 0 : WARN_ON_FPU(fpu != ¤t->thread.fpu);
170 :
171 0 : fpregs_lock();
172 0 : trace_x86_fpu_before_save(fpu);
173 :
174 0 : if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
175 0 : if (!copy_fpregs_to_fpstate(fpu)) {
176 0 : copy_kernel_to_fpregs(&fpu->state);
177 : }
178 : }
179 :
180 0 : trace_x86_fpu_after_save(fpu);
181 0 : fpregs_unlock();
182 0 : }
183 :
184 : /*
185 : * Legacy x87 fpstate state init:
186 : */
187 : static inline void fpstate_init_fstate(struct fregs_state *fp)
188 : {
189 : fp->cwd = 0xffff037fu;
190 : fp->swd = 0xffff0000u;
191 : fp->twd = 0xffffffffu;
192 : fp->fos = 0xffff0000u;
193 : }
194 :
195 1 : void fpstate_init(union fpregs_state *state)
196 : {
197 1 : if (!static_cpu_has(X86_FEATURE_FPU)) {
198 : fpstate_init_soft(&state->soft);
199 : return;
200 : }
201 :
202 1 : memset(state, 0, fpu_kernel_xstate_size);
203 :
204 1 : if (static_cpu_has(X86_FEATURE_XSAVES))
205 0 : fpstate_init_xstate(&state->xsave);
206 1 : if (static_cpu_has(X86_FEATURE_FXSR))
207 1 : fpstate_init_fxstate(&state->fxsave);
208 : else
209 : fpstate_init_fstate(&state->fsave);
210 : }
211 : EXPORT_SYMBOL_GPL(fpstate_init);
212 :
213 2622 : int fpu__copy(struct task_struct *dst, struct task_struct *src)
214 : {
215 2622 : struct fpu *dst_fpu = &dst->thread.fpu;
216 2622 : struct fpu *src_fpu = &src->thread.fpu;
217 :
218 2622 : dst_fpu->last_cpu = -1;
219 :
220 2622 : if (!static_cpu_has(X86_FEATURE_FPU))
221 : return 0;
222 :
223 2622 : WARN_ON_FPU(src_fpu != ¤t->thread.fpu);
224 :
225 : /*
226 : * Don't let 'init optimized' areas of the XSAVE area
227 : * leak into the child task:
228 : */
229 2622 : memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
230 :
231 : /*
232 : * If the FPU registers are not current just memcpy() the state.
233 : * Otherwise save current FPU registers directly into the child's FPU
234 : * context, without any memory-to-memory copying.
235 : *
236 : * ( The function 'fails' in the FNSAVE case, which destroys
237 : * register contents so we have to load them back. )
238 : */
239 2622 : fpregs_lock();
240 2622 : if (test_thread_flag(TIF_NEED_FPU_LOAD))
241 51 : memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
242 :
243 2571 : else if (!copy_fpregs_to_fpstate(dst_fpu))
244 0 : copy_kernel_to_fpregs(&dst_fpu->state);
245 :
246 2622 : fpregs_unlock();
247 :
248 2622 : set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
249 :
250 2622 : trace_x86_fpu_copy_src(src_fpu);
251 2622 : trace_x86_fpu_copy_dst(dst_fpu);
252 :
253 2622 : return 0;
254 : }
255 :
256 : /*
257 : * Activate the current task's in-memory FPU context,
258 : * if it has not been used before:
259 : */
260 : static void fpu__initialize(struct fpu *fpu)
261 : {
262 : WARN_ON_FPU(fpu != ¤t->thread.fpu);
263 :
264 : set_thread_flag(TIF_NEED_FPU_LOAD);
265 : fpstate_init(&fpu->state);
266 : trace_x86_fpu_init_state(fpu);
267 : }
268 :
269 : /*
270 : * This function must be called before we read a task's fpstate.
271 : *
272 : * There's two cases where this gets called:
273 : *
274 : * - for the current task (when coredumping), in which case we have
275 : * to save the latest FPU registers into the fpstate,
276 : *
277 : * - or it's called for stopped tasks (ptrace), in which case the
278 : * registers were already saved by the context-switch code when
279 : * the task scheduled out.
280 : *
281 : * If the task has used the FPU before then save it.
282 : */
283 0 : void fpu__prepare_read(struct fpu *fpu)
284 : {
285 0 : if (fpu == ¤t->thread.fpu)
286 0 : fpu__save(fpu);
287 0 : }
288 :
289 : /*
290 : * This function must be called before we write a task's fpstate.
291 : *
292 : * Invalidate any cached FPU registers.
293 : *
294 : * After this function call, after registers in the fpstate are
295 : * modified and the child task has woken up, the child task will
296 : * restore the modified FPU state from the modified context. If we
297 : * didn't clear its cached status here then the cached in-registers
298 : * state pending on its former CPU could be restored, corrupting
299 : * the modifications.
300 : */
301 0 : void fpu__prepare_write(struct fpu *fpu)
302 : {
303 : /*
304 : * Only stopped child tasks can be used to modify the FPU
305 : * state in the fpstate buffer:
306 : */
307 0 : WARN_ON_FPU(fpu == ¤t->thread.fpu);
308 :
309 : /* Invalidate any cached state: */
310 0 : __fpu_invalidate_fpregs_state(fpu);
311 0 : }
312 :
313 : /*
314 : * Drops current FPU state: deactivates the fpregs and
315 : * the fpstate. NOTE: it still leaves previous contents
316 : * in the fpregs in the eager-FPU case.
317 : *
318 : * This function can be used in cases where we know that
319 : * a state-restore is coming: either an explicit one,
320 : * or a reschedule.
321 : */
322 2545 : void fpu__drop(struct fpu *fpu)
323 : {
324 2545 : preempt_disable();
325 :
326 2545 : if (fpu == ¤t->thread.fpu) {
327 : /* Ignore delayed exceptions from user space */
328 2545 : asm volatile("1: fwait\n"
329 : "2:\n"
330 : _ASM_EXTABLE(1b, 2b));
331 2545 : fpregs_deactivate(fpu);
332 : }
333 :
334 2545 : trace_x86_fpu_dropped(fpu);
335 :
336 2545 : preempt_enable();
337 2545 : }
338 :
339 : /*
340 : * Clear FPU registers by setting them up from the init fpstate.
341 : * Caller must do fpregs_[un]lock() around it.
342 : */
343 3561 : static inline void copy_init_fpstate_to_fpregs(u64 features_mask)
344 : {
345 3561 : if (use_xsave())
346 3561 : copy_kernel_to_xregs(&init_fpstate.xsave, features_mask);
347 0 : else if (static_cpu_has(X86_FEATURE_FXSR))
348 0 : copy_kernel_to_fxregs(&init_fpstate.fxsave);
349 : else
350 : copy_kernel_to_fregs(&init_fpstate.fsave);
351 :
352 3561 : if (boot_cpu_has(X86_FEATURE_OSPKE))
353 : copy_init_pkru_to_fpregs();
354 3561 : }
355 :
356 : /*
357 : * Clear the FPU state back to init state.
358 : *
359 : * Called by sys_execve(), by the signal handler code and by various
360 : * error paths.
361 : */
362 3561 : static void fpu__clear(struct fpu *fpu, bool user_only)
363 : {
364 3561 : WARN_ON_FPU(fpu != ¤t->thread.fpu);
365 :
366 3561 : if (!static_cpu_has(X86_FEATURE_FPU)) {
367 : fpu__drop(fpu);
368 : fpu__initialize(fpu);
369 : return;
370 : }
371 :
372 3561 : fpregs_lock();
373 :
374 3561 : if (user_only) {
375 1304 : if (!fpregs_state_valid(fpu, smp_processor_id()) &&
376 : xfeatures_mask_supervisor())
377 0 : copy_kernel_to_xregs(&fpu->state.xsave,
378 : xfeatures_mask_supervisor());
379 1304 : copy_init_fpstate_to_fpregs(xfeatures_mask_user());
380 : } else {
381 2257 : copy_init_fpstate_to_fpregs(xfeatures_mask_all);
382 : }
383 :
384 3561 : fpregs_mark_activate();
385 3561 : fpregs_unlock();
386 : }
387 :
388 1304 : void fpu__clear_user_states(struct fpu *fpu)
389 : {
390 1304 : fpu__clear(fpu, true);
391 1304 : }
392 :
393 2257 : void fpu__clear_all(struct fpu *fpu)
394 : {
395 2257 : fpu__clear(fpu, false);
396 2257 : }
397 :
398 : /*
399 : * Load FPU context before returning to userspace.
400 : */
401 12719 : void switch_fpu_return(void)
402 : {
403 12719 : if (!static_cpu_has(X86_FEATURE_FPU))
404 : return;
405 :
406 12719 : __fpregs_load_activate();
407 : }
408 : EXPORT_SYMBOL_GPL(switch_fpu_return);
409 :
410 : #ifdef CONFIG_X86_DEBUG_FPU
411 : /*
412 : * If current FPU state according to its tracking (loaded FPU context on this
413 : * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
414 : * loaded on return to userland.
415 : */
416 : void fpregs_assert_state_consistent(void)
417 : {
418 : struct fpu *fpu = ¤t->thread.fpu;
419 :
420 : if (test_thread_flag(TIF_NEED_FPU_LOAD))
421 : return;
422 :
423 : WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
424 : }
425 : EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
426 : #endif
427 :
428 4865 : void fpregs_mark_activate(void)
429 : {
430 4865 : struct fpu *fpu = ¤t->thread.fpu;
431 :
432 4865 : fpregs_activate(fpu);
433 4865 : fpu->last_cpu = smp_processor_id();
434 4865 : clear_thread_flag(TIF_NEED_FPU_LOAD);
435 4865 : }
436 : EXPORT_SYMBOL_GPL(fpregs_mark_activate);
437 :
438 : /*
439 : * x87 math exception handling:
440 : */
441 :
442 0 : int fpu__exception_code(struct fpu *fpu, int trap_nr)
443 : {
444 0 : int err;
445 :
446 0 : if (trap_nr == X86_TRAP_MF) {
447 0 : unsigned short cwd, swd;
448 : /*
449 : * (~cwd & swd) will mask out exceptions that are not set to unmasked
450 : * status. 0x3f is the exception bits in these regs, 0x200 is the
451 : * C1 reg you need in case of a stack fault, 0x040 is the stack
452 : * fault bit. We should only be taking one exception at a time,
453 : * so if this combination doesn't produce any single exception,
454 : * then we have a bad program that isn't synchronizing its FPU usage
455 : * and it will suffer the consequences since we won't be able to
456 : * fully reproduce the context of the exception.
457 : */
458 0 : if (boot_cpu_has(X86_FEATURE_FXSR)) {
459 0 : cwd = fpu->state.fxsave.cwd;
460 0 : swd = fpu->state.fxsave.swd;
461 : } else {
462 : cwd = (unsigned short)fpu->state.fsave.cwd;
463 : swd = (unsigned short)fpu->state.fsave.swd;
464 : }
465 :
466 0 : err = swd & ~cwd;
467 : } else {
468 : /*
469 : * The SIMD FPU exceptions are handled a little differently, as there
470 : * is only a single status/control register. Thus, to determine which
471 : * unmasked exception was caught we must mask the exception mask bits
472 : * at 0x1f80, and then use these to mask the exception bits at 0x3f.
473 : */
474 0 : unsigned short mxcsr = MXCSR_DEFAULT;
475 :
476 0 : if (boot_cpu_has(X86_FEATURE_XMM))
477 0 : mxcsr = fpu->state.fxsave.mxcsr;
478 :
479 0 : err = ~(mxcsr >> 7) & mxcsr;
480 : }
481 :
482 0 : if (err & 0x001) { /* Invalid op */
483 : /*
484 : * swd & 0x240 == 0x040: Stack Underflow
485 : * swd & 0x240 == 0x240: Stack Overflow
486 : * User must clear the SF bit (0x40) if set
487 : */
488 : return FPE_FLTINV;
489 0 : } else if (err & 0x004) { /* Divide by Zero */
490 : return FPE_FLTDIV;
491 0 : } else if (err & 0x008) { /* Overflow */
492 : return FPE_FLTOVF;
493 0 : } else if (err & 0x012) { /* Denormal, Underflow */
494 : return FPE_FLTUND;
495 0 : } else if (err & 0x020) { /* Precision */
496 0 : return FPE_FLTRES;
497 : }
498 :
499 : /*
500 : * If we're using IRQ 13, or supposedly even some trap
501 : * X86_TRAP_MF implementations, it's possible
502 : * we get a spurious trap, which is not an error.
503 : */
504 : return 0;
505 : }
|