Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : #include <linux/clockchips.h>
3 : #include <linux/interrupt.h>
4 : #include <linux/export.h>
5 : #include <linux/delay.h>
6 : #include <linux/hpet.h>
7 : #include <linux/cpu.h>
8 : #include <linux/irq.h>
9 :
10 : #include <asm/irq_remapping.h>
11 : #include <asm/hpet.h>
12 : #include <asm/time.h>
13 :
14 : #undef pr_fmt
15 : #define pr_fmt(fmt) "hpet: " fmt
16 :
17 : enum hpet_mode {
18 : HPET_MODE_UNUSED,
19 : HPET_MODE_LEGACY,
20 : HPET_MODE_CLOCKEVT,
21 : HPET_MODE_DEVICE,
22 : };
23 :
24 : struct hpet_channel {
25 : struct clock_event_device evt;
26 : unsigned int num;
27 : unsigned int cpu;
28 : unsigned int irq;
29 : unsigned int in_use;
30 : enum hpet_mode mode;
31 : unsigned int boot_cfg;
32 : char name[10];
33 : };
34 :
35 : struct hpet_base {
36 : unsigned int nr_channels;
37 : unsigned int nr_clockevents;
38 : unsigned int boot_cfg;
39 : struct hpet_channel *channels;
40 : };
41 :
42 : #define HPET_MASK CLOCKSOURCE_MASK(32)
43 :
44 : #define HPET_MIN_CYCLES 128
45 : #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
46 :
47 : /*
48 : * HPET address is set in acpi/boot.c, when an ACPI entry exists
49 : */
50 : unsigned long hpet_address;
51 : u8 hpet_blockid; /* OS timer block num */
52 : bool hpet_msi_disable;
53 :
54 : #ifdef CONFIG_GENERIC_MSI_IRQ
55 : static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
56 : static struct irq_domain *hpet_domain;
57 : #endif
58 :
59 : static void __iomem *hpet_virt_address;
60 :
61 : static struct hpet_base hpet_base;
62 :
63 : static bool hpet_legacy_int_enabled;
64 : static unsigned long hpet_freq;
65 :
66 : bool boot_hpet_disable;
67 : bool hpet_force_user;
68 : static bool hpet_verbose;
69 :
70 : static inline
71 0 : struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
72 : {
73 0 : return container_of(evt, struct hpet_channel, evt);
74 : }
75 :
76 0 : inline unsigned int hpet_readl(unsigned int a)
77 : {
78 0 : return readl(hpet_virt_address + a);
79 : }
80 :
81 0 : static inline void hpet_writel(unsigned int d, unsigned int a)
82 : {
83 0 : writel(d, hpet_virt_address + a);
84 0 : }
85 :
86 0 : static inline void hpet_set_mapping(void)
87 : {
88 0 : hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
89 0 : }
90 :
91 0 : static inline void hpet_clear_mapping(void)
92 : {
93 0 : iounmap(hpet_virt_address);
94 0 : hpet_virt_address = NULL;
95 : }
96 :
97 : /*
98 : * HPET command line enable / disable
99 : */
100 0 : static int __init hpet_setup(char *str)
101 : {
102 0 : while (str) {
103 0 : char *next = strchr(str, ',');
104 :
105 0 : if (next)
106 0 : *next++ = 0;
107 0 : if (!strncmp("disable", str, 7))
108 0 : boot_hpet_disable = true;
109 0 : if (!strncmp("force", str, 5))
110 0 : hpet_force_user = true;
111 0 : if (!strncmp("verbose", str, 7))
112 0 : hpet_verbose = true;
113 : str = next;
114 : }
115 0 : return 1;
116 : }
117 : __setup("hpet=", hpet_setup);
118 :
119 0 : static int __init disable_hpet(char *str)
120 : {
121 0 : boot_hpet_disable = true;
122 0 : return 1;
123 : }
124 : __setup("nohpet", disable_hpet);
125 :
126 1 : static inline int is_hpet_capable(void)
127 : {
128 1 : return !boot_hpet_disable && hpet_address;
129 : }
130 :
131 : /**
132 : * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
133 : */
134 0 : int is_hpet_enabled(void)
135 : {
136 0 : return is_hpet_capable() && hpet_legacy_int_enabled;
137 : }
138 : EXPORT_SYMBOL_GPL(is_hpet_enabled);
139 :
140 0 : static void _hpet_print_config(const char *function, int line)
141 : {
142 0 : u32 i, id, period, cfg, status, channels, l, h;
143 :
144 0 : pr_info("%s(%d):\n", function, line);
145 :
146 0 : id = hpet_readl(HPET_ID);
147 0 : period = hpet_readl(HPET_PERIOD);
148 0 : pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
149 :
150 0 : cfg = hpet_readl(HPET_CFG);
151 0 : status = hpet_readl(HPET_STATUS);
152 0 : pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
153 :
154 0 : l = hpet_readl(HPET_COUNTER);
155 0 : h = hpet_readl(HPET_COUNTER+4);
156 0 : pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
157 :
158 0 : channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
159 :
160 0 : for (i = 0; i < channels; i++) {
161 0 : l = hpet_readl(HPET_Tn_CFG(i));
162 0 : h = hpet_readl(HPET_Tn_CFG(i)+4);
163 0 : pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
164 :
165 0 : l = hpet_readl(HPET_Tn_CMP(i));
166 0 : h = hpet_readl(HPET_Tn_CMP(i)+4);
167 0 : pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
168 :
169 0 : l = hpet_readl(HPET_Tn_ROUTE(i));
170 0 : h = hpet_readl(HPET_Tn_ROUTE(i)+4);
171 0 : pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
172 : }
173 0 : }
174 :
175 : #define hpet_print_config() \
176 : do { \
177 : if (hpet_verbose) \
178 : _hpet_print_config(__func__, __LINE__); \
179 : } while (0)
180 :
181 : /*
182 : * When the HPET driver (/dev/hpet) is enabled, we need to reserve
183 : * timer 0 and timer 1 in case of RTC emulation.
184 : */
185 : #ifdef CONFIG_HPET
186 :
187 : static void __init hpet_reserve_platform_timers(void)
188 : {
189 : struct hpet_data hd;
190 : unsigned int i;
191 :
192 : memset(&hd, 0, sizeof(hd));
193 : hd.hd_phys_address = hpet_address;
194 : hd.hd_address = hpet_virt_address;
195 : hd.hd_nirqs = hpet_base.nr_channels;
196 :
197 : /*
198 : * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
199 : * is wrong for i8259!) not the output IRQ. Many BIOS writers
200 : * don't bother configuring *any* comparator interrupts.
201 : */
202 : hd.hd_irq[0] = HPET_LEGACY_8254;
203 : hd.hd_irq[1] = HPET_LEGACY_RTC;
204 :
205 : for (i = 0; i < hpet_base.nr_channels; i++) {
206 : struct hpet_channel *hc = hpet_base.channels + i;
207 :
208 : if (i >= 2)
209 : hd.hd_irq[i] = hc->irq;
210 :
211 : switch (hc->mode) {
212 : case HPET_MODE_UNUSED:
213 : case HPET_MODE_DEVICE:
214 : hc->mode = HPET_MODE_DEVICE;
215 : break;
216 : case HPET_MODE_CLOCKEVT:
217 : case HPET_MODE_LEGACY:
218 : hpet_reserve_timer(&hd, hc->num);
219 : break;
220 : }
221 : }
222 :
223 : hpet_alloc(&hd);
224 : }
225 :
226 : static void __init hpet_select_device_channel(void)
227 : {
228 : int i;
229 :
230 : for (i = 0; i < hpet_base.nr_channels; i++) {
231 : struct hpet_channel *hc = hpet_base.channels + i;
232 :
233 : /* Associate the first unused channel to /dev/hpet */
234 : if (hc->mode == HPET_MODE_UNUSED) {
235 : hc->mode = HPET_MODE_DEVICE;
236 : return;
237 : }
238 : }
239 : }
240 :
241 : #else
242 0 : static inline void hpet_reserve_platform_timers(void) { }
243 0 : static inline void hpet_select_device_channel(void) {}
244 : #endif
245 :
246 : /* Common HPET functions */
247 0 : static void hpet_stop_counter(void)
248 : {
249 0 : u32 cfg = hpet_readl(HPET_CFG);
250 :
251 0 : cfg &= ~HPET_CFG_ENABLE;
252 0 : hpet_writel(cfg, HPET_CFG);
253 : }
254 :
255 0 : static void hpet_reset_counter(void)
256 : {
257 0 : hpet_writel(0, HPET_COUNTER);
258 0 : hpet_writel(0, HPET_COUNTER + 4);
259 : }
260 :
261 0 : static void hpet_start_counter(void)
262 : {
263 0 : unsigned int cfg = hpet_readl(HPET_CFG);
264 :
265 0 : cfg |= HPET_CFG_ENABLE;
266 0 : hpet_writel(cfg, HPET_CFG);
267 : }
268 :
269 0 : static void hpet_restart_counter(void)
270 : {
271 0 : hpet_stop_counter();
272 0 : hpet_reset_counter();
273 0 : hpet_start_counter();
274 0 : }
275 :
276 0 : static void hpet_resume_device(void)
277 : {
278 0 : force_hpet_resume();
279 : }
280 :
281 0 : static void hpet_resume_counter(struct clocksource *cs)
282 : {
283 0 : hpet_resume_device();
284 0 : hpet_restart_counter();
285 0 : }
286 :
287 0 : static void hpet_enable_legacy_int(void)
288 : {
289 0 : unsigned int cfg = hpet_readl(HPET_CFG);
290 :
291 0 : cfg |= HPET_CFG_LEGACY;
292 0 : hpet_writel(cfg, HPET_CFG);
293 0 : hpet_legacy_int_enabled = true;
294 0 : }
295 :
296 0 : static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
297 : {
298 0 : unsigned int channel = clockevent_to_channel(evt)->num;
299 0 : unsigned int cfg, cmp, now;
300 0 : uint64_t delta;
301 :
302 0 : hpet_stop_counter();
303 0 : delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
304 0 : delta >>= evt->shift;
305 0 : now = hpet_readl(HPET_COUNTER);
306 0 : cmp = now + (unsigned int)delta;
307 0 : cfg = hpet_readl(HPET_Tn_CFG(channel));
308 0 : cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
309 : HPET_TN_32BIT;
310 0 : hpet_writel(cfg, HPET_Tn_CFG(channel));
311 0 : hpet_writel(cmp, HPET_Tn_CMP(channel));
312 0 : udelay(1);
313 : /*
314 : * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
315 : * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
316 : * bit is automatically cleared after the first write.
317 : * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
318 : * Publication # 24674)
319 : */
320 0 : hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
321 0 : hpet_start_counter();
322 0 : hpet_print_config();
323 :
324 0 : return 0;
325 : }
326 :
327 0 : static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
328 : {
329 0 : unsigned int channel = clockevent_to_channel(evt)->num;
330 0 : unsigned int cfg;
331 :
332 0 : cfg = hpet_readl(HPET_Tn_CFG(channel));
333 0 : cfg &= ~HPET_TN_PERIODIC;
334 0 : cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
335 0 : hpet_writel(cfg, HPET_Tn_CFG(channel));
336 :
337 0 : return 0;
338 : }
339 :
340 0 : static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
341 : {
342 0 : unsigned int channel = clockevent_to_channel(evt)->num;
343 0 : unsigned int cfg;
344 :
345 0 : cfg = hpet_readl(HPET_Tn_CFG(channel));
346 0 : cfg &= ~HPET_TN_ENABLE;
347 0 : hpet_writel(cfg, HPET_Tn_CFG(channel));
348 :
349 0 : return 0;
350 : }
351 :
352 0 : static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
353 : {
354 0 : hpet_enable_legacy_int();
355 0 : hpet_print_config();
356 0 : return 0;
357 : }
358 :
359 : static int
360 0 : hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
361 : {
362 0 : unsigned int channel = clockevent_to_channel(evt)->num;
363 0 : u32 cnt;
364 0 : s32 res;
365 :
366 0 : cnt = hpet_readl(HPET_COUNTER);
367 0 : cnt += (u32) delta;
368 0 : hpet_writel(cnt, HPET_Tn_CMP(channel));
369 :
370 : /*
371 : * HPETs are a complete disaster. The compare register is
372 : * based on a equal comparison and neither provides a less
373 : * than or equal functionality (which would require to take
374 : * the wraparound into account) nor a simple count down event
375 : * mode. Further the write to the comparator register is
376 : * delayed internally up to two HPET clock cycles in certain
377 : * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
378 : * longer delays. We worked around that by reading back the
379 : * compare register, but that required another workaround for
380 : * ICH9,10 chips where the first readout after write can
381 : * return the old stale value. We already had a minimum
382 : * programming delta of 5us enforced, but a NMI or SMI hitting
383 : * between the counter readout and the comparator write can
384 : * move us behind that point easily. Now instead of reading
385 : * the compare register back several times, we make the ETIME
386 : * decision based on the following: Return ETIME if the
387 : * counter value after the write is less than HPET_MIN_CYCLES
388 : * away from the event or if the counter is already ahead of
389 : * the event. The minimum programming delta for the generic
390 : * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
391 : */
392 0 : res = (s32)(cnt - hpet_readl(HPET_COUNTER));
393 :
394 0 : return res < HPET_MIN_CYCLES ? -ETIME : 0;
395 : }
396 :
397 0 : static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
398 : {
399 0 : struct clock_event_device *evt = &hc->evt;
400 :
401 0 : evt->rating = rating;
402 0 : evt->irq = hc->irq;
403 0 : evt->name = hc->name;
404 0 : evt->cpumask = cpumask_of(hc->cpu);
405 0 : evt->set_state_oneshot = hpet_clkevt_set_state_oneshot;
406 0 : evt->set_next_event = hpet_clkevt_set_next_event;
407 0 : evt->set_state_shutdown = hpet_clkevt_set_state_shutdown;
408 :
409 0 : evt->features = CLOCK_EVT_FEAT_ONESHOT;
410 0 : if (hc->boot_cfg & HPET_TN_PERIODIC) {
411 0 : evt->features |= CLOCK_EVT_FEAT_PERIODIC;
412 0 : evt->set_state_periodic = hpet_clkevt_set_state_periodic;
413 : }
414 0 : }
415 :
416 0 : static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
417 : {
418 : /*
419 : * Start HPET with the boot CPU's cpumask and make it global after
420 : * the IO_APIC has been initialized.
421 : */
422 0 : hc->cpu = boot_cpu_data.cpu_index;
423 0 : strncpy(hc->name, "hpet", sizeof(hc->name));
424 0 : hpet_init_clockevent(hc, 50);
425 :
426 0 : hc->evt.tick_resume = hpet_clkevt_legacy_resume;
427 :
428 : /*
429 : * Legacy horrors and sins from the past. HPET used periodic mode
430 : * unconditionally forever on the legacy channel 0. Removing the
431 : * below hack and using the conditional in hpet_init_clockevent()
432 : * makes at least Qemu and one hardware machine fail to boot.
433 : * There are two issues which cause the boot failure:
434 : *
435 : * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
436 : * the next interrupt is not delivered despite the HPET channel
437 : * being programmed correctly. Reprogramming the HPET after
438 : * switching to IOAPIC makes it work again. After fixing this,
439 : * the next issue surfaces:
440 : *
441 : * #2 Due to the unconditional periodic mode availability the Local
442 : * APIC timer calibration can hijack the global clockevents
443 : * event handler without causing damage. Using oneshot at this
444 : * stage makes if hang because the HPET does not get
445 : * reprogrammed due to the handler hijacking. Duh, stupid me!
446 : *
447 : * Both issues require major surgery and especially the kick HPET
448 : * again after enabling IOAPIC results in really nasty hackery.
449 : * This 'assume periodic works' magic has survived since HPET
450 : * support got added, so it's questionable whether this should be
451 : * fixed. Both Qemu and the failing hardware machine support
452 : * periodic mode despite the fact that both don't advertise it in
453 : * the configuration register and both need that extra kick after
454 : * switching to IOAPIC. Seems to be a feature...
455 : */
456 0 : hc->evt.features |= CLOCK_EVT_FEAT_PERIODIC;
457 0 : hc->evt.set_state_periodic = hpet_clkevt_set_state_periodic;
458 :
459 : /* Start HPET legacy interrupts */
460 0 : hpet_enable_legacy_int();
461 :
462 0 : clockevents_config_and_register(&hc->evt, hpet_freq,
463 : HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
464 0 : global_clock_event = &hc->evt;
465 0 : pr_debug("Clockevent registered\n");
466 0 : }
467 :
468 : /*
469 : * HPET MSI Support
470 : */
471 : #ifdef CONFIG_GENERIC_MSI_IRQ
472 : static void hpet_msi_unmask(struct irq_data *data)
473 : {
474 : struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
475 : unsigned int cfg;
476 :
477 : cfg = hpet_readl(HPET_Tn_CFG(hc->num));
478 : cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
479 : hpet_writel(cfg, HPET_Tn_CFG(hc->num));
480 : }
481 :
482 : static void hpet_msi_mask(struct irq_data *data)
483 : {
484 : struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
485 : unsigned int cfg;
486 :
487 : cfg = hpet_readl(HPET_Tn_CFG(hc->num));
488 : cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
489 : hpet_writel(cfg, HPET_Tn_CFG(hc->num));
490 : }
491 :
492 : static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
493 : {
494 : hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
495 : hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
496 : }
497 :
498 : static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
499 : {
500 : hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
501 : }
502 :
503 : static struct irq_chip hpet_msi_controller __ro_after_init = {
504 : .name = "HPET-MSI",
505 : .irq_unmask = hpet_msi_unmask,
506 : .irq_mask = hpet_msi_mask,
507 : .irq_ack = irq_chip_ack_parent,
508 : .irq_set_affinity = msi_domain_set_affinity,
509 : .irq_retrigger = irq_chip_retrigger_hierarchy,
510 : .irq_write_msi_msg = hpet_msi_write_msg,
511 : .flags = IRQCHIP_SKIP_SET_WAKE,
512 : };
513 :
514 : static int hpet_msi_init(struct irq_domain *domain,
515 : struct msi_domain_info *info, unsigned int virq,
516 : irq_hw_number_t hwirq, msi_alloc_info_t *arg)
517 : {
518 : irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
519 : irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
520 : handle_edge_irq, arg->data, "edge");
521 :
522 : return 0;
523 : }
524 :
525 : static void hpet_msi_free(struct irq_domain *domain,
526 : struct msi_domain_info *info, unsigned int virq)
527 : {
528 : irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
529 : }
530 :
531 : static struct msi_domain_ops hpet_msi_domain_ops = {
532 : .msi_init = hpet_msi_init,
533 : .msi_free = hpet_msi_free,
534 : };
535 :
536 : static struct msi_domain_info hpet_msi_domain_info = {
537 : .ops = &hpet_msi_domain_ops,
538 : .chip = &hpet_msi_controller,
539 : .flags = MSI_FLAG_USE_DEF_DOM_OPS,
540 : };
541 :
542 : static struct irq_domain *hpet_create_irq_domain(int hpet_id)
543 : {
544 : struct msi_domain_info *domain_info;
545 : struct irq_domain *parent, *d;
546 : struct fwnode_handle *fn;
547 : struct irq_fwspec fwspec;
548 :
549 : if (x86_vector_domain == NULL)
550 : return NULL;
551 :
552 : domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
553 : if (!domain_info)
554 : return NULL;
555 :
556 : *domain_info = hpet_msi_domain_info;
557 : domain_info->data = (void *)(long)hpet_id;
558 :
559 : fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
560 : hpet_id);
561 : if (!fn) {
562 : kfree(domain_info);
563 : return NULL;
564 : }
565 :
566 : fwspec.fwnode = fn;
567 : fwspec.param_count = 1;
568 : fwspec.param[0] = hpet_id;
569 :
570 : parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY);
571 : if (!parent) {
572 : irq_domain_free_fwnode(fn);
573 : kfree(domain_info);
574 : return NULL;
575 : }
576 : if (parent != x86_vector_domain)
577 : hpet_msi_controller.name = "IR-HPET-MSI";
578 :
579 : d = msi_create_irq_domain(fn, domain_info, parent);
580 : if (!d) {
581 : irq_domain_free_fwnode(fn);
582 : kfree(domain_info);
583 : }
584 : return d;
585 : }
586 :
587 : static inline int hpet_dev_id(struct irq_domain *domain)
588 : {
589 : struct msi_domain_info *info = msi_get_domain_info(domain);
590 :
591 : return (int)(long)info->data;
592 : }
593 :
594 : static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
595 : int dev_num)
596 : {
597 : struct irq_alloc_info info;
598 :
599 : init_irq_alloc_info(&info, NULL);
600 : info.type = X86_IRQ_ALLOC_TYPE_HPET;
601 : info.data = hc;
602 : info.devid = hpet_dev_id(domain);
603 : info.hwirq = dev_num;
604 :
605 : return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
606 : }
607 :
608 : static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
609 : {
610 : struct hpet_channel *hc = clockevent_to_channel(evt);
611 : struct irq_data *data = irq_get_irq_data(hc->irq);
612 : struct msi_msg msg;
613 :
614 : /* Restore the MSI msg and unmask the interrupt */
615 : irq_chip_compose_msi_msg(data, &msg);
616 : hpet_msi_write(hc, &msg);
617 : hpet_msi_unmask(data);
618 : return 0;
619 : }
620 :
621 : static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
622 : {
623 : struct hpet_channel *hc = data;
624 : struct clock_event_device *evt = &hc->evt;
625 :
626 : if (!evt->event_handler) {
627 : pr_info("Spurious interrupt HPET channel %d\n", hc->num);
628 : return IRQ_HANDLED;
629 : }
630 :
631 : evt->event_handler(evt);
632 : return IRQ_HANDLED;
633 : }
634 :
635 : static int hpet_setup_msi_irq(struct hpet_channel *hc)
636 : {
637 : if (request_irq(hc->irq, hpet_msi_interrupt_handler,
638 : IRQF_TIMER | IRQF_NOBALANCING,
639 : hc->name, hc))
640 : return -1;
641 :
642 : disable_irq(hc->irq);
643 : irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
644 : enable_irq(hc->irq);
645 :
646 : pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
647 :
648 : return 0;
649 : }
650 :
651 : /* Invoked from the hotplug callback on @cpu */
652 : static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
653 : {
654 : struct clock_event_device *evt = &hc->evt;
655 :
656 : hc->cpu = cpu;
657 : per_cpu(cpu_hpet_channel, cpu) = hc;
658 : hpet_setup_msi_irq(hc);
659 :
660 : hpet_init_clockevent(hc, 110);
661 : evt->tick_resume = hpet_clkevt_msi_resume;
662 :
663 : clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
664 : 0x7FFFFFFF);
665 : }
666 :
667 : static struct hpet_channel *hpet_get_unused_clockevent(void)
668 : {
669 : int i;
670 :
671 : for (i = 0; i < hpet_base.nr_channels; i++) {
672 : struct hpet_channel *hc = hpet_base.channels + i;
673 :
674 : if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
675 : continue;
676 : hc->in_use = 1;
677 : return hc;
678 : }
679 : return NULL;
680 : }
681 :
682 : static int hpet_cpuhp_online(unsigned int cpu)
683 : {
684 : struct hpet_channel *hc = hpet_get_unused_clockevent();
685 :
686 : if (hc)
687 : init_one_hpet_msi_clockevent(hc, cpu);
688 : return 0;
689 : }
690 :
691 : static int hpet_cpuhp_dead(unsigned int cpu)
692 : {
693 : struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
694 :
695 : if (!hc)
696 : return 0;
697 : free_irq(hc->irq, hc);
698 : hc->in_use = 0;
699 : per_cpu(cpu_hpet_channel, cpu) = NULL;
700 : return 0;
701 : }
702 :
703 : static void __init hpet_select_clockevents(void)
704 : {
705 : unsigned int i;
706 :
707 : hpet_base.nr_clockevents = 0;
708 :
709 : /* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
710 : if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
711 : return;
712 :
713 : hpet_print_config();
714 :
715 : hpet_domain = hpet_create_irq_domain(hpet_blockid);
716 : if (!hpet_domain)
717 : return;
718 :
719 : for (i = 0; i < hpet_base.nr_channels; i++) {
720 : struct hpet_channel *hc = hpet_base.channels + i;
721 : int irq;
722 :
723 : if (hc->mode != HPET_MODE_UNUSED)
724 : continue;
725 :
726 : /* Only consider HPET channel with MSI support */
727 : if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
728 : continue;
729 :
730 : sprintf(hc->name, "hpet%d", i);
731 :
732 : irq = hpet_assign_irq(hpet_domain, hc, hc->num);
733 : if (irq <= 0)
734 : continue;
735 :
736 : hc->irq = irq;
737 : hc->mode = HPET_MODE_CLOCKEVT;
738 :
739 : if (++hpet_base.nr_clockevents == num_possible_cpus())
740 : break;
741 : }
742 :
743 : pr_info("%d channels of %d reserved for per-cpu timers\n",
744 : hpet_base.nr_channels, hpet_base.nr_clockevents);
745 : }
746 :
747 : #else
748 :
749 0 : static inline void hpet_select_clockevents(void) { }
750 :
751 : #define hpet_cpuhp_online NULL
752 : #define hpet_cpuhp_dead NULL
753 :
754 : #endif
755 :
756 : /*
757 : * Clock source related code
758 : */
759 : #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
760 : /*
761 : * Reading the HPET counter is a very slow operation. If a large number of
762 : * CPUs are trying to access the HPET counter simultaneously, it can cause
763 : * massive delays and slow down system performance dramatically. This may
764 : * happen when HPET is the default clock source instead of TSC. For a
765 : * really large system with hundreds of CPUs, the slowdown may be so
766 : * severe, that it can actually crash the system because of a NMI watchdog
767 : * soft lockup, for example.
768 : *
769 : * If multiple CPUs are trying to access the HPET counter at the same time,
770 : * we don't actually need to read the counter multiple times. Instead, the
771 : * other CPUs can use the counter value read by the first CPU in the group.
772 : *
773 : * This special feature is only enabled on x86-64 systems. It is unlikely
774 : * that 32-bit x86 systems will have enough CPUs to require this feature
775 : * with its associated locking overhead. We also need 64-bit atomic read.
776 : *
777 : * The lock and the HPET value are stored together and can be read in a
778 : * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
779 : * is 32 bits in size.
780 : */
781 : union hpet_lock {
782 : struct {
783 : arch_spinlock_t lock;
784 : u32 value;
785 : };
786 : u64 lockval;
787 : };
788 :
789 : static union hpet_lock hpet __cacheline_aligned = {
790 : { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
791 : };
792 :
793 0 : static u64 read_hpet(struct clocksource *cs)
794 : {
795 0 : unsigned long flags;
796 0 : union hpet_lock old, new;
797 :
798 0 : BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
799 :
800 : /*
801 : * Read HPET directly if in NMI.
802 : */
803 0 : if (in_nmi())
804 0 : return (u64)hpet_readl(HPET_COUNTER);
805 :
806 : /*
807 : * Read the current state of the lock and HPET value atomically.
808 : */
809 0 : old.lockval = READ_ONCE(hpet.lockval);
810 :
811 0 : if (arch_spin_is_locked(&old.lock))
812 0 : goto contended;
813 :
814 0 : local_irq_save(flags);
815 0 : if (arch_spin_trylock(&hpet.lock)) {
816 0 : new.value = hpet_readl(HPET_COUNTER);
817 : /*
818 : * Use WRITE_ONCE() to prevent store tearing.
819 : */
820 0 : WRITE_ONCE(hpet.value, new.value);
821 0 : arch_spin_unlock(&hpet.lock);
822 0 : local_irq_restore(flags);
823 0 : return (u64)new.value;
824 : }
825 0 : local_irq_restore(flags);
826 :
827 : contended:
828 : /*
829 : * Contended case
830 : * --------------
831 : * Wait until the HPET value change or the lock is free to indicate
832 : * its value is up-to-date.
833 : *
834 : * It is possible that old.value has already contained the latest
835 : * HPET value while the lock holder was in the process of releasing
836 : * the lock. Checking for lock state change will enable us to return
837 : * the value immediately instead of waiting for the next HPET reader
838 : * to come along.
839 : */
840 0 : do {
841 0 : cpu_relax();
842 0 : new.lockval = READ_ONCE(hpet.lockval);
843 0 : } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
844 :
845 0 : return (u64)new.value;
846 : }
847 : #else
848 : /*
849 : * For UP or 32-bit.
850 : */
851 : static u64 read_hpet(struct clocksource *cs)
852 : {
853 : return (u64)hpet_readl(HPET_COUNTER);
854 : }
855 : #endif
856 :
857 : static struct clocksource clocksource_hpet = {
858 : .name = "hpet",
859 : .rating = 250,
860 : .read = read_hpet,
861 : .mask = HPET_MASK,
862 : .flags = CLOCK_SOURCE_IS_CONTINUOUS,
863 : .resume = hpet_resume_counter,
864 : };
865 :
866 : /*
867 : * AMD SB700 based systems with spread spectrum enabled use a SMM based
868 : * HPET emulation to provide proper frequency setting.
869 : *
870 : * On such systems the SMM code is initialized with the first HPET register
871 : * access and takes some time to complete. During this time the config
872 : * register reads 0xffffffff. We check for max 1000 loops whether the
873 : * config register reads a non-0xffffffff value to make sure that the
874 : * HPET is up and running before we proceed any further.
875 : *
876 : * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
877 : *
878 : * On non-SB700 based machines this check is only done once and has no
879 : * side effects.
880 : */
881 0 : static bool __init hpet_cfg_working(void)
882 : {
883 0 : int i;
884 :
885 0 : for (i = 0; i < 1000; i++) {
886 0 : if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
887 : return true;
888 : }
889 :
890 0 : pr_warn("Config register invalid. Disabling HPET\n");
891 0 : return false;
892 : }
893 :
894 0 : static bool __init hpet_counting(void)
895 : {
896 0 : u64 start, now, t1;
897 :
898 0 : hpet_restart_counter();
899 :
900 0 : t1 = hpet_readl(HPET_COUNTER);
901 0 : start = rdtsc();
902 :
903 : /*
904 : * We don't know the TSC frequency yet, but waiting for
905 : * 200000 TSC cycles is safe:
906 : * 4 GHz == 50us
907 : * 1 GHz == 200us
908 : */
909 0 : do {
910 0 : if (t1 != hpet_readl(HPET_COUNTER))
911 : return true;
912 0 : now = rdtsc();
913 0 : } while ((now - start) < 200000UL);
914 :
915 0 : pr_warn("Counter not counting. HPET disabled\n");
916 0 : return false;
917 : }
918 :
919 : /**
920 : * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
921 : */
922 1 : int __init hpet_enable(void)
923 : {
924 1 : u32 hpet_period, cfg, id, irq;
925 1 : unsigned int i, channels;
926 1 : struct hpet_channel *hc;
927 1 : u64 freq;
928 :
929 1 : if (!is_hpet_capable())
930 : return 0;
931 :
932 0 : hpet_set_mapping();
933 0 : if (!hpet_virt_address)
934 : return 0;
935 :
936 : /* Validate that the config register is working */
937 0 : if (!hpet_cfg_working())
938 0 : goto out_nohpet;
939 :
940 : /*
941 : * Read the period and check for a sane value:
942 : */
943 0 : hpet_period = hpet_readl(HPET_PERIOD);
944 0 : if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
945 0 : goto out_nohpet;
946 :
947 : /* The period is a femtoseconds value. Convert it to a frequency. */
948 0 : freq = FSEC_PER_SEC;
949 0 : do_div(freq, hpet_period);
950 0 : hpet_freq = freq;
951 :
952 : /*
953 : * Read the HPET ID register to retrieve the IRQ routing
954 : * information and the number of channels
955 : */
956 0 : id = hpet_readl(HPET_ID);
957 0 : hpet_print_config();
958 :
959 : /* This is the HPET channel number which is zero based */
960 0 : channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
961 :
962 : /*
963 : * The legacy routing mode needs at least two channels, tick timer
964 : * and the rtc emulation channel.
965 : */
966 0 : if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
967 0 : goto out_nohpet;
968 :
969 0 : hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
970 0 : if (!hc) {
971 0 : pr_warn("Disabling HPET.\n");
972 0 : goto out_nohpet;
973 : }
974 0 : hpet_base.channels = hc;
975 0 : hpet_base.nr_channels = channels;
976 :
977 : /* Read, store and sanitize the global configuration */
978 0 : cfg = hpet_readl(HPET_CFG);
979 0 : hpet_base.boot_cfg = cfg;
980 0 : cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
981 0 : hpet_writel(cfg, HPET_CFG);
982 0 : if (cfg)
983 0 : pr_warn("Global config: Unknown bits %#x\n", cfg);
984 :
985 : /* Read, store and sanitize the per channel configuration */
986 0 : for (i = 0; i < channels; i++, hc++) {
987 0 : hc->num = i;
988 :
989 0 : cfg = hpet_readl(HPET_Tn_CFG(i));
990 0 : hc->boot_cfg = cfg;
991 0 : irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
992 0 : hc->irq = irq;
993 :
994 0 : cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
995 0 : hpet_writel(cfg, HPET_Tn_CFG(i));
996 :
997 0 : cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
998 : | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
999 : | HPET_TN_FSB | HPET_TN_FSB_CAP);
1000 0 : if (cfg)
1001 0 : pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
1002 : }
1003 0 : hpet_print_config();
1004 :
1005 : /*
1006 : * Validate that the counter is counting. This needs to be done
1007 : * after sanitizing the config registers to properly deal with
1008 : * force enabled HPETs.
1009 : */
1010 0 : if (!hpet_counting())
1011 0 : goto out_nohpet;
1012 :
1013 0 : clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1014 :
1015 0 : if (id & HPET_ID_LEGSUP) {
1016 0 : hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1017 0 : hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1018 0 : if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1019 0 : hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1020 0 : return 1;
1021 : }
1022 : return 0;
1023 :
1024 0 : out_nohpet:
1025 0 : kfree(hpet_base.channels);
1026 0 : hpet_base.channels = NULL;
1027 0 : hpet_base.nr_channels = 0;
1028 0 : hpet_clear_mapping();
1029 0 : hpet_address = 0;
1030 0 : return 0;
1031 : }
1032 :
1033 : /*
1034 : * The late initialization runs after the PCI quirks have been invoked
1035 : * which might have detected a system on which the HPET can be enforced.
1036 : *
1037 : * Also, the MSI machinery is not working yet when the HPET is initialized
1038 : * early.
1039 : *
1040 : * If the HPET is enabled, then:
1041 : *
1042 : * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1043 : * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1044 : * 3) Setup /dev/hpet if CONFIG_HPET=y
1045 : * 4) Register hotplug callbacks when clockevents are available
1046 : */
1047 1 : static __init int hpet_late_init(void)
1048 : {
1049 1 : int ret;
1050 :
1051 1 : if (!hpet_address) {
1052 1 : if (!force_hpet_address)
1053 : return -ENODEV;
1054 :
1055 0 : hpet_address = force_hpet_address;
1056 0 : hpet_enable();
1057 : }
1058 :
1059 0 : if (!hpet_virt_address)
1060 : return -ENODEV;
1061 :
1062 0 : hpet_select_device_channel();
1063 0 : hpet_select_clockevents();
1064 0 : hpet_reserve_platform_timers();
1065 0 : hpet_print_config();
1066 :
1067 0 : if (!hpet_base.nr_clockevents)
1068 : return 0;
1069 :
1070 0 : ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1071 : hpet_cpuhp_online, NULL);
1072 0 : if (ret)
1073 : return ret;
1074 0 : ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1075 : hpet_cpuhp_dead);
1076 0 : if (ret)
1077 0 : goto err_cpuhp;
1078 : return 0;
1079 :
1080 0 : err_cpuhp:
1081 0 : cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1082 0 : return ret;
1083 : }
1084 : fs_initcall(hpet_late_init);
1085 :
1086 0 : void hpet_disable(void)
1087 : {
1088 0 : unsigned int i;
1089 0 : u32 cfg;
1090 :
1091 0 : if (!is_hpet_capable() || !hpet_virt_address)
1092 : return;
1093 :
1094 : /* Restore boot configuration with the enable bit cleared */
1095 0 : cfg = hpet_base.boot_cfg;
1096 0 : cfg &= ~HPET_CFG_ENABLE;
1097 0 : hpet_writel(cfg, HPET_CFG);
1098 :
1099 : /* Restore the channel boot configuration */
1100 0 : for (i = 0; i < hpet_base.nr_channels; i++)
1101 0 : hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1102 :
1103 : /* If the HPET was enabled at boot time, reenable it */
1104 0 : if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1105 0 : hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1106 : }
1107 :
1108 : #ifdef CONFIG_HPET_EMULATE_RTC
1109 :
1110 : /*
1111 : * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1112 : * is enabled, we support RTC interrupt functionality in software.
1113 : *
1114 : * RTC has 3 kinds of interrupts:
1115 : *
1116 : * 1) Update Interrupt - generate an interrupt, every second, when the
1117 : * RTC clock is updated
1118 : * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1119 : * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1120 : * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1121 : *
1122 : * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1123 : * DEFAULT_RTC_INT_FREQ.
1124 : *
1125 : * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1126 : *
1127 : * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1128 : * if it's higher.
1129 : */
1130 : #include <linux/mc146818rtc.h>
1131 : #include <linux/rtc.h>
1132 :
1133 : #define DEFAULT_RTC_INT_FREQ 64
1134 : #define DEFAULT_RTC_SHIFT 6
1135 : #define RTC_NUM_INTS 1
1136 :
1137 : static unsigned long hpet_rtc_flags;
1138 : static int hpet_prev_update_sec;
1139 : static struct rtc_time hpet_alarm_time;
1140 : static unsigned long hpet_pie_count;
1141 : static u32 hpet_t1_cmp;
1142 : static u32 hpet_default_delta;
1143 : static u32 hpet_pie_delta;
1144 : static unsigned long hpet_pie_limit;
1145 :
1146 : static rtc_irq_handler irq_handler;
1147 :
1148 : /*
1149 : * Check that the HPET counter c1 is ahead of c2
1150 : */
1151 0 : static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1152 : {
1153 0 : return (s32)(c2 - c1) < 0;
1154 : }
1155 :
1156 : /*
1157 : * Registers a IRQ handler.
1158 : */
1159 0 : int hpet_register_irq_handler(rtc_irq_handler handler)
1160 : {
1161 0 : if (!is_hpet_enabled())
1162 : return -ENODEV;
1163 0 : if (irq_handler)
1164 : return -EBUSY;
1165 :
1166 0 : irq_handler = handler;
1167 :
1168 0 : return 0;
1169 : }
1170 : EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1171 :
1172 : /*
1173 : * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1174 : * and does cleanup.
1175 : */
1176 0 : void hpet_unregister_irq_handler(rtc_irq_handler handler)
1177 : {
1178 0 : if (!is_hpet_enabled())
1179 : return;
1180 :
1181 0 : irq_handler = NULL;
1182 0 : hpet_rtc_flags = 0;
1183 : }
1184 : EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1185 :
1186 : /*
1187 : * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1188 : * is not supported by all HPET implementations for channel 1.
1189 : *
1190 : * hpet_rtc_timer_init() is called when the rtc is initialized.
1191 : */
1192 0 : int hpet_rtc_timer_init(void)
1193 : {
1194 0 : unsigned int cfg, cnt, delta;
1195 0 : unsigned long flags;
1196 :
1197 0 : if (!is_hpet_enabled())
1198 : return 0;
1199 :
1200 0 : if (!hpet_default_delta) {
1201 0 : struct clock_event_device *evt = &hpet_base.channels[0].evt;
1202 0 : uint64_t clc;
1203 :
1204 0 : clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1205 0 : clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1206 0 : hpet_default_delta = clc;
1207 : }
1208 :
1209 0 : if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1210 0 : delta = hpet_default_delta;
1211 : else
1212 0 : delta = hpet_pie_delta;
1213 :
1214 0 : local_irq_save(flags);
1215 :
1216 0 : cnt = delta + hpet_readl(HPET_COUNTER);
1217 0 : hpet_writel(cnt, HPET_T1_CMP);
1218 0 : hpet_t1_cmp = cnt;
1219 :
1220 0 : cfg = hpet_readl(HPET_T1_CFG);
1221 0 : cfg &= ~HPET_TN_PERIODIC;
1222 0 : cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1223 0 : hpet_writel(cfg, HPET_T1_CFG);
1224 :
1225 0 : local_irq_restore(flags);
1226 :
1227 : return 1;
1228 : }
1229 : EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1230 :
1231 0 : static void hpet_disable_rtc_channel(void)
1232 : {
1233 0 : u32 cfg = hpet_readl(HPET_T1_CFG);
1234 :
1235 0 : cfg &= ~HPET_TN_ENABLE;
1236 0 : hpet_writel(cfg, HPET_T1_CFG);
1237 0 : }
1238 :
1239 : /*
1240 : * The functions below are called from rtc driver.
1241 : * Return 0 if HPET is not being used.
1242 : * Otherwise do the necessary changes and return 1.
1243 : */
1244 0 : int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1245 : {
1246 0 : if (!is_hpet_enabled())
1247 : return 0;
1248 :
1249 0 : hpet_rtc_flags &= ~bit_mask;
1250 0 : if (unlikely(!hpet_rtc_flags))
1251 0 : hpet_disable_rtc_channel();
1252 :
1253 : return 1;
1254 : }
1255 : EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1256 :
1257 0 : int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1258 : {
1259 0 : unsigned long oldbits = hpet_rtc_flags;
1260 :
1261 0 : if (!is_hpet_enabled())
1262 : return 0;
1263 :
1264 0 : hpet_rtc_flags |= bit_mask;
1265 :
1266 0 : if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1267 0 : hpet_prev_update_sec = -1;
1268 :
1269 0 : if (!oldbits)
1270 0 : hpet_rtc_timer_init();
1271 :
1272 : return 1;
1273 : }
1274 : EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1275 :
1276 0 : int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1277 : {
1278 0 : if (!is_hpet_enabled())
1279 : return 0;
1280 :
1281 0 : hpet_alarm_time.tm_hour = hrs;
1282 0 : hpet_alarm_time.tm_min = min;
1283 0 : hpet_alarm_time.tm_sec = sec;
1284 :
1285 0 : return 1;
1286 : }
1287 : EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1288 :
1289 0 : int hpet_set_periodic_freq(unsigned long freq)
1290 : {
1291 0 : uint64_t clc;
1292 :
1293 0 : if (!is_hpet_enabled())
1294 : return 0;
1295 :
1296 0 : if (freq <= DEFAULT_RTC_INT_FREQ) {
1297 0 : hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1298 : } else {
1299 0 : struct clock_event_device *evt = &hpet_base.channels[0].evt;
1300 :
1301 0 : clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1302 0 : do_div(clc, freq);
1303 0 : clc >>= evt->shift;
1304 0 : hpet_pie_delta = clc;
1305 0 : hpet_pie_limit = 0;
1306 : }
1307 :
1308 : return 1;
1309 : }
1310 : EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1311 :
1312 0 : int hpet_rtc_dropped_irq(void)
1313 : {
1314 0 : return is_hpet_enabled();
1315 : }
1316 : EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1317 :
1318 0 : static void hpet_rtc_timer_reinit(void)
1319 : {
1320 0 : unsigned int delta;
1321 0 : int lost_ints = -1;
1322 :
1323 0 : if (unlikely(!hpet_rtc_flags))
1324 0 : hpet_disable_rtc_channel();
1325 :
1326 0 : if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1327 0 : delta = hpet_default_delta;
1328 : else
1329 0 : delta = hpet_pie_delta;
1330 :
1331 : /*
1332 : * Increment the comparator value until we are ahead of the
1333 : * current count.
1334 : */
1335 0 : do {
1336 0 : hpet_t1_cmp += delta;
1337 0 : hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1338 0 : lost_ints++;
1339 0 : } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1340 :
1341 0 : if (lost_ints) {
1342 0 : if (hpet_rtc_flags & RTC_PIE)
1343 0 : hpet_pie_count += lost_ints;
1344 0 : if (printk_ratelimit())
1345 0 : pr_warn("Lost %d RTC interrupts\n", lost_ints);
1346 : }
1347 0 : }
1348 :
1349 0 : irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1350 : {
1351 0 : struct rtc_time curr_time;
1352 0 : unsigned long rtc_int_flag = 0;
1353 :
1354 0 : hpet_rtc_timer_reinit();
1355 0 : memset(&curr_time, 0, sizeof(struct rtc_time));
1356 :
1357 0 : if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1358 0 : mc146818_get_time(&curr_time);
1359 :
1360 0 : if (hpet_rtc_flags & RTC_UIE &&
1361 0 : curr_time.tm_sec != hpet_prev_update_sec) {
1362 0 : if (hpet_prev_update_sec >= 0)
1363 0 : rtc_int_flag = RTC_UF;
1364 0 : hpet_prev_update_sec = curr_time.tm_sec;
1365 : }
1366 :
1367 0 : if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1368 0 : rtc_int_flag |= RTC_PF;
1369 0 : hpet_pie_count = 0;
1370 : }
1371 :
1372 0 : if (hpet_rtc_flags & RTC_AIE &&
1373 0 : (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1374 0 : (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1375 0 : (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1376 0 : rtc_int_flag |= RTC_AF;
1377 :
1378 0 : if (rtc_int_flag) {
1379 0 : rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1380 0 : if (irq_handler)
1381 0 : irq_handler(rtc_int_flag, dev_id);
1382 : }
1383 0 : return IRQ_HANDLED;
1384 : }
1385 : EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1386 : #endif
|