LCOV - code coverage report
Current view: top level - arch/x86/kernel - hpet.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 12 404 3.0 %
Date: 2021-04-22 12:43:58 Functions: 2 32 6.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : #include <linux/clockchips.h>
       3             : #include <linux/interrupt.h>
       4             : #include <linux/export.h>
       5             : #include <linux/delay.h>
       6             : #include <linux/hpet.h>
       7             : #include <linux/cpu.h>
       8             : #include <linux/irq.h>
       9             : 
      10             : #include <asm/irq_remapping.h>
      11             : #include <asm/hpet.h>
      12             : #include <asm/time.h>
      13             : 
      14             : #undef  pr_fmt
      15             : #define pr_fmt(fmt) "hpet: " fmt
      16             : 
      17             : enum hpet_mode {
      18             :         HPET_MODE_UNUSED,
      19             :         HPET_MODE_LEGACY,
      20             :         HPET_MODE_CLOCKEVT,
      21             :         HPET_MODE_DEVICE,
      22             : };
      23             : 
      24             : struct hpet_channel {
      25             :         struct clock_event_device       evt;
      26             :         unsigned int                    num;
      27             :         unsigned int                    cpu;
      28             :         unsigned int                    irq;
      29             :         unsigned int                    in_use;
      30             :         enum hpet_mode                  mode;
      31             :         unsigned int                    boot_cfg;
      32             :         char                            name[10];
      33             : };
      34             : 
      35             : struct hpet_base {
      36             :         unsigned int                    nr_channels;
      37             :         unsigned int                    nr_clockevents;
      38             :         unsigned int                    boot_cfg;
      39             :         struct hpet_channel             *channels;
      40             : };
      41             : 
      42             : #define HPET_MASK                       CLOCKSOURCE_MASK(32)
      43             : 
      44             : #define HPET_MIN_CYCLES                 128
      45             : #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
      46             : 
      47             : /*
      48             :  * HPET address is set in acpi/boot.c, when an ACPI entry exists
      49             :  */
      50             : unsigned long                           hpet_address;
      51             : u8                                      hpet_blockid; /* OS timer block num */
      52             : bool                                    hpet_msi_disable;
      53             : 
      54             : #ifdef CONFIG_GENERIC_MSI_IRQ
      55             : static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
      56             : static struct irq_domain                *hpet_domain;
      57             : #endif
      58             : 
      59             : static void __iomem                     *hpet_virt_address;
      60             : 
      61             : static struct hpet_base                 hpet_base;
      62             : 
      63             : static bool                             hpet_legacy_int_enabled;
      64             : static unsigned long                    hpet_freq;
      65             : 
      66             : bool                                    boot_hpet_disable;
      67             : bool                                    hpet_force_user;
      68             : static bool                             hpet_verbose;
      69             : 
      70             : static inline
      71           0 : struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
      72             : {
      73           0 :         return container_of(evt, struct hpet_channel, evt);
      74             : }
      75             : 
      76           0 : inline unsigned int hpet_readl(unsigned int a)
      77             : {
      78           0 :         return readl(hpet_virt_address + a);
      79             : }
      80             : 
      81           0 : static inline void hpet_writel(unsigned int d, unsigned int a)
      82             : {
      83           0 :         writel(d, hpet_virt_address + a);
      84           0 : }
      85             : 
      86           0 : static inline void hpet_set_mapping(void)
      87             : {
      88           0 :         hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
      89           0 : }
      90             : 
      91           0 : static inline void hpet_clear_mapping(void)
      92             : {
      93           0 :         iounmap(hpet_virt_address);
      94           0 :         hpet_virt_address = NULL;
      95             : }
      96             : 
      97             : /*
      98             :  * HPET command line enable / disable
      99             :  */
     100           0 : static int __init hpet_setup(char *str)
     101             : {
     102           0 :         while (str) {
     103           0 :                 char *next = strchr(str, ',');
     104             : 
     105           0 :                 if (next)
     106           0 :                         *next++ = 0;
     107           0 :                 if (!strncmp("disable", str, 7))
     108           0 :                         boot_hpet_disable = true;
     109           0 :                 if (!strncmp("force", str, 5))
     110           0 :                         hpet_force_user = true;
     111           0 :                 if (!strncmp("verbose", str, 7))
     112           0 :                         hpet_verbose = true;
     113             :                 str = next;
     114             :         }
     115           0 :         return 1;
     116             : }
     117             : __setup("hpet=", hpet_setup);
     118             : 
     119           0 : static int __init disable_hpet(char *str)
     120             : {
     121           0 :         boot_hpet_disable = true;
     122           0 :         return 1;
     123             : }
     124             : __setup("nohpet", disable_hpet);
     125             : 
     126           1 : static inline int is_hpet_capable(void)
     127             : {
     128           1 :         return !boot_hpet_disable && hpet_address;
     129             : }
     130             : 
     131             : /**
     132             :  * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
     133             :  */
     134           0 : int is_hpet_enabled(void)
     135             : {
     136           0 :         return is_hpet_capable() && hpet_legacy_int_enabled;
     137             : }
     138             : EXPORT_SYMBOL_GPL(is_hpet_enabled);
     139             : 
     140           0 : static void _hpet_print_config(const char *function, int line)
     141             : {
     142           0 :         u32 i, id, period, cfg, status, channels, l, h;
     143             : 
     144           0 :         pr_info("%s(%d):\n", function, line);
     145             : 
     146           0 :         id = hpet_readl(HPET_ID);
     147           0 :         period = hpet_readl(HPET_PERIOD);
     148           0 :         pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
     149             : 
     150           0 :         cfg = hpet_readl(HPET_CFG);
     151           0 :         status = hpet_readl(HPET_STATUS);
     152           0 :         pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
     153             : 
     154           0 :         l = hpet_readl(HPET_COUNTER);
     155           0 :         h = hpet_readl(HPET_COUNTER+4);
     156           0 :         pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
     157             : 
     158           0 :         channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
     159             : 
     160           0 :         for (i = 0; i < channels; i++) {
     161           0 :                 l = hpet_readl(HPET_Tn_CFG(i));
     162           0 :                 h = hpet_readl(HPET_Tn_CFG(i)+4);
     163           0 :                 pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
     164             : 
     165           0 :                 l = hpet_readl(HPET_Tn_CMP(i));
     166           0 :                 h = hpet_readl(HPET_Tn_CMP(i)+4);
     167           0 :                 pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
     168             : 
     169           0 :                 l = hpet_readl(HPET_Tn_ROUTE(i));
     170           0 :                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
     171           0 :                 pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
     172             :         }
     173           0 : }
     174             : 
     175             : #define hpet_print_config()                                     \
     176             : do {                                                            \
     177             :         if (hpet_verbose)                                       \
     178             :                 _hpet_print_config(__func__, __LINE__); \
     179             : } while (0)
     180             : 
     181             : /*
     182             :  * When the HPET driver (/dev/hpet) is enabled, we need to reserve
     183             :  * timer 0 and timer 1 in case of RTC emulation.
     184             :  */
     185             : #ifdef CONFIG_HPET
     186             : 
     187             : static void __init hpet_reserve_platform_timers(void)
     188             : {
     189             :         struct hpet_data hd;
     190             :         unsigned int i;
     191             : 
     192             :         memset(&hd, 0, sizeof(hd));
     193             :         hd.hd_phys_address      = hpet_address;
     194             :         hd.hd_address           = hpet_virt_address;
     195             :         hd.hd_nirqs             = hpet_base.nr_channels;
     196             : 
     197             :         /*
     198             :          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
     199             :          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
     200             :          * don't bother configuring *any* comparator interrupts.
     201             :          */
     202             :         hd.hd_irq[0] = HPET_LEGACY_8254;
     203             :         hd.hd_irq[1] = HPET_LEGACY_RTC;
     204             : 
     205             :         for (i = 0; i < hpet_base.nr_channels; i++) {
     206             :                 struct hpet_channel *hc = hpet_base.channels + i;
     207             : 
     208             :                 if (i >= 2)
     209             :                         hd.hd_irq[i] = hc->irq;
     210             : 
     211             :                 switch (hc->mode) {
     212             :                 case HPET_MODE_UNUSED:
     213             :                 case HPET_MODE_DEVICE:
     214             :                         hc->mode = HPET_MODE_DEVICE;
     215             :                         break;
     216             :                 case HPET_MODE_CLOCKEVT:
     217             :                 case HPET_MODE_LEGACY:
     218             :                         hpet_reserve_timer(&hd, hc->num);
     219             :                         break;
     220             :                 }
     221             :         }
     222             : 
     223             :         hpet_alloc(&hd);
     224             : }
     225             : 
     226             : static void __init hpet_select_device_channel(void)
     227             : {
     228             :         int i;
     229             : 
     230             :         for (i = 0; i < hpet_base.nr_channels; i++) {
     231             :                 struct hpet_channel *hc = hpet_base.channels + i;
     232             : 
     233             :                 /* Associate the first unused channel to /dev/hpet */
     234             :                 if (hc->mode == HPET_MODE_UNUSED) {
     235             :                         hc->mode = HPET_MODE_DEVICE;
     236             :                         return;
     237             :                 }
     238             :         }
     239             : }
     240             : 
     241             : #else
     242           0 : static inline void hpet_reserve_platform_timers(void) { }
     243           0 : static inline void hpet_select_device_channel(void) {}
     244             : #endif
     245             : 
     246             : /* Common HPET functions */
     247           0 : static void hpet_stop_counter(void)
     248             : {
     249           0 :         u32 cfg = hpet_readl(HPET_CFG);
     250             : 
     251           0 :         cfg &= ~HPET_CFG_ENABLE;
     252           0 :         hpet_writel(cfg, HPET_CFG);
     253             : }
     254             : 
     255           0 : static void hpet_reset_counter(void)
     256             : {
     257           0 :         hpet_writel(0, HPET_COUNTER);
     258           0 :         hpet_writel(0, HPET_COUNTER + 4);
     259             : }
     260             : 
     261           0 : static void hpet_start_counter(void)
     262             : {
     263           0 :         unsigned int cfg = hpet_readl(HPET_CFG);
     264             : 
     265           0 :         cfg |= HPET_CFG_ENABLE;
     266           0 :         hpet_writel(cfg, HPET_CFG);
     267             : }
     268             : 
     269           0 : static void hpet_restart_counter(void)
     270             : {
     271           0 :         hpet_stop_counter();
     272           0 :         hpet_reset_counter();
     273           0 :         hpet_start_counter();
     274           0 : }
     275             : 
     276           0 : static void hpet_resume_device(void)
     277             : {
     278           0 :         force_hpet_resume();
     279             : }
     280             : 
     281           0 : static void hpet_resume_counter(struct clocksource *cs)
     282             : {
     283           0 :         hpet_resume_device();
     284           0 :         hpet_restart_counter();
     285           0 : }
     286             : 
     287           0 : static void hpet_enable_legacy_int(void)
     288             : {
     289           0 :         unsigned int cfg = hpet_readl(HPET_CFG);
     290             : 
     291           0 :         cfg |= HPET_CFG_LEGACY;
     292           0 :         hpet_writel(cfg, HPET_CFG);
     293           0 :         hpet_legacy_int_enabled = true;
     294           0 : }
     295             : 
     296           0 : static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
     297             : {
     298           0 :         unsigned int channel = clockevent_to_channel(evt)->num;
     299           0 :         unsigned int cfg, cmp, now;
     300           0 :         uint64_t delta;
     301             : 
     302           0 :         hpet_stop_counter();
     303           0 :         delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
     304           0 :         delta >>= evt->shift;
     305           0 :         now = hpet_readl(HPET_COUNTER);
     306           0 :         cmp = now + (unsigned int)delta;
     307           0 :         cfg = hpet_readl(HPET_Tn_CFG(channel));
     308           0 :         cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
     309             :                HPET_TN_32BIT;
     310           0 :         hpet_writel(cfg, HPET_Tn_CFG(channel));
     311           0 :         hpet_writel(cmp, HPET_Tn_CMP(channel));
     312           0 :         udelay(1);
     313             :         /*
     314             :          * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
     315             :          * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
     316             :          * bit is automatically cleared after the first write.
     317             :          * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
     318             :          * Publication # 24674)
     319             :          */
     320           0 :         hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
     321           0 :         hpet_start_counter();
     322           0 :         hpet_print_config();
     323             : 
     324           0 :         return 0;
     325             : }
     326             : 
     327           0 : static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
     328             : {
     329           0 :         unsigned int channel = clockevent_to_channel(evt)->num;
     330           0 :         unsigned int cfg;
     331             : 
     332           0 :         cfg = hpet_readl(HPET_Tn_CFG(channel));
     333           0 :         cfg &= ~HPET_TN_PERIODIC;
     334           0 :         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
     335           0 :         hpet_writel(cfg, HPET_Tn_CFG(channel));
     336             : 
     337           0 :         return 0;
     338             : }
     339             : 
     340           0 : static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
     341             : {
     342           0 :         unsigned int channel = clockevent_to_channel(evt)->num;
     343           0 :         unsigned int cfg;
     344             : 
     345           0 :         cfg = hpet_readl(HPET_Tn_CFG(channel));
     346           0 :         cfg &= ~HPET_TN_ENABLE;
     347           0 :         hpet_writel(cfg, HPET_Tn_CFG(channel));
     348             : 
     349           0 :         return 0;
     350             : }
     351             : 
     352           0 : static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
     353             : {
     354           0 :         hpet_enable_legacy_int();
     355           0 :         hpet_print_config();
     356           0 :         return 0;
     357             : }
     358             : 
     359             : static int
     360           0 : hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
     361             : {
     362           0 :         unsigned int channel = clockevent_to_channel(evt)->num;
     363           0 :         u32 cnt;
     364           0 :         s32 res;
     365             : 
     366           0 :         cnt = hpet_readl(HPET_COUNTER);
     367           0 :         cnt += (u32) delta;
     368           0 :         hpet_writel(cnt, HPET_Tn_CMP(channel));
     369             : 
     370             :         /*
     371             :          * HPETs are a complete disaster. The compare register is
     372             :          * based on a equal comparison and neither provides a less
     373             :          * than or equal functionality (which would require to take
     374             :          * the wraparound into account) nor a simple count down event
     375             :          * mode. Further the write to the comparator register is
     376             :          * delayed internally up to two HPET clock cycles in certain
     377             :          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
     378             :          * longer delays. We worked around that by reading back the
     379             :          * compare register, but that required another workaround for
     380             :          * ICH9,10 chips where the first readout after write can
     381             :          * return the old stale value. We already had a minimum
     382             :          * programming delta of 5us enforced, but a NMI or SMI hitting
     383             :          * between the counter readout and the comparator write can
     384             :          * move us behind that point easily. Now instead of reading
     385             :          * the compare register back several times, we make the ETIME
     386             :          * decision based on the following: Return ETIME if the
     387             :          * counter value after the write is less than HPET_MIN_CYCLES
     388             :          * away from the event or if the counter is already ahead of
     389             :          * the event. The minimum programming delta for the generic
     390             :          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
     391             :          */
     392           0 :         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
     393             : 
     394           0 :         return res < HPET_MIN_CYCLES ? -ETIME : 0;
     395             : }
     396             : 
     397           0 : static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
     398             : {
     399           0 :         struct clock_event_device *evt = &hc->evt;
     400             : 
     401           0 :         evt->rating          = rating;
     402           0 :         evt->irq             = hc->irq;
     403           0 :         evt->name            = hc->name;
     404           0 :         evt->cpumask         = cpumask_of(hc->cpu);
     405           0 :         evt->set_state_oneshot       = hpet_clkevt_set_state_oneshot;
     406           0 :         evt->set_next_event  = hpet_clkevt_set_next_event;
     407           0 :         evt->set_state_shutdown      = hpet_clkevt_set_state_shutdown;
     408             : 
     409           0 :         evt->features = CLOCK_EVT_FEAT_ONESHOT;
     410           0 :         if (hc->boot_cfg & HPET_TN_PERIODIC) {
     411           0 :                 evt->features                |= CLOCK_EVT_FEAT_PERIODIC;
     412           0 :                 evt->set_state_periodic      = hpet_clkevt_set_state_periodic;
     413             :         }
     414           0 : }
     415             : 
     416           0 : static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
     417             : {
     418             :         /*
     419             :          * Start HPET with the boot CPU's cpumask and make it global after
     420             :          * the IO_APIC has been initialized.
     421             :          */
     422           0 :         hc->cpu = boot_cpu_data.cpu_index;
     423           0 :         strncpy(hc->name, "hpet", sizeof(hc->name));
     424           0 :         hpet_init_clockevent(hc, 50);
     425             : 
     426           0 :         hc->evt.tick_resume  = hpet_clkevt_legacy_resume;
     427             : 
     428             :         /*
     429             :          * Legacy horrors and sins from the past. HPET used periodic mode
     430             :          * unconditionally forever on the legacy channel 0. Removing the
     431             :          * below hack and using the conditional in hpet_init_clockevent()
     432             :          * makes at least Qemu and one hardware machine fail to boot.
     433             :          * There are two issues which cause the boot failure:
     434             :          *
     435             :          * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
     436             :          *    the next interrupt is not delivered despite the HPET channel
     437             :          *    being programmed correctly. Reprogramming the HPET after
     438             :          *    switching to IOAPIC makes it work again. After fixing this,
     439             :          *    the next issue surfaces:
     440             :          *
     441             :          * #2 Due to the unconditional periodic mode availability the Local
     442             :          *    APIC timer calibration can hijack the global clockevents
     443             :          *    event handler without causing damage. Using oneshot at this
     444             :          *    stage makes if hang because the HPET does not get
     445             :          *    reprogrammed due to the handler hijacking. Duh, stupid me!
     446             :          *
     447             :          * Both issues require major surgery and especially the kick HPET
     448             :          * again after enabling IOAPIC results in really nasty hackery.
     449             :          * This 'assume periodic works' magic has survived since HPET
     450             :          * support got added, so it's questionable whether this should be
     451             :          * fixed. Both Qemu and the failing hardware machine support
     452             :          * periodic mode despite the fact that both don't advertise it in
     453             :          * the configuration register and both need that extra kick after
     454             :          * switching to IOAPIC. Seems to be a feature...
     455             :          */
     456           0 :         hc->evt.features             |= CLOCK_EVT_FEAT_PERIODIC;
     457           0 :         hc->evt.set_state_periodic   = hpet_clkevt_set_state_periodic;
     458             : 
     459             :         /* Start HPET legacy interrupts */
     460           0 :         hpet_enable_legacy_int();
     461             : 
     462           0 :         clockevents_config_and_register(&hc->evt, hpet_freq,
     463             :                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
     464           0 :         global_clock_event = &hc->evt;
     465           0 :         pr_debug("Clockevent registered\n");
     466           0 : }
     467             : 
     468             : /*
     469             :  * HPET MSI Support
     470             :  */
     471             : #ifdef CONFIG_GENERIC_MSI_IRQ
     472             : static void hpet_msi_unmask(struct irq_data *data)
     473             : {
     474             :         struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
     475             :         unsigned int cfg;
     476             : 
     477             :         cfg = hpet_readl(HPET_Tn_CFG(hc->num));
     478             :         cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
     479             :         hpet_writel(cfg, HPET_Tn_CFG(hc->num));
     480             : }
     481             : 
     482             : static void hpet_msi_mask(struct irq_data *data)
     483             : {
     484             :         struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
     485             :         unsigned int cfg;
     486             : 
     487             :         cfg = hpet_readl(HPET_Tn_CFG(hc->num));
     488             :         cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
     489             :         hpet_writel(cfg, HPET_Tn_CFG(hc->num));
     490             : }
     491             : 
     492             : static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
     493             : {
     494             :         hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
     495             :         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
     496             : }
     497             : 
     498             : static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
     499             : {
     500             :         hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
     501             : }
     502             : 
     503             : static struct irq_chip hpet_msi_controller __ro_after_init = {
     504             :         .name = "HPET-MSI",
     505             :         .irq_unmask = hpet_msi_unmask,
     506             :         .irq_mask = hpet_msi_mask,
     507             :         .irq_ack = irq_chip_ack_parent,
     508             :         .irq_set_affinity = msi_domain_set_affinity,
     509             :         .irq_retrigger = irq_chip_retrigger_hierarchy,
     510             :         .irq_write_msi_msg = hpet_msi_write_msg,
     511             :         .flags = IRQCHIP_SKIP_SET_WAKE,
     512             : };
     513             : 
     514             : static int hpet_msi_init(struct irq_domain *domain,
     515             :                          struct msi_domain_info *info, unsigned int virq,
     516             :                          irq_hw_number_t hwirq, msi_alloc_info_t *arg)
     517             : {
     518             :         irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
     519             :         irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
     520             :                             handle_edge_irq, arg->data, "edge");
     521             : 
     522             :         return 0;
     523             : }
     524             : 
     525             : static void hpet_msi_free(struct irq_domain *domain,
     526             :                           struct msi_domain_info *info, unsigned int virq)
     527             : {
     528             :         irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
     529             : }
     530             : 
     531             : static struct msi_domain_ops hpet_msi_domain_ops = {
     532             :         .msi_init       = hpet_msi_init,
     533             :         .msi_free       = hpet_msi_free,
     534             : };
     535             : 
     536             : static struct msi_domain_info hpet_msi_domain_info = {
     537             :         .ops            = &hpet_msi_domain_ops,
     538             :         .chip           = &hpet_msi_controller,
     539             :         .flags          = MSI_FLAG_USE_DEF_DOM_OPS,
     540             : };
     541             : 
     542             : static struct irq_domain *hpet_create_irq_domain(int hpet_id)
     543             : {
     544             :         struct msi_domain_info *domain_info;
     545             :         struct irq_domain *parent, *d;
     546             :         struct fwnode_handle *fn;
     547             :         struct irq_fwspec fwspec;
     548             : 
     549             :         if (x86_vector_domain == NULL)
     550             :                 return NULL;
     551             : 
     552             :         domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
     553             :         if (!domain_info)
     554             :                 return NULL;
     555             : 
     556             :         *domain_info = hpet_msi_domain_info;
     557             :         domain_info->data = (void *)(long)hpet_id;
     558             : 
     559             :         fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
     560             :                                               hpet_id);
     561             :         if (!fn) {
     562             :                 kfree(domain_info);
     563             :                 return NULL;
     564             :         }
     565             : 
     566             :         fwspec.fwnode = fn;
     567             :         fwspec.param_count = 1;
     568             :         fwspec.param[0] = hpet_id;
     569             : 
     570             :         parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY);
     571             :         if (!parent) {
     572             :                 irq_domain_free_fwnode(fn);
     573             :                 kfree(domain_info);
     574             :                 return NULL;
     575             :         }
     576             :         if (parent != x86_vector_domain)
     577             :                 hpet_msi_controller.name = "IR-HPET-MSI";
     578             : 
     579             :         d = msi_create_irq_domain(fn, domain_info, parent);
     580             :         if (!d) {
     581             :                 irq_domain_free_fwnode(fn);
     582             :                 kfree(domain_info);
     583             :         }
     584             :         return d;
     585             : }
     586             : 
     587             : static inline int hpet_dev_id(struct irq_domain *domain)
     588             : {
     589             :         struct msi_domain_info *info = msi_get_domain_info(domain);
     590             : 
     591             :         return (int)(long)info->data;
     592             : }
     593             : 
     594             : static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
     595             :                            int dev_num)
     596             : {
     597             :         struct irq_alloc_info info;
     598             : 
     599             :         init_irq_alloc_info(&info, NULL);
     600             :         info.type = X86_IRQ_ALLOC_TYPE_HPET;
     601             :         info.data = hc;
     602             :         info.devid = hpet_dev_id(domain);
     603             :         info.hwirq = dev_num;
     604             : 
     605             :         return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
     606             : }
     607             : 
     608             : static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
     609             : {
     610             :         struct hpet_channel *hc = clockevent_to_channel(evt);
     611             :         struct irq_data *data = irq_get_irq_data(hc->irq);
     612             :         struct msi_msg msg;
     613             : 
     614             :         /* Restore the MSI msg and unmask the interrupt */
     615             :         irq_chip_compose_msi_msg(data, &msg);
     616             :         hpet_msi_write(hc, &msg);
     617             :         hpet_msi_unmask(data);
     618             :         return 0;
     619             : }
     620             : 
     621             : static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
     622             : {
     623             :         struct hpet_channel *hc = data;
     624             :         struct clock_event_device *evt = &hc->evt;
     625             : 
     626             :         if (!evt->event_handler) {
     627             :                 pr_info("Spurious interrupt HPET channel %d\n", hc->num);
     628             :                 return IRQ_HANDLED;
     629             :         }
     630             : 
     631             :         evt->event_handler(evt);
     632             :         return IRQ_HANDLED;
     633             : }
     634             : 
     635             : static int hpet_setup_msi_irq(struct hpet_channel *hc)
     636             : {
     637             :         if (request_irq(hc->irq, hpet_msi_interrupt_handler,
     638             :                         IRQF_TIMER | IRQF_NOBALANCING,
     639             :                         hc->name, hc))
     640             :                 return -1;
     641             : 
     642             :         disable_irq(hc->irq);
     643             :         irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
     644             :         enable_irq(hc->irq);
     645             : 
     646             :         pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
     647             : 
     648             :         return 0;
     649             : }
     650             : 
     651             : /* Invoked from the hotplug callback on @cpu */
     652             : static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
     653             : {
     654             :         struct clock_event_device *evt = &hc->evt;
     655             : 
     656             :         hc->cpu = cpu;
     657             :         per_cpu(cpu_hpet_channel, cpu) = hc;
     658             :         hpet_setup_msi_irq(hc);
     659             : 
     660             :         hpet_init_clockevent(hc, 110);
     661             :         evt->tick_resume = hpet_clkevt_msi_resume;
     662             : 
     663             :         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
     664             :                                         0x7FFFFFFF);
     665             : }
     666             : 
     667             : static struct hpet_channel *hpet_get_unused_clockevent(void)
     668             : {
     669             :         int i;
     670             : 
     671             :         for (i = 0; i < hpet_base.nr_channels; i++) {
     672             :                 struct hpet_channel *hc = hpet_base.channels + i;
     673             : 
     674             :                 if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
     675             :                         continue;
     676             :                 hc->in_use = 1;
     677             :                 return hc;
     678             :         }
     679             :         return NULL;
     680             : }
     681             : 
     682             : static int hpet_cpuhp_online(unsigned int cpu)
     683             : {
     684             :         struct hpet_channel *hc = hpet_get_unused_clockevent();
     685             : 
     686             :         if (hc)
     687             :                 init_one_hpet_msi_clockevent(hc, cpu);
     688             :         return 0;
     689             : }
     690             : 
     691             : static int hpet_cpuhp_dead(unsigned int cpu)
     692             : {
     693             :         struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
     694             : 
     695             :         if (!hc)
     696             :                 return 0;
     697             :         free_irq(hc->irq, hc);
     698             :         hc->in_use = 0;
     699             :         per_cpu(cpu_hpet_channel, cpu) = NULL;
     700             :         return 0;
     701             : }
     702             : 
     703             : static void __init hpet_select_clockevents(void)
     704             : {
     705             :         unsigned int i;
     706             : 
     707             :         hpet_base.nr_clockevents = 0;
     708             : 
     709             :         /* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
     710             :         if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
     711             :                 return;
     712             : 
     713             :         hpet_print_config();
     714             : 
     715             :         hpet_domain = hpet_create_irq_domain(hpet_blockid);
     716             :         if (!hpet_domain)
     717             :                 return;
     718             : 
     719             :         for (i = 0; i < hpet_base.nr_channels; i++) {
     720             :                 struct hpet_channel *hc = hpet_base.channels + i;
     721             :                 int irq;
     722             : 
     723             :                 if (hc->mode != HPET_MODE_UNUSED)
     724             :                         continue;
     725             : 
     726             :                 /* Only consider HPET channel with MSI support */
     727             :                 if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
     728             :                         continue;
     729             : 
     730             :                 sprintf(hc->name, "hpet%d", i);
     731             : 
     732             :                 irq = hpet_assign_irq(hpet_domain, hc, hc->num);
     733             :                 if (irq <= 0)
     734             :                         continue;
     735             : 
     736             :                 hc->irq = irq;
     737             :                 hc->mode = HPET_MODE_CLOCKEVT;
     738             : 
     739             :                 if (++hpet_base.nr_clockevents == num_possible_cpus())
     740             :                         break;
     741             :         }
     742             : 
     743             :         pr_info("%d channels of %d reserved for per-cpu timers\n",
     744             :                 hpet_base.nr_channels, hpet_base.nr_clockevents);
     745             : }
     746             : 
     747             : #else
     748             : 
     749           0 : static inline void hpet_select_clockevents(void) { }
     750             : 
     751             : #define hpet_cpuhp_online       NULL
     752             : #define hpet_cpuhp_dead         NULL
     753             : 
     754             : #endif
     755             : 
     756             : /*
     757             :  * Clock source related code
     758             :  */
     759             : #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
     760             : /*
     761             :  * Reading the HPET counter is a very slow operation. If a large number of
     762             :  * CPUs are trying to access the HPET counter simultaneously, it can cause
     763             :  * massive delays and slow down system performance dramatically. This may
     764             :  * happen when HPET is the default clock source instead of TSC. For a
     765             :  * really large system with hundreds of CPUs, the slowdown may be so
     766             :  * severe, that it can actually crash the system because of a NMI watchdog
     767             :  * soft lockup, for example.
     768             :  *
     769             :  * If multiple CPUs are trying to access the HPET counter at the same time,
     770             :  * we don't actually need to read the counter multiple times. Instead, the
     771             :  * other CPUs can use the counter value read by the first CPU in the group.
     772             :  *
     773             :  * This special feature is only enabled on x86-64 systems. It is unlikely
     774             :  * that 32-bit x86 systems will have enough CPUs to require this feature
     775             :  * with its associated locking overhead. We also need 64-bit atomic read.
     776             :  *
     777             :  * The lock and the HPET value are stored together and can be read in a
     778             :  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
     779             :  * is 32 bits in size.
     780             :  */
     781             : union hpet_lock {
     782             :         struct {
     783             :                 arch_spinlock_t lock;
     784             :                 u32 value;
     785             :         };
     786             :         u64 lockval;
     787             : };
     788             : 
     789             : static union hpet_lock hpet __cacheline_aligned = {
     790             :         { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
     791             : };
     792             : 
     793           0 : static u64 read_hpet(struct clocksource *cs)
     794             : {
     795           0 :         unsigned long flags;
     796           0 :         union hpet_lock old, new;
     797             : 
     798           0 :         BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
     799             : 
     800             :         /*
     801             :          * Read HPET directly if in NMI.
     802             :          */
     803           0 :         if (in_nmi())
     804           0 :                 return (u64)hpet_readl(HPET_COUNTER);
     805             : 
     806             :         /*
     807             :          * Read the current state of the lock and HPET value atomically.
     808             :          */
     809           0 :         old.lockval = READ_ONCE(hpet.lockval);
     810             : 
     811           0 :         if (arch_spin_is_locked(&old.lock))
     812           0 :                 goto contended;
     813             : 
     814           0 :         local_irq_save(flags);
     815           0 :         if (arch_spin_trylock(&hpet.lock)) {
     816           0 :                 new.value = hpet_readl(HPET_COUNTER);
     817             :                 /*
     818             :                  * Use WRITE_ONCE() to prevent store tearing.
     819             :                  */
     820           0 :                 WRITE_ONCE(hpet.value, new.value);
     821           0 :                 arch_spin_unlock(&hpet.lock);
     822           0 :                 local_irq_restore(flags);
     823           0 :                 return (u64)new.value;
     824             :         }
     825           0 :         local_irq_restore(flags);
     826             : 
     827             : contended:
     828             :         /*
     829             :          * Contended case
     830             :          * --------------
     831             :          * Wait until the HPET value change or the lock is free to indicate
     832             :          * its value is up-to-date.
     833             :          *
     834             :          * It is possible that old.value has already contained the latest
     835             :          * HPET value while the lock holder was in the process of releasing
     836             :          * the lock. Checking for lock state change will enable us to return
     837             :          * the value immediately instead of waiting for the next HPET reader
     838             :          * to come along.
     839             :          */
     840           0 :         do {
     841           0 :                 cpu_relax();
     842           0 :                 new.lockval = READ_ONCE(hpet.lockval);
     843           0 :         } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
     844             : 
     845           0 :         return (u64)new.value;
     846             : }
     847             : #else
     848             : /*
     849             :  * For UP or 32-bit.
     850             :  */
     851             : static u64 read_hpet(struct clocksource *cs)
     852             : {
     853             :         return (u64)hpet_readl(HPET_COUNTER);
     854             : }
     855             : #endif
     856             : 
     857             : static struct clocksource clocksource_hpet = {
     858             :         .name           = "hpet",
     859             :         .rating         = 250,
     860             :         .read           = read_hpet,
     861             :         .mask           = HPET_MASK,
     862             :         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
     863             :         .resume         = hpet_resume_counter,
     864             : };
     865             : 
     866             : /*
     867             :  * AMD SB700 based systems with spread spectrum enabled use a SMM based
     868             :  * HPET emulation to provide proper frequency setting.
     869             :  *
     870             :  * On such systems the SMM code is initialized with the first HPET register
     871             :  * access and takes some time to complete. During this time the config
     872             :  * register reads 0xffffffff. We check for max 1000 loops whether the
     873             :  * config register reads a non-0xffffffff value to make sure that the
     874             :  * HPET is up and running before we proceed any further.
     875             :  *
     876             :  * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
     877             :  *
     878             :  * On non-SB700 based machines this check is only done once and has no
     879             :  * side effects.
     880             :  */
     881           0 : static bool __init hpet_cfg_working(void)
     882             : {
     883           0 :         int i;
     884             : 
     885           0 :         for (i = 0; i < 1000; i++) {
     886           0 :                 if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
     887             :                         return true;
     888             :         }
     889             : 
     890           0 :         pr_warn("Config register invalid. Disabling HPET\n");
     891           0 :         return false;
     892             : }
     893             : 
     894           0 : static bool __init hpet_counting(void)
     895             : {
     896           0 :         u64 start, now, t1;
     897             : 
     898           0 :         hpet_restart_counter();
     899             : 
     900           0 :         t1 = hpet_readl(HPET_COUNTER);
     901           0 :         start = rdtsc();
     902             : 
     903             :         /*
     904             :          * We don't know the TSC frequency yet, but waiting for
     905             :          * 200000 TSC cycles is safe:
     906             :          * 4 GHz == 50us
     907             :          * 1 GHz == 200us
     908             :          */
     909           0 :         do {
     910           0 :                 if (t1 != hpet_readl(HPET_COUNTER))
     911             :                         return true;
     912           0 :                 now = rdtsc();
     913           0 :         } while ((now - start) < 200000UL);
     914             : 
     915           0 :         pr_warn("Counter not counting. HPET disabled\n");
     916           0 :         return false;
     917             : }
     918             : 
     919             : /**
     920             :  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
     921             :  */
     922           1 : int __init hpet_enable(void)
     923             : {
     924           1 :         u32 hpet_period, cfg, id, irq;
     925           1 :         unsigned int i, channels;
     926           1 :         struct hpet_channel *hc;
     927           1 :         u64 freq;
     928             : 
     929           1 :         if (!is_hpet_capable())
     930             :                 return 0;
     931             : 
     932           0 :         hpet_set_mapping();
     933           0 :         if (!hpet_virt_address)
     934             :                 return 0;
     935             : 
     936             :         /* Validate that the config register is working */
     937           0 :         if (!hpet_cfg_working())
     938           0 :                 goto out_nohpet;
     939             : 
     940             :         /*
     941             :          * Read the period and check for a sane value:
     942             :          */
     943           0 :         hpet_period = hpet_readl(HPET_PERIOD);
     944           0 :         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
     945           0 :                 goto out_nohpet;
     946             : 
     947             :         /* The period is a femtoseconds value. Convert it to a frequency. */
     948           0 :         freq = FSEC_PER_SEC;
     949           0 :         do_div(freq, hpet_period);
     950           0 :         hpet_freq = freq;
     951             : 
     952             :         /*
     953             :          * Read the HPET ID register to retrieve the IRQ routing
     954             :          * information and the number of channels
     955             :          */
     956           0 :         id = hpet_readl(HPET_ID);
     957           0 :         hpet_print_config();
     958             : 
     959             :         /* This is the HPET channel number which is zero based */
     960           0 :         channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
     961             : 
     962             :         /*
     963             :          * The legacy routing mode needs at least two channels, tick timer
     964             :          * and the rtc emulation channel.
     965             :          */
     966           0 :         if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
     967           0 :                 goto out_nohpet;
     968             : 
     969           0 :         hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
     970           0 :         if (!hc) {
     971           0 :                 pr_warn("Disabling HPET.\n");
     972           0 :                 goto out_nohpet;
     973             :         }
     974           0 :         hpet_base.channels = hc;
     975           0 :         hpet_base.nr_channels = channels;
     976             : 
     977             :         /* Read, store and sanitize the global configuration */
     978           0 :         cfg = hpet_readl(HPET_CFG);
     979           0 :         hpet_base.boot_cfg = cfg;
     980           0 :         cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
     981           0 :         hpet_writel(cfg, HPET_CFG);
     982           0 :         if (cfg)
     983           0 :                 pr_warn("Global config: Unknown bits %#x\n", cfg);
     984             : 
     985             :         /* Read, store and sanitize the per channel configuration */
     986           0 :         for (i = 0; i < channels; i++, hc++) {
     987           0 :                 hc->num = i;
     988             : 
     989           0 :                 cfg = hpet_readl(HPET_Tn_CFG(i));
     990           0 :                 hc->boot_cfg = cfg;
     991           0 :                 irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
     992           0 :                 hc->irq = irq;
     993             : 
     994           0 :                 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
     995           0 :                 hpet_writel(cfg, HPET_Tn_CFG(i));
     996             : 
     997           0 :                 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
     998             :                          | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
     999             :                          | HPET_TN_FSB | HPET_TN_FSB_CAP);
    1000           0 :                 if (cfg)
    1001           0 :                         pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
    1002             :         }
    1003           0 :         hpet_print_config();
    1004             : 
    1005             :         /*
    1006             :          * Validate that the counter is counting. This needs to be done
    1007             :          * after sanitizing the config registers to properly deal with
    1008             :          * force enabled HPETs.
    1009             :          */
    1010           0 :         if (!hpet_counting())
    1011           0 :                 goto out_nohpet;
    1012             : 
    1013           0 :         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
    1014             : 
    1015           0 :         if (id & HPET_ID_LEGSUP) {
    1016           0 :                 hpet_legacy_clockevent_register(&hpet_base.channels[0]);
    1017           0 :                 hpet_base.channels[0].mode = HPET_MODE_LEGACY;
    1018           0 :                 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
    1019           0 :                         hpet_base.channels[1].mode = HPET_MODE_LEGACY;
    1020           0 :                 return 1;
    1021             :         }
    1022             :         return 0;
    1023             : 
    1024           0 : out_nohpet:
    1025           0 :         kfree(hpet_base.channels);
    1026           0 :         hpet_base.channels = NULL;
    1027           0 :         hpet_base.nr_channels = 0;
    1028           0 :         hpet_clear_mapping();
    1029           0 :         hpet_address = 0;
    1030           0 :         return 0;
    1031             : }
    1032             : 
    1033             : /*
    1034             :  * The late initialization runs after the PCI quirks have been invoked
    1035             :  * which might have detected a system on which the HPET can be enforced.
    1036             :  *
    1037             :  * Also, the MSI machinery is not working yet when the HPET is initialized
    1038             :  * early.
    1039             :  *
    1040             :  * If the HPET is enabled, then:
    1041             :  *
    1042             :  *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
    1043             :  *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
    1044             :  *  3) Setup /dev/hpet if CONFIG_HPET=y
    1045             :  *  4) Register hotplug callbacks when clockevents are available
    1046             :  */
    1047           1 : static __init int hpet_late_init(void)
    1048             : {
    1049           1 :         int ret;
    1050             : 
    1051           1 :         if (!hpet_address) {
    1052           1 :                 if (!force_hpet_address)
    1053             :                         return -ENODEV;
    1054             : 
    1055           0 :                 hpet_address = force_hpet_address;
    1056           0 :                 hpet_enable();
    1057             :         }
    1058             : 
    1059           0 :         if (!hpet_virt_address)
    1060             :                 return -ENODEV;
    1061             : 
    1062           0 :         hpet_select_device_channel();
    1063           0 :         hpet_select_clockevents();
    1064           0 :         hpet_reserve_platform_timers();
    1065           0 :         hpet_print_config();
    1066             : 
    1067           0 :         if (!hpet_base.nr_clockevents)
    1068             :                 return 0;
    1069             : 
    1070           0 :         ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
    1071             :                                 hpet_cpuhp_online, NULL);
    1072           0 :         if (ret)
    1073             :                 return ret;
    1074           0 :         ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
    1075             :                                 hpet_cpuhp_dead);
    1076           0 :         if (ret)
    1077           0 :                 goto err_cpuhp;
    1078             :         return 0;
    1079             : 
    1080           0 : err_cpuhp:
    1081           0 :         cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
    1082           0 :         return ret;
    1083             : }
    1084             : fs_initcall(hpet_late_init);
    1085             : 
    1086           0 : void hpet_disable(void)
    1087             : {
    1088           0 :         unsigned int i;
    1089           0 :         u32 cfg;
    1090             : 
    1091           0 :         if (!is_hpet_capable() || !hpet_virt_address)
    1092             :                 return;
    1093             : 
    1094             :         /* Restore boot configuration with the enable bit cleared */
    1095           0 :         cfg = hpet_base.boot_cfg;
    1096           0 :         cfg &= ~HPET_CFG_ENABLE;
    1097           0 :         hpet_writel(cfg, HPET_CFG);
    1098             : 
    1099             :         /* Restore the channel boot configuration */
    1100           0 :         for (i = 0; i < hpet_base.nr_channels; i++)
    1101           0 :                 hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
    1102             : 
    1103             :         /* If the HPET was enabled at boot time, reenable it */
    1104           0 :         if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
    1105           0 :                 hpet_writel(hpet_base.boot_cfg, HPET_CFG);
    1106             : }
    1107             : 
    1108             : #ifdef CONFIG_HPET_EMULATE_RTC
    1109             : 
    1110             : /*
    1111             :  * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
    1112             :  * is enabled, we support RTC interrupt functionality in software.
    1113             :  *
    1114             :  * RTC has 3 kinds of interrupts:
    1115             :  *
    1116             :  *  1) Update Interrupt - generate an interrupt, every second, when the
    1117             :  *     RTC clock is updated
    1118             :  *  2) Alarm Interrupt - generate an interrupt at a specific time of day
    1119             :  *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
    1120             :  *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
    1121             :  *
    1122             :  * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
    1123             :  * DEFAULT_RTC_INT_FREQ.
    1124             :  *
    1125             :  * The exact frequency is a tradeoff between accuracy and interrupt overhead.
    1126             :  *
    1127             :  * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
    1128             :  * if it's higher.
    1129             :  */
    1130             : #include <linux/mc146818rtc.h>
    1131             : #include <linux/rtc.h>
    1132             : 
    1133             : #define DEFAULT_RTC_INT_FREQ    64
    1134             : #define DEFAULT_RTC_SHIFT       6
    1135             : #define RTC_NUM_INTS            1
    1136             : 
    1137             : static unsigned long hpet_rtc_flags;
    1138             : static int hpet_prev_update_sec;
    1139             : static struct rtc_time hpet_alarm_time;
    1140             : static unsigned long hpet_pie_count;
    1141             : static u32 hpet_t1_cmp;
    1142             : static u32 hpet_default_delta;
    1143             : static u32 hpet_pie_delta;
    1144             : static unsigned long hpet_pie_limit;
    1145             : 
    1146             : static rtc_irq_handler irq_handler;
    1147             : 
    1148             : /*
    1149             :  * Check that the HPET counter c1 is ahead of c2
    1150             :  */
    1151           0 : static inline int hpet_cnt_ahead(u32 c1, u32 c2)
    1152             : {
    1153           0 :         return (s32)(c2 - c1) < 0;
    1154             : }
    1155             : 
    1156             : /*
    1157             :  * Registers a IRQ handler.
    1158             :  */
    1159           0 : int hpet_register_irq_handler(rtc_irq_handler handler)
    1160             : {
    1161           0 :         if (!is_hpet_enabled())
    1162             :                 return -ENODEV;
    1163           0 :         if (irq_handler)
    1164             :                 return -EBUSY;
    1165             : 
    1166           0 :         irq_handler = handler;
    1167             : 
    1168           0 :         return 0;
    1169             : }
    1170             : EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
    1171             : 
    1172             : /*
    1173             :  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
    1174             :  * and does cleanup.
    1175             :  */
    1176           0 : void hpet_unregister_irq_handler(rtc_irq_handler handler)
    1177             : {
    1178           0 :         if (!is_hpet_enabled())
    1179             :                 return;
    1180             : 
    1181           0 :         irq_handler = NULL;
    1182           0 :         hpet_rtc_flags = 0;
    1183             : }
    1184             : EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
    1185             : 
    1186             : /*
    1187             :  * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
    1188             :  * is not supported by all HPET implementations for channel 1.
    1189             :  *
    1190             :  * hpet_rtc_timer_init() is called when the rtc is initialized.
    1191             :  */
    1192           0 : int hpet_rtc_timer_init(void)
    1193             : {
    1194           0 :         unsigned int cfg, cnt, delta;
    1195           0 :         unsigned long flags;
    1196             : 
    1197           0 :         if (!is_hpet_enabled())
    1198             :                 return 0;
    1199             : 
    1200           0 :         if (!hpet_default_delta) {
    1201           0 :                 struct clock_event_device *evt = &hpet_base.channels[0].evt;
    1202           0 :                 uint64_t clc;
    1203             : 
    1204           0 :                 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
    1205           0 :                 clc >>= evt->shift + DEFAULT_RTC_SHIFT;
    1206           0 :                 hpet_default_delta = clc;
    1207             :         }
    1208             : 
    1209           0 :         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
    1210           0 :                 delta = hpet_default_delta;
    1211             :         else
    1212           0 :                 delta = hpet_pie_delta;
    1213             : 
    1214           0 :         local_irq_save(flags);
    1215             : 
    1216           0 :         cnt = delta + hpet_readl(HPET_COUNTER);
    1217           0 :         hpet_writel(cnt, HPET_T1_CMP);
    1218           0 :         hpet_t1_cmp = cnt;
    1219             : 
    1220           0 :         cfg = hpet_readl(HPET_T1_CFG);
    1221           0 :         cfg &= ~HPET_TN_PERIODIC;
    1222           0 :         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
    1223           0 :         hpet_writel(cfg, HPET_T1_CFG);
    1224             : 
    1225           0 :         local_irq_restore(flags);
    1226             : 
    1227             :         return 1;
    1228             : }
    1229             : EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
    1230             : 
    1231           0 : static void hpet_disable_rtc_channel(void)
    1232             : {
    1233           0 :         u32 cfg = hpet_readl(HPET_T1_CFG);
    1234             : 
    1235           0 :         cfg &= ~HPET_TN_ENABLE;
    1236           0 :         hpet_writel(cfg, HPET_T1_CFG);
    1237           0 : }
    1238             : 
    1239             : /*
    1240             :  * The functions below are called from rtc driver.
    1241             :  * Return 0 if HPET is not being used.
    1242             :  * Otherwise do the necessary changes and return 1.
    1243             :  */
    1244           0 : int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
    1245             : {
    1246           0 :         if (!is_hpet_enabled())
    1247             :                 return 0;
    1248             : 
    1249           0 :         hpet_rtc_flags &= ~bit_mask;
    1250           0 :         if (unlikely(!hpet_rtc_flags))
    1251           0 :                 hpet_disable_rtc_channel();
    1252             : 
    1253             :         return 1;
    1254             : }
    1255             : EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
    1256             : 
    1257           0 : int hpet_set_rtc_irq_bit(unsigned long bit_mask)
    1258             : {
    1259           0 :         unsigned long oldbits = hpet_rtc_flags;
    1260             : 
    1261           0 :         if (!is_hpet_enabled())
    1262             :                 return 0;
    1263             : 
    1264           0 :         hpet_rtc_flags |= bit_mask;
    1265             : 
    1266           0 :         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
    1267           0 :                 hpet_prev_update_sec = -1;
    1268             : 
    1269           0 :         if (!oldbits)
    1270           0 :                 hpet_rtc_timer_init();
    1271             : 
    1272             :         return 1;
    1273             : }
    1274             : EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
    1275             : 
    1276           0 : int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
    1277             : {
    1278           0 :         if (!is_hpet_enabled())
    1279             :                 return 0;
    1280             : 
    1281           0 :         hpet_alarm_time.tm_hour = hrs;
    1282           0 :         hpet_alarm_time.tm_min = min;
    1283           0 :         hpet_alarm_time.tm_sec = sec;
    1284             : 
    1285           0 :         return 1;
    1286             : }
    1287             : EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
    1288             : 
    1289           0 : int hpet_set_periodic_freq(unsigned long freq)
    1290             : {
    1291           0 :         uint64_t clc;
    1292             : 
    1293           0 :         if (!is_hpet_enabled())
    1294             :                 return 0;
    1295             : 
    1296           0 :         if (freq <= DEFAULT_RTC_INT_FREQ) {
    1297           0 :                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
    1298             :         } else {
    1299           0 :                 struct clock_event_device *evt = &hpet_base.channels[0].evt;
    1300             : 
    1301           0 :                 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
    1302           0 :                 do_div(clc, freq);
    1303           0 :                 clc >>= evt->shift;
    1304           0 :                 hpet_pie_delta = clc;
    1305           0 :                 hpet_pie_limit = 0;
    1306             :         }
    1307             : 
    1308             :         return 1;
    1309             : }
    1310             : EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
    1311             : 
    1312           0 : int hpet_rtc_dropped_irq(void)
    1313             : {
    1314           0 :         return is_hpet_enabled();
    1315             : }
    1316             : EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
    1317             : 
    1318           0 : static void hpet_rtc_timer_reinit(void)
    1319             : {
    1320           0 :         unsigned int delta;
    1321           0 :         int lost_ints = -1;
    1322             : 
    1323           0 :         if (unlikely(!hpet_rtc_flags))
    1324           0 :                 hpet_disable_rtc_channel();
    1325             : 
    1326           0 :         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
    1327           0 :                 delta = hpet_default_delta;
    1328             :         else
    1329           0 :                 delta = hpet_pie_delta;
    1330             : 
    1331             :         /*
    1332             :          * Increment the comparator value until we are ahead of the
    1333             :          * current count.
    1334             :          */
    1335           0 :         do {
    1336           0 :                 hpet_t1_cmp += delta;
    1337           0 :                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
    1338           0 :                 lost_ints++;
    1339           0 :         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
    1340             : 
    1341           0 :         if (lost_ints) {
    1342           0 :                 if (hpet_rtc_flags & RTC_PIE)
    1343           0 :                         hpet_pie_count += lost_ints;
    1344           0 :                 if (printk_ratelimit())
    1345           0 :                         pr_warn("Lost %d RTC interrupts\n", lost_ints);
    1346             :         }
    1347           0 : }
    1348             : 
    1349           0 : irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
    1350             : {
    1351           0 :         struct rtc_time curr_time;
    1352           0 :         unsigned long rtc_int_flag = 0;
    1353             : 
    1354           0 :         hpet_rtc_timer_reinit();
    1355           0 :         memset(&curr_time, 0, sizeof(struct rtc_time));
    1356             : 
    1357           0 :         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
    1358           0 :                 mc146818_get_time(&curr_time);
    1359             : 
    1360           0 :         if (hpet_rtc_flags & RTC_UIE &&
    1361           0 :             curr_time.tm_sec != hpet_prev_update_sec) {
    1362           0 :                 if (hpet_prev_update_sec >= 0)
    1363           0 :                         rtc_int_flag = RTC_UF;
    1364           0 :                 hpet_prev_update_sec = curr_time.tm_sec;
    1365             :         }
    1366             : 
    1367           0 :         if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
    1368           0 :                 rtc_int_flag |= RTC_PF;
    1369           0 :                 hpet_pie_count = 0;
    1370             :         }
    1371             : 
    1372           0 :         if (hpet_rtc_flags & RTC_AIE &&
    1373           0 :             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
    1374           0 :             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
    1375           0 :             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
    1376           0 :                 rtc_int_flag |= RTC_AF;
    1377             : 
    1378           0 :         if (rtc_int_flag) {
    1379           0 :                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
    1380           0 :                 if (irq_handler)
    1381           0 :                         irq_handler(rtc_int_flag, dev_id);
    1382             :         }
    1383           0 :         return IRQ_HANDLED;
    1384             : }
    1385             : EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
    1386             : #endif

Generated by: LCOV version 1.14