Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 :
4 : #include <linux/errno.h>
5 : #include <linux/kernel.h>
6 : #include <linux/mm.h>
7 : #include <linux/smp.h>
8 : #include <linux/prctl.h>
9 : #include <linux/slab.h>
10 : #include <linux/sched.h>
11 : #include <linux/sched/idle.h>
12 : #include <linux/sched/debug.h>
13 : #include <linux/sched/task.h>
14 : #include <linux/sched/task_stack.h>
15 : #include <linux/init.h>
16 : #include <linux/export.h>
17 : #include <linux/pm.h>
18 : #include <linux/tick.h>
19 : #include <linux/random.h>
20 : #include <linux/user-return-notifier.h>
21 : #include <linux/dmi.h>
22 : #include <linux/utsname.h>
23 : #include <linux/stackprotector.h>
24 : #include <linux/cpuidle.h>
25 : #include <linux/acpi.h>
26 : #include <linux/elf-randomize.h>
27 : #include <trace/events/power.h>
28 : #include <linux/hw_breakpoint.h>
29 : #include <asm/cpu.h>
30 : #include <asm/apic.h>
31 : #include <linux/uaccess.h>
32 : #include <asm/mwait.h>
33 : #include <asm/fpu/internal.h>
34 : #include <asm/debugreg.h>
35 : #include <asm/nmi.h>
36 : #include <asm/tlbflush.h>
37 : #include <asm/mce.h>
38 : #include <asm/vm86.h>
39 : #include <asm/switch_to.h>
40 : #include <asm/desc.h>
41 : #include <asm/prctl.h>
42 : #include <asm/spec-ctrl.h>
43 : #include <asm/io_bitmap.h>
44 : #include <asm/proto.h>
45 : #include <asm/frame.h>
46 :
47 : #include "process.h"
48 :
49 : /*
50 : * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51 : * no more per-task TSS's. The TSS size is kept cacheline-aligned
52 : * so they are allowed to end up in the .data..cacheline_aligned
53 : * section. Since TSS's are completely CPU-local, we want them
54 : * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55 : */
56 : __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 : .x86_tss = {
58 : /*
59 : * .sp0 is only used when entering ring 0 from a lower
60 : * privilege level. Since the init task never runs anything
61 : * but ring 0 code, there is no need for a valid value here.
62 : * Poison it.
63 : */
64 : .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65 :
66 : /*
67 : * .sp1 is cpu_current_top_of_stack. The init task never
68 : * runs user code, but cpu_current_top_of_stack should still
69 : * be well defined before the first context switch.
70 : */
71 : .sp1 = TOP_OF_INIT_STACK,
72 :
73 : #ifdef CONFIG_X86_32
74 : .ss0 = __KERNEL_DS,
75 : .ss1 = __KERNEL_CS,
76 : #endif
77 : .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
78 : },
79 : };
80 : EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81 :
82 : DEFINE_PER_CPU(bool, __tss_limit_invalid);
83 : EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
84 :
85 : /*
86 : * this gets called so that we can store lazy state into memory and copy the
87 : * current task into the new thread.
88 : */
89 2616 : int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 : {
91 2616 : memcpy(dst, src, arch_task_struct_size);
92 : #ifdef CONFIG_VM86
93 : dst->thread.vm86 = NULL;
94 : #endif
95 :
96 2616 : return fpu__copy(dst, src);
97 : }
98 :
99 : /*
100 : * Free thread data structures etc..
101 : */
102 2539 : void exit_thread(struct task_struct *tsk)
103 : {
104 2539 : struct thread_struct *t = &tsk->thread;
105 2539 : struct fpu *fpu = &t->fpu;
106 :
107 2539 : if (test_thread_flag(TIF_IO_BITMAP))
108 2539 : io_bitmap_exit(tsk);
109 :
110 2539 : free_vm86(t);
111 :
112 2539 : fpu__drop(fpu);
113 2539 : }
114 :
115 6 : static int set_new_tls(struct task_struct *p, unsigned long tls)
116 : {
117 6 : struct user_desc __user *utls = (struct user_desc __user *)tls;
118 :
119 6 : if (in_ia32_syscall())
120 0 : return do_set_thread_area(p, -1, utls, 0);
121 : else
122 6 : return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123 : }
124 :
125 2616 : int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126 : struct task_struct *p, unsigned long tls)
127 : {
128 2616 : struct inactive_task_frame *frame;
129 2616 : struct fork_frame *fork_frame;
130 2616 : struct pt_regs *childregs;
131 2616 : int ret = 0;
132 :
133 2616 : childregs = task_pt_regs(p);
134 2616 : fork_frame = container_of(childregs, struct fork_frame, regs);
135 2616 : frame = &fork_frame->frame;
136 :
137 2616 : frame->bp = encode_frame_pointer(childregs);
138 2616 : frame->ret_addr = (unsigned long) ret_from_fork;
139 2616 : p->thread.sp = (unsigned long) fork_frame;
140 2616 : p->thread.io_bitmap = NULL;
141 2616 : memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142 :
143 : #ifdef CONFIG_X86_64
144 2616 : current_save_fsgs();
145 2616 : p->thread.fsindex = current->thread.fsindex;
146 2616 : p->thread.fsbase = current->thread.fsbase;
147 2616 : p->thread.gsindex = current->thread.gsindex;
148 2616 : p->thread.gsbase = current->thread.gsbase;
149 :
150 2616 : savesegment(es, p->thread.es);
151 2616 : savesegment(ds, p->thread.ds);
152 : #else
153 : p->thread.sp0 = (unsigned long) (childregs + 1);
154 : /*
155 : * Clear all status flags including IF and set fixed bit. 64bit
156 : * does not have this initialization as the frame does not contain
157 : * flags. The flags consistency (especially vs. AC) is there
158 : * ensured via objtool, which lacks 32bit support.
159 : */
160 : frame->flags = X86_EFLAGS_FIXED;
161 : #endif
162 :
163 : /* Kernel thread ? */
164 2616 : if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
165 53 : memset(childregs, 0, sizeof(struct pt_regs));
166 53 : kthread_frame_init(frame, sp, arg);
167 53 : return 0;
168 : }
169 :
170 2563 : frame->bx = 0;
171 2563 : *childregs = *current_pt_regs();
172 2563 : childregs->ax = 0;
173 2563 : if (sp)
174 6 : childregs->sp = sp;
175 :
176 : #ifdef CONFIG_X86_32
177 : task_user_gs(p) = get_user_gs(current_pt_regs());
178 : #endif
179 :
180 : /* Set a new TLS for the child thread? */
181 2563 : if (clone_flags & CLONE_SETTLS)
182 6 : ret = set_new_tls(p, tls);
183 :
184 2563 : if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
185 2616 : io_bitmap_share(p);
186 :
187 : return ret;
188 : }
189 :
190 2251 : void flush_thread(void)
191 : {
192 2251 : struct task_struct *tsk = current;
193 :
194 2251 : flush_ptrace_hw_breakpoint(tsk);
195 2251 : memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
196 :
197 2251 : fpu__clear_all(&tsk->thread.fpu);
198 2251 : }
199 :
200 0 : void disable_TSC(void)
201 : {
202 0 : preempt_disable();
203 0 : if (!test_and_set_thread_flag(TIF_NOTSC))
204 : /*
205 : * Must flip the CPU state synchronously with
206 : * TIF_NOTSC in the current running context.
207 : */
208 0 : cr4_set_bits(X86_CR4_TSD);
209 0 : preempt_enable();
210 0 : }
211 :
212 0 : static void enable_TSC(void)
213 : {
214 0 : preempt_disable();
215 0 : if (test_and_clear_thread_flag(TIF_NOTSC))
216 : /*
217 : * Must flip the CPU state synchronously with
218 : * TIF_NOTSC in the current running context.
219 : */
220 0 : cr4_clear_bits(X86_CR4_TSD);
221 0 : preempt_enable();
222 0 : }
223 :
224 0 : int get_tsc_mode(unsigned long adr)
225 : {
226 0 : unsigned int val;
227 :
228 0 : if (test_thread_flag(TIF_NOTSC))
229 : val = PR_TSC_SIGSEGV;
230 : else
231 0 : val = PR_TSC_ENABLE;
232 :
233 0 : return put_user(val, (unsigned int __user *)adr);
234 : }
235 :
236 0 : int set_tsc_mode(unsigned int val)
237 : {
238 0 : if (val == PR_TSC_SIGSEGV)
239 0 : disable_TSC();
240 0 : else if (val == PR_TSC_ENABLE)
241 0 : enable_TSC();
242 : else
243 : return -EINVAL;
244 :
245 : return 0;
246 : }
247 :
248 : DEFINE_PER_CPU(u64, msr_misc_features_shadow);
249 :
250 0 : static void set_cpuid_faulting(bool on)
251 : {
252 0 : u64 msrval;
253 :
254 0 : msrval = this_cpu_read(msr_misc_features_shadow);
255 0 : msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
256 0 : msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
257 0 : this_cpu_write(msr_misc_features_shadow, msrval);
258 0 : wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
259 0 : }
260 :
261 0 : static void disable_cpuid(void)
262 : {
263 0 : preempt_disable();
264 0 : if (!test_and_set_thread_flag(TIF_NOCPUID)) {
265 : /*
266 : * Must flip the CPU state synchronously with
267 : * TIF_NOCPUID in the current running context.
268 : */
269 0 : set_cpuid_faulting(true);
270 : }
271 0 : preempt_enable();
272 0 : }
273 :
274 0 : static void enable_cpuid(void)
275 : {
276 0 : preempt_disable();
277 0 : if (test_and_clear_thread_flag(TIF_NOCPUID)) {
278 : /*
279 : * Must flip the CPU state synchronously with
280 : * TIF_NOCPUID in the current running context.
281 : */
282 0 : set_cpuid_faulting(false);
283 : }
284 0 : preempt_enable();
285 0 : }
286 :
287 0 : static int get_cpuid_mode(void)
288 : {
289 0 : return !test_thread_flag(TIF_NOCPUID);
290 : }
291 :
292 0 : static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
293 : {
294 0 : if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
295 : return -ENODEV;
296 :
297 0 : if (cpuid_enabled)
298 0 : enable_cpuid();
299 : else
300 0 : disable_cpuid();
301 :
302 : return 0;
303 : }
304 :
305 : /*
306 : * Called immediately after a successful exec.
307 : */
308 2251 : void arch_setup_new_exec(void)
309 : {
310 : /* If cpuid was previously disabled for this task, re-enable it. */
311 2251 : if (test_thread_flag(TIF_NOCPUID))
312 0 : enable_cpuid();
313 :
314 : /*
315 : * Don't inherit TIF_SSBD across exec boundary when
316 : * PR_SPEC_DISABLE_NOEXEC is used.
317 : */
318 2251 : if (test_thread_flag(TIF_SSBD) &&
319 0 : task_spec_ssb_noexec(current)) {
320 0 : clear_thread_flag(TIF_SSBD);
321 0 : task_clear_spec_ssb_disable(current);
322 0 : task_clear_spec_ssb_noexec(current);
323 0 : speculation_ctrl_update(task_thread_info(current)->flags);
324 : }
325 2251 : }
326 :
327 : #ifdef CONFIG_X86_IOPL_IOPERM
328 : static inline void switch_to_bitmap(unsigned long tifp)
329 : {
330 : /*
331 : * Invalidate I/O bitmap if the previous task used it. This prevents
332 : * any possible leakage of an active I/O bitmap.
333 : *
334 : * If the next task has an I/O bitmap it will handle it on exit to
335 : * user mode.
336 : */
337 : if (tifp & _TIF_IO_BITMAP)
338 : tss_invalidate_io_bitmap();
339 : }
340 :
341 : static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
342 : {
343 : /*
344 : * Copy at least the byte range of the incoming tasks bitmap which
345 : * covers the permitted I/O ports.
346 : *
347 : * If the previous task which used an I/O bitmap had more bits
348 : * permitted, then the copy needs to cover those as well so they
349 : * get turned off.
350 : */
351 : memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
352 : max(tss->io_bitmap.prev_max, iobm->max));
353 :
354 : /*
355 : * Store the new max and the sequence number of this bitmap
356 : * and a pointer to the bitmap itself.
357 : */
358 : tss->io_bitmap.prev_max = iobm->max;
359 : tss->io_bitmap.prev_sequence = iobm->sequence;
360 : }
361 :
362 : /**
363 : * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
364 : */
365 : void native_tss_update_io_bitmap(void)
366 : {
367 : struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
368 : struct thread_struct *t = ¤t->thread;
369 : u16 *base = &tss->x86_tss.io_bitmap_base;
370 :
371 : if (!test_thread_flag(TIF_IO_BITMAP)) {
372 : native_tss_invalidate_io_bitmap();
373 : return;
374 : }
375 :
376 : if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
377 : *base = IO_BITMAP_OFFSET_VALID_ALL;
378 : } else {
379 : struct io_bitmap *iobm = t->io_bitmap;
380 :
381 : /*
382 : * Only copy bitmap data when the sequence number differs. The
383 : * update time is accounted to the incoming task.
384 : */
385 : if (tss->io_bitmap.prev_sequence != iobm->sequence)
386 : tss_copy_io_bitmap(tss, iobm);
387 :
388 : /* Enable the bitmap */
389 : *base = IO_BITMAP_OFFSET_VALID_MAP;
390 : }
391 :
392 : /*
393 : * Make sure that the TSS limit is covering the IO bitmap. It might have
394 : * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
395 : * access from user space to trigger a #GP because tbe bitmap is outside
396 : * the TSS limit.
397 : */
398 : refresh_tss_limit();
399 : }
400 : #else /* CONFIG_X86_IOPL_IOPERM */
401 0 : static inline void switch_to_bitmap(unsigned long tifp) { }
402 : #endif
403 :
404 : #ifdef CONFIG_SMP
405 :
406 : struct ssb_state {
407 : struct ssb_state *shared_state;
408 : raw_spinlock_t lock;
409 : unsigned int disable_state;
410 : unsigned long local_state;
411 : };
412 :
413 : #define LSTATE_SSB 0
414 :
415 : static DEFINE_PER_CPU(struct ssb_state, ssb_state);
416 :
417 4 : void speculative_store_bypass_ht_init(void)
418 : {
419 4 : struct ssb_state *st = this_cpu_ptr(&ssb_state);
420 4 : unsigned int this_cpu = smp_processor_id();
421 4 : unsigned int cpu;
422 :
423 4 : st->local_state = 0;
424 :
425 : /*
426 : * Shared state setup happens once on the first bringup
427 : * of the CPU. It's not destroyed on CPU hotunplug.
428 : */
429 4 : if (st->shared_state)
430 : return;
431 :
432 4 : raw_spin_lock_init(&st->lock);
433 :
434 : /*
435 : * Go over HT siblings and check whether one of them has set up the
436 : * shared state pointer already.
437 : */
438 12 : for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
439 4 : if (cpu == this_cpu)
440 4 : continue;
441 :
442 0 : if (!per_cpu(ssb_state, cpu).shared_state)
443 0 : continue;
444 :
445 : /* Link it to the state of the sibling: */
446 0 : st->shared_state = per_cpu(ssb_state, cpu).shared_state;
447 0 : return;
448 : }
449 :
450 : /*
451 : * First HT sibling to come up on the core. Link shared state of
452 : * the first HT sibling to itself. The siblings on the same core
453 : * which come up later will see the shared state pointer and link
454 : * themself to the state of this CPU.
455 : */
456 4 : st->shared_state = st;
457 : }
458 :
459 : /*
460 : * Logic is: First HT sibling enables SSBD for both siblings in the core
461 : * and last sibling to disable it, disables it for the whole core. This how
462 : * MSR_SPEC_CTRL works in "hardware":
463 : *
464 : * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
465 : */
466 0 : static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
467 : {
468 0 : struct ssb_state *st = this_cpu_ptr(&ssb_state);
469 0 : u64 msr = x86_amd_ls_cfg_base;
470 :
471 0 : if (!static_cpu_has(X86_FEATURE_ZEN)) {
472 0 : msr |= ssbd_tif_to_amd_ls_cfg(tifn);
473 0 : wrmsrl(MSR_AMD64_LS_CFG, msr);
474 : return;
475 : }
476 :
477 0 : if (tifn & _TIF_SSBD) {
478 : /*
479 : * Since this can race with prctl(), block reentry on the
480 : * same CPU.
481 : */
482 0 : if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
483 : return;
484 :
485 0 : msr |= x86_amd_ls_cfg_ssbd_mask;
486 :
487 0 : raw_spin_lock(&st->shared_state->lock);
488 : /* First sibling enables SSBD: */
489 0 : if (!st->shared_state->disable_state)
490 0 : wrmsrl(MSR_AMD64_LS_CFG, msr);
491 0 : st->shared_state->disable_state++;
492 0 : raw_spin_unlock(&st->shared_state->lock);
493 : } else {
494 0 : if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
495 : return;
496 :
497 0 : raw_spin_lock(&st->shared_state->lock);
498 0 : st->shared_state->disable_state--;
499 0 : if (!st->shared_state->disable_state)
500 0 : wrmsrl(MSR_AMD64_LS_CFG, msr);
501 0 : raw_spin_unlock(&st->shared_state->lock);
502 : }
503 : }
504 : #else
505 : static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
506 : {
507 : u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
508 :
509 : wrmsrl(MSR_AMD64_LS_CFG, msr);
510 : }
511 : #endif
512 :
513 0 : static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
514 : {
515 : /*
516 : * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
517 : * so ssbd_tif_to_spec_ctrl() just works.
518 : */
519 0 : wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
520 : }
521 :
522 : /*
523 : * Update the MSRs managing speculation control, during context switch.
524 : *
525 : * tifp: Previous task's thread flags
526 : * tifn: Next task's thread flags
527 : */
528 0 : static __always_inline void __speculation_ctrl_update(unsigned long tifp,
529 : unsigned long tifn)
530 : {
531 0 : unsigned long tif_diff = tifp ^ tifn;
532 0 : u64 msr = x86_spec_ctrl_base;
533 0 : bool updmsr = false;
534 :
535 0 : lockdep_assert_irqs_disabled();
536 :
537 : /* Handle change of TIF_SSBD depending on the mitigation method. */
538 0 : if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
539 0 : if (tif_diff & _TIF_SSBD)
540 0 : amd_set_ssb_virt_state(tifn);
541 0 : } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
542 0 : if (tif_diff & _TIF_SSBD)
543 0 : amd_set_core_ssb_state(tifn);
544 0 : } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
545 0 : static_cpu_has(X86_FEATURE_AMD_SSBD)) {
546 0 : updmsr |= !!(tif_diff & _TIF_SSBD);
547 0 : msr |= ssbd_tif_to_spec_ctrl(tifn);
548 : }
549 :
550 : /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
551 0 : if (IS_ENABLED(CONFIG_SMP) &&
552 0 : static_branch_unlikely(&switch_to_cond_stibp)) {
553 0 : updmsr |= !!(tif_diff & _TIF_SPEC_IB);
554 0 : msr |= stibp_tif_to_spec_ctrl(tifn);
555 : }
556 :
557 0 : if (updmsr)
558 0 : wrmsrl(MSR_IA32_SPEC_CTRL, msr);
559 : }
560 :
561 0 : static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
562 : {
563 0 : if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
564 0 : if (task_spec_ssb_disable(tsk))
565 0 : set_tsk_thread_flag(tsk, TIF_SSBD);
566 : else
567 0 : clear_tsk_thread_flag(tsk, TIF_SSBD);
568 :
569 0 : if (task_spec_ib_disable(tsk))
570 0 : set_tsk_thread_flag(tsk, TIF_SPEC_IB);
571 : else
572 0 : clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
573 : }
574 : /* Return the updated threadinfo flags*/
575 0 : return task_thread_info(tsk)->flags;
576 : }
577 :
578 0 : void speculation_ctrl_update(unsigned long tif)
579 : {
580 0 : unsigned long flags;
581 :
582 : /* Forced update. Make sure all relevant TIF flags are different */
583 0 : local_irq_save(flags);
584 0 : __speculation_ctrl_update(~tif, tif);
585 0 : local_irq_restore(flags);
586 0 : }
587 :
588 : /* Called from seccomp/prctl update */
589 0 : void speculation_ctrl_update_current(void)
590 : {
591 0 : preempt_disable();
592 0 : speculation_ctrl_update(speculation_ctrl_update_tif(current));
593 0 : preempt_enable();
594 0 : }
595 :
596 0 : static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
597 : {
598 0 : unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
599 :
600 0 : newval = cr4 ^ mask;
601 0 : if (newval != cr4) {
602 0 : this_cpu_write(cpu_tlbstate.cr4, newval);
603 0 : __write_cr4(newval);
604 : }
605 : }
606 :
607 0 : void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
608 : {
609 0 : unsigned long tifp, tifn;
610 :
611 0 : tifn = READ_ONCE(task_thread_info(next_p)->flags);
612 0 : tifp = READ_ONCE(task_thread_info(prev_p)->flags);
613 :
614 0 : switch_to_bitmap(tifp);
615 :
616 0 : propagate_user_return_notify(prev_p, next_p);
617 :
618 0 : if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
619 : arch_has_block_step()) {
620 0 : unsigned long debugctl, msk;
621 :
622 0 : rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
623 0 : debugctl &= ~DEBUGCTLMSR_BTF;
624 0 : msk = tifn & _TIF_BLOCKSTEP;
625 0 : debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
626 0 : wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
627 : }
628 :
629 0 : if ((tifp ^ tifn) & _TIF_NOTSC)
630 0 : cr4_toggle_bits_irqsoff(X86_CR4_TSD);
631 :
632 0 : if ((tifp ^ tifn) & _TIF_NOCPUID)
633 0 : set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
634 :
635 0 : if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
636 0 : __speculation_ctrl_update(tifp, tifn);
637 : } else {
638 0 : speculation_ctrl_update_tif(prev_p);
639 0 : tifn = speculation_ctrl_update_tif(next_p);
640 :
641 : /* Enforce MSR update to ensure consistent state */
642 0 : __speculation_ctrl_update(~tifn, tifn);
643 : }
644 :
645 0 : if ((tifp ^ tifn) & _TIF_SLD)
646 0 : switch_to_sld(tifn);
647 0 : }
648 :
649 : /*
650 : * Idle related variables and functions
651 : */
652 : unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
653 : EXPORT_SYMBOL(boot_option_idle_override);
654 :
655 : static void (*x86_idle)(void);
656 :
657 : #ifndef CONFIG_SMP
658 : static inline void play_dead(void)
659 : {
660 : BUG();
661 : }
662 : #endif
663 :
664 51710 : void arch_cpu_idle_enter(void)
665 : {
666 51710 : tsc_verify_tsc_adjust(false);
667 51782 : local_touch_nmi();
668 51681 : }
669 :
670 0 : void arch_cpu_idle_dead(void)
671 : {
672 0 : play_dead();
673 0 : }
674 :
675 : /*
676 : * Called from the generic idle code.
677 : */
678 51811 : void arch_cpu_idle(void)
679 : {
680 51811 : x86_idle();
681 51472 : }
682 :
683 : /*
684 : * We use this if we don't have any better idle routine..
685 : */
686 51730 : void __cpuidle default_idle(void)
687 : {
688 51730 : raw_safe_halt();
689 51685 : }
690 : #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
691 : EXPORT_SYMBOL(default_idle);
692 : #endif
693 :
694 : #ifdef CONFIG_XEN
695 : bool xen_set_default_idle(void)
696 : {
697 : bool ret = !!x86_idle;
698 :
699 : x86_idle = default_idle;
700 :
701 : return ret;
702 : }
703 : #endif
704 :
705 0 : void stop_this_cpu(void *dummy)
706 : {
707 0 : local_irq_disable();
708 : /*
709 : * Remove this CPU:
710 : */
711 0 : set_cpu_online(smp_processor_id(), false);
712 0 : disable_local_APIC();
713 0 : mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
714 :
715 : /*
716 : * Use wbinvd on processors that support SME. This provides support
717 : * for performing a successful kexec when going from SME inactive
718 : * to SME active (or vice-versa). The cache must be cleared so that
719 : * if there are entries with the same physical address, both with and
720 : * without the encryption bit, they don't race each other when flushed
721 : * and potentially end up with the wrong entry being committed to
722 : * memory.
723 : */
724 0 : if (boot_cpu_has(X86_FEATURE_SME))
725 0 : native_wbinvd();
726 0 : for (;;) {
727 : /*
728 : * Use native_halt() so that memory contents don't change
729 : * (stack usage and variables) after possibly issuing the
730 : * native_wbinvd() above.
731 : */
732 0 : native_halt();
733 : }
734 : }
735 :
736 : /*
737 : * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
738 : * states (local apic timer and TSC stop).
739 : *
740 : * XXX this function is completely buggered vs RCU and tracing.
741 : */
742 0 : static void amd_e400_idle(void)
743 : {
744 : /*
745 : * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
746 : * gets set after static_cpu_has() places have been converted via
747 : * alternatives.
748 : */
749 0 : if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
750 0 : default_idle();
751 0 : return;
752 : }
753 :
754 0 : tick_broadcast_enter();
755 :
756 0 : default_idle();
757 :
758 : /*
759 : * The switch back from broadcast mode needs to be called with
760 : * interrupts disabled.
761 : */
762 0 : raw_local_irq_disable();
763 0 : tick_broadcast_exit();
764 0 : raw_local_irq_enable();
765 : }
766 :
767 : /*
768 : * Intel Core2 and older machines prefer MWAIT over HALT for C1.
769 : * We can't rely on cpuidle installing MWAIT, because it will not load
770 : * on systems that support only C1 -- so the boot default must be MWAIT.
771 : *
772 : * Some AMD machines are the opposite, they depend on using HALT.
773 : *
774 : * So for default C1, which is used during boot until cpuidle loads,
775 : * use MWAIT-C1 on Intel HW that has it, else use HALT.
776 : */
777 1 : static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
778 : {
779 1 : if (c->x86_vendor != X86_VENDOR_INTEL)
780 : return 0;
781 :
782 1 : if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
783 1 : return 0;
784 :
785 : return 1;
786 : }
787 :
788 : /*
789 : * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
790 : * with interrupts enabled and no flags, which is backwards compatible with the
791 : * original MWAIT implementation.
792 : */
793 0 : static __cpuidle void mwait_idle(void)
794 : {
795 0 : if (!current_set_polling_and_test()) {
796 0 : if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
797 0 : mb(); /* quirk */
798 0 : clflush((void *)¤t_thread_info()->flags);
799 0 : mb(); /* quirk */
800 : }
801 :
802 0 : __monitor((void *)¤t_thread_info()->flags, 0, 0);
803 0 : if (!need_resched())
804 0 : __sti_mwait(0, 0);
805 : else
806 0 : raw_local_irq_enable();
807 : } else {
808 0 : raw_local_irq_enable();
809 : }
810 0 : __current_clr_polling();
811 0 : }
812 :
813 4 : void select_idle_routine(const struct cpuinfo_x86 *c)
814 : {
815 : #ifdef CONFIG_SMP
816 4 : if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
817 0 : pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
818 : #endif
819 4 : if (x86_idle || boot_option_idle_override == IDLE_POLL)
820 : return;
821 :
822 1 : if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
823 0 : pr_info("using AMD E400 aware idle routine\n");
824 0 : x86_idle = amd_e400_idle;
825 1 : } else if (prefer_mwait_c1_over_halt(c)) {
826 0 : pr_info("using mwait in idle threads\n");
827 0 : x86_idle = mwait_idle;
828 : } else
829 1 : x86_idle = default_idle;
830 : }
831 :
832 4 : void amd_e400_c1e_apic_setup(void)
833 : {
834 4 : if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
835 0 : pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
836 0 : local_irq_disable();
837 0 : tick_broadcast_force();
838 0 : local_irq_enable();
839 : }
840 4 : }
841 :
842 1 : void __init arch_post_acpi_subsys_init(void)
843 : {
844 1 : u32 lo, hi;
845 :
846 1 : if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
847 : return;
848 :
849 : /*
850 : * AMD E400 detection needs to happen after ACPI has been enabled. If
851 : * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
852 : * MSR_K8_INT_PENDING_MSG.
853 : */
854 0 : rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
855 0 : if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
856 : return;
857 :
858 0 : boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
859 :
860 0 : if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
861 0 : mark_tsc_unstable("TSC halt in AMD C1E");
862 0 : pr_info("System has AMD C1E enabled\n");
863 : }
864 :
865 0 : static int __init idle_setup(char *str)
866 : {
867 0 : if (!str)
868 : return -EINVAL;
869 :
870 0 : if (!strcmp(str, "poll")) {
871 0 : pr_info("using polling idle threads\n");
872 0 : boot_option_idle_override = IDLE_POLL;
873 0 : cpu_idle_poll_ctrl(true);
874 0 : } else if (!strcmp(str, "halt")) {
875 : /*
876 : * When the boot option of idle=halt is added, halt is
877 : * forced to be used for CPU idle. In such case CPU C2/C3
878 : * won't be used again.
879 : * To continue to load the CPU idle driver, don't touch
880 : * the boot_option_idle_override.
881 : */
882 0 : x86_idle = default_idle;
883 0 : boot_option_idle_override = IDLE_HALT;
884 0 : } else if (!strcmp(str, "nomwait")) {
885 : /*
886 : * If the boot option of "idle=nomwait" is added,
887 : * it means that mwait will be disabled for CPU C2/C3
888 : * states. In such case it won't touch the variable
889 : * of boot_option_idle_override.
890 : */
891 0 : boot_option_idle_override = IDLE_NOMWAIT;
892 : } else
893 : return -1;
894 :
895 : return 0;
896 : }
897 : early_param("idle", idle_setup);
898 :
899 4502 : unsigned long arch_align_stack(unsigned long sp)
900 : {
901 4502 : if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
902 4502 : sp -= get_random_int() % 8192;
903 4502 : return sp & ~0xf;
904 : }
905 :
906 2251 : unsigned long arch_randomize_brk(struct mm_struct *mm)
907 : {
908 2251 : return randomize_page(mm->brk, 0x02000000);
909 : }
910 :
911 : /*
912 : * Called from fs/proc with a reference on @p to find the function
913 : * which called into schedule(). This needs to be done carefully
914 : * because the task might wake up and we might look at a stack
915 : * changing under us.
916 : */
917 141 : unsigned long get_wchan(struct task_struct *p)
918 : {
919 141 : unsigned long start, bottom, top, sp, fp, ip, ret = 0;
920 141 : int count = 0;
921 :
922 141 : if (p == current || p->state == TASK_RUNNING)
923 : return 0;
924 :
925 54 : if (!try_get_task_stack(p))
926 : return 0;
927 :
928 54 : start = (unsigned long)task_stack_page(p);
929 54 : if (!start)
930 0 : goto out;
931 :
932 : /*
933 : * Layout of the stack page:
934 : *
935 : * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
936 : * PADDING
937 : * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
938 : * stack
939 : * ----------- bottom = start
940 : *
941 : * The tasks stack pointer points at the location where the
942 : * framepointer is stored. The data on the stack is:
943 : * ... IP FP ... IP FP
944 : *
945 : * We need to read FP and IP, so we need to adjust the upper
946 : * bound by another unsigned long.
947 : */
948 54 : top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
949 54 : top -= 2 * sizeof(unsigned long);
950 54 : bottom = start;
951 :
952 54 : sp = READ_ONCE(p->thread.sp);
953 54 : if (sp < bottom || sp > top)
954 0 : goto out;
955 :
956 54 : fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
957 119 : do {
958 119 : if (fp < bottom || fp > top)
959 2 : goto out;
960 117 : ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
961 117 : if (!in_sched_functions(ip)) {
962 52 : ret = ip;
963 52 : goto out;
964 : }
965 65 : fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
966 65 : } while (count++ < 16 && p->state != TASK_RUNNING);
967 :
968 0 : out:
969 54 : put_task_stack(p);
970 54 : return ret;
971 : }
972 :
973 0 : long do_arch_prctl_common(struct task_struct *task, int option,
974 : unsigned long cpuid_enabled)
975 : {
976 0 : switch (option) {
977 0 : case ARCH_GET_CPUID:
978 0 : return get_cpuid_mode();
979 0 : case ARCH_SET_CPUID:
980 0 : return set_cpuid_mode(task, cpuid_enabled);
981 : }
982 :
983 : return -EINVAL;
984 : }
|