Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Copyright (C) 1995 Linus Torvalds
4 : *
5 : * This file contains the setup_arch() code, which handles the architecture-dependent
6 : * parts of early kernel initialization.
7 : */
8 : #include <linux/console.h>
9 : #include <linux/crash_dump.h>
10 : #include <linux/dma-map-ops.h>
11 : #include <linux/dmi.h>
12 : #include <linux/efi.h>
13 : #include <linux/init_ohci1394_dma.h>
14 : #include <linux/initrd.h>
15 : #include <linux/iscsi_ibft.h>
16 : #include <linux/memblock.h>
17 : #include <linux/pci.h>
18 : #include <linux/root_dev.h>
19 : #include <linux/hugetlb.h>
20 : #include <linux/tboot.h>
21 : #include <linux/usb/xhci-dbgp.h>
22 : #include <linux/static_call.h>
23 : #include <linux/swiotlb.h>
24 :
25 : #include <uapi/linux/mount.h>
26 :
27 : #include <xen/xen.h>
28 :
29 : #include <asm/apic.h>
30 : #include <asm/numa.h>
31 : #include <asm/bios_ebda.h>
32 : #include <asm/bugs.h>
33 : #include <asm/cpu.h>
34 : #include <asm/efi.h>
35 : #include <asm/gart.h>
36 : #include <asm/hypervisor.h>
37 : #include <asm/io_apic.h>
38 : #include <asm/kasan.h>
39 : #include <asm/kaslr.h>
40 : #include <asm/mce.h>
41 : #include <asm/mtrr.h>
42 : #include <asm/realmode.h>
43 : #include <asm/olpc_ofw.h>
44 : #include <asm/pci-direct.h>
45 : #include <asm/prom.h>
46 : #include <asm/proto.h>
47 : #include <asm/unwind.h>
48 : #include <asm/vsyscall.h>
49 : #include <linux/vmalloc.h>
50 :
51 : /*
52 : * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
53 : * max_pfn_mapped: highest directly mapped pfn > 4 GB
54 : *
55 : * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
56 : * represented by pfn_mapped[].
57 : */
58 : unsigned long max_low_pfn_mapped;
59 : unsigned long max_pfn_mapped;
60 :
61 : #ifdef CONFIG_DMI
62 : RESERVE_BRK(dmi_alloc, 65536);
63 : #endif
64 :
65 :
66 : /*
67 : * Range of the BSS area. The size of the BSS area is determined
68 : * at link time, with RESERVE_BRK*() facility reserving additional
69 : * chunks.
70 : */
71 : unsigned long _brk_start = (unsigned long)__brk_base;
72 : unsigned long _brk_end = (unsigned long)__brk_base;
73 :
74 : struct boot_params boot_params;
75 :
76 : /*
77 : * These are the four main kernel memory regions, we put them into
78 : * the resource tree so that kdump tools and other debugging tools
79 : * recover it:
80 : */
81 :
82 : static struct resource rodata_resource = {
83 : .name = "Kernel rodata",
84 : .start = 0,
85 : .end = 0,
86 : .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
87 : };
88 :
89 : static struct resource data_resource = {
90 : .name = "Kernel data",
91 : .start = 0,
92 : .end = 0,
93 : .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
94 : };
95 :
96 : static struct resource code_resource = {
97 : .name = "Kernel code",
98 : .start = 0,
99 : .end = 0,
100 : .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
101 : };
102 :
103 : static struct resource bss_resource = {
104 : .name = "Kernel bss",
105 : .start = 0,
106 : .end = 0,
107 : .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
108 : };
109 :
110 :
111 : #ifdef CONFIG_X86_32
112 : /* CPU data as detected by the assembly code in head_32.S */
113 : struct cpuinfo_x86 new_cpu_data;
114 :
115 : /* Common CPU data for all CPUs */
116 : struct cpuinfo_x86 boot_cpu_data __read_mostly;
117 : EXPORT_SYMBOL(boot_cpu_data);
118 :
119 : unsigned int def_to_bigsmp;
120 :
121 : struct apm_info apm_info;
122 : EXPORT_SYMBOL(apm_info);
123 :
124 : #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
125 : defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
126 : struct ist_info ist_info;
127 : EXPORT_SYMBOL(ist_info);
128 : #else
129 : struct ist_info ist_info;
130 : #endif
131 :
132 : #else
133 : struct cpuinfo_x86 boot_cpu_data __read_mostly;
134 : EXPORT_SYMBOL(boot_cpu_data);
135 : #endif
136 :
137 :
138 : #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
139 : __visible unsigned long mmu_cr4_features __ro_after_init;
140 : #else
141 : __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
142 : #endif
143 :
144 : /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
145 : int bootloader_type, bootloader_version;
146 :
147 : /*
148 : * Setup options
149 : */
150 : struct screen_info screen_info;
151 : EXPORT_SYMBOL(screen_info);
152 : struct edid_info edid_info;
153 : EXPORT_SYMBOL_GPL(edid_info);
154 :
155 : extern int root_mountflags;
156 :
157 : unsigned long saved_video_mode;
158 :
159 : #define RAMDISK_IMAGE_START_MASK 0x07FF
160 : #define RAMDISK_PROMPT_FLAG 0x8000
161 : #define RAMDISK_LOAD_FLAG 0x4000
162 :
163 : static char __initdata command_line[COMMAND_LINE_SIZE];
164 : #ifdef CONFIG_CMDLINE_BOOL
165 : static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
166 : #endif
167 :
168 : #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
169 : struct edd edd;
170 : #ifdef CONFIG_EDD_MODULE
171 : EXPORT_SYMBOL(edd);
172 : #endif
173 : /**
174 : * copy_edd() - Copy the BIOS EDD information
175 : * from boot_params into a safe place.
176 : *
177 : */
178 : static inline void __init copy_edd(void)
179 : {
180 : memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
181 : sizeof(edd.mbr_signature));
182 : memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
183 : edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
184 : edd.edd_info_nr = boot_params.eddbuf_entries;
185 : }
186 : #else
187 1 : static inline void __init copy_edd(void)
188 : {
189 1 : }
190 : #endif
191 :
192 1 : void * __init extend_brk(size_t size, size_t align)
193 : {
194 1 : size_t mask = align - 1;
195 1 : void *ret;
196 :
197 1 : BUG_ON(_brk_start == 0);
198 1 : BUG_ON(align & mask);
199 :
200 1 : _brk_end = (_brk_end + mask) & ~mask;
201 1 : BUG_ON((char *)(_brk_end + size) > __brk_limit);
202 :
203 1 : ret = (void *)_brk_end;
204 1 : _brk_end += size;
205 :
206 1 : memset(ret, 0, size);
207 :
208 1 : return ret;
209 : }
210 :
211 : #ifdef CONFIG_X86_32
212 : static void __init cleanup_highmap(void)
213 : {
214 : }
215 : #endif
216 :
217 1 : static void __init reserve_brk(void)
218 : {
219 1 : if (_brk_end > _brk_start)
220 1 : memblock_reserve(__pa_symbol(_brk_start),
221 1 : _brk_end - _brk_start);
222 :
223 : /* Mark brk area as locked down and no longer taking any
224 : new allocations */
225 1 : _brk_start = 0;
226 1 : }
227 :
228 : u64 relocated_ramdisk;
229 :
230 : #ifdef CONFIG_BLK_DEV_INITRD
231 :
232 2 : static u64 __init get_ramdisk_image(void)
233 : {
234 2 : u64 ramdisk_image = boot_params.hdr.ramdisk_image;
235 :
236 2 : ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
237 :
238 2 : if (ramdisk_image == 0)
239 2 : ramdisk_image = phys_initrd_start;
240 :
241 2 : return ramdisk_image;
242 : }
243 2 : static u64 __init get_ramdisk_size(void)
244 : {
245 2 : u64 ramdisk_size = boot_params.hdr.ramdisk_size;
246 :
247 2 : ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
248 :
249 2 : if (ramdisk_size == 0)
250 2 : ramdisk_size = phys_initrd_size;
251 :
252 2 : return ramdisk_size;
253 : }
254 :
255 0 : static void __init relocate_initrd(void)
256 : {
257 : /* Assume only end is not page aligned */
258 0 : u64 ramdisk_image = get_ramdisk_image();
259 0 : u64 ramdisk_size = get_ramdisk_size();
260 0 : u64 area_size = PAGE_ALIGN(ramdisk_size);
261 :
262 : /* We need to move the initrd down into directly mapped mem */
263 0 : relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
264 0 : PFN_PHYS(max_pfn_mapped));
265 0 : if (!relocated_ramdisk)
266 0 : panic("Cannot find place for new RAMDISK of size %lld\n",
267 : ramdisk_size);
268 :
269 0 : initrd_start = relocated_ramdisk + PAGE_OFFSET;
270 0 : initrd_end = initrd_start + ramdisk_size;
271 0 : printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
272 0 : relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
273 :
274 0 : copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
275 :
276 0 : printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
277 : " [mem %#010llx-%#010llx]\n",
278 0 : ramdisk_image, ramdisk_image + ramdisk_size - 1,
279 0 : relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
280 0 : }
281 :
282 1 : static void __init early_reserve_initrd(void)
283 : {
284 : /* Assume only end is not page aligned */
285 1 : u64 ramdisk_image = get_ramdisk_image();
286 1 : u64 ramdisk_size = get_ramdisk_size();
287 1 : u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
288 :
289 1 : if (!boot_params.hdr.type_of_loader ||
290 1 : !ramdisk_image || !ramdisk_size)
291 : return; /* No initrd provided by bootloader */
292 :
293 0 : memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
294 : }
295 :
296 1 : static void __init reserve_initrd(void)
297 : {
298 : /* Assume only end is not page aligned */
299 1 : u64 ramdisk_image = get_ramdisk_image();
300 1 : u64 ramdisk_size = get_ramdisk_size();
301 1 : u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
302 :
303 1 : if (!boot_params.hdr.type_of_loader ||
304 1 : !ramdisk_image || !ramdisk_size)
305 : return; /* No initrd provided by bootloader */
306 :
307 0 : initrd_start = 0;
308 :
309 0 : printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
310 : ramdisk_end - 1);
311 :
312 0 : if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
313 0 : PFN_DOWN(ramdisk_end))) {
314 : /* All are mapped, easy case */
315 0 : initrd_start = ramdisk_image + PAGE_OFFSET;
316 0 : initrd_end = initrd_start + ramdisk_size;
317 0 : return;
318 : }
319 :
320 0 : relocate_initrd();
321 :
322 0 : memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
323 : }
324 :
325 : #else
326 : static void __init early_reserve_initrd(void)
327 : {
328 : }
329 : static void __init reserve_initrd(void)
330 : {
331 : }
332 : #endif /* CONFIG_BLK_DEV_INITRD */
333 :
334 1 : static void __init parse_setup_data(void)
335 : {
336 1 : struct setup_data *data;
337 1 : u64 pa_data, pa_next;
338 :
339 1 : pa_data = boot_params.hdr.setup_data;
340 1 : while (pa_data) {
341 0 : u32 data_len, data_type;
342 :
343 0 : data = early_memremap(pa_data, sizeof(*data));
344 0 : data_len = data->len + sizeof(struct setup_data);
345 0 : data_type = data->type;
346 0 : pa_next = data->next;
347 0 : early_memunmap(data, sizeof(*data));
348 :
349 0 : switch (data_type) {
350 0 : case SETUP_E820_EXT:
351 0 : e820__memory_setup_extended(pa_data, data_len);
352 0 : break;
353 : case SETUP_DTB:
354 1 : add_dtb(pa_data);
355 : break;
356 : case SETUP_EFI:
357 1 : parse_efi_setup(pa_data, data_len);
358 : break;
359 : default:
360 : break;
361 : }
362 : pa_data = pa_next;
363 : }
364 1 : }
365 :
366 1 : static void __init memblock_x86_reserve_range_setup_data(void)
367 : {
368 1 : struct setup_data *data;
369 1 : u64 pa_data;
370 :
371 1 : pa_data = boot_params.hdr.setup_data;
372 1 : while (pa_data) {
373 0 : data = early_memremap(pa_data, sizeof(*data));
374 0 : memblock_reserve(pa_data, sizeof(*data) + data->len);
375 :
376 0 : if (data->type == SETUP_INDIRECT &&
377 0 : ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
378 0 : memblock_reserve(((struct setup_indirect *)data->data)->addr,
379 : ((struct setup_indirect *)data->data)->len);
380 :
381 0 : pa_data = data->next;
382 0 : early_memunmap(data, sizeof(*data));
383 : }
384 1 : }
385 :
386 : /*
387 : * --------- Crashkernel reservation ------------------------------
388 : */
389 :
390 : #ifdef CONFIG_KEXEC_CORE
391 :
392 : /* 16M alignment for crash kernel regions */
393 : #define CRASH_ALIGN SZ_16M
394 :
395 : /*
396 : * Keep the crash kernel below this limit.
397 : *
398 : * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
399 : * due to mapping restrictions.
400 : *
401 : * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
402 : * the upper limit of system RAM in 4-level paging mode. Since the kdump
403 : * jump could be from 5-level paging to 4-level paging, the jump will fail if
404 : * the kernel is put above 64 TB, and during the 1st kernel bootup there's
405 : * no good way to detect the paging mode of the target kernel which will be
406 : * loaded for dumping.
407 : */
408 : #ifdef CONFIG_X86_32
409 : # define CRASH_ADDR_LOW_MAX SZ_512M
410 : # define CRASH_ADDR_HIGH_MAX SZ_512M
411 : #else
412 : # define CRASH_ADDR_LOW_MAX SZ_4G
413 : # define CRASH_ADDR_HIGH_MAX SZ_64T
414 : #endif
415 :
416 : static int __init reserve_crashkernel_low(void)
417 : {
418 : #ifdef CONFIG_X86_64
419 : unsigned long long base, low_base = 0, low_size = 0;
420 : unsigned long low_mem_limit;
421 : int ret;
422 :
423 : low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
424 :
425 : /* crashkernel=Y,low */
426 : ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
427 : if (ret) {
428 : /*
429 : * two parts from kernel/dma/swiotlb.c:
430 : * -swiotlb size: user-specified with swiotlb= or default.
431 : *
432 : * -swiotlb overflow buffer: now hardcoded to 32k. We round it
433 : * to 8M for other buffers that may need to stay low too. Also
434 : * make sure we allocate enough extra low memory so that we
435 : * don't run out of DMA buffers for 32-bit devices.
436 : */
437 : low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
438 : } else {
439 : /* passed with crashkernel=0,low ? */
440 : if (!low_size)
441 : return 0;
442 : }
443 :
444 : low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
445 : if (!low_base) {
446 : pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
447 : (unsigned long)(low_size >> 20));
448 : return -ENOMEM;
449 : }
450 :
451 : pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
452 : (unsigned long)(low_size >> 20),
453 : (unsigned long)(low_base >> 20),
454 : (unsigned long)(low_mem_limit >> 20));
455 :
456 : crashk_low_res.start = low_base;
457 : crashk_low_res.end = low_base + low_size - 1;
458 : insert_resource(&iomem_resource, &crashk_low_res);
459 : #endif
460 : return 0;
461 : }
462 :
463 : static void __init reserve_crashkernel(void)
464 : {
465 : unsigned long long crash_size, crash_base, total_mem;
466 : bool high = false;
467 : int ret;
468 :
469 : total_mem = memblock_phys_mem_size();
470 :
471 : /* crashkernel=XM */
472 : ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
473 : if (ret != 0 || crash_size <= 0) {
474 : /* crashkernel=X,high */
475 : ret = parse_crashkernel_high(boot_command_line, total_mem,
476 : &crash_size, &crash_base);
477 : if (ret != 0 || crash_size <= 0)
478 : return;
479 : high = true;
480 : }
481 :
482 : if (xen_pv_domain()) {
483 : pr_info("Ignoring crashkernel for a Xen PV domain\n");
484 : return;
485 : }
486 :
487 : /* 0 means: find the address automatically */
488 : if (!crash_base) {
489 : /*
490 : * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
491 : * crashkernel=x,high reserves memory over 4G, also allocates
492 : * 256M extra low memory for DMA buffers and swiotlb.
493 : * But the extra memory is not required for all machines.
494 : * So try low memory first and fall back to high memory
495 : * unless "crashkernel=size[KMG],high" is specified.
496 : */
497 : if (!high)
498 : crash_base = memblock_phys_alloc_range(crash_size,
499 : CRASH_ALIGN, CRASH_ALIGN,
500 : CRASH_ADDR_LOW_MAX);
501 : if (!crash_base)
502 : crash_base = memblock_phys_alloc_range(crash_size,
503 : CRASH_ALIGN, CRASH_ALIGN,
504 : CRASH_ADDR_HIGH_MAX);
505 : if (!crash_base) {
506 : pr_info("crashkernel reservation failed - No suitable area found.\n");
507 : return;
508 : }
509 : } else {
510 : unsigned long long start;
511 :
512 : start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
513 : crash_base + crash_size);
514 : if (start != crash_base) {
515 : pr_info("crashkernel reservation failed - memory is in use.\n");
516 : return;
517 : }
518 : }
519 :
520 : if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
521 : memblock_free(crash_base, crash_size);
522 : return;
523 : }
524 :
525 : pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
526 : (unsigned long)(crash_size >> 20),
527 : (unsigned long)(crash_base >> 20),
528 : (unsigned long)(total_mem >> 20));
529 :
530 : crashk_res.start = crash_base;
531 : crashk_res.end = crash_base + crash_size - 1;
532 : insert_resource(&iomem_resource, &crashk_res);
533 : }
534 : #else
535 1 : static void __init reserve_crashkernel(void)
536 : {
537 1 : }
538 : #endif
539 :
540 : static struct resource standard_io_resources[] = {
541 : { .name = "dma1", .start = 0x00, .end = 0x1f,
542 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
543 : { .name = "pic1", .start = 0x20, .end = 0x21,
544 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
545 : { .name = "timer0", .start = 0x40, .end = 0x43,
546 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
547 : { .name = "timer1", .start = 0x50, .end = 0x53,
548 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
549 : { .name = "keyboard", .start = 0x60, .end = 0x60,
550 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
551 : { .name = "keyboard", .start = 0x64, .end = 0x64,
552 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
553 : { .name = "dma page reg", .start = 0x80, .end = 0x8f,
554 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
555 : { .name = "pic2", .start = 0xa0, .end = 0xa1,
556 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
557 : { .name = "dma2", .start = 0xc0, .end = 0xdf,
558 : .flags = IORESOURCE_BUSY | IORESOURCE_IO },
559 : { .name = "fpu", .start = 0xf0, .end = 0xff,
560 : .flags = IORESOURCE_BUSY | IORESOURCE_IO }
561 : };
562 :
563 1 : void __init reserve_standard_io_resources(void)
564 : {
565 1 : int i;
566 :
567 : /* request I/O space for devices used on all i[345]86 PCs */
568 11 : for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
569 10 : request_resource(&ioport_resource, &standard_io_resources[i]);
570 :
571 1 : }
572 :
573 1 : static __init void reserve_ibft_region(void)
574 : {
575 1 : unsigned long addr, size = 0;
576 :
577 1 : addr = find_ibft_region(&size);
578 :
579 1 : if (size)
580 : memblock_reserve(addr, size);
581 : }
582 :
583 1 : static bool __init snb_gfx_workaround_needed(void)
584 : {
585 : #ifdef CONFIG_PCI
586 : int i;
587 : u16 vendor, devid;
588 : static const __initconst u16 snb_ids[] = {
589 : 0x0102,
590 : 0x0112,
591 : 0x0122,
592 : 0x0106,
593 : 0x0116,
594 : 0x0126,
595 : 0x010a,
596 : };
597 :
598 : /* Assume no if something weird is going on with PCI */
599 : if (!early_pci_allowed())
600 : return false;
601 :
602 : vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
603 : if (vendor != 0x8086)
604 : return false;
605 :
606 : devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
607 : for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
608 : if (devid == snb_ids[i])
609 : return true;
610 : #endif
611 :
612 1 : return false;
613 : }
614 :
615 : /*
616 : * Sandy Bridge graphics has trouble with certain ranges, exclude
617 : * them from allocation.
618 : */
619 1 : static void __init trim_snb_memory(void)
620 : {
621 1 : static const __initconst unsigned long bad_pages[] = {
622 : 0x20050000,
623 : 0x20110000,
624 : 0x20130000,
625 : 0x20138000,
626 : 0x40004000,
627 : };
628 1 : int i;
629 :
630 1 : if (!snb_gfx_workaround_needed())
631 1 : return;
632 :
633 : printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
634 :
635 : /*
636 : * Reserve all memory below the 1 MB mark that has not
637 : * already been reserved.
638 : */
639 : memblock_reserve(0, 1<<20);
640 :
641 : for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
642 : if (memblock_reserve(bad_pages[i], PAGE_SIZE))
643 : printk(KERN_WARNING "failed to reserve 0x%08lx\n",
644 : bad_pages[i]);
645 : }
646 : }
647 :
648 : /*
649 : * Here we put platform-specific memory range workarounds, i.e.
650 : * memory known to be corrupt or otherwise in need to be reserved on
651 : * specific platforms.
652 : *
653 : * If this gets used more widely it could use a real dispatch mechanism.
654 : */
655 1 : static void __init trim_platform_memory_ranges(void)
656 : {
657 1 : trim_snb_memory();
658 : }
659 :
660 1 : static void __init trim_bios_range(void)
661 : {
662 : /*
663 : * A special case is the first 4Kb of memory;
664 : * This is a BIOS owned area, not kernel ram, but generally
665 : * not listed as such in the E820 table.
666 : *
667 : * This typically reserves additional memory (64KiB by default)
668 : * since some BIOSes are known to corrupt low memory. See the
669 : * Kconfig help text for X86_RESERVE_LOW.
670 : */
671 1 : e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
672 :
673 : /*
674 : * special case: Some BIOSes report the PC BIOS
675 : * area (640Kb -> 1Mb) as RAM even though it is not.
676 : * take them out.
677 : */
678 1 : e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
679 :
680 1 : e820__update_table(e820_table);
681 1 : }
682 :
683 : /* called before trim_bios_range() to spare extra sanitize */
684 1 : static void __init e820_add_kernel_range(void)
685 : {
686 1 : u64 start = __pa_symbol(_text);
687 1 : u64 size = __pa_symbol(_end) - start;
688 :
689 : /*
690 : * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
691 : * attempt to fix it by adding the range. We may have a confused BIOS,
692 : * or the user may have used memmap=exactmap or memmap=xxM$yyM to
693 : * exclude kernel range. If we really are running on top non-RAM,
694 : * we will crash later anyways.
695 : */
696 1 : if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
697 : return;
698 :
699 0 : pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
700 0 : e820__range_remove(start, size, E820_TYPE_RAM, 0);
701 0 : e820__range_add(start, size, E820_TYPE_RAM);
702 : }
703 :
704 : static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
705 :
706 0 : static int __init parse_reservelow(char *p)
707 : {
708 0 : unsigned long long size;
709 :
710 0 : if (!p)
711 : return -EINVAL;
712 :
713 0 : size = memparse(p, &p);
714 :
715 0 : if (size < 4096)
716 : size = 4096;
717 :
718 : if (size > 640*1024)
719 : size = 640*1024;
720 :
721 0 : reserve_low = size;
722 :
723 0 : return 0;
724 : }
725 :
726 : early_param("reservelow", parse_reservelow);
727 :
728 1 : static void __init trim_low_memory_range(void)
729 : {
730 1 : memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
731 1 : }
732 :
733 : /*
734 : * Dump out kernel offset information on panic.
735 : */
736 : static int
737 0 : dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
738 : {
739 0 : if (kaslr_enabled()) {
740 : pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
741 : kaslr_offset(),
742 : __START_KERNEL,
743 : __START_KERNEL_map,
744 : MODULES_VADDR-1);
745 : } else {
746 0 : pr_emerg("Kernel Offset: disabled\n");
747 : }
748 :
749 0 : return 0;
750 : }
751 :
752 : /*
753 : * Determine if we were loaded by an EFI loader. If so, then we have also been
754 : * passed the efi memmap, systab, etc., so we should use these data structures
755 : * for initialization. Note, the efi init code path is determined by the
756 : * global efi_enabled. This allows the same kernel image to be used on existing
757 : * systems (with a traditional BIOS) as well as on EFI systems.
758 : */
759 : /*
760 : * setup_arch - architecture-specific boot-time initializations
761 : *
762 : * Note: On x86_64, fixmaps are ready for use even before this is called.
763 : */
764 :
765 1 : void __init setup_arch(char **cmdline_p)
766 : {
767 : /*
768 : * Reserve the memory occupied by the kernel between _text and
769 : * __end_of_kernel_reserve symbols. Any kernel sections after the
770 : * __end_of_kernel_reserve symbol must be explicitly reserved with a
771 : * separate memblock_reserve() or they will be discarded.
772 : */
773 1 : memblock_reserve(__pa_symbol(_text),
774 1 : (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
775 :
776 : /*
777 : * Make sure page 0 is always reserved because on systems with
778 : * L1TF its contents can be leaked to user processes.
779 : */
780 1 : memblock_reserve(0, PAGE_SIZE);
781 :
782 1 : early_reserve_initrd();
783 :
784 : /*
785 : * At this point everything still needed from the boot loader
786 : * or BIOS or kernel text should be early reserved or marked not
787 : * RAM in e820. All other memory is free game.
788 : */
789 :
790 : #ifdef CONFIG_X86_32
791 : memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
792 :
793 : /*
794 : * copy kernel address range established so far and switch
795 : * to the proper swapper page table
796 : */
797 : clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
798 : initial_page_table + KERNEL_PGD_BOUNDARY,
799 : KERNEL_PGD_PTRS);
800 :
801 : load_cr3(swapper_pg_dir);
802 : /*
803 : * Note: Quark X1000 CPUs advertise PGE incorrectly and require
804 : * a cr3 based tlb flush, so the following __flush_tlb_all()
805 : * will not flush anything because the CPU quirk which clears
806 : * X86_FEATURE_PGE has not been invoked yet. Though due to the
807 : * load_cr3() above the TLB has been flushed already. The
808 : * quirk is invoked before subsequent calls to __flush_tlb_all()
809 : * so proper operation is guaranteed.
810 : */
811 : __flush_tlb_all();
812 : #else
813 1 : printk(KERN_INFO "Command line: %s\n", boot_command_line);
814 1 : boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
815 : #endif
816 :
817 : /*
818 : * If we have OLPC OFW, we might end up relocating the fixmap due to
819 : * reserve_top(), so do this before touching the ioremap area.
820 : */
821 1 : olpc_ofw_detect();
822 :
823 1 : idt_setup_early_traps();
824 1 : early_cpu_init();
825 1 : arch_init_ideal_nops();
826 1 : jump_label_init();
827 1 : static_call_init();
828 1 : early_ioremap_init();
829 :
830 1 : setup_olpc_ofw_pgd();
831 :
832 1 : ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
833 1 : screen_info = boot_params.screen_info;
834 1 : edid_info = boot_params.edid_info;
835 : #ifdef CONFIG_X86_32
836 : apm_info.bios = boot_params.apm_bios_info;
837 : ist_info = boot_params.ist_info;
838 : #endif
839 1 : saved_video_mode = boot_params.hdr.vid_mode;
840 1 : bootloader_type = boot_params.hdr.type_of_loader;
841 1 : if ((bootloader_type >> 4) == 0xe) {
842 0 : bootloader_type &= 0xf;
843 0 : bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
844 : }
845 1 : bootloader_version = bootloader_type & 0xf;
846 1 : bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
847 :
848 : #ifdef CONFIG_BLK_DEV_RAM
849 : rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
850 : #endif
851 : #ifdef CONFIG_EFI
852 : if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
853 : EFI32_LOADER_SIGNATURE, 4)) {
854 : set_bit(EFI_BOOT, &efi.flags);
855 : } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
856 : EFI64_LOADER_SIGNATURE, 4)) {
857 : set_bit(EFI_BOOT, &efi.flags);
858 : set_bit(EFI_64BIT, &efi.flags);
859 : }
860 : #endif
861 :
862 1 : x86_init.oem.arch_setup();
863 :
864 1 : iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
865 1 : e820__memory_setup();
866 1 : parse_setup_data();
867 :
868 1 : copy_edd();
869 :
870 1 : if (!boot_params.hdr.root_flags)
871 0 : root_mountflags &= ~MS_RDONLY;
872 1 : init_mm.start_code = (unsigned long) _text;
873 1 : init_mm.end_code = (unsigned long) _etext;
874 1 : init_mm.end_data = (unsigned long) _edata;
875 1 : init_mm.brk = _brk_end;
876 :
877 1 : code_resource.start = __pa_symbol(_text);
878 1 : code_resource.end = __pa_symbol(_etext)-1;
879 1 : rodata_resource.start = __pa_symbol(__start_rodata);
880 1 : rodata_resource.end = __pa_symbol(__end_rodata)-1;
881 1 : data_resource.start = __pa_symbol(_sdata);
882 1 : data_resource.end = __pa_symbol(_edata)-1;
883 1 : bss_resource.start = __pa_symbol(__bss_start);
884 1 : bss_resource.end = __pa_symbol(__bss_stop)-1;
885 :
886 : #ifdef CONFIG_CMDLINE_BOOL
887 : #ifdef CONFIG_CMDLINE_OVERRIDE
888 : strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
889 : #else
890 : if (builtin_cmdline[0]) {
891 : /* append boot loader cmdline to builtin */
892 : strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
893 : strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
894 : strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
895 : }
896 : #endif
897 : #endif
898 :
899 1 : strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
900 1 : *cmdline_p = command_line;
901 :
902 : /*
903 : * x86_configure_nx() is called before parse_early_param() to detect
904 : * whether hardware doesn't support NX (so that the early EHCI debug
905 : * console setup can safely call set_fixmap()). It may then be called
906 : * again from within noexec_setup() during parsing early parameters
907 : * to honor the respective command line option.
908 : */
909 1 : x86_configure_nx();
910 :
911 1 : parse_early_param();
912 :
913 1 : if (efi_enabled(EFI_BOOT))
914 : efi_memblock_x86_reserve_range();
915 : #ifdef CONFIG_MEMORY_HOTPLUG
916 : /*
917 : * Memory used by the kernel cannot be hot-removed because Linux
918 : * cannot migrate the kernel pages. When memory hotplug is
919 : * enabled, we should prevent memblock from allocating memory
920 : * for the kernel.
921 : *
922 : * ACPI SRAT records all hotpluggable memory ranges. But before
923 : * SRAT is parsed, we don't know about it.
924 : *
925 : * The kernel image is loaded into memory at very early time. We
926 : * cannot prevent this anyway. So on NUMA system, we set any
927 : * node the kernel resides in as un-hotpluggable.
928 : *
929 : * Since on modern servers, one node could have double-digit
930 : * gigabytes memory, we can assume the memory around the kernel
931 : * image is also un-hotpluggable. So before SRAT is parsed, just
932 : * allocate memory near the kernel image to try the best to keep
933 : * the kernel away from hotpluggable memory.
934 : */
935 : if (movable_node_is_enabled())
936 : memblock_set_bottom_up(true);
937 : #endif
938 :
939 1 : x86_report_nx();
940 :
941 : /* after early param, so could get panic from serial */
942 1 : memblock_x86_reserve_range_setup_data();
943 :
944 1 : if (acpi_mps_check()) {
945 : #ifdef CONFIG_X86_LOCAL_APIC
946 : disable_apic = 1;
947 : #endif
948 : setup_clear_cpu_cap(X86_FEATURE_APIC);
949 : }
950 :
951 1 : e820__reserve_setup_data();
952 1 : e820__finish_early_params();
953 :
954 1 : if (efi_enabled(EFI_BOOT))
955 : efi_init();
956 :
957 1 : dmi_setup();
958 :
959 : /*
960 : * VMware detection requires dmi to be available, so this
961 : * needs to be done after dmi_setup(), for the boot CPU.
962 : */
963 1 : init_hypervisor_platform();
964 :
965 1 : tsc_early_init();
966 1 : x86_init.resources.probe_roms();
967 :
968 : /* after parse_early_param, so could debug it */
969 1 : insert_resource(&iomem_resource, &code_resource);
970 1 : insert_resource(&iomem_resource, &rodata_resource);
971 1 : insert_resource(&iomem_resource, &data_resource);
972 1 : insert_resource(&iomem_resource, &bss_resource);
973 :
974 1 : e820_add_kernel_range();
975 1 : trim_bios_range();
976 : #ifdef CONFIG_X86_32
977 : if (ppro_with_ram_bug()) {
978 : e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
979 : E820_TYPE_RESERVED);
980 : e820__update_table(e820_table);
981 : printk(KERN_INFO "fixed physical RAM map:\n");
982 : e820__print_table("bad_ppro");
983 : }
984 : #else
985 1 : early_gart_iommu_check();
986 : #endif
987 :
988 : /*
989 : * partially used pages are not usable - thus
990 : * we are rounding upwards:
991 : */
992 1 : max_pfn = e820__end_of_ram_pfn();
993 :
994 : /* update e820 for memory not covered by WB MTRRs */
995 1 : mtrr_bp_init();
996 1 : if (mtrr_trim_uncached_memory(max_pfn))
997 0 : max_pfn = e820__end_of_ram_pfn();
998 :
999 1 : max_possible_pfn = max_pfn;
1000 :
1001 : /*
1002 : * This call is required when the CPU does not support PAT. If
1003 : * mtrr_bp_init() invoked it already via pat_init() the call has no
1004 : * effect.
1005 : */
1006 1 : init_cache_modes();
1007 :
1008 : /*
1009 : * Define random base addresses for memory sections after max_pfn is
1010 : * defined and before each memory section base is used.
1011 : */
1012 1 : kernel_randomize_memory();
1013 :
1014 : #ifdef CONFIG_X86_32
1015 : /* max_low_pfn get updated here */
1016 : find_low_pfn_range();
1017 : #else
1018 1 : check_x2apic();
1019 :
1020 : /* How many end-of-memory variables you have, grandma! */
1021 : /* need this before calling reserve_initrd */
1022 1 : if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1023 0 : max_low_pfn = e820__end_of_low_ram_pfn();
1024 : else
1025 1 : max_low_pfn = max_pfn;
1026 :
1027 1 : high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1028 : #endif
1029 :
1030 : /*
1031 : * Find and reserve possible boot-time SMP configuration:
1032 : */
1033 1 : find_smp_config();
1034 :
1035 1 : reserve_ibft_region();
1036 :
1037 1 : early_alloc_pgt_buf();
1038 :
1039 : /*
1040 : * Need to conclude brk, before e820__memblock_setup()
1041 : * it could use memblock_find_in_range, could overlap with
1042 : * brk area.
1043 : */
1044 1 : reserve_brk();
1045 :
1046 1 : cleanup_highmap();
1047 :
1048 1 : memblock_set_current_limit(ISA_END_ADDRESS);
1049 1 : e820__memblock_setup();
1050 :
1051 : /*
1052 : * Needs to run after memblock setup because it needs the physical
1053 : * memory size.
1054 : */
1055 1 : sev_setup_arch();
1056 :
1057 1 : reserve_bios_regions();
1058 :
1059 1 : efi_fake_memmap();
1060 1 : efi_find_mirror();
1061 1 : efi_esrt_init();
1062 1 : efi_mokvar_table_init();
1063 :
1064 : /*
1065 : * The EFI specification says that boot service code won't be
1066 : * called after ExitBootServices(). This is, in fact, a lie.
1067 : */
1068 1 : efi_reserve_boot_services();
1069 :
1070 : /* preallocate 4k for mptable mpc */
1071 1 : e820__memblock_alloc_reserved_mpc_new();
1072 :
1073 : #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1074 : setup_bios_corruption_check();
1075 : #endif
1076 :
1077 : #ifdef CONFIG_X86_32
1078 : printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1079 : (max_pfn_mapped<<PAGE_SHIFT) - 1);
1080 : #endif
1081 :
1082 1 : reserve_real_mode();
1083 :
1084 1 : trim_platform_memory_ranges();
1085 1 : trim_low_memory_range();
1086 :
1087 1 : init_mem_mapping();
1088 :
1089 1 : idt_setup_early_pf();
1090 :
1091 : /*
1092 : * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1093 : * with the current CR4 value. This may not be necessary, but
1094 : * auditing all the early-boot CR4 manipulation would be needed to
1095 : * rule it out.
1096 : *
1097 : * Mask off features that don't work outside long mode (just
1098 : * PCIDE for now).
1099 : */
1100 1 : mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1101 :
1102 1 : memblock_set_current_limit(get_max_mapped());
1103 :
1104 : /*
1105 : * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1106 : */
1107 :
1108 : #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1109 : if (init_ohci1394_dma_early)
1110 : init_ohci1394_dma_on_all_controllers();
1111 : #endif
1112 : /* Allocate bigger log buffer */
1113 1 : setup_log_buf(1);
1114 :
1115 1 : if (efi_enabled(EFI_BOOT)) {
1116 : switch (boot_params.secure_boot) {
1117 : case efi_secureboot_mode_disabled:
1118 : pr_info("Secure boot disabled\n");
1119 : break;
1120 : case efi_secureboot_mode_enabled:
1121 : pr_info("Secure boot enabled\n");
1122 : break;
1123 : default:
1124 : pr_info("Secure boot could not be determined\n");
1125 : break;
1126 : }
1127 : }
1128 :
1129 1 : reserve_initrd();
1130 :
1131 1 : acpi_table_upgrade();
1132 :
1133 1 : vsmp_init();
1134 :
1135 1 : io_delay_init();
1136 :
1137 1 : early_platform_quirks();
1138 :
1139 : /*
1140 : * Parse the ACPI tables for possible boot-time SMP configuration.
1141 : */
1142 1 : acpi_boot_table_init();
1143 :
1144 1 : early_acpi_boot_init();
1145 :
1146 1 : initmem_init();
1147 1 : dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1148 :
1149 1 : if (boot_cpu_has(X86_FEATURE_GBPAGES))
1150 1 : hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1151 :
1152 : /*
1153 : * Reserve memory for crash kernel after SRAT is parsed so that it
1154 : * won't consume hotpluggable memory.
1155 : */
1156 1 : reserve_crashkernel();
1157 :
1158 1 : memblock_find_dma_reserve();
1159 :
1160 1 : if (!early_xdbc_setup_hardware())
1161 : early_xdbc_register_console();
1162 :
1163 1 : x86_init.paging.pagetable_init();
1164 :
1165 1 : kasan_init();
1166 :
1167 : /*
1168 : * Sync back kernel address range.
1169 : *
1170 : * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1171 : * this call?
1172 : */
1173 1 : sync_initial_page_table();
1174 :
1175 1 : tboot_probe();
1176 :
1177 1 : map_vsyscall();
1178 :
1179 1 : generic_apic_probe();
1180 :
1181 1 : early_quirks();
1182 :
1183 : /*
1184 : * Read APIC and some other early information from ACPI tables.
1185 : */
1186 1 : acpi_boot_init();
1187 1 : x86_dtb_init();
1188 :
1189 : /*
1190 : * get boot-time SMP configuration:
1191 : */
1192 1 : get_smp_config();
1193 :
1194 : /*
1195 : * Systems w/o ACPI and mptables might not have it mapped the local
1196 : * APIC yet, but prefill_possible_map() might need to access it.
1197 : */
1198 1 : init_apic_mappings();
1199 :
1200 1 : prefill_possible_map();
1201 :
1202 1 : init_cpu_to_node();
1203 1 : init_gi_nodes();
1204 :
1205 1 : io_apic_init_mappings();
1206 :
1207 1 : x86_init.hyper.guest_late_init();
1208 :
1209 1 : e820__reserve_resources();
1210 1 : e820__register_nosave_regions(max_pfn);
1211 :
1212 1 : x86_init.resources.reserve_resources();
1213 :
1214 1 : e820__setup_pci_gap();
1215 :
1216 : #ifdef CONFIG_VT
1217 : #if defined(CONFIG_VGA_CONSOLE)
1218 : if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1219 : conswitchp = &vga_con;
1220 : #endif
1221 : #endif
1222 1 : x86_init.oem.banner();
1223 :
1224 1 : x86_init.timers.wallclock_init();
1225 :
1226 1 : mcheck_init();
1227 :
1228 1 : register_refined_jiffies(CLOCK_TICK_RATE);
1229 :
1230 : #ifdef CONFIG_EFI
1231 : if (efi_enabled(EFI_BOOT))
1232 : efi_apply_memmap_quirks();
1233 : #endif
1234 :
1235 1 : unwind_init();
1236 1 : }
1237 :
1238 : #ifdef CONFIG_X86_32
1239 :
1240 : static struct resource video_ram_resource = {
1241 : .name = "Video RAM area",
1242 : .start = 0xa0000,
1243 : .end = 0xbffff,
1244 : .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1245 : };
1246 :
1247 : void __init i386_reserve_resources(void)
1248 : {
1249 : request_resource(&iomem_resource, &video_ram_resource);
1250 : reserve_standard_io_resources();
1251 : }
1252 :
1253 : #endif /* CONFIG_X86_32 */
1254 :
1255 : static struct notifier_block kernel_offset_notifier = {
1256 : .notifier_call = dump_kernel_offset
1257 : };
1258 :
1259 1 : static int __init register_kernel_offset_dumper(void)
1260 : {
1261 1 : atomic_notifier_chain_register(&panic_notifier_list,
1262 : &kernel_offset_notifier);
1263 1 : return 0;
1264 : }
1265 : __initcall(register_kernel_offset_dumper);
|