Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * x86 SMP booting functions
4 : *
5 : * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 : * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 : * Copyright 2001 Andi Kleen, SuSE Labs.
8 : *
9 : * Much of the core SMP work is based on previous work by Thomas Radke, to
10 : * whom a great many thanks are extended.
11 : *
12 : * Thanks to Intel for making available several different Pentium,
13 : * Pentium Pro and Pentium-II/Xeon MP machines.
14 : * Original development of Linux SMP code supported by Caldera.
15 : *
16 : * Fixes
17 : * Felix Koop : NR_CPUS used properly
18 : * Jose Renau : Handle single CPU case.
19 : * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 : * Greg Wright : Fix for kernel stacks panic.
21 : * Erich Boleyn : MP v1.4 and additional changes.
22 : * Matthias Sattler : Changes for 2.1 kernel map.
23 : * Michel Lespinasse : Changes for 2.1 kernel map.
24 : * Michael Chastain : Change trampoline.S to gnu as.
25 : * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 : * Ingo Molnar : Added APIC timers, based on code
27 : * from Jose Renau
28 : * Ingo Molnar : various cleanups and rewrites
29 : * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 : * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 : * Andi Kleen : Changed for SMP boot into long mode.
32 : * Martin J. Bligh : Added support for multi-quad systems
33 : * Dave Jones : Report invalid combinations of Athlon CPUs.
34 : * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 : * Andi Kleen : Converted to new state machine.
36 : * Ashok Raj : CPU hotplug support
37 : * Glauber Costa : i386 and x86_64 integration
38 : */
39 :
40 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 :
42 : #include <linux/init.h>
43 : #include <linux/smp.h>
44 : #include <linux/export.h>
45 : #include <linux/sched.h>
46 : #include <linux/sched/topology.h>
47 : #include <linux/sched/hotplug.h>
48 : #include <linux/sched/task_stack.h>
49 : #include <linux/percpu.h>
50 : #include <linux/memblock.h>
51 : #include <linux/err.h>
52 : #include <linux/nmi.h>
53 : #include <linux/tboot.h>
54 : #include <linux/gfp.h>
55 : #include <linux/cpuidle.h>
56 : #include <linux/numa.h>
57 : #include <linux/pgtable.h>
58 : #include <linux/overflow.h>
59 : #include <linux/syscore_ops.h>
60 :
61 : #include <asm/acpi.h>
62 : #include <asm/desc.h>
63 : #include <asm/nmi.h>
64 : #include <asm/irq.h>
65 : #include <asm/realmode.h>
66 : #include <asm/cpu.h>
67 : #include <asm/numa.h>
68 : #include <asm/tlbflush.h>
69 : #include <asm/mtrr.h>
70 : #include <asm/mwait.h>
71 : #include <asm/apic.h>
72 : #include <asm/io_apic.h>
73 : #include <asm/fpu/internal.h>
74 : #include <asm/setup.h>
75 : #include <asm/uv/uv.h>
76 : #include <linux/mc146818rtc.h>
77 : #include <asm/i8259.h>
78 : #include <asm/misc.h>
79 : #include <asm/qspinlock.h>
80 : #include <asm/intel-family.h>
81 : #include <asm/cpu_device_id.h>
82 : #include <asm/spec-ctrl.h>
83 : #include <asm/hw_irq.h>
84 : #include <asm/stackprotector.h>
85 :
86 : #ifdef CONFIG_ACPI_CPPC_LIB
87 : #include <acpi/cppc_acpi.h>
88 : #endif
89 :
90 : /* representing HT siblings of each logical CPU */
91 : DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 : EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 :
94 : /* representing HT and core siblings of each logical CPU */
95 : DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 : EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97 :
98 : /* representing HT, core, and die siblings of each logical CPU */
99 : DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100 : EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101 :
102 : DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103 :
104 : /* Per CPU bogomips and other parameters */
105 : DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 : EXPORT_PER_CPU_SYMBOL(cpu_info);
107 :
108 : /* Logical package management. We might want to allocate that dynamically */
109 : unsigned int __max_logical_packages __read_mostly;
110 : EXPORT_SYMBOL(__max_logical_packages);
111 : static unsigned int logical_packages __read_mostly;
112 : static unsigned int logical_die __read_mostly;
113 :
114 : /* Maximum number of SMT threads on any online core */
115 : int __read_mostly __max_smt_threads = 1;
116 :
117 : /* Flag to indicate if a complete sched domain rebuild is required */
118 : bool x86_topology_update;
119 :
120 1 : int arch_update_cpu_topology(void)
121 : {
122 1 : int retval = x86_topology_update;
123 :
124 1 : x86_topology_update = false;
125 1 : return retval;
126 : }
127 :
128 3 : static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
129 : {
130 3 : unsigned long flags;
131 :
132 3 : spin_lock_irqsave(&rtc_lock, flags);
133 3 : CMOS_WRITE(0xa, 0xf);
134 3 : spin_unlock_irqrestore(&rtc_lock, flags);
135 3 : *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
136 3 : start_eip >> 4;
137 3 : *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
138 3 : start_eip & 0xf;
139 3 : }
140 :
141 3 : static inline void smpboot_restore_warm_reset_vector(void)
142 : {
143 3 : unsigned long flags;
144 :
145 : /*
146 : * Paranoid: Set warm reset code and vector here back
147 : * to default values.
148 : */
149 3 : spin_lock_irqsave(&rtc_lock, flags);
150 3 : CMOS_WRITE(0, 0xf);
151 3 : spin_unlock_irqrestore(&rtc_lock, flags);
152 :
153 3 : *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
154 3 : }
155 :
156 : static void init_freq_invariance(bool secondary, bool cppc_ready);
157 :
158 : /*
159 : * Report back to the Boot Processor during boot time or to the caller processor
160 : * during CPU online.
161 : */
162 3 : static void smp_callin(void)
163 : {
164 3 : int cpuid;
165 :
166 : /*
167 : * If waken up by an INIT in an 82489DX configuration
168 : * cpu_callout_mask guarantees we don't get here before
169 : * an INIT_deassert IPI reaches our local APIC, so it is
170 : * now safe to touch our local APIC.
171 : */
172 3 : cpuid = smp_processor_id();
173 :
174 : /*
175 : * the boot CPU has finished the init stage and is spinning
176 : * on callin_map until we finish. We are free to set up this
177 : * CPU, first the APIC. (this is probably redundant on most
178 : * boards)
179 : */
180 3 : apic_ap_setup();
181 :
182 : /*
183 : * Save our processor parameters. Note: this information
184 : * is needed for clock calibration.
185 : */
186 3 : smp_store_cpu_info(cpuid);
187 :
188 : /*
189 : * The topology information must be up to date before
190 : * calibrate_delay() and notify_cpu_starting().
191 : */
192 3 : set_cpu_sibling_map(raw_smp_processor_id());
193 :
194 3 : init_freq_invariance(true, false);
195 :
196 : /*
197 : * Get our bogomips.
198 : * Update loops_per_jiffy in cpu_data. Previous call to
199 : * smp_store_cpu_info() stored a value that is close but not as
200 : * accurate as the value just calculated.
201 : */
202 3 : calibrate_delay();
203 3 : cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
204 3 : pr_debug("Stack at about %p\n", &cpuid);
205 :
206 3 : wmb();
207 :
208 3 : notify_cpu_starting(cpuid);
209 :
210 : /*
211 : * Allow the master to continue.
212 : */
213 3 : cpumask_set_cpu(cpuid, cpu_callin_mask);
214 3 : }
215 :
216 : static int cpu0_logical_apicid;
217 : static int enable_start_cpu0;
218 : /*
219 : * Activate a secondary processor.
220 : */
221 3 : static void notrace start_secondary(void *unused)
222 : {
223 : /*
224 : * Don't put *anything* except direct CPU state initialization
225 : * before cpu_init(), SMP booting is too fragile that we want to
226 : * limit the things done here to the most necessary things.
227 : */
228 3 : cr4_init();
229 :
230 : #ifdef CONFIG_X86_32
231 : /* switch away from the initial page table */
232 : load_cr3(swapper_pg_dir);
233 : __flush_tlb_all();
234 : #endif
235 3 : cpu_init_exception_handling();
236 3 : cpu_init();
237 3 : rcu_cpu_starting(raw_smp_processor_id());
238 3 : x86_cpuinit.early_percpu_clock_init();
239 3 : preempt_disable();
240 3 : smp_callin();
241 :
242 3 : enable_start_cpu0 = 0;
243 :
244 : /* otherwise gcc will move up smp_processor_id before the cpu_init */
245 3 : barrier();
246 : /*
247 : * Check TSC synchronization with the boot CPU:
248 : */
249 3 : check_tsc_sync_target();
250 :
251 3 : speculative_store_bypass_ht_init();
252 :
253 : /*
254 : * Lock vector_lock, set CPU online and bring the vector
255 : * allocator online. Online must be set with vector_lock held
256 : * to prevent a concurrent irq setup/teardown from seeing a
257 : * half valid vector space.
258 : */
259 3 : lock_vector_lock();
260 3 : set_cpu_online(smp_processor_id(), true);
261 3 : lapic_online();
262 3 : unlock_vector_lock();
263 3 : cpu_set_state_online(smp_processor_id());
264 3 : x86_platform.nmi_init();
265 :
266 : /* enable local interrupts */
267 3 : local_irq_enable();
268 :
269 3 : x86_cpuinit.setup_percpu_clockev();
270 :
271 3 : wmb();
272 3 : cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
273 0 : }
274 :
275 : /**
276 : * topology_is_primary_thread - Check whether CPU is the primary SMT thread
277 : * @cpu: CPU to check
278 : */
279 6 : bool topology_is_primary_thread(unsigned int cpu)
280 : {
281 6 : return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
282 : }
283 :
284 : /**
285 : * topology_smt_supported - Check whether SMT is supported by the CPUs
286 : */
287 1 : bool topology_smt_supported(void)
288 : {
289 1 : return smp_num_siblings > 1;
290 : }
291 :
292 : /**
293 : * topology_phys_to_logical_pkg - Map a physical package id to a logical
294 : *
295 : * Returns logical package id or -1 if not found
296 : */
297 4 : int topology_phys_to_logical_pkg(unsigned int phys_pkg)
298 : {
299 4 : int cpu;
300 :
301 20 : for_each_possible_cpu(cpu) {
302 16 : struct cpuinfo_x86 *c = &cpu_data(cpu);
303 :
304 16 : if (c->initialized && c->phys_proc_id == phys_pkg)
305 0 : return c->logical_proc_id;
306 : }
307 : return -1;
308 : }
309 : EXPORT_SYMBOL(topology_phys_to_logical_pkg);
310 : /**
311 : * topology_phys_to_logical_die - Map a physical die id to logical
312 : *
313 : * Returns logical die id or -1 if not found
314 : */
315 4 : int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
316 : {
317 4 : int cpu;
318 4 : int proc_id = cpu_data(cur_cpu).phys_proc_id;
319 :
320 20 : for_each_possible_cpu(cpu) {
321 16 : struct cpuinfo_x86 *c = &cpu_data(cpu);
322 :
323 16 : if (c->initialized && c->cpu_die_id == die_id &&
324 6 : c->phys_proc_id == proc_id)
325 0 : return c->logical_die_id;
326 : }
327 : return -1;
328 : }
329 : EXPORT_SYMBOL(topology_phys_to_logical_die);
330 :
331 : /**
332 : * topology_update_package_map - Update the physical to logical package map
333 : * @pkg: The physical package id as retrieved via CPUID
334 : * @cpu: The cpu for which this is updated
335 : */
336 4 : int topology_update_package_map(unsigned int pkg, unsigned int cpu)
337 : {
338 4 : int new;
339 :
340 : /* Already available somewhere? */
341 4 : new = topology_phys_to_logical_pkg(pkg);
342 4 : if (new >= 0)
343 0 : goto found;
344 :
345 4 : new = logical_packages++;
346 4 : if (new != pkg) {
347 0 : pr_info("CPU %u Converting physical %u to logical package %u\n",
348 : cpu, pkg, new);
349 : }
350 4 : found:
351 4 : cpu_data(cpu).logical_proc_id = new;
352 4 : return 0;
353 : }
354 : /**
355 : * topology_update_die_map - Update the physical to logical die map
356 : * @die: The die id as retrieved via CPUID
357 : * @cpu: The cpu for which this is updated
358 : */
359 4 : int topology_update_die_map(unsigned int die, unsigned int cpu)
360 : {
361 4 : int new;
362 :
363 : /* Already available somewhere? */
364 4 : new = topology_phys_to_logical_die(die, cpu);
365 4 : if (new >= 0)
366 0 : goto found;
367 :
368 4 : new = logical_die++;
369 4 : if (new != die) {
370 3 : pr_info("CPU %u Converting physical %u to logical die %u\n",
371 : cpu, die, new);
372 : }
373 1 : found:
374 4 : cpu_data(cpu).logical_die_id = new;
375 4 : return 0;
376 : }
377 :
378 1 : void __init smp_store_boot_cpu_info(void)
379 : {
380 1 : int id = 0; /* CPU 0 */
381 1 : struct cpuinfo_x86 *c = &cpu_data(id);
382 :
383 1 : *c = boot_cpu_data;
384 1 : c->cpu_index = id;
385 1 : topology_update_package_map(c->phys_proc_id, id);
386 1 : topology_update_die_map(c->cpu_die_id, id);
387 1 : c->initialized = true;
388 1 : }
389 :
390 : /*
391 : * The bootstrap kernel entry code has set these up. Save them for
392 : * a given CPU
393 : */
394 3 : void smp_store_cpu_info(int id)
395 : {
396 3 : struct cpuinfo_x86 *c = &cpu_data(id);
397 :
398 : /* Copy boot_cpu_data only on the first bringup */
399 3 : if (!c->initialized)
400 3 : *c = boot_cpu_data;
401 3 : c->cpu_index = id;
402 : /*
403 : * During boot time, CPU0 has this setup already. Save the info when
404 : * bringing up AP or offlined CPU0.
405 : */
406 3 : identify_secondary_cpu(c);
407 3 : c->initialized = true;
408 3 : }
409 :
410 : static bool
411 0 : topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
412 : {
413 0 : int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
414 :
415 0 : return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
416 : }
417 :
418 : static bool
419 0 : topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
420 : {
421 0 : int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
422 :
423 0 : return !WARN_ONCE(!topology_same_node(c, o),
424 : "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
425 : "[node: %d != %d]. Ignoring dependency.\n",
426 : cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
427 : }
428 :
429 : #define link_mask(mfunc, c1, c2) \
430 : do { \
431 : cpumask_set_cpu((c1), mfunc(c2)); \
432 : cpumask_set_cpu((c2), mfunc(c1)); \
433 : } while (0)
434 :
435 0 : static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
436 : {
437 0 : if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
438 0 : int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
439 :
440 0 : if (c->phys_proc_id == o->phys_proc_id &&
441 0 : c->cpu_die_id == o->cpu_die_id &&
442 0 : per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
443 0 : if (c->cpu_core_id == o->cpu_core_id)
444 0 : return topology_sane(c, o, "smt");
445 :
446 0 : if ((c->cu_id != 0xff) &&
447 0 : (o->cu_id != 0xff) &&
448 : (c->cu_id == o->cu_id))
449 0 : return topology_sane(c, o, "smt");
450 : }
451 :
452 0 : } else if (c->phys_proc_id == o->phys_proc_id &&
453 0 : c->cpu_die_id == o->cpu_die_id &&
454 0 : c->cpu_core_id == o->cpu_core_id) {
455 0 : return topology_sane(c, o, "smt");
456 : }
457 :
458 : return false;
459 : }
460 :
461 : /*
462 : * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
463 : *
464 : * These are Intel CPUs that enumerate an LLC that is shared by
465 : * multiple NUMA nodes. The LLC on these systems is shared for
466 : * off-package data access but private to the NUMA node (half
467 : * of the package) for on-package access.
468 : *
469 : * CPUID (the source of the information about the LLC) can only
470 : * enumerate the cache as being shared *or* unshared, but not
471 : * this particular configuration. The CPU in this case enumerates
472 : * the cache to be shared across the entire package (spanning both
473 : * NUMA nodes).
474 : */
475 :
476 : static const struct x86_cpu_id snc_cpu[] = {
477 : X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
478 : {}
479 : };
480 :
481 0 : static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
482 : {
483 0 : int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
484 :
485 : /* Do not match if we do not have a valid APICID for cpu: */
486 0 : if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
487 : return false;
488 :
489 : /* Do not match if LLC id does not match: */
490 0 : if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
491 : return false;
492 :
493 : /*
494 : * Allow the SNC topology without warning. Return of false
495 : * means 'c' does not share the LLC of 'o'. This will be
496 : * reflected to userspace.
497 : */
498 0 : if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
499 : return false;
500 :
501 0 : return topology_sane(c, o, "llc");
502 : }
503 :
504 : /*
505 : * Unlike the other levels, we do not enforce keeping a
506 : * multicore group inside a NUMA node. If this happens, we will
507 : * discard the MC level of the topology later.
508 : */
509 0 : static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
510 : {
511 0 : if (c->phys_proc_id == o->phys_proc_id)
512 0 : return true;
513 : return false;
514 : }
515 :
516 0 : static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
517 : {
518 0 : if ((c->phys_proc_id == o->phys_proc_id) &&
519 0 : (c->cpu_die_id == o->cpu_die_id))
520 : return true;
521 : return false;
522 : }
523 :
524 :
525 : #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
526 8 : static inline int x86_sched_itmt_flags(void)
527 : {
528 8 : return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
529 : }
530 :
531 : #ifdef CONFIG_SCHED_MC
532 4 : static int x86_core_flags(void)
533 : {
534 4 : return cpu_core_flags() | x86_sched_itmt_flags();
535 : }
536 : #endif
537 : #ifdef CONFIG_SCHED_SMT
538 4 : static int x86_smt_flags(void)
539 : {
540 4 : return cpu_smt_flags() | x86_sched_itmt_flags();
541 : }
542 : #endif
543 : #endif
544 :
545 : static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
546 : #ifdef CONFIG_SCHED_SMT
547 : { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
548 : #endif
549 : #ifdef CONFIG_SCHED_MC
550 : { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
551 : #endif
552 : { NULL, },
553 : };
554 :
555 : static struct sched_domain_topology_level x86_topology[] = {
556 : #ifdef CONFIG_SCHED_SMT
557 : { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
558 : #endif
559 : #ifdef CONFIG_SCHED_MC
560 : { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
561 : #endif
562 : { cpu_cpu_mask, SD_INIT_NAME(DIE) },
563 : { NULL, },
564 : };
565 :
566 : /*
567 : * Set if a package/die has multiple NUMA nodes inside.
568 : * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
569 : * Sub-NUMA Clustering have this.
570 : */
571 : static bool x86_has_numa_in_package;
572 :
573 4 : void set_cpu_sibling_map(int cpu)
574 : {
575 4 : bool has_smt = smp_num_siblings > 1;
576 4 : bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
577 4 : struct cpuinfo_x86 *c = &cpu_data(cpu);
578 4 : struct cpuinfo_x86 *o;
579 4 : int i, threads;
580 :
581 4 : cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
582 :
583 4 : if (!has_mp) {
584 4 : cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
585 4 : cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
586 4 : cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
587 4 : cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
588 4 : c->booted_cores = 1;
589 4 : return;
590 : }
591 :
592 0 : for_each_cpu(i, cpu_sibling_setup_mask) {
593 0 : o = &cpu_data(i);
594 :
595 0 : if ((i == cpu) || (has_smt && match_smt(c, o)))
596 0 : link_mask(topology_sibling_cpumask, cpu, i);
597 :
598 0 : if ((i == cpu) || (has_mp && match_llc(c, o)))
599 0 : link_mask(cpu_llc_shared_mask, cpu, i);
600 :
601 : }
602 :
603 : /*
604 : * This needs a separate iteration over the cpus because we rely on all
605 : * topology_sibling_cpumask links to be set-up.
606 : */
607 0 : for_each_cpu(i, cpu_sibling_setup_mask) {
608 0 : o = &cpu_data(i);
609 :
610 0 : if ((i == cpu) || (has_mp && match_pkg(c, o))) {
611 0 : link_mask(topology_core_cpumask, cpu, i);
612 :
613 : /*
614 : * Does this new cpu bringup a new core?
615 : */
616 0 : if (cpumask_weight(
617 0 : topology_sibling_cpumask(cpu)) == 1) {
618 : /*
619 : * for each core in package, increment
620 : * the booted_cores for this new cpu
621 : */
622 0 : if (cpumask_first(
623 0 : topology_sibling_cpumask(i)) == i)
624 0 : c->booted_cores++;
625 : /*
626 : * increment the core count for all
627 : * the other cpus in this package
628 : */
629 0 : if (i != cpu)
630 0 : cpu_data(i).booted_cores++;
631 0 : } else if (i != cpu && !c->booted_cores)
632 0 : c->booted_cores = cpu_data(i).booted_cores;
633 : }
634 0 : if (match_pkg(c, o) && !topology_same_node(c, o))
635 0 : x86_has_numa_in_package = true;
636 :
637 0 : if ((i == cpu) || (has_mp && match_die(c, o)))
638 0 : link_mask(topology_die_cpumask, cpu, i);
639 : }
640 :
641 0 : threads = cpumask_weight(topology_sibling_cpumask(cpu));
642 0 : if (threads > __max_smt_threads)
643 0 : __max_smt_threads = threads;
644 : }
645 :
646 : /* maps the cpu to the sched domain representing multi-core */
647 56 : const struct cpumask *cpu_coregroup_mask(int cpu)
648 : {
649 56 : return cpu_llc_shared_mask(cpu);
650 : }
651 :
652 1 : static void impress_friends(void)
653 : {
654 1 : int cpu;
655 1 : unsigned long bogosum = 0;
656 : /*
657 : * Allow the user to impress friends.
658 : */
659 1 : pr_debug("Before bogomips\n");
660 5 : for_each_possible_cpu(cpu)
661 4 : if (cpumask_test_cpu(cpu, cpu_callout_mask))
662 4 : bogosum += cpu_data(cpu).loops_per_jiffy;
663 1 : pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
664 : num_online_cpus(),
665 : bogosum/(500000/HZ),
666 : (bogosum/(5000/HZ))%100);
667 :
668 1 : pr_debug("Before bogocount - setting activated=1\n");
669 1 : }
670 :
671 0 : void __inquire_remote_apic(int apicid)
672 : {
673 0 : unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
674 0 : const char * const names[] = { "ID", "VERSION", "SPIV" };
675 0 : int timeout;
676 0 : u32 status;
677 :
678 0 : pr_info("Inquiring remote APIC 0x%x...\n", apicid);
679 :
680 0 : for (i = 0; i < ARRAY_SIZE(regs); i++) {
681 0 : pr_info("... APIC 0x%x %s: ", apicid, names[i]);
682 :
683 : /*
684 : * Wait for idle.
685 : */
686 0 : status = safe_apic_wait_icr_idle();
687 0 : if (status)
688 0 : pr_cont("a previous APIC delivery may have failed\n");
689 :
690 0 : apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
691 :
692 0 : timeout = 0;
693 0 : do {
694 0 : udelay(100);
695 0 : status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
696 0 : } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
697 :
698 0 : switch (status) {
699 : case APIC_ICR_RR_VALID:
700 0 : status = apic_read(APIC_RRR);
701 0 : pr_cont("%08x\n", status);
702 0 : break;
703 0 : default:
704 0 : pr_cont("failed\n");
705 : }
706 : }
707 0 : }
708 :
709 : /*
710 : * The Multiprocessor Specification 1.4 (1997) example code suggests
711 : * that there should be a 10ms delay between the BSP asserting INIT
712 : * and de-asserting INIT, when starting a remote processor.
713 : * But that slows boot and resume on modern processors, which include
714 : * many cores and don't require that delay.
715 : *
716 : * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
717 : * Modern processor families are quirked to remove the delay entirely.
718 : */
719 : #define UDELAY_10MS_DEFAULT 10000
720 :
721 : static unsigned int init_udelay = UINT_MAX;
722 :
723 0 : static int __init cpu_init_udelay(char *str)
724 : {
725 0 : get_option(&str, &init_udelay);
726 :
727 0 : return 0;
728 : }
729 : early_param("cpu_init_udelay", cpu_init_udelay);
730 :
731 1 : static void __init smp_quirk_init_udelay(void)
732 : {
733 : /* if cmdline changed it from default, leave it alone */
734 1 : if (init_udelay != UINT_MAX)
735 : return;
736 :
737 : /* if modern processor, use no delay */
738 1 : if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
739 0 : ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
740 0 : ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
741 1 : init_udelay = 0;
742 1 : return;
743 : }
744 : /* else, use legacy delay */
745 0 : init_udelay = UDELAY_10MS_DEFAULT;
746 : }
747 :
748 : /*
749 : * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
750 : * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
751 : * won't ... remember to clear down the APIC, etc later.
752 : */
753 : int
754 0 : wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
755 : {
756 0 : u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
757 0 : unsigned long send_status, accept_status = 0;
758 0 : int maxlvt;
759 :
760 : /* Target chip */
761 : /* Boot on the stack */
762 : /* Kick the second */
763 0 : apic_icr_write(APIC_DM_NMI | dm, apicid);
764 :
765 0 : pr_debug("Waiting for send to finish...\n");
766 0 : send_status = safe_apic_wait_icr_idle();
767 :
768 : /*
769 : * Give the other CPU some time to accept the IPI.
770 : */
771 0 : udelay(200);
772 0 : if (APIC_INTEGRATED(boot_cpu_apic_version)) {
773 0 : maxlvt = lapic_get_maxlvt();
774 0 : if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
775 0 : apic_write(APIC_ESR, 0);
776 0 : accept_status = (apic_read(APIC_ESR) & 0xEF);
777 : }
778 0 : pr_debug("NMI sent\n");
779 :
780 0 : if (send_status)
781 0 : pr_err("APIC never delivered???\n");
782 0 : if (accept_status)
783 0 : pr_err("APIC delivery error (%lx)\n", accept_status);
784 :
785 0 : return (send_status | accept_status);
786 : }
787 :
788 : static int
789 3 : wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
790 : {
791 3 : unsigned long send_status = 0, accept_status = 0;
792 3 : int maxlvt, num_starts, j;
793 :
794 3 : maxlvt = lapic_get_maxlvt();
795 :
796 : /*
797 : * Be paranoid about clearing APIC errors.
798 : */
799 3 : if (APIC_INTEGRATED(boot_cpu_apic_version)) {
800 3 : if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
801 3 : apic_write(APIC_ESR, 0);
802 3 : apic_read(APIC_ESR);
803 : }
804 :
805 3 : pr_debug("Asserting INIT\n");
806 :
807 : /*
808 : * Turn INIT on target chip
809 : */
810 : /*
811 : * Send IPI
812 : */
813 3 : apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
814 : phys_apicid);
815 :
816 3 : pr_debug("Waiting for send to finish...\n");
817 3 : send_status = safe_apic_wait_icr_idle();
818 :
819 3 : udelay(init_udelay);
820 :
821 3 : pr_debug("Deasserting INIT\n");
822 :
823 : /* Target chip */
824 : /* Send IPI */
825 3 : apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
826 :
827 3 : pr_debug("Waiting for send to finish...\n");
828 3 : send_status = safe_apic_wait_icr_idle();
829 :
830 3 : mb();
831 :
832 : /*
833 : * Should we send STARTUP IPIs ?
834 : *
835 : * Determine this based on the APIC version.
836 : * If we don't have an integrated APIC, don't send the STARTUP IPIs.
837 : */
838 3 : if (APIC_INTEGRATED(boot_cpu_apic_version))
839 3 : num_starts = 2;
840 : else
841 : num_starts = 0;
842 :
843 : /*
844 : * Run STARTUP IPI loop.
845 : */
846 3 : pr_debug("#startup loops: %d\n", num_starts);
847 :
848 12 : for (j = 1; j <= num_starts; j++) {
849 6 : pr_debug("Sending STARTUP #%d\n", j);
850 6 : if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
851 6 : apic_write(APIC_ESR, 0);
852 6 : apic_read(APIC_ESR);
853 6 : pr_debug("After apic_write\n");
854 :
855 : /*
856 : * STARTUP IPI
857 : */
858 :
859 : /* Target chip */
860 : /* Boot on the stack */
861 : /* Kick the second */
862 6 : apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
863 : phys_apicid);
864 :
865 : /*
866 : * Give the other CPU some time to accept the IPI.
867 : */
868 6 : if (init_udelay == 0)
869 6 : udelay(10);
870 : else
871 0 : udelay(300);
872 :
873 6 : pr_debug("Startup point 1\n");
874 :
875 6 : pr_debug("Waiting for send to finish...\n");
876 6 : send_status = safe_apic_wait_icr_idle();
877 :
878 : /*
879 : * Give the other CPU some time to accept the IPI.
880 : */
881 6 : if (init_udelay == 0)
882 6 : udelay(10);
883 : else
884 0 : udelay(200);
885 :
886 6 : if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
887 6 : apic_write(APIC_ESR, 0);
888 6 : accept_status = (apic_read(APIC_ESR) & 0xEF);
889 6 : if (send_status || accept_status)
890 : break;
891 : }
892 3 : pr_debug("After Startup\n");
893 :
894 3 : if (send_status)
895 0 : pr_err("APIC never delivered???\n");
896 3 : if (accept_status)
897 0 : pr_err("APIC delivery error (%lx)\n", accept_status);
898 :
899 3 : return (send_status | accept_status);
900 : }
901 :
902 : /* reduce the number of lines printed when booting a large cpu count system */
903 3 : static void announce_cpu(int cpu, int apicid)
904 : {
905 3 : static int current_node = NUMA_NO_NODE;
906 3 : int node = early_cpu_to_node(cpu);
907 3 : static int width, node_width;
908 :
909 3 : if (!width)
910 1 : width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
911 :
912 3 : if (!node_width)
913 1 : node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
914 :
915 3 : if (cpu == 1)
916 1 : printk(KERN_INFO "x86: Booting SMP configuration:\n");
917 :
918 3 : if (system_state < SYSTEM_RUNNING) {
919 3 : if (node != current_node) {
920 1 : if (current_node > (-1))
921 0 : pr_cont("\n");
922 1 : current_node = node;
923 :
924 1 : printk(KERN_INFO ".... node %*s#%d, CPUs: ",
925 1 : node_width - num_digits(node), " ", node);
926 : }
927 :
928 : /* Add padding for the BSP */
929 3 : if (cpu == 1)
930 1 : pr_cont("%*s", width + 1, " ");
931 :
932 3 : pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
933 :
934 : } else
935 0 : pr_info("Booting Node %d Processor %d APIC 0x%x\n",
936 : node, cpu, apicid);
937 3 : }
938 :
939 0 : static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
940 : {
941 0 : int cpu;
942 :
943 0 : cpu = smp_processor_id();
944 0 : if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
945 0 : return NMI_HANDLED;
946 :
947 : return NMI_DONE;
948 : }
949 :
950 : /*
951 : * Wake up AP by INIT, INIT, STARTUP sequence.
952 : *
953 : * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
954 : * boot-strap code which is not a desired behavior for waking up BSP. To
955 : * void the boot-strap code, wake up CPU0 by NMI instead.
956 : *
957 : * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
958 : * (i.e. physically hot removed and then hot added), NMI won't wake it up.
959 : * We'll change this code in the future to wake up hard offlined CPU0 if
960 : * real platform and request are available.
961 : */
962 : static int
963 3 : wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
964 : int *cpu0_nmi_registered)
965 : {
966 3 : int id;
967 3 : int boot_error;
968 :
969 3 : preempt_disable();
970 :
971 : /*
972 : * Wake up AP by INIT, INIT, STARTUP sequence.
973 : */
974 3 : if (cpu) {
975 3 : boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
976 3 : goto out;
977 : }
978 :
979 : /*
980 : * Wake up BSP by nmi.
981 : *
982 : * Register a NMI handler to help wake up CPU0.
983 : */
984 0 : boot_error = register_nmi_handler(NMI_LOCAL,
985 : wakeup_cpu0_nmi, 0, "wake_cpu0");
986 :
987 0 : if (!boot_error) {
988 0 : enable_start_cpu0 = 1;
989 0 : *cpu0_nmi_registered = 1;
990 0 : id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
991 0 : boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
992 : }
993 :
994 0 : out:
995 3 : preempt_enable();
996 :
997 3 : return boot_error;
998 : }
999 :
1000 3 : int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1001 : {
1002 3 : int ret;
1003 :
1004 : /* Just in case we booted with a single CPU. */
1005 3 : alternatives_enable_smp();
1006 :
1007 3 : per_cpu(current_task, cpu) = idle;
1008 3 : cpu_init_stack_canary(cpu, idle);
1009 :
1010 : /* Initialize the interrupt stack(s) */
1011 3 : ret = irq_init_percpu_irqstack(cpu);
1012 3 : if (ret)
1013 : return ret;
1014 :
1015 : #ifdef CONFIG_X86_32
1016 : /* Stack for startup_32 can be just as for start_secondary onwards */
1017 : per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1018 : #else
1019 3 : initial_gs = per_cpu_offset(cpu);
1020 : #endif
1021 3 : return 0;
1022 : }
1023 :
1024 : /*
1025 : * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1026 : * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1027 : * Returns zero if CPU booted OK, else error code from
1028 : * ->wakeup_secondary_cpu.
1029 : */
1030 3 : static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1031 : int *cpu0_nmi_registered)
1032 : {
1033 : /* start_ip had better be page-aligned! */
1034 3 : unsigned long start_ip = real_mode_header->trampoline_start;
1035 :
1036 3 : unsigned long boot_error = 0;
1037 3 : unsigned long timeout;
1038 :
1039 3 : idle->thread.sp = (unsigned long)task_pt_regs(idle);
1040 3 : early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1041 3 : initial_code = (unsigned long)start_secondary;
1042 3 : initial_stack = idle->thread.sp;
1043 :
1044 : /* Enable the espfix hack for this CPU */
1045 3 : init_espfix_ap(cpu);
1046 :
1047 : /* So we see what's up */
1048 3 : announce_cpu(cpu, apicid);
1049 :
1050 : /*
1051 : * This grunge runs the startup process for
1052 : * the targeted processor.
1053 : */
1054 :
1055 3 : if (x86_platform.legacy.warm_reset) {
1056 :
1057 3 : pr_debug("Setting warm reset code and vector.\n");
1058 :
1059 3 : smpboot_setup_warm_reset_vector(start_ip);
1060 : /*
1061 : * Be paranoid about clearing APIC errors.
1062 : */
1063 3 : if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1064 3 : apic_write(APIC_ESR, 0);
1065 3 : apic_read(APIC_ESR);
1066 : }
1067 : }
1068 :
1069 : /*
1070 : * AP might wait on cpu_callout_mask in cpu_init() with
1071 : * cpu_initialized_mask set if previous attempt to online
1072 : * it timed-out. Clear cpu_initialized_mask so that after
1073 : * INIT/SIPI it could start with a clean state.
1074 : */
1075 3 : cpumask_clear_cpu(cpu, cpu_initialized_mask);
1076 3 : smp_mb();
1077 :
1078 : /*
1079 : * Wake up a CPU in difference cases:
1080 : * - Use the method in the APIC driver if it's defined
1081 : * Otherwise,
1082 : * - Use an INIT boot APIC message for APs or NMI for BSP.
1083 : */
1084 3 : if (apic->wakeup_secondary_cpu)
1085 0 : boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1086 : else
1087 3 : boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1088 : cpu0_nmi_registered);
1089 :
1090 3 : if (!boot_error) {
1091 : /*
1092 : * Wait 10s total for first sign of life from AP
1093 : */
1094 3 : boot_error = -1;
1095 3 : timeout = jiffies + 10*HZ;
1096 13 : while (time_before(jiffies, timeout)) {
1097 13 : if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1098 : /*
1099 : * Tell AP to proceed with initialization
1100 : */
1101 3 : cpumask_set_cpu(cpu, cpu_callout_mask);
1102 3 : boot_error = 0;
1103 3 : break;
1104 : }
1105 10 : schedule();
1106 : }
1107 : }
1108 :
1109 3 : if (!boot_error) {
1110 : /*
1111 : * Wait till AP completes initial initialization
1112 : */
1113 928 : while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1114 : /*
1115 : * Allow other tasks to run while we wait for the
1116 : * AP to come online. This also gives a chance
1117 : * for the MTRR work(triggered by the AP coming online)
1118 : * to be completed in the stop machine context.
1119 : */
1120 925 : schedule();
1121 : }
1122 : }
1123 :
1124 3 : if (x86_platform.legacy.warm_reset) {
1125 : /*
1126 : * Cleanup possible dangling ends...
1127 : */
1128 3 : smpboot_restore_warm_reset_vector();
1129 : }
1130 :
1131 3 : return boot_error;
1132 : }
1133 :
1134 3 : int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1135 : {
1136 3 : int apicid = apic->cpu_present_to_apicid(cpu);
1137 3 : int cpu0_nmi_registered = 0;
1138 3 : unsigned long flags;
1139 3 : int err, ret = 0;
1140 :
1141 6 : lockdep_assert_irqs_enabled();
1142 :
1143 3 : pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1144 :
1145 6 : if (apicid == BAD_APICID ||
1146 6 : !physid_isset(apicid, phys_cpu_present_map) ||
1147 3 : !apic->apic_id_valid(apicid)) {
1148 0 : pr_err("%s: bad cpu %d\n", __func__, cpu);
1149 0 : return -EINVAL;
1150 : }
1151 :
1152 : /*
1153 : * Already booted CPU?
1154 : */
1155 3 : if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1156 : pr_debug("do_boot_cpu %d Already started\n", cpu);
1157 : return -ENOSYS;
1158 : }
1159 :
1160 : /*
1161 : * Save current MTRR state in case it was changed since early boot
1162 : * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1163 : */
1164 3 : mtrr_save_state();
1165 :
1166 : /* x86 CPUs take themselves offline, so delayed offline is OK. */
1167 3 : err = cpu_check_up_prepare(cpu);
1168 3 : if (err && err != -EBUSY)
1169 : return err;
1170 :
1171 : /* the FPU context is blank, nobody can own it */
1172 3 : per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1173 :
1174 3 : err = common_cpu_up(cpu, tidle);
1175 3 : if (err)
1176 : return err;
1177 :
1178 3 : err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1179 3 : if (err) {
1180 0 : pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1181 0 : ret = -EIO;
1182 0 : goto unreg_nmi;
1183 : }
1184 :
1185 : /*
1186 : * Check TSC synchronization with the AP (keep irqs disabled
1187 : * while doing so):
1188 : */
1189 6 : local_irq_save(flags);
1190 3 : check_tsc_sync_source(cpu);
1191 3 : local_irq_restore(flags);
1192 :
1193 3 : while (!cpu_online(cpu)) {
1194 0 : cpu_relax();
1195 0 : touch_nmi_watchdog();
1196 : }
1197 :
1198 3 : unreg_nmi:
1199 : /*
1200 : * Clean up the nmi handler. Do this after the callin and callout sync
1201 : * to avoid impact of possible long unregister time.
1202 : */
1203 3 : if (cpu0_nmi_registered)
1204 0 : unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1205 :
1206 : return ret;
1207 : }
1208 :
1209 : /**
1210 : * arch_disable_smp_support() - disables SMP support for x86 at runtime
1211 : */
1212 0 : void arch_disable_smp_support(void)
1213 : {
1214 0 : disable_ioapic_support();
1215 0 : }
1216 :
1217 : /*
1218 : * Fall back to non SMP mode after errors.
1219 : *
1220 : * RED-PEN audit/test this more. I bet there is more state messed up here.
1221 : */
1222 0 : static __init void disable_smp(void)
1223 : {
1224 0 : pr_info("SMP disabled\n");
1225 :
1226 0 : disable_ioapic_support();
1227 :
1228 0 : init_cpu_present(cpumask_of(0));
1229 0 : init_cpu_possible(cpumask_of(0));
1230 :
1231 0 : if (smp_found_config)
1232 0 : physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1233 : else
1234 0 : physid_set_mask_of_physid(0, &phys_cpu_present_map);
1235 0 : cpumask_set_cpu(0, topology_sibling_cpumask(0));
1236 0 : cpumask_set_cpu(0, topology_core_cpumask(0));
1237 0 : cpumask_set_cpu(0, topology_die_cpumask(0));
1238 0 : }
1239 :
1240 : /*
1241 : * Various sanity checks.
1242 : */
1243 1 : static void __init smp_sanity_check(void)
1244 : {
1245 1 : preempt_disable();
1246 :
1247 : #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1248 : if (def_to_bigsmp && nr_cpu_ids > 8) {
1249 : unsigned int cpu;
1250 : unsigned nr;
1251 :
1252 : pr_warn("More than 8 CPUs detected - skipping them\n"
1253 : "Use CONFIG_X86_BIGSMP\n");
1254 :
1255 : nr = 0;
1256 : for_each_present_cpu(cpu) {
1257 : if (nr >= 8)
1258 : set_cpu_present(cpu, false);
1259 : nr++;
1260 : }
1261 :
1262 : nr = 0;
1263 : for_each_possible_cpu(cpu) {
1264 : if (nr >= 8)
1265 : set_cpu_possible(cpu, false);
1266 : nr++;
1267 : }
1268 :
1269 : nr_cpu_ids = 8;
1270 : }
1271 : #endif
1272 :
1273 1 : if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1274 0 : pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1275 : hard_smp_processor_id());
1276 :
1277 0 : physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1278 : }
1279 :
1280 : /*
1281 : * Should not be necessary because the MP table should list the boot
1282 : * CPU too, but we do it for the sake of robustness anyway.
1283 : */
1284 1 : if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1285 0 : pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1286 : boot_cpu_physical_apicid);
1287 0 : physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1288 : }
1289 1 : preempt_enable();
1290 1 : }
1291 :
1292 1 : static void __init smp_cpu_index_default(void)
1293 : {
1294 1 : int i;
1295 1 : struct cpuinfo_x86 *c;
1296 :
1297 5 : for_each_possible_cpu(i) {
1298 4 : c = &cpu_data(i);
1299 : /* mark all to hotplug */
1300 4 : c->cpu_index = nr_cpu_ids;
1301 : }
1302 1 : }
1303 :
1304 1 : static void __init smp_get_logical_apicid(void)
1305 : {
1306 1 : if (x2apic_mode)
1307 : cpu0_logical_apicid = apic_read(APIC_LDR);
1308 : else
1309 1 : cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1310 1 : }
1311 :
1312 : /*
1313 : * Prepare for SMP bootup.
1314 : * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1315 : * for common interface support.
1316 : */
1317 1 : void __init native_smp_prepare_cpus(unsigned int max_cpus)
1318 : {
1319 1 : unsigned int i;
1320 :
1321 1 : smp_cpu_index_default();
1322 :
1323 : /*
1324 : * Setup boot CPU information
1325 : */
1326 1 : smp_store_boot_cpu_info(); /* Final full version of the data */
1327 1 : cpumask_copy(cpu_callin_mask, cpumask_of(0));
1328 1 : mb();
1329 :
1330 6 : for_each_possible_cpu(i) {
1331 4 : zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1332 4 : zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1333 4 : zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1334 5 : zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1335 : }
1336 :
1337 : /*
1338 : * Set 'default' x86 topology, this matches default_topology() in that
1339 : * it has NUMA nodes as a topology level. See also
1340 : * native_smp_cpus_done().
1341 : *
1342 : * Must be done before set_cpus_sibling_map() is ran.
1343 : */
1344 1 : set_sched_topology(x86_topology);
1345 :
1346 1 : set_cpu_sibling_map(0);
1347 1 : init_freq_invariance(false, false);
1348 1 : smp_sanity_check();
1349 :
1350 1 : switch (apic_intr_mode) {
1351 0 : case APIC_PIC:
1352 : case APIC_VIRTUAL_WIRE_NO_CONFIG:
1353 0 : disable_smp();
1354 0 : return;
1355 0 : case APIC_SYMMETRIC_IO_NO_ROUTING:
1356 0 : disable_smp();
1357 : /* Setup local timer */
1358 0 : x86_init.timers.setup_percpu_clockev();
1359 0 : return;
1360 : case APIC_VIRTUAL_WIRE:
1361 : case APIC_SYMMETRIC_IO:
1362 : break;
1363 : }
1364 :
1365 : /* Setup local timer */
1366 1 : x86_init.timers.setup_percpu_clockev();
1367 :
1368 1 : smp_get_logical_apicid();
1369 :
1370 1 : pr_info("CPU0: ");
1371 1 : print_cpu_info(&cpu_data(0));
1372 :
1373 1 : uv_system_init();
1374 :
1375 1 : set_mtrr_aps_delayed_init();
1376 :
1377 1 : smp_quirk_init_udelay();
1378 :
1379 1 : speculative_store_bypass_ht_init();
1380 : }
1381 :
1382 0 : void arch_thaw_secondary_cpus_begin(void)
1383 : {
1384 0 : set_mtrr_aps_delayed_init();
1385 0 : }
1386 :
1387 0 : void arch_thaw_secondary_cpus_end(void)
1388 : {
1389 0 : mtrr_aps_init();
1390 0 : }
1391 :
1392 : /*
1393 : * Early setup to make printk work.
1394 : */
1395 1 : void __init native_smp_prepare_boot_cpu(void)
1396 : {
1397 1 : int me = smp_processor_id();
1398 1 : switch_to_new_gdt(me);
1399 : /* already set me in cpu_online_mask in boot_cpu_init() */
1400 1 : cpumask_set_cpu(me, cpu_callout_mask);
1401 1 : cpu_set_state_online(me);
1402 1 : native_pv_lock_init();
1403 1 : }
1404 :
1405 1 : void __init calculate_max_logical_packages(void)
1406 : {
1407 1 : int ncpus;
1408 :
1409 : /*
1410 : * Today neither Intel nor AMD support heterogenous systems so
1411 : * extrapolate the boot cpu's data to all packages.
1412 : */
1413 1 : ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1414 1 : __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1415 1 : pr_info("Max logical packages: %u\n", __max_logical_packages);
1416 1 : }
1417 :
1418 1 : void __init native_smp_cpus_done(unsigned int max_cpus)
1419 : {
1420 1 : pr_debug("Boot done\n");
1421 :
1422 1 : calculate_max_logical_packages();
1423 :
1424 1 : if (x86_has_numa_in_package)
1425 0 : set_sched_topology(x86_numa_in_package_topology);
1426 :
1427 1 : nmi_selftest();
1428 1 : impress_friends();
1429 1 : mtrr_aps_init();
1430 1 : }
1431 :
1432 : static int __initdata setup_possible_cpus = -1;
1433 0 : static int __init _setup_possible_cpus(char *str)
1434 : {
1435 0 : get_option(&str, &setup_possible_cpus);
1436 0 : return 0;
1437 : }
1438 : early_param("possible_cpus", _setup_possible_cpus);
1439 :
1440 :
1441 : /*
1442 : * cpu_possible_mask should be static, it cannot change as cpu's
1443 : * are onlined, or offlined. The reason is per-cpu data-structures
1444 : * are allocated by some modules at init time, and don't expect to
1445 : * do this dynamically on cpu arrival/departure.
1446 : * cpu_present_mask on the other hand can change dynamically.
1447 : * In case when cpu_hotplug is not compiled, then we resort to current
1448 : * behaviour, which is cpu_possible == cpu_present.
1449 : * - Ashok Raj
1450 : *
1451 : * Three ways to find out the number of additional hotplug CPUs:
1452 : * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1453 : * - The user can overwrite it with possible_cpus=NUM
1454 : * - Otherwise don't reserve additional CPUs.
1455 : * We do this because additional CPUs waste a lot of memory.
1456 : * -AK
1457 : */
1458 1 : __init void prefill_possible_map(void)
1459 : {
1460 1 : int i, possible;
1461 :
1462 : /* No boot processor was found in mptable or ACPI MADT */
1463 1 : if (!num_processors) {
1464 0 : if (boot_cpu_has(X86_FEATURE_APIC)) {
1465 0 : int apicid = boot_cpu_physical_apicid;
1466 0 : int cpu = hard_smp_processor_id();
1467 :
1468 0 : pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1469 :
1470 : /* Make sure boot cpu is enumerated */
1471 0 : if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1472 0 : apic->apic_id_valid(apicid))
1473 0 : generic_processor_info(apicid, boot_cpu_apic_version);
1474 : }
1475 :
1476 0 : if (!num_processors)
1477 0 : num_processors = 1;
1478 : }
1479 :
1480 1 : i = setup_max_cpus ?: 1;
1481 1 : if (setup_possible_cpus == -1) {
1482 1 : possible = num_processors;
1483 : #ifdef CONFIG_HOTPLUG_CPU
1484 1 : if (setup_max_cpus)
1485 1 : possible += disabled_cpus;
1486 : #else
1487 : if (possible > i)
1488 : possible = i;
1489 : #endif
1490 : } else
1491 : possible = setup_possible_cpus;
1492 :
1493 1 : total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1494 :
1495 : /* nr_cpu_ids could be reduced via nr_cpus= */
1496 1 : if (possible > nr_cpu_ids) {
1497 0 : pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1498 : possible, nr_cpu_ids);
1499 0 : possible = nr_cpu_ids;
1500 : }
1501 :
1502 : #ifdef CONFIG_HOTPLUG_CPU
1503 1 : if (!setup_max_cpus)
1504 : #endif
1505 0 : if (possible > i) {
1506 0 : pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1507 : possible, setup_max_cpus);
1508 0 : possible = i;
1509 : }
1510 :
1511 1 : nr_cpu_ids = possible;
1512 :
1513 1 : pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1514 : possible, max_t(int, possible - num_processors, 0));
1515 :
1516 1 : reset_cpu_possible_mask();
1517 :
1518 5 : for (i = 0; i < possible; i++)
1519 4 : set_cpu_possible(i, true);
1520 1 : }
1521 :
1522 : #ifdef CONFIG_HOTPLUG_CPU
1523 :
1524 : /* Recompute SMT state for all CPUs on offline */
1525 0 : static void recompute_smt_state(void)
1526 : {
1527 0 : int max_threads, cpu;
1528 :
1529 0 : max_threads = 0;
1530 0 : for_each_online_cpu (cpu) {
1531 0 : int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1532 :
1533 0 : if (threads > max_threads)
1534 : max_threads = threads;
1535 : }
1536 0 : __max_smt_threads = max_threads;
1537 0 : }
1538 :
1539 0 : static void remove_siblinginfo(int cpu)
1540 : {
1541 0 : int sibling;
1542 0 : struct cpuinfo_x86 *c = &cpu_data(cpu);
1543 :
1544 0 : for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1545 0 : cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1546 : /*/
1547 : * last thread sibling in this cpu core going down
1548 : */
1549 0 : if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1550 0 : cpu_data(sibling).booted_cores--;
1551 : }
1552 :
1553 0 : for_each_cpu(sibling, topology_die_cpumask(cpu))
1554 0 : cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1555 0 : for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1556 0 : cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1557 0 : for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1558 0 : cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1559 0 : cpumask_clear(cpu_llc_shared_mask(cpu));
1560 0 : cpumask_clear(topology_sibling_cpumask(cpu));
1561 0 : cpumask_clear(topology_core_cpumask(cpu));
1562 0 : cpumask_clear(topology_die_cpumask(cpu));
1563 0 : c->cpu_core_id = 0;
1564 0 : c->booted_cores = 0;
1565 0 : cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1566 0 : recompute_smt_state();
1567 0 : }
1568 :
1569 0 : static void remove_cpu_from_maps(int cpu)
1570 : {
1571 0 : set_cpu_online(cpu, false);
1572 0 : cpumask_clear_cpu(cpu, cpu_callout_mask);
1573 0 : cpumask_clear_cpu(cpu, cpu_callin_mask);
1574 : /* was set by cpu_init() */
1575 0 : cpumask_clear_cpu(cpu, cpu_initialized_mask);
1576 0 : numa_remove_cpu(cpu);
1577 0 : }
1578 :
1579 0 : void cpu_disable_common(void)
1580 : {
1581 0 : int cpu = smp_processor_id();
1582 :
1583 0 : remove_siblinginfo(cpu);
1584 :
1585 : /* It's now safe to remove this processor from the online map */
1586 0 : lock_vector_lock();
1587 0 : remove_cpu_from_maps(cpu);
1588 0 : unlock_vector_lock();
1589 0 : fixup_irqs();
1590 0 : lapic_offline();
1591 0 : }
1592 :
1593 0 : int native_cpu_disable(void)
1594 : {
1595 0 : int ret;
1596 :
1597 0 : ret = lapic_can_unplug_cpu();
1598 0 : if (ret)
1599 : return ret;
1600 :
1601 0 : cpu_disable_common();
1602 :
1603 : /*
1604 : * Disable the local APIC. Otherwise IPI broadcasts will reach
1605 : * it. It still responds normally to INIT, NMI, SMI, and SIPI
1606 : * messages.
1607 : *
1608 : * Disabling the APIC must happen after cpu_disable_common()
1609 : * which invokes fixup_irqs().
1610 : *
1611 : * Disabling the APIC preserves already set bits in IRR, but
1612 : * an interrupt arriving after disabling the local APIC does not
1613 : * set the corresponding IRR bit.
1614 : *
1615 : * fixup_irqs() scans IRR for set bits so it can raise a not
1616 : * yet handled interrupt on the new destination CPU via an IPI
1617 : * but obviously it can't do so for IRR bits which are not set.
1618 : * IOW, interrupts arriving after disabling the local APIC will
1619 : * be lost.
1620 : */
1621 0 : apic_soft_disable();
1622 :
1623 0 : return 0;
1624 : }
1625 :
1626 0 : int common_cpu_die(unsigned int cpu)
1627 : {
1628 0 : int ret = 0;
1629 :
1630 : /* We don't do anything here: idle task is faking death itself. */
1631 :
1632 : /* They ack this in play_dead() by setting CPU_DEAD */
1633 0 : if (cpu_wait_death(cpu, 5)) {
1634 0 : if (system_state == SYSTEM_RUNNING)
1635 0 : pr_info("CPU %u is now offline\n", cpu);
1636 : } else {
1637 0 : pr_err("CPU %u didn't die...\n", cpu);
1638 0 : ret = -1;
1639 : }
1640 :
1641 0 : return ret;
1642 : }
1643 :
1644 0 : void native_cpu_die(unsigned int cpu)
1645 : {
1646 0 : common_cpu_die(cpu);
1647 0 : }
1648 :
1649 0 : void play_dead_common(void)
1650 : {
1651 0 : idle_task_exit();
1652 :
1653 : /* Ack it */
1654 0 : (void)cpu_report_death();
1655 :
1656 : /*
1657 : * With physical CPU hotplug, we should halt the cpu
1658 : */
1659 0 : local_irq_disable();
1660 0 : }
1661 :
1662 0 : static bool wakeup_cpu0(void)
1663 : {
1664 0 : if (smp_processor_id() == 0 && enable_start_cpu0)
1665 0 : return true;
1666 :
1667 : return false;
1668 : }
1669 :
1670 : /*
1671 : * We need to flush the caches before going to sleep, lest we have
1672 : * dirty data in our caches when we come back up.
1673 : */
1674 0 : static inline void mwait_play_dead(void)
1675 : {
1676 0 : unsigned int eax, ebx, ecx, edx;
1677 0 : unsigned int highest_cstate = 0;
1678 0 : unsigned int highest_subcstate = 0;
1679 0 : void *mwait_ptr;
1680 0 : int i;
1681 :
1682 0 : if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1683 : boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1684 : return;
1685 0 : if (!this_cpu_has(X86_FEATURE_MWAIT))
1686 : return;
1687 0 : if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1688 : return;
1689 0 : if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1690 : return;
1691 :
1692 0 : eax = CPUID_MWAIT_LEAF;
1693 0 : ecx = 0;
1694 0 : native_cpuid(&eax, &ebx, &ecx, &edx);
1695 :
1696 : /*
1697 : * eax will be 0 if EDX enumeration is not valid.
1698 : * Initialized below to cstate, sub_cstate value when EDX is valid.
1699 : */
1700 0 : if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1701 : eax = 0;
1702 : } else {
1703 0 : edx >>= MWAIT_SUBSTATE_SIZE;
1704 0 : for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1705 0 : if (edx & MWAIT_SUBSTATE_MASK) {
1706 0 : highest_cstate = i;
1707 0 : highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1708 : }
1709 : }
1710 0 : eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1711 0 : (highest_subcstate - 1);
1712 : }
1713 :
1714 : /*
1715 : * This should be a memory location in a cache line which is
1716 : * unlikely to be touched by other processors. The actual
1717 : * content is immaterial as it is not actually modified in any way.
1718 : */
1719 0 : mwait_ptr = ¤t_thread_info()->flags;
1720 :
1721 0 : wbinvd();
1722 :
1723 0 : while (1) {
1724 : /*
1725 : * The CLFLUSH is a workaround for erratum AAI65 for
1726 : * the Xeon 7400 series. It's not clear it is actually
1727 : * needed, but it should be harmless in either case.
1728 : * The WBINVD is insufficient due to the spurious-wakeup
1729 : * case where we return around the loop.
1730 : */
1731 0 : mb();
1732 0 : clflush(mwait_ptr);
1733 0 : mb();
1734 0 : __monitor(mwait_ptr, 0, 0);
1735 0 : mb();
1736 0 : __mwait(eax, 0);
1737 : /*
1738 : * If NMI wants to wake up CPU0, start CPU0.
1739 : */
1740 0 : if (wakeup_cpu0())
1741 0 : start_cpu0();
1742 : }
1743 : }
1744 :
1745 0 : void hlt_play_dead(void)
1746 : {
1747 0 : if (__this_cpu_read(cpu_info.x86) >= 4)
1748 0 : wbinvd();
1749 :
1750 0 : while (1) {
1751 0 : native_halt();
1752 : /*
1753 : * If NMI wants to wake up CPU0, start CPU0.
1754 : */
1755 0 : if (wakeup_cpu0())
1756 0 : start_cpu0();
1757 : }
1758 : }
1759 :
1760 0 : void native_play_dead(void)
1761 : {
1762 0 : play_dead_common();
1763 0 : tboot_shutdown(TB_SHUTDOWN_WFS);
1764 :
1765 0 : mwait_play_dead(); /* Only returns on failure */
1766 0 : if (cpuidle_play_dead())
1767 0 : hlt_play_dead();
1768 : }
1769 :
1770 : #else /* ... !CONFIG_HOTPLUG_CPU */
1771 : int native_cpu_disable(void)
1772 : {
1773 : return -ENOSYS;
1774 : }
1775 :
1776 : void native_cpu_die(unsigned int cpu)
1777 : {
1778 : /* We said "no" in __cpu_disable */
1779 : BUG();
1780 : }
1781 :
1782 : void native_play_dead(void)
1783 : {
1784 : BUG();
1785 : }
1786 :
1787 : #endif
1788 :
1789 : #ifdef CONFIG_X86_64
1790 : /*
1791 : * APERF/MPERF frequency ratio computation.
1792 : *
1793 : * The scheduler wants to do frequency invariant accounting and needs a <1
1794 : * ratio to account for the 'current' frequency, corresponding to
1795 : * freq_curr / freq_max.
1796 : *
1797 : * Since the frequency freq_curr on x86 is controlled by micro-controller and
1798 : * our P-state setting is little more than a request/hint, we need to observe
1799 : * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1800 : * interval after discarding idle time. This is given by:
1801 : *
1802 : * BusyMHz = delta_APERF / delta_MPERF * freq_base
1803 : *
1804 : * where freq_base is the max non-turbo P-state.
1805 : *
1806 : * The freq_max term has to be set to a somewhat arbitrary value, because we
1807 : * can't know which turbo states will be available at a given point in time:
1808 : * it all depends on the thermal headroom of the entire package. We set it to
1809 : * the turbo level with 4 cores active.
1810 : *
1811 : * Benchmarks show that's a good compromise between the 1C turbo ratio
1812 : * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1813 : * which would ignore the entire turbo range (a conspicuous part, making
1814 : * freq_curr/freq_max always maxed out).
1815 : *
1816 : * An exception to the heuristic above is the Atom uarch, where we choose the
1817 : * highest turbo level for freq_max since Atom's are generally oriented towards
1818 : * power efficiency.
1819 : *
1820 : * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1821 : * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1822 : */
1823 :
1824 : DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1825 :
1826 : static DEFINE_PER_CPU(u64, arch_prev_aperf);
1827 : static DEFINE_PER_CPU(u64, arch_prev_mperf);
1828 : static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1829 : static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1830 :
1831 0 : void arch_set_max_freq_ratio(bool turbo_disabled)
1832 : {
1833 0 : arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1834 : arch_turbo_freq_ratio;
1835 0 : }
1836 : EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1837 :
1838 0 : static bool turbo_disabled(void)
1839 : {
1840 0 : u64 misc_en;
1841 0 : int err;
1842 :
1843 0 : err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1844 0 : if (err)
1845 : return false;
1846 :
1847 0 : return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1848 : }
1849 :
1850 0 : static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1851 : {
1852 0 : int err;
1853 :
1854 0 : err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1855 0 : if (err)
1856 : return false;
1857 :
1858 0 : err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1859 0 : if (err)
1860 : return false;
1861 :
1862 0 : *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1863 0 : *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1864 :
1865 0 : return true;
1866 : }
1867 :
1868 : #include <asm/cpu_device_id.h>
1869 : #include <asm/intel-family.h>
1870 :
1871 : #define X86_MATCH(model) \
1872 : X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1873 : INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1874 :
1875 : static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1876 : X86_MATCH(XEON_PHI_KNL),
1877 : X86_MATCH(XEON_PHI_KNM),
1878 : {}
1879 : };
1880 :
1881 : static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1882 : X86_MATCH(SKYLAKE_X),
1883 : {}
1884 : };
1885 :
1886 : static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1887 : X86_MATCH(ATOM_GOLDMONT),
1888 : X86_MATCH(ATOM_GOLDMONT_D),
1889 : X86_MATCH(ATOM_GOLDMONT_PLUS),
1890 : {}
1891 : };
1892 :
1893 0 : static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1894 : int num_delta_fratio)
1895 : {
1896 0 : int fratio, delta_fratio, found;
1897 0 : int err, i;
1898 0 : u64 msr;
1899 :
1900 0 : err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1901 0 : if (err)
1902 : return false;
1903 :
1904 0 : *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1905 :
1906 0 : err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1907 0 : if (err)
1908 : return false;
1909 :
1910 0 : fratio = (msr >> 8) & 0xFF;
1911 0 : i = 16;
1912 0 : found = 0;
1913 0 : do {
1914 0 : if (found >= num_delta_fratio) {
1915 0 : *turbo_freq = fratio;
1916 0 : return true;
1917 : }
1918 :
1919 0 : delta_fratio = (msr >> (i + 5)) & 0x7;
1920 :
1921 0 : if (delta_fratio) {
1922 0 : found += 1;
1923 0 : fratio -= delta_fratio;
1924 : }
1925 :
1926 0 : i += 8;
1927 0 : } while (i < 64);
1928 :
1929 : return true;
1930 : }
1931 :
1932 0 : static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1933 : {
1934 0 : u64 ratios, counts;
1935 0 : u32 group_size;
1936 0 : int err, i;
1937 :
1938 0 : err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1939 0 : if (err)
1940 : return false;
1941 :
1942 0 : *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1943 :
1944 0 : err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1945 0 : if (err)
1946 : return false;
1947 :
1948 0 : err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1949 0 : if (err)
1950 : return false;
1951 :
1952 0 : for (i = 0; i < 64; i += 8) {
1953 0 : group_size = (counts >> i) & 0xFF;
1954 0 : if (group_size >= size) {
1955 0 : *turbo_freq = (ratios >> i) & 0xFF;
1956 0 : return true;
1957 : }
1958 : }
1959 :
1960 : return false;
1961 : }
1962 :
1963 0 : static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1964 : {
1965 0 : u64 msr;
1966 0 : int err;
1967 :
1968 0 : err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1969 0 : if (err)
1970 : return false;
1971 :
1972 0 : err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1973 0 : if (err)
1974 : return false;
1975 :
1976 0 : *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1977 0 : *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1978 :
1979 : /* The CPU may have less than 4 cores */
1980 0 : if (!*turbo_freq)
1981 0 : *turbo_freq = msr & 0xFF; /* 1C turbo */
1982 :
1983 : return true;
1984 : }
1985 :
1986 0 : static bool intel_set_max_freq_ratio(void)
1987 : {
1988 0 : u64 base_freq, turbo_freq;
1989 0 : u64 turbo_ratio;
1990 :
1991 0 : if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1992 0 : goto out;
1993 :
1994 0 : if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1995 0 : skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1996 0 : goto out;
1997 :
1998 0 : if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1999 0 : knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2000 0 : goto out;
2001 :
2002 0 : if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2003 0 : skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2004 0 : goto out;
2005 :
2006 0 : if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2007 0 : goto out;
2008 :
2009 : return false;
2010 :
2011 0 : out:
2012 : /*
2013 : * Some hypervisors advertise X86_FEATURE_APERFMPERF
2014 : * but then fill all MSR's with zeroes.
2015 : * Some CPUs have turbo boost but don't declare any turbo ratio
2016 : * in MSR_TURBO_RATIO_LIMIT.
2017 : */
2018 0 : if (!base_freq || !turbo_freq) {
2019 : pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2020 : return false;
2021 : }
2022 :
2023 0 : turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2024 0 : if (!turbo_ratio) {
2025 : pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2026 : return false;
2027 : }
2028 :
2029 0 : arch_turbo_freq_ratio = turbo_ratio;
2030 0 : arch_set_max_freq_ratio(turbo_disabled());
2031 :
2032 0 : return true;
2033 : }
2034 :
2035 : #ifdef CONFIG_ACPI_CPPC_LIB
2036 : static bool amd_set_max_freq_ratio(void)
2037 : {
2038 : struct cppc_perf_caps perf_caps;
2039 : u64 highest_perf, nominal_perf;
2040 : u64 perf_ratio;
2041 : int rc;
2042 :
2043 : rc = cppc_get_perf_caps(0, &perf_caps);
2044 : if (rc) {
2045 : pr_debug("Could not retrieve perf counters (%d)\n", rc);
2046 : return false;
2047 : }
2048 :
2049 : highest_perf = perf_caps.highest_perf;
2050 : nominal_perf = perf_caps.nominal_perf;
2051 :
2052 : if (!highest_perf || !nominal_perf) {
2053 : pr_debug("Could not retrieve highest or nominal performance\n");
2054 : return false;
2055 : }
2056 :
2057 : perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2058 : /* midpoint between max_boost and max_P */
2059 : perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2060 : if (!perf_ratio) {
2061 : pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2062 : return false;
2063 : }
2064 :
2065 : arch_turbo_freq_ratio = perf_ratio;
2066 : arch_set_max_freq_ratio(false);
2067 :
2068 : return true;
2069 : }
2070 : #else
2071 : static bool amd_set_max_freq_ratio(void)
2072 : {
2073 : return false;
2074 : }
2075 : #endif
2076 :
2077 0 : static void init_counter_refs(void)
2078 : {
2079 0 : u64 aperf, mperf;
2080 :
2081 0 : rdmsrl(MSR_IA32_APERF, aperf);
2082 0 : rdmsrl(MSR_IA32_MPERF, mperf);
2083 :
2084 0 : this_cpu_write(arch_prev_aperf, aperf);
2085 0 : this_cpu_write(arch_prev_mperf, mperf);
2086 0 : }
2087 :
2088 : #ifdef CONFIG_PM_SLEEP
2089 : static struct syscore_ops freq_invariance_syscore_ops = {
2090 : .resume = init_counter_refs,
2091 : };
2092 :
2093 : static void register_freq_invariance_syscore_ops(void)
2094 : {
2095 : /* Bail out if registered already. */
2096 : if (freq_invariance_syscore_ops.node.prev)
2097 : return;
2098 :
2099 : register_syscore_ops(&freq_invariance_syscore_ops);
2100 : }
2101 : #else
2102 0 : static inline void register_freq_invariance_syscore_ops(void) {}
2103 : #endif
2104 :
2105 4 : static void init_freq_invariance(bool secondary, bool cppc_ready)
2106 : {
2107 4 : bool ret = false;
2108 :
2109 4 : if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2110 : return;
2111 :
2112 0 : if (secondary) {
2113 0 : if (static_branch_likely(&arch_scale_freq_key)) {
2114 0 : init_counter_refs();
2115 : }
2116 0 : return;
2117 : }
2118 :
2119 0 : if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2120 0 : ret = intel_set_max_freq_ratio();
2121 : else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2122 : if (!cppc_ready) {
2123 : return;
2124 : }
2125 : ret = amd_set_max_freq_ratio();
2126 : }
2127 :
2128 0 : if (ret) {
2129 0 : init_counter_refs();
2130 0 : static_branch_enable(&arch_scale_freq_key);
2131 0 : register_freq_invariance_syscore_ops();
2132 0 : pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2133 : } else {
2134 : pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2135 : }
2136 : }
2137 :
2138 : #ifdef CONFIG_ACPI_CPPC_LIB
2139 : static DEFINE_MUTEX(freq_invariance_lock);
2140 :
2141 : void init_freq_invariance_cppc(void)
2142 : {
2143 : static bool secondary;
2144 :
2145 : mutex_lock(&freq_invariance_lock);
2146 :
2147 : init_freq_invariance(secondary, true);
2148 : secondary = true;
2149 :
2150 : mutex_unlock(&freq_invariance_lock);
2151 : }
2152 : #endif
2153 :
2154 0 : static void disable_freq_invariance_workfn(struct work_struct *work)
2155 : {
2156 0 : static_branch_disable(&arch_scale_freq_key);
2157 0 : }
2158 :
2159 : static DECLARE_WORK(disable_freq_invariance_work,
2160 : disable_freq_invariance_workfn);
2161 :
2162 : DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2163 :
2164 75204 : void arch_scale_freq_tick(void)
2165 : {
2166 75204 : u64 freq_scale = SCHED_CAPACITY_SCALE;
2167 75204 : u64 aperf, mperf;
2168 75204 : u64 acnt, mcnt;
2169 :
2170 75204 : if (!arch_scale_freq_invariant())
2171 75142 : return;
2172 :
2173 0 : rdmsrl(MSR_IA32_APERF, aperf);
2174 0 : rdmsrl(MSR_IA32_MPERF, mperf);
2175 :
2176 0 : acnt = aperf - this_cpu_read(arch_prev_aperf);
2177 0 : mcnt = mperf - this_cpu_read(arch_prev_mperf);
2178 :
2179 0 : this_cpu_write(arch_prev_aperf, aperf);
2180 0 : this_cpu_write(arch_prev_mperf, mperf);
2181 :
2182 0 : if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2183 0 : goto error;
2184 :
2185 0 : if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2186 0 : goto error;
2187 :
2188 0 : freq_scale = div64_u64(acnt, mcnt);
2189 0 : if (!freq_scale)
2190 0 : goto error;
2191 :
2192 0 : if (freq_scale > SCHED_CAPACITY_SCALE)
2193 : freq_scale = SCHED_CAPACITY_SCALE;
2194 :
2195 0 : this_cpu_write(arch_freq_scale, freq_scale);
2196 : return;
2197 :
2198 0 : error:
2199 0 : pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2200 0 : schedule_work(&disable_freq_invariance_work);
2201 : }
2202 : #else
2203 : static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2204 : {
2205 : }
2206 : #endif /* CONFIG_X86_64 */
|