LCOV - code coverage report
Current view: top level - arch/x86/kernel - traps.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 66 309 21.4 %
Date: 2021-04-22 12:43:58 Functions: 10 36 27.8 %

          Line data    Source code
       1             : /*
       2             :  *  Copyright (C) 1991, 1992  Linus Torvalds
       3             :  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
       4             :  *
       5             :  *  Pentium III FXSR, SSE support
       6             :  *      Gareth Hughes <gareth@valinux.com>, May 2000
       7             :  */
       8             : 
       9             : /*
      10             :  * Handle hardware traps and faults.
      11             :  */
      12             : 
      13             : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      14             : 
      15             : #include <linux/context_tracking.h>
      16             : #include <linux/interrupt.h>
      17             : #include <linux/kallsyms.h>
      18             : #include <linux/spinlock.h>
      19             : #include <linux/kprobes.h>
      20             : #include <linux/uaccess.h>
      21             : #include <linux/kdebug.h>
      22             : #include <linux/kgdb.h>
      23             : #include <linux/kernel.h>
      24             : #include <linux/export.h>
      25             : #include <linux/ptrace.h>
      26             : #include <linux/uprobes.h>
      27             : #include <linux/string.h>
      28             : #include <linux/delay.h>
      29             : #include <linux/errno.h>
      30             : #include <linux/kexec.h>
      31             : #include <linux/sched.h>
      32             : #include <linux/sched/task_stack.h>
      33             : #include <linux/timer.h>
      34             : #include <linux/init.h>
      35             : #include <linux/bug.h>
      36             : #include <linux/nmi.h>
      37             : #include <linux/mm.h>
      38             : #include <linux/smp.h>
      39             : #include <linux/io.h>
      40             : #include <linux/hardirq.h>
      41             : #include <linux/atomic.h>
      42             : 
      43             : #include <asm/stacktrace.h>
      44             : #include <asm/processor.h>
      45             : #include <asm/debugreg.h>
      46             : #include <asm/realmode.h>
      47             : #include <asm/text-patching.h>
      48             : #include <asm/ftrace.h>
      49             : #include <asm/traps.h>
      50             : #include <asm/desc.h>
      51             : #include <asm/fpu/internal.h>
      52             : #include <asm/cpu.h>
      53             : #include <asm/cpu_entry_area.h>
      54             : #include <asm/mce.h>
      55             : #include <asm/fixmap.h>
      56             : #include <asm/mach_traps.h>
      57             : #include <asm/alternative.h>
      58             : #include <asm/fpu/xstate.h>
      59             : #include <asm/vm86.h>
      60             : #include <asm/umip.h>
      61             : #include <asm/insn.h>
      62             : #include <asm/insn-eval.h>
      63             : #include <asm/vdso.h>
      64             : 
      65             : #ifdef CONFIG_X86_64
      66             : #include <asm/x86_init.h>
      67             : #include <asm/proto.h>
      68             : #else
      69             : #include <asm/processor-flags.h>
      70             : #include <asm/setup.h>
      71             : #include <asm/proto.h>
      72             : #endif
      73             : 
      74             : DECLARE_BITMAP(system_vectors, NR_VECTORS);
      75             : 
      76           4 : static inline void cond_local_irq_enable(struct pt_regs *regs)
      77             : {
      78           4 :         if (regs->flags & X86_EFLAGS_IF)
      79           4 :                 local_irq_enable();
      80           4 : }
      81             : 
      82           4 : static inline void cond_local_irq_disable(struct pt_regs *regs)
      83             : {
      84           4 :         if (regs->flags & X86_EFLAGS_IF)
      85           4 :                 local_irq_disable();
      86           4 : }
      87             : 
      88           2 : __always_inline int is_valid_bugaddr(unsigned long addr)
      89             : {
      90           1 :         if (addr < TASK_SIZE_MAX)
      91             :                 return 0;
      92             : 
      93             :         /*
      94             :          * We got #UD, if the text isn't readable we'd have gotten
      95             :          * a different exception.
      96             :          */
      97           1 :         return *(unsigned short *)addr == INSN_UD2;
      98             : }
      99             : 
     100             : static nokprobe_inline int
     101           0 : do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
     102             :                   struct pt_regs *regs, long error_code)
     103             : {
     104           0 :         if (v8086_mode(regs)) {
     105             :                 /*
     106             :                  * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
     107             :                  * On nmi (interrupt 2), do_trap should not be called.
     108             :                  */
     109             :                 if (trapnr < X86_TRAP_UD) {
     110             :                         if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
     111             :                                                 error_code, trapnr))
     112             :                                 return 0;
     113             :                 }
     114           0 :         } else if (!user_mode(regs)) {
     115           0 :                 if (fixup_exception(regs, trapnr, error_code, 0))
     116             :                         return 0;
     117             : 
     118           0 :                 tsk->thread.error_code = error_code;
     119           0 :                 tsk->thread.trap_nr = trapnr;
     120           0 :                 die(str, regs, error_code);
     121             :         } else {
     122           0 :                 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
     123             :                         return 0;
     124             :         }
     125             : 
     126             :         /*
     127             :          * We want error_code and trap_nr set for userspace faults and
     128             :          * kernelspace faults which result in die(), but not
     129             :          * kernelspace faults which are fixed up.  die() gives the
     130             :          * process no chance to handle the signal and notice the
     131             :          * kernel fault information, so that won't result in polluting
     132             :          * the information about previously queued, but not yet
     133             :          * delivered, faults.  See also exc_general_protection below.
     134             :          */
     135           0 :         tsk->thread.error_code = error_code;
     136           0 :         tsk->thread.trap_nr = trapnr;
     137             : 
     138           0 :         return -1;
     139             : }
     140             : 
     141           0 : static void show_signal(struct task_struct *tsk, int signr,
     142             :                         const char *type, const char *desc,
     143             :                         struct pt_regs *regs, long error_code)
     144             : {
     145           0 :         if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
     146           0 :             printk_ratelimit()) {
     147           0 :                 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
     148             :                         tsk->comm, task_pid_nr(tsk), type, desc,
     149             :                         regs->ip, regs->sp, error_code);
     150           0 :                 print_vma_addr(KERN_CONT " in ", regs->ip);
     151           0 :                 pr_cont("\n");
     152             :         }
     153           0 : }
     154             : 
     155             : static void
     156           0 : do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
     157             :         long error_code, int sicode, void __user *addr)
     158             : {
     159           0 :         struct task_struct *tsk = current;
     160             : 
     161           0 :         if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
     162             :                 return;
     163             : 
     164           0 :         show_signal(tsk, signr, "trap ", str, regs, error_code);
     165             : 
     166           0 :         if (!sicode)
     167           0 :                 force_sig(signr);
     168             :         else
     169           0 :                 force_sig_fault(signr, sicode, addr);
     170             : }
     171             : NOKPROBE_SYMBOL(do_trap);
     172             : 
     173           0 : static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
     174             :         unsigned long trapnr, int signr, int sicode, void __user *addr)
     175             : {
     176           0 :         RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
     177             : 
     178           0 :         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
     179             :                         NOTIFY_STOP) {
     180           0 :                 cond_local_irq_enable(regs);
     181           0 :                 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
     182           0 :                 cond_local_irq_disable(regs);
     183             :         }
     184           0 : }
     185             : 
     186             : /*
     187             :  * Posix requires to provide the address of the faulting instruction for
     188             :  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
     189             :  *
     190             :  * This address is usually regs->ip, but when an uprobe moved the code out
     191             :  * of line then regs->ip points to the XOL code which would confuse
     192             :  * anything which analyzes the fault address vs. the unmodified binary. If
     193             :  * a trap happened in XOL code then uprobe maps regs->ip back to the
     194             :  * original instruction address.
     195             :  */
     196           0 : static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
     197             : {
     198           0 :         return (void __user *)uprobe_get_trap_addr(regs);
     199             : }
     200             : 
     201           0 : DEFINE_IDTENTRY(exc_divide_error)
     202             : {
     203           0 :         do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
     204             :                       FPE_INTDIV, error_get_trap_addr(regs));
     205             : }
     206             : 
     207           0 : DEFINE_IDTENTRY(exc_overflow)
     208             : {
     209           0 :         do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
     210             : }
     211             : 
     212             : #ifdef CONFIG_X86_F00F_BUG
     213             : void handle_invalid_op(struct pt_regs *regs)
     214             : #else
     215           0 : static inline void handle_invalid_op(struct pt_regs *regs)
     216             : #endif
     217             : {
     218           0 :         do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
     219             :                       ILL_ILLOPN, error_get_trap_addr(regs));
     220           0 : }
     221             : 
     222           1 : static noinstr bool handle_bug(struct pt_regs *regs)
     223             : {
     224           1 :         bool handled = false;
     225             : 
     226           1 :         if (!is_valid_bugaddr(regs->ip))
     227             :                 return handled;
     228             : 
     229             :         /*
     230             :          * All lies, just get the WARN/BUG out.
     231             :          */
     232           1 :         instrumentation_begin();
     233             :         /*
     234             :          * Since we're emulating a CALL with exceptions, restore the interrupt
     235             :          * state to what it was at the exception site.
     236             :          */
     237           1 :         if (regs->flags & X86_EFLAGS_IF)
     238           1 :                 raw_local_irq_enable();
     239           1 :         if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
     240           1 :                 regs->ip += LEN_UD2;
     241           1 :                 handled = true;
     242             :         }
     243           1 :         if (regs->flags & X86_EFLAGS_IF)
     244           1 :                 raw_local_irq_disable();
     245             :         instrumentation_end();
     246             : 
     247             :         return handled;
     248             : }
     249             : 
     250           1 : DEFINE_IDTENTRY_RAW(exc_invalid_op)
     251             : {
     252           1 :         irqentry_state_t state;
     253             : 
     254             :         /*
     255             :          * We use UD2 as a short encoding for 'CALL __WARN', as such
     256             :          * handle it before exception entry to avoid recursive WARN
     257             :          * in case exception entry is the one triggering WARNs.
     258             :          */
     259           1 :         if (!user_mode(regs) && handle_bug(regs))
     260           1 :                 return;
     261             : 
     262           0 :         state = irqentry_enter(regs);
     263           0 :         instrumentation_begin();
     264           0 :         handle_invalid_op(regs);
     265           0 :         instrumentation_end();
     266           0 :         irqentry_exit(regs, state);
     267             : }
     268             : 
     269           0 : DEFINE_IDTENTRY(exc_coproc_segment_overrun)
     270             : {
     271           0 :         do_error_trap(regs, 0, "coprocessor segment overrun",
     272             :                       X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
     273             : }
     274             : 
     275           0 : DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
     276             : {
     277           0 :         do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
     278             :                       0, NULL);
     279             : }
     280             : 
     281           0 : DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
     282             : {
     283           0 :         do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
     284             :                       SIGBUS, 0, NULL);
     285             : }
     286             : 
     287           0 : DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
     288             : {
     289           0 :         do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
     290             :                       0, NULL);
     291             : }
     292             : 
     293           0 : DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
     294             : {
     295           0 :         char *str = "alignment check";
     296             : 
     297           0 :         if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
     298             :                 return;
     299             : 
     300           0 :         if (!user_mode(regs))
     301           0 :                 die("Split lock detected\n", regs, error_code);
     302             : 
     303           0 :         local_irq_enable();
     304             : 
     305           0 :         if (handle_user_split_lock(regs, error_code))
     306           0 :                 goto out;
     307             : 
     308           0 :         do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
     309             :                 error_code, BUS_ADRALN, NULL);
     310             : 
     311           0 : out:
     312           0 :         local_irq_disable();
     313             : }
     314             : 
     315             : #ifdef CONFIG_VMAP_STACK
     316             : __visible void __noreturn handle_stack_overflow(const char *message,
     317             :                                                 struct pt_regs *regs,
     318             :                                                 unsigned long fault_address)
     319             : {
     320             :         printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
     321             :                  (void *)fault_address, current->stack,
     322             :                  (char *)current->stack + THREAD_SIZE - 1);
     323             :         die(message, regs, 0);
     324             : 
     325             :         /* Be absolutely certain we don't return. */
     326             :         panic("%s", message);
     327             : }
     328             : #endif
     329             : 
     330             : /*
     331             :  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
     332             :  *
     333             :  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
     334             :  * SDM's warnings about double faults being unrecoverable, returning works as
     335             :  * expected.  Presumably what the SDM actually means is that the CPU may get
     336             :  * the register state wrong on entry, so returning could be a bad idea.
     337             :  *
     338             :  * Various CPU engineers have promised that double faults due to an IRET fault
     339             :  * while the stack is read-only are, in fact, recoverable.
     340             :  *
     341             :  * On x86_32, this is entered through a task gate, and regs are synthesized
     342             :  * from the TSS.  Returning is, in principle, okay, but changes to regs will
     343             :  * be lost.  If, for some reason, we need to return to a context with modified
     344             :  * regs, the shim code could be adjusted to synchronize the registers.
     345             :  *
     346             :  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
     347             :  * to be read before doing anything else.
     348             :  */
     349           0 : DEFINE_IDTENTRY_DF(exc_double_fault)
     350             : {
     351           0 :         static const char str[] = "double fault";
     352           0 :         struct task_struct *tsk = current;
     353             : 
     354             : #ifdef CONFIG_VMAP_STACK
     355             :         unsigned long address = read_cr2();
     356             : #endif
     357             : 
     358             : #ifdef CONFIG_X86_ESPFIX64
     359             :         extern unsigned char native_irq_return_iret[];
     360             : 
     361             :         /*
     362             :          * If IRET takes a non-IST fault on the espfix64 stack, then we
     363             :          * end up promoting it to a doublefault.  In that case, take
     364             :          * advantage of the fact that we're not using the normal (TSS.sp0)
     365             :          * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
     366             :          * and then modify our own IRET frame so that, when we return,
     367             :          * we land directly at the #GP(0) vector with the stack already
     368             :          * set up according to its expectations.
     369             :          *
     370             :          * The net result is that our #GP handler will think that we
     371             :          * entered from usermode with the bad user context.
     372             :          *
     373             :          * No need for nmi_enter() here because we don't use RCU.
     374             :          */
     375             :         if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
     376             :                 regs->cs == __KERNEL_CS &&
     377             :                 regs->ip == (unsigned long)native_irq_return_iret)
     378             :         {
     379             :                 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
     380             :                 unsigned long *p = (unsigned long *)regs->sp;
     381             : 
     382             :                 /*
     383             :                  * regs->sp points to the failing IRET frame on the
     384             :                  * ESPFIX64 stack.  Copy it to the entry stack.  This fills
     385             :                  * in gpregs->ss through gpregs->ip.
     386             :                  *
     387             :                  */
     388             :                 gpregs->ip   = p[0];
     389             :                 gpregs->cs   = p[1];
     390             :                 gpregs->flags        = p[2];
     391             :                 gpregs->sp   = p[3];
     392             :                 gpregs->ss   = p[4];
     393             :                 gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
     394             : 
     395             :                 /*
     396             :                  * Adjust our frame so that we return straight to the #GP
     397             :                  * vector with the expected RSP value.  This is safe because
     398             :                  * we won't enable interupts or schedule before we invoke
     399             :                  * general_protection, so nothing will clobber the stack
     400             :                  * frame we just set up.
     401             :                  *
     402             :                  * We will enter general_protection with kernel GSBASE,
     403             :                  * which is what the stub expects, given that the faulting
     404             :                  * RIP will be the IRET instruction.
     405             :                  */
     406             :                 regs->ip = (unsigned long)asm_exc_general_protection;
     407             :                 regs->sp = (unsigned long)&gpregs->orig_ax;
     408             : 
     409             :                 return;
     410             :         }
     411             : #endif
     412             : 
     413           0 :         irqentry_nmi_enter(regs);
     414           0 :         instrumentation_begin();
     415           0 :         notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
     416             : 
     417           0 :         tsk->thread.error_code = error_code;
     418           0 :         tsk->thread.trap_nr = X86_TRAP_DF;
     419             : 
     420             : #ifdef CONFIG_VMAP_STACK
     421             :         /*
     422             :          * If we overflow the stack into a guard page, the CPU will fail
     423             :          * to deliver #PF and will send #DF instead.  Similarly, if we
     424             :          * take any non-IST exception while too close to the bottom of
     425             :          * the stack, the processor will get a page fault while
     426             :          * delivering the exception and will generate a double fault.
     427             :          *
     428             :          * According to the SDM (footnote in 6.15 under "Interrupt 14 -
     429             :          * Page-Fault Exception (#PF):
     430             :          *
     431             :          *   Processors update CR2 whenever a page fault is detected. If a
     432             :          *   second page fault occurs while an earlier page fault is being
     433             :          *   delivered, the faulting linear address of the second fault will
     434             :          *   overwrite the contents of CR2 (replacing the previous
     435             :          *   address). These updates to CR2 occur even if the page fault
     436             :          *   results in a double fault or occurs during the delivery of a
     437             :          *   double fault.
     438             :          *
     439             :          * The logic below has a small possibility of incorrectly diagnosing
     440             :          * some errors as stack overflows.  For example, if the IDT or GDT
     441             :          * gets corrupted such that #GP delivery fails due to a bad descriptor
     442             :          * causing #GP and we hit this condition while CR2 coincidentally
     443             :          * points to the stack guard page, we'll think we overflowed the
     444             :          * stack.  Given that we're going to panic one way or another
     445             :          * if this happens, this isn't necessarily worth fixing.
     446             :          *
     447             :          * If necessary, we could improve the test by only diagnosing
     448             :          * a stack overflow if the saved RSP points within 47 bytes of
     449             :          * the bottom of the stack: if RSP == tsk_stack + 48 and we
     450             :          * take an exception, the stack is already aligned and there
     451             :          * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
     452             :          * possible error code, so a stack overflow would *not* double
     453             :          * fault.  With any less space left, exception delivery could
     454             :          * fail, and, as a practical matter, we've overflowed the
     455             :          * stack even if the actual trigger for the double fault was
     456             :          * something else.
     457             :          */
     458             :         if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
     459             :                 handle_stack_overflow("kernel stack overflow (double-fault)",
     460             :                                       regs, address);
     461             :         }
     462             : #endif
     463             : 
     464           0 :         pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
     465           0 :         die("double fault", regs, error_code);
     466           0 :         panic("Machine halted.");
     467             :         instrumentation_end();
     468             : }
     469             : 
     470           0 : DEFINE_IDTENTRY(exc_bounds)
     471             : {
     472           0 :         if (notify_die(DIE_TRAP, "bounds", regs, 0,
     473             :                         X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
     474             :                 return;
     475           0 :         cond_local_irq_enable(regs);
     476             : 
     477           0 :         if (!user_mode(regs))
     478           0 :                 die("bounds", regs, 0);
     479             : 
     480           0 :         do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
     481             : 
     482           0 :         cond_local_irq_disable(regs);
     483             : }
     484             : 
     485             : enum kernel_gp_hint {
     486             :         GP_NO_HINT,
     487             :         GP_NON_CANONICAL,
     488             :         GP_CANONICAL
     489             : };
     490             : 
     491             : /*
     492             :  * When an uncaught #GP occurs, try to determine the memory address accessed by
     493             :  * the instruction and return that address to the caller. Also, try to figure
     494             :  * out whether any part of the access to that address was non-canonical.
     495             :  */
     496           0 : static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
     497             :                                                  unsigned long *addr)
     498             : {
     499           0 :         u8 insn_buf[MAX_INSN_SIZE];
     500           0 :         struct insn insn;
     501             : 
     502           0 :         if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
     503             :                         MAX_INSN_SIZE))
     504             :                 return GP_NO_HINT;
     505             : 
     506           0 :         kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
     507           0 :         insn_get_modrm(&insn);
     508           0 :         insn_get_sib(&insn);
     509             : 
     510           0 :         *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
     511           0 :         if (*addr == -1UL)
     512             :                 return GP_NO_HINT;
     513             : 
     514             : #ifdef CONFIG_X86_64
     515             :         /*
     516             :          * Check that:
     517             :          *  - the operand is not in the kernel half
     518             :          *  - the last byte of the operand is not in the user canonical half
     519             :          */
     520           0 :         if (*addr < ~__VIRTUAL_MASK &&
     521           0 :             *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
     522           0 :                 return GP_NON_CANONICAL;
     523             : #endif
     524             : 
     525             :         return GP_CANONICAL;
     526             : }
     527             : 
     528             : #define GPFSTR "general protection fault"
     529             : 
     530           8 : DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
     531             : {
     532           4 :         char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
     533           4 :         enum kernel_gp_hint hint = GP_NO_HINT;
     534           4 :         struct task_struct *tsk;
     535           4 :         unsigned long gp_addr;
     536           4 :         int ret;
     537             : 
     538           4 :         cond_local_irq_enable(regs);
     539             : 
     540           4 :         if (static_cpu_has(X86_FEATURE_UMIP)) {
     541           4 :                 if (user_mode(regs) && fixup_umip_exception(regs))
     542           0 :                         goto exit;
     543             :         }
     544             : 
     545           4 :         if (v8086_mode(regs)) {
     546           0 :                 local_irq_enable();
     547           0 :                 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
     548           0 :                 local_irq_disable();
     549           0 :                 return;
     550             :         }
     551             : 
     552           4 :         tsk = current;
     553             : 
     554           4 :         if (user_mode(regs)) {
     555           0 :                 tsk->thread.error_code = error_code;
     556           0 :                 tsk->thread.trap_nr = X86_TRAP_GP;
     557             : 
     558           0 :                 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
     559             :                         return;
     560             : 
     561           0 :                 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
     562           0 :                 force_sig(SIGSEGV);
     563           0 :                 goto exit;
     564             :         }
     565             : 
     566           4 :         if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
     567           4 :                 goto exit;
     568             : 
     569           0 :         tsk->thread.error_code = error_code;
     570           0 :         tsk->thread.trap_nr = X86_TRAP_GP;
     571             : 
     572             :         /*
     573             :          * To be potentially processing a kprobe fault and to trust the result
     574             :          * from kprobe_running(), we have to be non-preemptible.
     575             :          */
     576           0 :         if (!preemptible() &&
     577           0 :             kprobe_running() &&
     578           0 :             kprobe_fault_handler(regs, X86_TRAP_GP))
     579           0 :                 goto exit;
     580             : 
     581           0 :         ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
     582           0 :         if (ret == NOTIFY_STOP)
     583           0 :                 goto exit;
     584             : 
     585           0 :         if (error_code)
     586           0 :                 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
     587             :         else
     588           0 :                 hint = get_kernel_gp_address(regs, &gp_addr);
     589             : 
     590           0 :         if (hint != GP_NO_HINT)
     591           0 :                 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
     592             :                          (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
     593             :                                                     : "maybe for address",
     594             :                          gp_addr);
     595             : 
     596             :         /*
     597             :          * KASAN is interested only in the non-canonical case, clear it
     598             :          * otherwise.
     599             :          */
     600           0 :         if (hint != GP_NON_CANONICAL)
     601           0 :                 gp_addr = 0;
     602             : 
     603           0 :         die_addr(desc, regs, error_code, gp_addr);
     604             : 
     605           4 : exit:
     606           4 :         cond_local_irq_disable(regs);
     607             : }
     608             : 
     609           1 : static bool do_int3(struct pt_regs *regs)
     610             : {
     611           1 :         int res;
     612             : 
     613             : #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
     614             :         if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
     615             :                          SIGTRAP) == NOTIFY_STOP)
     616             :                 return true;
     617             : #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
     618             : 
     619             : #ifdef CONFIG_KPROBES
     620             :         if (kprobe_int3_handler(regs))
     621             :                 return true;
     622             : #endif
     623           1 :         res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
     624             : 
     625           1 :         return res == NOTIFY_STOP;
     626             : }
     627             : 
     628           0 : static void do_int3_user(struct pt_regs *regs)
     629             : {
     630           0 :         if (do_int3(regs))
     631             :                 return;
     632             : 
     633           0 :         cond_local_irq_enable(regs);
     634           0 :         do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
     635           0 :         cond_local_irq_disable(regs);
     636             : }
     637             : 
     638           1 : DEFINE_IDTENTRY_RAW(exc_int3)
     639             : {
     640             :         /*
     641             :          * poke_int3_handler() is completely self contained code; it does (and
     642             :          * must) *NOT* call out to anything, lest it hits upon yet another
     643             :          * INT3.
     644             :          */
     645           1 :         if (poke_int3_handler(regs))
     646             :                 return;
     647             : 
     648             :         /*
     649             :          * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
     650             :          * and therefore can trigger INT3, hence poke_int3_handler() must
     651             :          * be done before. If the entry came from kernel mode, then use
     652             :          * nmi_enter() because the INT3 could have been hit in any context
     653             :          * including NMI.
     654             :          */
     655           1 :         if (user_mode(regs)) {
     656           0 :                 irqentry_enter_from_user_mode(regs);
     657           0 :                 instrumentation_begin();
     658           0 :                 do_int3_user(regs);
     659           0 :                 instrumentation_end();
     660           0 :                 irqentry_exit_to_user_mode(regs);
     661             :         } else {
     662           1 :                 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
     663             : 
     664           1 :                 instrumentation_begin();
     665           1 :                 if (!do_int3(regs))
     666           0 :                         die("int3", regs, 0);
     667           1 :                 instrumentation_end();
     668           1 :                 irqentry_nmi_exit(regs, irq_state);
     669             :         }
     670             : }
     671             : 
     672             : #ifdef CONFIG_X86_64
     673             : /*
     674             :  * Help handler running on a per-cpu (IST or entry trampoline) stack
     675             :  * to switch to the normal thread stack if the interrupted code was in
     676             :  * user mode. The actual stack switch is done in entry_64.S
     677             :  */
     678      264819 : asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
     679             : {
     680      264819 :         struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
     681      264824 :         if (regs != eregs)
     682      264824 :                 *regs = *eregs;
     683      264824 :         return regs;
     684             : }
     685             : 
     686             : #ifdef CONFIG_AMD_MEM_ENCRYPT
     687             : asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
     688             : {
     689             :         unsigned long sp, *stack;
     690             :         struct stack_info info;
     691             :         struct pt_regs *regs_ret;
     692             : 
     693             :         /*
     694             :          * In the SYSCALL entry path the RSP value comes from user-space - don't
     695             :          * trust it and switch to the current kernel stack
     696             :          */
     697             :         if (ip_within_syscall_gap(regs)) {
     698             :                 sp = this_cpu_read(cpu_current_top_of_stack);
     699             :                 goto sync;
     700             :         }
     701             : 
     702             :         /*
     703             :          * From here on the RSP value is trusted. Now check whether entry
     704             :          * happened from a safe stack. Not safe are the entry or unknown stacks,
     705             :          * use the fall-back stack instead in this case.
     706             :          */
     707             :         sp    = regs->sp;
     708             :         stack = (unsigned long *)sp;
     709             : 
     710             :         if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
     711             :             info.type >= STACK_TYPE_EXCEPTION_LAST)
     712             :                 sp = __this_cpu_ist_top_va(VC2);
     713             : 
     714             : sync:
     715             :         /*
     716             :          * Found a safe stack - switch to it as if the entry didn't happen via
     717             :          * IST stack. The code below only copies pt_regs, the real switch happens
     718             :          * in assembly code.
     719             :          */
     720             :         sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
     721             : 
     722             :         regs_ret = (struct pt_regs *)sp;
     723             :         *regs_ret = *regs;
     724             : 
     725             :         return regs_ret;
     726             : }
     727             : #endif
     728             : 
     729             : struct bad_iret_stack {
     730             :         void *error_entry_ret;
     731             :         struct pt_regs regs;
     732             : };
     733             : 
     734             : asmlinkage __visible noinstr
     735           0 : struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
     736             : {
     737             :         /*
     738             :          * This is called from entry_64.S early in handling a fault
     739             :          * caused by a bad iret to user mode.  To handle the fault
     740             :          * correctly, we want to move our stack frame to where it would
     741             :          * be had we entered directly on the entry stack (rather than
     742             :          * just below the IRET frame) and we want to pretend that the
     743             :          * exception came from the IRET target.
     744             :          */
     745           0 :         struct bad_iret_stack tmp, *new_stack =
     746           0 :                 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
     747             : 
     748             :         /* Copy the IRET target to the temporary storage. */
     749           0 :         __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
     750             : 
     751             :         /* Copy the remainder of the stack from the current stack. */
     752           0 :         __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
     753             : 
     754             :         /* Update the entry stack */
     755           0 :         __memcpy(new_stack, &tmp, sizeof(tmp));
     756             : 
     757           0 :         BUG_ON(!user_mode(&new_stack->regs));
     758           0 :         return new_stack;
     759             : }
     760             : #endif
     761             : 
     762           0 : static bool is_sysenter_singlestep(struct pt_regs *regs)
     763             : {
     764             :         /*
     765             :          * We don't try for precision here.  If we're anywhere in the region of
     766             :          * code that can be single-stepped in the SYSENTER entry path, then
     767             :          * assume that this is a useless single-step trap due to SYSENTER
     768             :          * being invoked with TF set.  (We don't know in advance exactly
     769             :          * which instructions will be hit because BTF could plausibly
     770             :          * be set.)
     771             :          */
     772             : #ifdef CONFIG_X86_32
     773             :         return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
     774             :                 (unsigned long)__end_SYSENTER_singlestep_region -
     775             :                 (unsigned long)__begin_SYSENTER_singlestep_region;
     776             : #elif defined(CONFIG_IA32_EMULATION)
     777           0 :         return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
     778           0 :                 (unsigned long)__end_entry_SYSENTER_compat -
     779             :                 (unsigned long)entry_SYSENTER_compat;
     780             : #else
     781             :         return false;
     782             : #endif
     783             : }
     784             : 
     785           0 : static __always_inline unsigned long debug_read_clear_dr6(void)
     786             : {
     787           0 :         unsigned long dr6;
     788             : 
     789             :         /*
     790             :          * The Intel SDM says:
     791             :          *
     792             :          *   Certain debug exceptions may clear bits 0-3. The remaining
     793             :          *   contents of the DR6 register are never cleared by the
     794             :          *   processor. To avoid confusion in identifying debug
     795             :          *   exceptions, debug handlers should clear the register before
     796             :          *   returning to the interrupted task.
     797             :          *
     798             :          * Keep it simple: clear DR6 immediately.
     799             :          */
     800           0 :         get_debugreg(dr6, 6);
     801           0 :         set_debugreg(DR6_RESERVED, 6);
     802           0 :         dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
     803             : 
     804           0 :         return dr6;
     805             : }
     806             : 
     807             : /*
     808             :  * Our handling of the processor debug registers is non-trivial.
     809             :  * We do not clear them on entry and exit from the kernel. Therefore
     810             :  * it is possible to get a watchpoint trap here from inside the kernel.
     811             :  * However, the code in ./ptrace.c has ensured that the user can
     812             :  * only set watchpoints on userspace addresses. Therefore the in-kernel
     813             :  * watchpoint trap can only occur in code which is reading/writing
     814             :  * from user space. Such code must not hold kernel locks (since it
     815             :  * can equally take a page fault), therefore it is safe to call
     816             :  * force_sig_info even though that claims and releases locks.
     817             :  *
     818             :  * Code in ./signal.c ensures that the debug control register
     819             :  * is restored before we deliver any signal, and therefore that
     820             :  * user code runs with the correct debug control register even though
     821             :  * we clear it here.
     822             :  *
     823             :  * Being careful here means that we don't have to be as careful in a
     824             :  * lot of more complicated places (task switching can be a bit lazy
     825             :  * about restoring all the debug state, and ptrace doesn't have to
     826             :  * find every occurrence of the TF bit that could be saved away even
     827             :  * by user code)
     828             :  *
     829             :  * May run on IST stack.
     830             :  */
     831             : 
     832           0 : static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
     833             : {
     834             :         /*
     835             :          * Notifiers will clear bits in @dr6 to indicate the event has been
     836             :          * consumed - hw_breakpoint_handler(), single_stop_cont().
     837             :          *
     838             :          * Notifiers will set bits in @virtual_dr6 to indicate the desire
     839             :          * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
     840             :          */
     841           0 :         if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
     842           0 :                 return true;
     843             : 
     844             :         return false;
     845             : }
     846             : 
     847           0 : static __always_inline void exc_debug_kernel(struct pt_regs *regs,
     848             :                                              unsigned long dr6)
     849             : {
     850             :         /*
     851             :          * Disable breakpoints during exception handling; recursive exceptions
     852             :          * are exceedingly 'fun'.
     853             :          *
     854             :          * Since this function is NOKPROBE, and that also applies to
     855             :          * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
     856             :          * HW_BREAKPOINT_W on our stack)
     857             :          *
     858             :          * Entry text is excluded for HW_BP_X and cpu_entry_area, which
     859             :          * includes the entry stack is excluded for everything.
     860             :          */
     861           0 :         unsigned long dr7 = local_db_save();
     862           0 :         irqentry_state_t irq_state = irqentry_nmi_enter(regs);
     863           0 :         instrumentation_begin();
     864             : 
     865             :         /*
     866             :          * If something gets miswired and we end up here for a user mode
     867             :          * #DB, we will malfunction.
     868             :          */
     869           0 :         WARN_ON_ONCE(user_mode(regs));
     870             : 
     871           0 :         if (test_thread_flag(TIF_BLOCKSTEP)) {
     872             :                 /*
     873             :                  * The SDM says "The processor clears the BTF flag when it
     874             :                  * generates a debug exception." but PTRACE_BLOCKSTEP requested
     875             :                  * it for userspace, but we just took a kernel #DB, so re-set
     876             :                  * BTF.
     877             :                  */
     878           0 :                 unsigned long debugctl;
     879             : 
     880           0 :                 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
     881           0 :                 debugctl |= DEBUGCTLMSR_BTF;
     882           0 :                 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
     883             :         }
     884             : 
     885             :         /*
     886             :          * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
     887             :          * watchpoint at the same time then that will still be handled.
     888             :          */
     889           0 :         if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
     890           0 :                 dr6 &= ~DR_STEP;
     891             : 
     892           0 :         if (kprobe_debug_handler(regs))
     893           0 :                 goto out;
     894             : 
     895             :         /*
     896             :          * The kernel doesn't use INT1
     897             :          */
     898           0 :         if (!dr6)
     899           0 :                 goto out;
     900             : 
     901           0 :         if (notify_debug(regs, &dr6))
     902           0 :                 goto out;
     903             : 
     904             :         /*
     905             :          * The kernel doesn't use TF single-step outside of:
     906             :          *
     907             :          *  - Kprobes, consumed through kprobe_debug_handler()
     908             :          *  - KGDB, consumed through notify_debug()
     909             :          *
     910             :          * So if we get here with DR_STEP set, something is wonky.
     911             :          *
     912             :          * A known way to trigger this is through QEMU's GDB stub,
     913             :          * which leaks #DB into the guest and causes IST recursion.
     914             :          */
     915           0 :         if (WARN_ON_ONCE(dr6 & DR_STEP))
     916           0 :                 regs->flags &= ~X86_EFLAGS_TF;
     917           0 : out:
     918           0 :         instrumentation_end();
     919           0 :         irqentry_nmi_exit(regs, irq_state);
     920             : 
     921           0 :         local_db_restore(dr7);
     922             : }
     923             : 
     924           0 : static __always_inline void exc_debug_user(struct pt_regs *regs,
     925             :                                            unsigned long dr6)
     926             : {
     927           0 :         bool icebp;
     928             : 
     929             :         /*
     930             :          * If something gets miswired and we end up here for a kernel mode
     931             :          * #DB, we will malfunction.
     932             :          */
     933           0 :         WARN_ON_ONCE(!user_mode(regs));
     934             : 
     935             :         /*
     936             :          * NB: We can't easily clear DR7 here because
     937             :          * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
     938             :          * user memory, etc.  This means that a recursive #DB is possible.  If
     939             :          * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
     940             :          * Since we're not on the IST stack right now, everything will be
     941             :          * fine.
     942             :          */
     943             : 
     944           0 :         irqentry_enter_from_user_mode(regs);
     945           0 :         instrumentation_begin();
     946             : 
     947             :         /*
     948             :          * Start the virtual/ptrace DR6 value with just the DR_STEP mask
     949             :          * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
     950             :          *
     951             :          * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
     952             :          * even if it is not the result of PTRACE_SINGLESTEP.
     953             :          */
     954           0 :         current->thread.virtual_dr6 = (dr6 & DR_STEP);
     955             : 
     956             :         /*
     957             :          * The SDM says "The processor clears the BTF flag when it
     958             :          * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
     959             :          * TIF_BLOCKSTEP in sync with the hardware BTF flag.
     960             :          */
     961           0 :         clear_thread_flag(TIF_BLOCKSTEP);
     962             : 
     963             :         /*
     964             :          * If dr6 has no reason to give us about the origin of this trap,
     965             :          * then it's very likely the result of an icebp/int01 trap.
     966             :          * User wants a sigtrap for that.
     967             :          */
     968           0 :         icebp = !dr6;
     969             : 
     970           0 :         if (notify_debug(regs, &dr6))
     971           0 :                 goto out;
     972             : 
     973             :         /* It's safe to allow irq's after DR6 has been saved */
     974           0 :         local_irq_enable();
     975             : 
     976           0 :         if (v8086_mode(regs)) {
     977           0 :                 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
     978           0 :                 goto out_irq;
     979             :         }
     980             : 
     981             :         /* Add the virtual_dr6 bits for signals. */
     982           0 :         dr6 |= current->thread.virtual_dr6;
     983           0 :         if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
     984           0 :                 send_sigtrap(regs, 0, get_si_code(dr6));
     985             : 
     986           0 : out_irq:
     987           0 :         local_irq_disable();
     988           0 : out:
     989           0 :         instrumentation_end();
     990           0 :         irqentry_exit_to_user_mode(regs);
     991             : }
     992             : 
     993             : #ifdef CONFIG_X86_64
     994             : /* IST stack entry */
     995           0 : DEFINE_IDTENTRY_DEBUG(exc_debug)
     996             : {
     997           0 :         exc_debug_kernel(regs, debug_read_clear_dr6());
     998           0 : }
     999             : 
    1000             : /* User entry, runs on regular task stack */
    1001           0 : DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
    1002             : {
    1003           0 :         exc_debug_user(regs, debug_read_clear_dr6());
    1004           0 : }
    1005             : #else
    1006             : /* 32 bit does not have separate entry points. */
    1007             : DEFINE_IDTENTRY_RAW(exc_debug)
    1008             : {
    1009             :         unsigned long dr6 = debug_read_clear_dr6();
    1010             : 
    1011             :         if (user_mode(regs))
    1012             :                 exc_debug_user(regs, dr6);
    1013             :         else
    1014             :                 exc_debug_kernel(regs, dr6);
    1015             : }
    1016             : #endif
    1017             : 
    1018             : /*
    1019             :  * Note that we play around with the 'TS' bit in an attempt to get
    1020             :  * the correct behaviour even in the presence of the asynchronous
    1021             :  * IRQ13 behaviour
    1022             :  */
    1023           0 : static void math_error(struct pt_regs *regs, int trapnr)
    1024             : {
    1025           0 :         struct task_struct *task = current;
    1026           0 :         struct fpu *fpu = &task->thread.fpu;
    1027           0 :         int si_code;
    1028           0 :         char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
    1029             :                                                 "simd exception";
    1030             : 
    1031           0 :         cond_local_irq_enable(regs);
    1032             : 
    1033           0 :         if (!user_mode(regs)) {
    1034           0 :                 if (fixup_exception(regs, trapnr, 0, 0))
    1035           0 :                         goto exit;
    1036             : 
    1037           0 :                 task->thread.error_code = 0;
    1038           0 :                 task->thread.trap_nr = trapnr;
    1039             : 
    1040           0 :                 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
    1041             :                                SIGFPE) != NOTIFY_STOP)
    1042           0 :                         die(str, regs, 0);
    1043           0 :                 goto exit;
    1044             :         }
    1045             : 
    1046             :         /*
    1047             :          * Save the info for the exception handler and clear the error.
    1048             :          */
    1049           0 :         fpu__save(fpu);
    1050             : 
    1051           0 :         task->thread.trap_nr = trapnr;
    1052           0 :         task->thread.error_code = 0;
    1053             : 
    1054           0 :         si_code = fpu__exception_code(fpu, trapnr);
    1055             :         /* Retry when we get spurious exceptions: */
    1056           0 :         if (!si_code)
    1057           0 :                 goto exit;
    1058             : 
    1059           0 :         if (fixup_vdso_exception(regs, trapnr, 0, 0))
    1060             :                 return;
    1061             : 
    1062           0 :         force_sig_fault(SIGFPE, si_code,
    1063           0 :                         (void __user *)uprobe_get_trap_addr(regs));
    1064           0 : exit:
    1065           0 :         cond_local_irq_disable(regs);
    1066             : }
    1067             : 
    1068           0 : DEFINE_IDTENTRY(exc_coprocessor_error)
    1069             : {
    1070           0 :         math_error(regs, X86_TRAP_MF);
    1071             : }
    1072             : 
    1073           0 : DEFINE_IDTENTRY(exc_simd_coprocessor_error)
    1074             : {
    1075           0 :         if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
    1076             :                 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
    1077             :                 if (!static_cpu_has(X86_FEATURE_XMM)) {
    1078             :                         __exc_general_protection(regs, 0);
    1079             :                         return;
    1080             :                 }
    1081             :         }
    1082           0 :         math_error(regs, X86_TRAP_XF);
    1083             : }
    1084             : 
    1085           0 : DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
    1086             : {
    1087             :         /*
    1088             :          * This addresses a Pentium Pro Erratum:
    1089             :          *
    1090             :          * PROBLEM: If the APIC subsystem is configured in mixed mode with
    1091             :          * Virtual Wire mode implemented through the local APIC, an
    1092             :          * interrupt vector of 0Fh (Intel reserved encoding) may be
    1093             :          * generated by the local APIC (Int 15).  This vector may be
    1094             :          * generated upon receipt of a spurious interrupt (an interrupt
    1095             :          * which is removed before the system receives the INTA sequence)
    1096             :          * instead of the programmed 8259 spurious interrupt vector.
    1097             :          *
    1098             :          * IMPLICATION: The spurious interrupt vector programmed in the
    1099             :          * 8259 is normally handled by an operating system's spurious
    1100             :          * interrupt handler. However, a vector of 0Fh is unknown to some
    1101             :          * operating systems, which would crash if this erratum occurred.
    1102             :          *
    1103             :          * In theory this could be limited to 32bit, but the handler is not
    1104             :          * hurting and who knows which other CPUs suffer from this.
    1105             :          */
    1106           0 : }
    1107             : 
    1108           0 : DEFINE_IDTENTRY(exc_device_not_available)
    1109             : {
    1110           0 :         unsigned long cr0 = read_cr0();
    1111             : 
    1112             : #ifdef CONFIG_MATH_EMULATION
    1113             :         if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
    1114             :                 struct math_emu_info info = { };
    1115             : 
    1116             :                 cond_local_irq_enable(regs);
    1117             : 
    1118             :                 info.regs = regs;
    1119             :                 math_emulate(&info);
    1120             : 
    1121             :                 cond_local_irq_disable(regs);
    1122             :                 return;
    1123             :         }
    1124             : #endif
    1125             : 
    1126             :         /* This should not happen. */
    1127           0 :         if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
    1128             :                 /* Try to fix it up and carry on. */
    1129           0 :                 write_cr0(cr0 & ~X86_CR0_TS);
    1130             :         } else {
    1131             :                 /*
    1132             :                  * Something terrible happened, and we're better off trying
    1133             :                  * to kill the task than getting stuck in a never-ending
    1134             :                  * loop of #NM faults.
    1135             :                  */
    1136           0 :                 die("unexpected #NM exception", regs, 0);
    1137             :         }
    1138             : }
    1139             : 
    1140             : #ifdef CONFIG_X86_32
    1141             : DEFINE_IDTENTRY_SW(iret_error)
    1142             : {
    1143             :         local_irq_enable();
    1144             :         if (notify_die(DIE_TRAP, "iret exception", regs, 0,
    1145             :                         X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
    1146             :                 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
    1147             :                         ILL_BADSTK, (void __user *)NULL);
    1148             :         }
    1149             :         local_irq_disable();
    1150             : }
    1151             : #endif
    1152             : 
    1153           1 : void __init trap_init(void)
    1154             : {
    1155             :         /* Init cpu_entry_area before IST entries are set up */
    1156           1 :         setup_cpu_entry_areas();
    1157             : 
    1158             :         /* Init GHCB memory pages when running as an SEV-ES guest */
    1159           1 :         sev_es_init_vc_handling();
    1160             : 
    1161           1 :         idt_setup_traps();
    1162             : 
    1163             :         /*
    1164             :          * Should be a barrier for any external CPU state:
    1165             :          */
    1166           1 :         cpu_init();
    1167             : 
    1168           1 :         idt_setup_ist_traps();
    1169           1 : }

Generated by: LCOV version 1.14