Line data Source code
1 : /*
2 : * Copyright (C) 1991, 1992 Linus Torvalds
3 : * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 : *
5 : * Pentium III FXSR, SSE support
6 : * Gareth Hughes <gareth@valinux.com>, May 2000
7 : */
8 :
9 : /*
10 : * Handle hardware traps and faults.
11 : */
12 :
13 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 :
15 : #include <linux/context_tracking.h>
16 : #include <linux/interrupt.h>
17 : #include <linux/kallsyms.h>
18 : #include <linux/spinlock.h>
19 : #include <linux/kprobes.h>
20 : #include <linux/uaccess.h>
21 : #include <linux/kdebug.h>
22 : #include <linux/kgdb.h>
23 : #include <linux/kernel.h>
24 : #include <linux/export.h>
25 : #include <linux/ptrace.h>
26 : #include <linux/uprobes.h>
27 : #include <linux/string.h>
28 : #include <linux/delay.h>
29 : #include <linux/errno.h>
30 : #include <linux/kexec.h>
31 : #include <linux/sched.h>
32 : #include <linux/sched/task_stack.h>
33 : #include <linux/timer.h>
34 : #include <linux/init.h>
35 : #include <linux/bug.h>
36 : #include <linux/nmi.h>
37 : #include <linux/mm.h>
38 : #include <linux/smp.h>
39 : #include <linux/io.h>
40 : #include <linux/hardirq.h>
41 : #include <linux/atomic.h>
42 :
43 : #include <asm/stacktrace.h>
44 : #include <asm/processor.h>
45 : #include <asm/debugreg.h>
46 : #include <asm/realmode.h>
47 : #include <asm/text-patching.h>
48 : #include <asm/ftrace.h>
49 : #include <asm/traps.h>
50 : #include <asm/desc.h>
51 : #include <asm/fpu/internal.h>
52 : #include <asm/cpu.h>
53 : #include <asm/cpu_entry_area.h>
54 : #include <asm/mce.h>
55 : #include <asm/fixmap.h>
56 : #include <asm/mach_traps.h>
57 : #include <asm/alternative.h>
58 : #include <asm/fpu/xstate.h>
59 : #include <asm/vm86.h>
60 : #include <asm/umip.h>
61 : #include <asm/insn.h>
62 : #include <asm/insn-eval.h>
63 : #include <asm/vdso.h>
64 :
65 : #ifdef CONFIG_X86_64
66 : #include <asm/x86_init.h>
67 : #include <asm/proto.h>
68 : #else
69 : #include <asm/processor-flags.h>
70 : #include <asm/setup.h>
71 : #include <asm/proto.h>
72 : #endif
73 :
74 : DECLARE_BITMAP(system_vectors, NR_VECTORS);
75 :
76 4 : static inline void cond_local_irq_enable(struct pt_regs *regs)
77 : {
78 4 : if (regs->flags & X86_EFLAGS_IF)
79 4 : local_irq_enable();
80 4 : }
81 :
82 4 : static inline void cond_local_irq_disable(struct pt_regs *regs)
83 : {
84 4 : if (regs->flags & X86_EFLAGS_IF)
85 4 : local_irq_disable();
86 4 : }
87 :
88 2 : __always_inline int is_valid_bugaddr(unsigned long addr)
89 : {
90 1 : if (addr < TASK_SIZE_MAX)
91 : return 0;
92 :
93 : /*
94 : * We got #UD, if the text isn't readable we'd have gotten
95 : * a different exception.
96 : */
97 1 : return *(unsigned short *)addr == INSN_UD2;
98 : }
99 :
100 : static nokprobe_inline int
101 0 : do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
102 : struct pt_regs *regs, long error_code)
103 : {
104 0 : if (v8086_mode(regs)) {
105 : /*
106 : * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
107 : * On nmi (interrupt 2), do_trap should not be called.
108 : */
109 : if (trapnr < X86_TRAP_UD) {
110 : if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
111 : error_code, trapnr))
112 : return 0;
113 : }
114 0 : } else if (!user_mode(regs)) {
115 0 : if (fixup_exception(regs, trapnr, error_code, 0))
116 : return 0;
117 :
118 0 : tsk->thread.error_code = error_code;
119 0 : tsk->thread.trap_nr = trapnr;
120 0 : die(str, regs, error_code);
121 : } else {
122 0 : if (fixup_vdso_exception(regs, trapnr, error_code, 0))
123 : return 0;
124 : }
125 :
126 : /*
127 : * We want error_code and trap_nr set for userspace faults and
128 : * kernelspace faults which result in die(), but not
129 : * kernelspace faults which are fixed up. die() gives the
130 : * process no chance to handle the signal and notice the
131 : * kernel fault information, so that won't result in polluting
132 : * the information about previously queued, but not yet
133 : * delivered, faults. See also exc_general_protection below.
134 : */
135 0 : tsk->thread.error_code = error_code;
136 0 : tsk->thread.trap_nr = trapnr;
137 :
138 0 : return -1;
139 : }
140 :
141 0 : static void show_signal(struct task_struct *tsk, int signr,
142 : const char *type, const char *desc,
143 : struct pt_regs *regs, long error_code)
144 : {
145 0 : if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
146 0 : printk_ratelimit()) {
147 0 : pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
148 : tsk->comm, task_pid_nr(tsk), type, desc,
149 : regs->ip, regs->sp, error_code);
150 0 : print_vma_addr(KERN_CONT " in ", regs->ip);
151 0 : pr_cont("\n");
152 : }
153 0 : }
154 :
155 : static void
156 0 : do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
157 : long error_code, int sicode, void __user *addr)
158 : {
159 0 : struct task_struct *tsk = current;
160 :
161 0 : if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
162 : return;
163 :
164 0 : show_signal(tsk, signr, "trap ", str, regs, error_code);
165 :
166 0 : if (!sicode)
167 0 : force_sig(signr);
168 : else
169 0 : force_sig_fault(signr, sicode, addr);
170 : }
171 : NOKPROBE_SYMBOL(do_trap);
172 :
173 0 : static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
174 : unsigned long trapnr, int signr, int sicode, void __user *addr)
175 : {
176 0 : RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
177 :
178 0 : if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
179 : NOTIFY_STOP) {
180 0 : cond_local_irq_enable(regs);
181 0 : do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
182 0 : cond_local_irq_disable(regs);
183 : }
184 0 : }
185 :
186 : /*
187 : * Posix requires to provide the address of the faulting instruction for
188 : * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
189 : *
190 : * This address is usually regs->ip, but when an uprobe moved the code out
191 : * of line then regs->ip points to the XOL code which would confuse
192 : * anything which analyzes the fault address vs. the unmodified binary. If
193 : * a trap happened in XOL code then uprobe maps regs->ip back to the
194 : * original instruction address.
195 : */
196 0 : static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
197 : {
198 0 : return (void __user *)uprobe_get_trap_addr(regs);
199 : }
200 :
201 0 : DEFINE_IDTENTRY(exc_divide_error)
202 : {
203 0 : do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
204 : FPE_INTDIV, error_get_trap_addr(regs));
205 : }
206 :
207 0 : DEFINE_IDTENTRY(exc_overflow)
208 : {
209 0 : do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
210 : }
211 :
212 : #ifdef CONFIG_X86_F00F_BUG
213 : void handle_invalid_op(struct pt_regs *regs)
214 : #else
215 0 : static inline void handle_invalid_op(struct pt_regs *regs)
216 : #endif
217 : {
218 0 : do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
219 : ILL_ILLOPN, error_get_trap_addr(regs));
220 0 : }
221 :
222 1 : static noinstr bool handle_bug(struct pt_regs *regs)
223 : {
224 1 : bool handled = false;
225 :
226 1 : if (!is_valid_bugaddr(regs->ip))
227 : return handled;
228 :
229 : /*
230 : * All lies, just get the WARN/BUG out.
231 : */
232 1 : instrumentation_begin();
233 : /*
234 : * Since we're emulating a CALL with exceptions, restore the interrupt
235 : * state to what it was at the exception site.
236 : */
237 1 : if (regs->flags & X86_EFLAGS_IF)
238 1 : raw_local_irq_enable();
239 1 : if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
240 1 : regs->ip += LEN_UD2;
241 1 : handled = true;
242 : }
243 1 : if (regs->flags & X86_EFLAGS_IF)
244 1 : raw_local_irq_disable();
245 : instrumentation_end();
246 :
247 : return handled;
248 : }
249 :
250 1 : DEFINE_IDTENTRY_RAW(exc_invalid_op)
251 : {
252 1 : irqentry_state_t state;
253 :
254 : /*
255 : * We use UD2 as a short encoding for 'CALL __WARN', as such
256 : * handle it before exception entry to avoid recursive WARN
257 : * in case exception entry is the one triggering WARNs.
258 : */
259 1 : if (!user_mode(regs) && handle_bug(regs))
260 1 : return;
261 :
262 0 : state = irqentry_enter(regs);
263 0 : instrumentation_begin();
264 0 : handle_invalid_op(regs);
265 0 : instrumentation_end();
266 0 : irqentry_exit(regs, state);
267 : }
268 :
269 0 : DEFINE_IDTENTRY(exc_coproc_segment_overrun)
270 : {
271 0 : do_error_trap(regs, 0, "coprocessor segment overrun",
272 : X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
273 : }
274 :
275 0 : DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
276 : {
277 0 : do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
278 : 0, NULL);
279 : }
280 :
281 0 : DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
282 : {
283 0 : do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
284 : SIGBUS, 0, NULL);
285 : }
286 :
287 0 : DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
288 : {
289 0 : do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
290 : 0, NULL);
291 : }
292 :
293 0 : DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
294 : {
295 0 : char *str = "alignment check";
296 :
297 0 : if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
298 : return;
299 :
300 0 : if (!user_mode(regs))
301 0 : die("Split lock detected\n", regs, error_code);
302 :
303 0 : local_irq_enable();
304 :
305 0 : if (handle_user_split_lock(regs, error_code))
306 0 : goto out;
307 :
308 0 : do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
309 : error_code, BUS_ADRALN, NULL);
310 :
311 0 : out:
312 0 : local_irq_disable();
313 : }
314 :
315 : #ifdef CONFIG_VMAP_STACK
316 : __visible void __noreturn handle_stack_overflow(const char *message,
317 : struct pt_regs *regs,
318 : unsigned long fault_address)
319 : {
320 : printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
321 : (void *)fault_address, current->stack,
322 : (char *)current->stack + THREAD_SIZE - 1);
323 : die(message, regs, 0);
324 :
325 : /* Be absolutely certain we don't return. */
326 : panic("%s", message);
327 : }
328 : #endif
329 :
330 : /*
331 : * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
332 : *
333 : * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
334 : * SDM's warnings about double faults being unrecoverable, returning works as
335 : * expected. Presumably what the SDM actually means is that the CPU may get
336 : * the register state wrong on entry, so returning could be a bad idea.
337 : *
338 : * Various CPU engineers have promised that double faults due to an IRET fault
339 : * while the stack is read-only are, in fact, recoverable.
340 : *
341 : * On x86_32, this is entered through a task gate, and regs are synthesized
342 : * from the TSS. Returning is, in principle, okay, but changes to regs will
343 : * be lost. If, for some reason, we need to return to a context with modified
344 : * regs, the shim code could be adjusted to synchronize the registers.
345 : *
346 : * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
347 : * to be read before doing anything else.
348 : */
349 0 : DEFINE_IDTENTRY_DF(exc_double_fault)
350 : {
351 0 : static const char str[] = "double fault";
352 0 : struct task_struct *tsk = current;
353 :
354 : #ifdef CONFIG_VMAP_STACK
355 : unsigned long address = read_cr2();
356 : #endif
357 :
358 : #ifdef CONFIG_X86_ESPFIX64
359 : extern unsigned char native_irq_return_iret[];
360 :
361 : /*
362 : * If IRET takes a non-IST fault on the espfix64 stack, then we
363 : * end up promoting it to a doublefault. In that case, take
364 : * advantage of the fact that we're not using the normal (TSS.sp0)
365 : * stack right now. We can write a fake #GP(0) frame at TSS.sp0
366 : * and then modify our own IRET frame so that, when we return,
367 : * we land directly at the #GP(0) vector with the stack already
368 : * set up according to its expectations.
369 : *
370 : * The net result is that our #GP handler will think that we
371 : * entered from usermode with the bad user context.
372 : *
373 : * No need for nmi_enter() here because we don't use RCU.
374 : */
375 : if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
376 : regs->cs == __KERNEL_CS &&
377 : regs->ip == (unsigned long)native_irq_return_iret)
378 : {
379 : struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
380 : unsigned long *p = (unsigned long *)regs->sp;
381 :
382 : /*
383 : * regs->sp points to the failing IRET frame on the
384 : * ESPFIX64 stack. Copy it to the entry stack. This fills
385 : * in gpregs->ss through gpregs->ip.
386 : *
387 : */
388 : gpregs->ip = p[0];
389 : gpregs->cs = p[1];
390 : gpregs->flags = p[2];
391 : gpregs->sp = p[3];
392 : gpregs->ss = p[4];
393 : gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
394 :
395 : /*
396 : * Adjust our frame so that we return straight to the #GP
397 : * vector with the expected RSP value. This is safe because
398 : * we won't enable interupts or schedule before we invoke
399 : * general_protection, so nothing will clobber the stack
400 : * frame we just set up.
401 : *
402 : * We will enter general_protection with kernel GSBASE,
403 : * which is what the stub expects, given that the faulting
404 : * RIP will be the IRET instruction.
405 : */
406 : regs->ip = (unsigned long)asm_exc_general_protection;
407 : regs->sp = (unsigned long)&gpregs->orig_ax;
408 :
409 : return;
410 : }
411 : #endif
412 :
413 0 : irqentry_nmi_enter(regs);
414 0 : instrumentation_begin();
415 0 : notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
416 :
417 0 : tsk->thread.error_code = error_code;
418 0 : tsk->thread.trap_nr = X86_TRAP_DF;
419 :
420 : #ifdef CONFIG_VMAP_STACK
421 : /*
422 : * If we overflow the stack into a guard page, the CPU will fail
423 : * to deliver #PF and will send #DF instead. Similarly, if we
424 : * take any non-IST exception while too close to the bottom of
425 : * the stack, the processor will get a page fault while
426 : * delivering the exception and will generate a double fault.
427 : *
428 : * According to the SDM (footnote in 6.15 under "Interrupt 14 -
429 : * Page-Fault Exception (#PF):
430 : *
431 : * Processors update CR2 whenever a page fault is detected. If a
432 : * second page fault occurs while an earlier page fault is being
433 : * delivered, the faulting linear address of the second fault will
434 : * overwrite the contents of CR2 (replacing the previous
435 : * address). These updates to CR2 occur even if the page fault
436 : * results in a double fault or occurs during the delivery of a
437 : * double fault.
438 : *
439 : * The logic below has a small possibility of incorrectly diagnosing
440 : * some errors as stack overflows. For example, if the IDT or GDT
441 : * gets corrupted such that #GP delivery fails due to a bad descriptor
442 : * causing #GP and we hit this condition while CR2 coincidentally
443 : * points to the stack guard page, we'll think we overflowed the
444 : * stack. Given that we're going to panic one way or another
445 : * if this happens, this isn't necessarily worth fixing.
446 : *
447 : * If necessary, we could improve the test by only diagnosing
448 : * a stack overflow if the saved RSP points within 47 bytes of
449 : * the bottom of the stack: if RSP == tsk_stack + 48 and we
450 : * take an exception, the stack is already aligned and there
451 : * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
452 : * possible error code, so a stack overflow would *not* double
453 : * fault. With any less space left, exception delivery could
454 : * fail, and, as a practical matter, we've overflowed the
455 : * stack even if the actual trigger for the double fault was
456 : * something else.
457 : */
458 : if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
459 : handle_stack_overflow("kernel stack overflow (double-fault)",
460 : regs, address);
461 : }
462 : #endif
463 :
464 0 : pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
465 0 : die("double fault", regs, error_code);
466 0 : panic("Machine halted.");
467 : instrumentation_end();
468 : }
469 :
470 0 : DEFINE_IDTENTRY(exc_bounds)
471 : {
472 0 : if (notify_die(DIE_TRAP, "bounds", regs, 0,
473 : X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
474 : return;
475 0 : cond_local_irq_enable(regs);
476 :
477 0 : if (!user_mode(regs))
478 0 : die("bounds", regs, 0);
479 :
480 0 : do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
481 :
482 0 : cond_local_irq_disable(regs);
483 : }
484 :
485 : enum kernel_gp_hint {
486 : GP_NO_HINT,
487 : GP_NON_CANONICAL,
488 : GP_CANONICAL
489 : };
490 :
491 : /*
492 : * When an uncaught #GP occurs, try to determine the memory address accessed by
493 : * the instruction and return that address to the caller. Also, try to figure
494 : * out whether any part of the access to that address was non-canonical.
495 : */
496 0 : static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
497 : unsigned long *addr)
498 : {
499 0 : u8 insn_buf[MAX_INSN_SIZE];
500 0 : struct insn insn;
501 :
502 0 : if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
503 : MAX_INSN_SIZE))
504 : return GP_NO_HINT;
505 :
506 0 : kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
507 0 : insn_get_modrm(&insn);
508 0 : insn_get_sib(&insn);
509 :
510 0 : *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
511 0 : if (*addr == -1UL)
512 : return GP_NO_HINT;
513 :
514 : #ifdef CONFIG_X86_64
515 : /*
516 : * Check that:
517 : * - the operand is not in the kernel half
518 : * - the last byte of the operand is not in the user canonical half
519 : */
520 0 : if (*addr < ~__VIRTUAL_MASK &&
521 0 : *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
522 0 : return GP_NON_CANONICAL;
523 : #endif
524 :
525 : return GP_CANONICAL;
526 : }
527 :
528 : #define GPFSTR "general protection fault"
529 :
530 8 : DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
531 : {
532 4 : char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
533 4 : enum kernel_gp_hint hint = GP_NO_HINT;
534 4 : struct task_struct *tsk;
535 4 : unsigned long gp_addr;
536 4 : int ret;
537 :
538 4 : cond_local_irq_enable(regs);
539 :
540 4 : if (static_cpu_has(X86_FEATURE_UMIP)) {
541 4 : if (user_mode(regs) && fixup_umip_exception(regs))
542 0 : goto exit;
543 : }
544 :
545 4 : if (v8086_mode(regs)) {
546 0 : local_irq_enable();
547 0 : handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
548 0 : local_irq_disable();
549 0 : return;
550 : }
551 :
552 4 : tsk = current;
553 :
554 4 : if (user_mode(regs)) {
555 0 : tsk->thread.error_code = error_code;
556 0 : tsk->thread.trap_nr = X86_TRAP_GP;
557 :
558 0 : if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
559 : return;
560 :
561 0 : show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
562 0 : force_sig(SIGSEGV);
563 0 : goto exit;
564 : }
565 :
566 4 : if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
567 4 : goto exit;
568 :
569 0 : tsk->thread.error_code = error_code;
570 0 : tsk->thread.trap_nr = X86_TRAP_GP;
571 :
572 : /*
573 : * To be potentially processing a kprobe fault and to trust the result
574 : * from kprobe_running(), we have to be non-preemptible.
575 : */
576 0 : if (!preemptible() &&
577 0 : kprobe_running() &&
578 0 : kprobe_fault_handler(regs, X86_TRAP_GP))
579 0 : goto exit;
580 :
581 0 : ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
582 0 : if (ret == NOTIFY_STOP)
583 0 : goto exit;
584 :
585 0 : if (error_code)
586 0 : snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
587 : else
588 0 : hint = get_kernel_gp_address(regs, &gp_addr);
589 :
590 0 : if (hint != GP_NO_HINT)
591 0 : snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
592 : (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
593 : : "maybe for address",
594 : gp_addr);
595 :
596 : /*
597 : * KASAN is interested only in the non-canonical case, clear it
598 : * otherwise.
599 : */
600 0 : if (hint != GP_NON_CANONICAL)
601 0 : gp_addr = 0;
602 :
603 0 : die_addr(desc, regs, error_code, gp_addr);
604 :
605 4 : exit:
606 4 : cond_local_irq_disable(regs);
607 : }
608 :
609 1 : static bool do_int3(struct pt_regs *regs)
610 : {
611 1 : int res;
612 :
613 : #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
614 : if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
615 : SIGTRAP) == NOTIFY_STOP)
616 : return true;
617 : #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
618 :
619 : #ifdef CONFIG_KPROBES
620 : if (kprobe_int3_handler(regs))
621 : return true;
622 : #endif
623 1 : res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
624 :
625 1 : return res == NOTIFY_STOP;
626 : }
627 :
628 0 : static void do_int3_user(struct pt_regs *regs)
629 : {
630 0 : if (do_int3(regs))
631 : return;
632 :
633 0 : cond_local_irq_enable(regs);
634 0 : do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
635 0 : cond_local_irq_disable(regs);
636 : }
637 :
638 1 : DEFINE_IDTENTRY_RAW(exc_int3)
639 : {
640 : /*
641 : * poke_int3_handler() is completely self contained code; it does (and
642 : * must) *NOT* call out to anything, lest it hits upon yet another
643 : * INT3.
644 : */
645 1 : if (poke_int3_handler(regs))
646 : return;
647 :
648 : /*
649 : * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
650 : * and therefore can trigger INT3, hence poke_int3_handler() must
651 : * be done before. If the entry came from kernel mode, then use
652 : * nmi_enter() because the INT3 could have been hit in any context
653 : * including NMI.
654 : */
655 1 : if (user_mode(regs)) {
656 0 : irqentry_enter_from_user_mode(regs);
657 0 : instrumentation_begin();
658 0 : do_int3_user(regs);
659 0 : instrumentation_end();
660 0 : irqentry_exit_to_user_mode(regs);
661 : } else {
662 1 : irqentry_state_t irq_state = irqentry_nmi_enter(regs);
663 :
664 1 : instrumentation_begin();
665 1 : if (!do_int3(regs))
666 0 : die("int3", regs, 0);
667 1 : instrumentation_end();
668 1 : irqentry_nmi_exit(regs, irq_state);
669 : }
670 : }
671 :
672 : #ifdef CONFIG_X86_64
673 : /*
674 : * Help handler running on a per-cpu (IST or entry trampoline) stack
675 : * to switch to the normal thread stack if the interrupted code was in
676 : * user mode. The actual stack switch is done in entry_64.S
677 : */
678 264819 : asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
679 : {
680 264819 : struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
681 264824 : if (regs != eregs)
682 264824 : *regs = *eregs;
683 264824 : return regs;
684 : }
685 :
686 : #ifdef CONFIG_AMD_MEM_ENCRYPT
687 : asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
688 : {
689 : unsigned long sp, *stack;
690 : struct stack_info info;
691 : struct pt_regs *regs_ret;
692 :
693 : /*
694 : * In the SYSCALL entry path the RSP value comes from user-space - don't
695 : * trust it and switch to the current kernel stack
696 : */
697 : if (ip_within_syscall_gap(regs)) {
698 : sp = this_cpu_read(cpu_current_top_of_stack);
699 : goto sync;
700 : }
701 :
702 : /*
703 : * From here on the RSP value is trusted. Now check whether entry
704 : * happened from a safe stack. Not safe are the entry or unknown stacks,
705 : * use the fall-back stack instead in this case.
706 : */
707 : sp = regs->sp;
708 : stack = (unsigned long *)sp;
709 :
710 : if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
711 : info.type >= STACK_TYPE_EXCEPTION_LAST)
712 : sp = __this_cpu_ist_top_va(VC2);
713 :
714 : sync:
715 : /*
716 : * Found a safe stack - switch to it as if the entry didn't happen via
717 : * IST stack. The code below only copies pt_regs, the real switch happens
718 : * in assembly code.
719 : */
720 : sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
721 :
722 : regs_ret = (struct pt_regs *)sp;
723 : *regs_ret = *regs;
724 :
725 : return regs_ret;
726 : }
727 : #endif
728 :
729 : struct bad_iret_stack {
730 : void *error_entry_ret;
731 : struct pt_regs regs;
732 : };
733 :
734 : asmlinkage __visible noinstr
735 0 : struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
736 : {
737 : /*
738 : * This is called from entry_64.S early in handling a fault
739 : * caused by a bad iret to user mode. To handle the fault
740 : * correctly, we want to move our stack frame to where it would
741 : * be had we entered directly on the entry stack (rather than
742 : * just below the IRET frame) and we want to pretend that the
743 : * exception came from the IRET target.
744 : */
745 0 : struct bad_iret_stack tmp, *new_stack =
746 0 : (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
747 :
748 : /* Copy the IRET target to the temporary storage. */
749 0 : __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
750 :
751 : /* Copy the remainder of the stack from the current stack. */
752 0 : __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
753 :
754 : /* Update the entry stack */
755 0 : __memcpy(new_stack, &tmp, sizeof(tmp));
756 :
757 0 : BUG_ON(!user_mode(&new_stack->regs));
758 0 : return new_stack;
759 : }
760 : #endif
761 :
762 0 : static bool is_sysenter_singlestep(struct pt_regs *regs)
763 : {
764 : /*
765 : * We don't try for precision here. If we're anywhere in the region of
766 : * code that can be single-stepped in the SYSENTER entry path, then
767 : * assume that this is a useless single-step trap due to SYSENTER
768 : * being invoked with TF set. (We don't know in advance exactly
769 : * which instructions will be hit because BTF could plausibly
770 : * be set.)
771 : */
772 : #ifdef CONFIG_X86_32
773 : return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
774 : (unsigned long)__end_SYSENTER_singlestep_region -
775 : (unsigned long)__begin_SYSENTER_singlestep_region;
776 : #elif defined(CONFIG_IA32_EMULATION)
777 0 : return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
778 0 : (unsigned long)__end_entry_SYSENTER_compat -
779 : (unsigned long)entry_SYSENTER_compat;
780 : #else
781 : return false;
782 : #endif
783 : }
784 :
785 0 : static __always_inline unsigned long debug_read_clear_dr6(void)
786 : {
787 0 : unsigned long dr6;
788 :
789 : /*
790 : * The Intel SDM says:
791 : *
792 : * Certain debug exceptions may clear bits 0-3. The remaining
793 : * contents of the DR6 register are never cleared by the
794 : * processor. To avoid confusion in identifying debug
795 : * exceptions, debug handlers should clear the register before
796 : * returning to the interrupted task.
797 : *
798 : * Keep it simple: clear DR6 immediately.
799 : */
800 0 : get_debugreg(dr6, 6);
801 0 : set_debugreg(DR6_RESERVED, 6);
802 0 : dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
803 :
804 0 : return dr6;
805 : }
806 :
807 : /*
808 : * Our handling of the processor debug registers is non-trivial.
809 : * We do not clear them on entry and exit from the kernel. Therefore
810 : * it is possible to get a watchpoint trap here from inside the kernel.
811 : * However, the code in ./ptrace.c has ensured that the user can
812 : * only set watchpoints on userspace addresses. Therefore the in-kernel
813 : * watchpoint trap can only occur in code which is reading/writing
814 : * from user space. Such code must not hold kernel locks (since it
815 : * can equally take a page fault), therefore it is safe to call
816 : * force_sig_info even though that claims and releases locks.
817 : *
818 : * Code in ./signal.c ensures that the debug control register
819 : * is restored before we deliver any signal, and therefore that
820 : * user code runs with the correct debug control register even though
821 : * we clear it here.
822 : *
823 : * Being careful here means that we don't have to be as careful in a
824 : * lot of more complicated places (task switching can be a bit lazy
825 : * about restoring all the debug state, and ptrace doesn't have to
826 : * find every occurrence of the TF bit that could be saved away even
827 : * by user code)
828 : *
829 : * May run on IST stack.
830 : */
831 :
832 0 : static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
833 : {
834 : /*
835 : * Notifiers will clear bits in @dr6 to indicate the event has been
836 : * consumed - hw_breakpoint_handler(), single_stop_cont().
837 : *
838 : * Notifiers will set bits in @virtual_dr6 to indicate the desire
839 : * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
840 : */
841 0 : if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
842 0 : return true;
843 :
844 : return false;
845 : }
846 :
847 0 : static __always_inline void exc_debug_kernel(struct pt_regs *regs,
848 : unsigned long dr6)
849 : {
850 : /*
851 : * Disable breakpoints during exception handling; recursive exceptions
852 : * are exceedingly 'fun'.
853 : *
854 : * Since this function is NOKPROBE, and that also applies to
855 : * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
856 : * HW_BREAKPOINT_W on our stack)
857 : *
858 : * Entry text is excluded for HW_BP_X and cpu_entry_area, which
859 : * includes the entry stack is excluded for everything.
860 : */
861 0 : unsigned long dr7 = local_db_save();
862 0 : irqentry_state_t irq_state = irqentry_nmi_enter(regs);
863 0 : instrumentation_begin();
864 :
865 : /*
866 : * If something gets miswired and we end up here for a user mode
867 : * #DB, we will malfunction.
868 : */
869 0 : WARN_ON_ONCE(user_mode(regs));
870 :
871 0 : if (test_thread_flag(TIF_BLOCKSTEP)) {
872 : /*
873 : * The SDM says "The processor clears the BTF flag when it
874 : * generates a debug exception." but PTRACE_BLOCKSTEP requested
875 : * it for userspace, but we just took a kernel #DB, so re-set
876 : * BTF.
877 : */
878 0 : unsigned long debugctl;
879 :
880 0 : rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
881 0 : debugctl |= DEBUGCTLMSR_BTF;
882 0 : wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
883 : }
884 :
885 : /*
886 : * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
887 : * watchpoint at the same time then that will still be handled.
888 : */
889 0 : if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
890 0 : dr6 &= ~DR_STEP;
891 :
892 0 : if (kprobe_debug_handler(regs))
893 0 : goto out;
894 :
895 : /*
896 : * The kernel doesn't use INT1
897 : */
898 0 : if (!dr6)
899 0 : goto out;
900 :
901 0 : if (notify_debug(regs, &dr6))
902 0 : goto out;
903 :
904 : /*
905 : * The kernel doesn't use TF single-step outside of:
906 : *
907 : * - Kprobes, consumed through kprobe_debug_handler()
908 : * - KGDB, consumed through notify_debug()
909 : *
910 : * So if we get here with DR_STEP set, something is wonky.
911 : *
912 : * A known way to trigger this is through QEMU's GDB stub,
913 : * which leaks #DB into the guest and causes IST recursion.
914 : */
915 0 : if (WARN_ON_ONCE(dr6 & DR_STEP))
916 0 : regs->flags &= ~X86_EFLAGS_TF;
917 0 : out:
918 0 : instrumentation_end();
919 0 : irqentry_nmi_exit(regs, irq_state);
920 :
921 0 : local_db_restore(dr7);
922 : }
923 :
924 0 : static __always_inline void exc_debug_user(struct pt_regs *regs,
925 : unsigned long dr6)
926 : {
927 0 : bool icebp;
928 :
929 : /*
930 : * If something gets miswired and we end up here for a kernel mode
931 : * #DB, we will malfunction.
932 : */
933 0 : WARN_ON_ONCE(!user_mode(regs));
934 :
935 : /*
936 : * NB: We can't easily clear DR7 here because
937 : * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
938 : * user memory, etc. This means that a recursive #DB is possible. If
939 : * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
940 : * Since we're not on the IST stack right now, everything will be
941 : * fine.
942 : */
943 :
944 0 : irqentry_enter_from_user_mode(regs);
945 0 : instrumentation_begin();
946 :
947 : /*
948 : * Start the virtual/ptrace DR6 value with just the DR_STEP mask
949 : * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
950 : *
951 : * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
952 : * even if it is not the result of PTRACE_SINGLESTEP.
953 : */
954 0 : current->thread.virtual_dr6 = (dr6 & DR_STEP);
955 :
956 : /*
957 : * The SDM says "The processor clears the BTF flag when it
958 : * generates a debug exception." Clear TIF_BLOCKSTEP to keep
959 : * TIF_BLOCKSTEP in sync with the hardware BTF flag.
960 : */
961 0 : clear_thread_flag(TIF_BLOCKSTEP);
962 :
963 : /*
964 : * If dr6 has no reason to give us about the origin of this trap,
965 : * then it's very likely the result of an icebp/int01 trap.
966 : * User wants a sigtrap for that.
967 : */
968 0 : icebp = !dr6;
969 :
970 0 : if (notify_debug(regs, &dr6))
971 0 : goto out;
972 :
973 : /* It's safe to allow irq's after DR6 has been saved */
974 0 : local_irq_enable();
975 :
976 0 : if (v8086_mode(regs)) {
977 0 : handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
978 0 : goto out_irq;
979 : }
980 :
981 : /* Add the virtual_dr6 bits for signals. */
982 0 : dr6 |= current->thread.virtual_dr6;
983 0 : if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
984 0 : send_sigtrap(regs, 0, get_si_code(dr6));
985 :
986 0 : out_irq:
987 0 : local_irq_disable();
988 0 : out:
989 0 : instrumentation_end();
990 0 : irqentry_exit_to_user_mode(regs);
991 : }
992 :
993 : #ifdef CONFIG_X86_64
994 : /* IST stack entry */
995 0 : DEFINE_IDTENTRY_DEBUG(exc_debug)
996 : {
997 0 : exc_debug_kernel(regs, debug_read_clear_dr6());
998 0 : }
999 :
1000 : /* User entry, runs on regular task stack */
1001 0 : DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1002 : {
1003 0 : exc_debug_user(regs, debug_read_clear_dr6());
1004 0 : }
1005 : #else
1006 : /* 32 bit does not have separate entry points. */
1007 : DEFINE_IDTENTRY_RAW(exc_debug)
1008 : {
1009 : unsigned long dr6 = debug_read_clear_dr6();
1010 :
1011 : if (user_mode(regs))
1012 : exc_debug_user(regs, dr6);
1013 : else
1014 : exc_debug_kernel(regs, dr6);
1015 : }
1016 : #endif
1017 :
1018 : /*
1019 : * Note that we play around with the 'TS' bit in an attempt to get
1020 : * the correct behaviour even in the presence of the asynchronous
1021 : * IRQ13 behaviour
1022 : */
1023 0 : static void math_error(struct pt_regs *regs, int trapnr)
1024 : {
1025 0 : struct task_struct *task = current;
1026 0 : struct fpu *fpu = &task->thread.fpu;
1027 0 : int si_code;
1028 0 : char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1029 : "simd exception";
1030 :
1031 0 : cond_local_irq_enable(regs);
1032 :
1033 0 : if (!user_mode(regs)) {
1034 0 : if (fixup_exception(regs, trapnr, 0, 0))
1035 0 : goto exit;
1036 :
1037 0 : task->thread.error_code = 0;
1038 0 : task->thread.trap_nr = trapnr;
1039 :
1040 0 : if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1041 : SIGFPE) != NOTIFY_STOP)
1042 0 : die(str, regs, 0);
1043 0 : goto exit;
1044 : }
1045 :
1046 : /*
1047 : * Save the info for the exception handler and clear the error.
1048 : */
1049 0 : fpu__save(fpu);
1050 :
1051 0 : task->thread.trap_nr = trapnr;
1052 0 : task->thread.error_code = 0;
1053 :
1054 0 : si_code = fpu__exception_code(fpu, trapnr);
1055 : /* Retry when we get spurious exceptions: */
1056 0 : if (!si_code)
1057 0 : goto exit;
1058 :
1059 0 : if (fixup_vdso_exception(regs, trapnr, 0, 0))
1060 : return;
1061 :
1062 0 : force_sig_fault(SIGFPE, si_code,
1063 0 : (void __user *)uprobe_get_trap_addr(regs));
1064 0 : exit:
1065 0 : cond_local_irq_disable(regs);
1066 : }
1067 :
1068 0 : DEFINE_IDTENTRY(exc_coprocessor_error)
1069 : {
1070 0 : math_error(regs, X86_TRAP_MF);
1071 : }
1072 :
1073 0 : DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1074 : {
1075 0 : if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1076 : /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1077 : if (!static_cpu_has(X86_FEATURE_XMM)) {
1078 : __exc_general_protection(regs, 0);
1079 : return;
1080 : }
1081 : }
1082 0 : math_error(regs, X86_TRAP_XF);
1083 : }
1084 :
1085 0 : DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1086 : {
1087 : /*
1088 : * This addresses a Pentium Pro Erratum:
1089 : *
1090 : * PROBLEM: If the APIC subsystem is configured in mixed mode with
1091 : * Virtual Wire mode implemented through the local APIC, an
1092 : * interrupt vector of 0Fh (Intel reserved encoding) may be
1093 : * generated by the local APIC (Int 15). This vector may be
1094 : * generated upon receipt of a spurious interrupt (an interrupt
1095 : * which is removed before the system receives the INTA sequence)
1096 : * instead of the programmed 8259 spurious interrupt vector.
1097 : *
1098 : * IMPLICATION: The spurious interrupt vector programmed in the
1099 : * 8259 is normally handled by an operating system's spurious
1100 : * interrupt handler. However, a vector of 0Fh is unknown to some
1101 : * operating systems, which would crash if this erratum occurred.
1102 : *
1103 : * In theory this could be limited to 32bit, but the handler is not
1104 : * hurting and who knows which other CPUs suffer from this.
1105 : */
1106 0 : }
1107 :
1108 0 : DEFINE_IDTENTRY(exc_device_not_available)
1109 : {
1110 0 : unsigned long cr0 = read_cr0();
1111 :
1112 : #ifdef CONFIG_MATH_EMULATION
1113 : if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1114 : struct math_emu_info info = { };
1115 :
1116 : cond_local_irq_enable(regs);
1117 :
1118 : info.regs = regs;
1119 : math_emulate(&info);
1120 :
1121 : cond_local_irq_disable(regs);
1122 : return;
1123 : }
1124 : #endif
1125 :
1126 : /* This should not happen. */
1127 0 : if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1128 : /* Try to fix it up and carry on. */
1129 0 : write_cr0(cr0 & ~X86_CR0_TS);
1130 : } else {
1131 : /*
1132 : * Something terrible happened, and we're better off trying
1133 : * to kill the task than getting stuck in a never-ending
1134 : * loop of #NM faults.
1135 : */
1136 0 : die("unexpected #NM exception", regs, 0);
1137 : }
1138 : }
1139 :
1140 : #ifdef CONFIG_X86_32
1141 : DEFINE_IDTENTRY_SW(iret_error)
1142 : {
1143 : local_irq_enable();
1144 : if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1145 : X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1146 : do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1147 : ILL_BADSTK, (void __user *)NULL);
1148 : }
1149 : local_irq_disable();
1150 : }
1151 : #endif
1152 :
1153 1 : void __init trap_init(void)
1154 : {
1155 : /* Init cpu_entry_area before IST entries are set up */
1156 1 : setup_cpu_entry_areas();
1157 :
1158 : /* Init GHCB memory pages when running as an SEV-ES guest */
1159 1 : sev_es_init_vc_handling();
1160 :
1161 1 : idt_setup_traps();
1162 :
1163 : /*
1164 : * Should be a barrier for any external CPU state:
1165 : */
1166 1 : cpu_init();
1167 :
1168 1 : idt_setup_ist_traps();
1169 1 : }
|