Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 :
4 : #include <linux/kernel.h>
5 : #include <linux/sched.h>
6 : #include <linux/sched/clock.h>
7 : #include <linux/init.h>
8 : #include <linux/export.h>
9 : #include <linux/timer.h>
10 : #include <linux/acpi_pmtmr.h>
11 : #include <linux/cpufreq.h>
12 : #include <linux/delay.h>
13 : #include <linux/clocksource.h>
14 : #include <linux/percpu.h>
15 : #include <linux/timex.h>
16 : #include <linux/static_key.h>
17 :
18 : #include <asm/hpet.h>
19 : #include <asm/timer.h>
20 : #include <asm/vgtod.h>
21 : #include <asm/time.h>
22 : #include <asm/delay.h>
23 : #include <asm/hypervisor.h>
24 : #include <asm/nmi.h>
25 : #include <asm/x86_init.h>
26 : #include <asm/geode.h>
27 : #include <asm/apic.h>
28 : #include <asm/intel-family.h>
29 : #include <asm/i8259.h>
30 : #include <asm/uv/uv.h>
31 :
32 : unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
33 : EXPORT_SYMBOL(cpu_khz);
34 :
35 : unsigned int __read_mostly tsc_khz;
36 : EXPORT_SYMBOL(tsc_khz);
37 :
38 : #define KHZ 1000
39 :
40 : /*
41 : * TSC can be unstable due to cpufreq or due to unsynced TSCs
42 : */
43 : static int __read_mostly tsc_unstable;
44 : static unsigned int __initdata tsc_early_khz;
45 :
46 : static DEFINE_STATIC_KEY_FALSE(__use_tsc);
47 :
48 : int tsc_clocksource_reliable;
49 :
50 : static u32 art_to_tsc_numerator;
51 : static u32 art_to_tsc_denominator;
52 : static u64 art_to_tsc_offset;
53 : struct clocksource *art_related_clocksource;
54 :
55 : struct cyc2ns {
56 : struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
57 : seqcount_latch_t seq; /* 32 + 4 = 36 */
58 :
59 : }; /* fits one cacheline */
60 :
61 : static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
62 :
63 0 : static int __init tsc_early_khz_setup(char *buf)
64 : {
65 0 : return kstrtouint(buf, 0, &tsc_early_khz);
66 : }
67 : early_param("tsc_early_khz", tsc_early_khz_setup);
68 :
69 1 : __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
70 : {
71 1 : int seq, idx;
72 :
73 0 : preempt_disable_notrace();
74 :
75 1 : do {
76 1 : seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
77 1 : idx = seq & 1;
78 :
79 1 : data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
80 1 : data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
81 1 : data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
82 :
83 1 : } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
84 0 : }
85 :
86 1 : __always_inline void cyc2ns_read_end(void)
87 : {
88 1 : preempt_enable_notrace();
89 0 : }
90 :
91 : /*
92 : * Accelerators for sched_clock()
93 : * convert from cycles(64bits) => nanoseconds (64bits)
94 : * basic equation:
95 : * ns = cycles / (freq / ns_per_sec)
96 : * ns = cycles * (ns_per_sec / freq)
97 : * ns = cycles * (10^9 / (cpu_khz * 10^3))
98 : * ns = cycles * (10^6 / cpu_khz)
99 : *
100 : * Then we use scaling math (suggested by george@mvista.com) to get:
101 : * ns = cycles * (10^6 * SC / cpu_khz) / SC
102 : * ns = cycles * cyc2ns_scale / SC
103 : *
104 : * And since SC is a constant power of two, we can convert the div
105 : * into a shift. The larger SC is, the more accurate the conversion, but
106 : * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
107 : * (64-bit result) can be used.
108 : *
109 : * We can use khz divisor instead of mhz to keep a better precision.
110 : * (mathieu.desnoyers@polymtl.ca)
111 : *
112 : * -johnstul@us.ibm.com "math is hard, lets go shopping!"
113 : */
114 :
115 1 : static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
116 : {
117 1 : struct cyc2ns_data data;
118 1 : unsigned long long ns;
119 :
120 2 : cyc2ns_read_begin(&data);
121 :
122 1 : ns = data.cyc2ns_offset;
123 1 : ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
124 :
125 1 : cyc2ns_read_end();
126 :
127 1 : return ns;
128 : }
129 :
130 1 : static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
131 : {
132 1 : unsigned long long ns_now;
133 1 : struct cyc2ns_data data;
134 1 : struct cyc2ns *c2n;
135 :
136 1 : ns_now = cycles_2_ns(tsc_now);
137 :
138 : /*
139 : * Compute a new multiplier as per the above comment and ensure our
140 : * time function is continuous; see the comment near struct
141 : * cyc2ns_data.
142 : */
143 1 : clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
144 : NSEC_PER_MSEC, 0);
145 :
146 : /*
147 : * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
148 : * not expected to be greater than 31 due to the original published
149 : * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
150 : * value) - refer perf_event_mmap_page documentation in perf_event.h.
151 : */
152 1 : if (data.cyc2ns_shift == 32) {
153 1 : data.cyc2ns_shift = 31;
154 1 : data.cyc2ns_mul >>= 1;
155 : }
156 :
157 1 : data.cyc2ns_offset = ns_now -
158 1 : mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
159 :
160 1 : c2n = per_cpu_ptr(&cyc2ns, cpu);
161 :
162 1 : raw_write_seqcount_latch(&c2n->seq);
163 1 : c2n->data[0] = data;
164 1 : raw_write_seqcount_latch(&c2n->seq);
165 1 : c2n->data[1] = data;
166 1 : }
167 :
168 0 : static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
169 : {
170 0 : unsigned long flags;
171 :
172 0 : local_irq_save(flags);
173 0 : sched_clock_idle_sleep_event();
174 :
175 0 : if (khz)
176 0 : __set_cyc2ns_scale(khz, cpu, tsc_now);
177 :
178 0 : sched_clock_idle_wakeup_event();
179 0 : local_irq_restore(flags);
180 0 : }
181 :
182 : /*
183 : * Initialize cyc2ns for boot cpu
184 : */
185 1 : static void __init cyc2ns_init_boot_cpu(void)
186 : {
187 1 : struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
188 :
189 1 : seqcount_latch_init(&c2n->seq);
190 1 : __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
191 1 : }
192 :
193 : /*
194 : * Secondary CPUs do not run through tsc_init(), so set up
195 : * all the scale factors for all CPUs, assuming the same
196 : * speed as the bootup CPU.
197 : */
198 1 : static void __init cyc2ns_init_secondary_cpus(void)
199 : {
200 1 : unsigned int cpu, this_cpu = smp_processor_id();
201 1 : struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
202 1 : struct cyc2ns_data *data = c2n->data;
203 :
204 5 : for_each_possible_cpu(cpu) {
205 4 : if (cpu != this_cpu) {
206 3 : seqcount_latch_init(&c2n->seq);
207 3 : c2n = per_cpu_ptr(&cyc2ns, cpu);
208 3 : c2n->data[0] = data[0];
209 3 : c2n->data[1] = data[1];
210 : }
211 : }
212 1 : }
213 :
214 : /*
215 : * Scheduler clock - returns current time in nanosec units.
216 : */
217 30 : u64 native_sched_clock(void)
218 : {
219 30 : if (static_branch_likely(&__use_tsc)) {
220 0 : u64 tsc_now = rdtsc();
221 :
222 : /* return the value in ns */
223 0 : return cycles_2_ns(tsc_now);
224 : }
225 :
226 : /*
227 : * Fall back to jiffies if there's no TSC available:
228 : * ( But note that we still use it if the TSC is marked
229 : * unstable. We do this because unlike Time Of Day,
230 : * the scheduler clock tolerates small errors and it's
231 : * very important for it to be as fast as the platform
232 : * can achieve it. )
233 : */
234 :
235 : /* No locking but a rare wrong value is not a big deal: */
236 30 : return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
237 : }
238 :
239 : /*
240 : * Generate a sched_clock if you already have a TSC value.
241 : */
242 0 : u64 native_sched_clock_from_tsc(u64 tsc)
243 : {
244 0 : return cycles_2_ns(tsc);
245 : }
246 :
247 : /* We need to define a real function for sched_clock, to override the
248 : weak default version */
249 : #ifdef CONFIG_PARAVIRT
250 251833 : unsigned long long sched_clock(void)
251 : {
252 251833 : return paravirt_sched_clock();
253 : }
254 :
255 0 : bool using_native_sched_clock(void)
256 : {
257 0 : return pv_ops.time.sched_clock == native_sched_clock;
258 : }
259 : #else
260 : unsigned long long
261 : sched_clock(void) __attribute__((alias("native_sched_clock")));
262 :
263 : bool using_native_sched_clock(void) { return true; }
264 : #endif
265 :
266 51532 : int check_tsc_unstable(void)
267 : {
268 51532 : return tsc_unstable;
269 : }
270 : EXPORT_SYMBOL_GPL(check_tsc_unstable);
271 :
272 : #ifdef CONFIG_X86_TSC
273 0 : int __init notsc_setup(char *str)
274 : {
275 0 : mark_tsc_unstable("boot parameter notsc");
276 0 : return 1;
277 : }
278 : #else
279 : /*
280 : * disable flag for tsc. Takes effect by clearing the TSC cpu flag
281 : * in cpu/common.c
282 : */
283 : int __init notsc_setup(char *str)
284 : {
285 : setup_clear_cpu_cap(X86_FEATURE_TSC);
286 : return 1;
287 : }
288 : #endif
289 :
290 : __setup("notsc", notsc_setup);
291 :
292 : static int no_sched_irq_time;
293 : static int no_tsc_watchdog;
294 :
295 0 : static int __init tsc_setup(char *str)
296 : {
297 0 : if (!strcmp(str, "reliable"))
298 0 : tsc_clocksource_reliable = 1;
299 0 : if (!strncmp(str, "noirqtime", 9))
300 0 : no_sched_irq_time = 1;
301 0 : if (!strcmp(str, "unstable"))
302 0 : mark_tsc_unstable("boot parameter");
303 0 : if (!strcmp(str, "nowatchdog"))
304 0 : no_tsc_watchdog = 1;
305 0 : return 1;
306 : }
307 :
308 : __setup("tsc=", tsc_setup);
309 :
310 : #define MAX_RETRIES 5
311 : #define TSC_DEFAULT_THRESHOLD 0x20000
312 :
313 : /*
314 : * Read TSC and the reference counters. Take care of any disturbances
315 : */
316 0 : static u64 tsc_read_refs(u64 *p, int hpet)
317 : {
318 0 : u64 t1, t2;
319 0 : u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
320 0 : int i;
321 :
322 0 : for (i = 0; i < MAX_RETRIES; i++) {
323 0 : t1 = get_cycles();
324 0 : if (hpet)
325 0 : *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
326 : else
327 0 : *p = acpi_pm_read_early();
328 0 : t2 = get_cycles();
329 0 : if ((t2 - t1) < thresh)
330 0 : return t2;
331 : }
332 : return ULLONG_MAX;
333 : }
334 :
335 : /*
336 : * Calculate the TSC frequency from HPET reference
337 : */
338 0 : static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
339 : {
340 0 : u64 tmp;
341 :
342 0 : if (hpet2 < hpet1)
343 0 : hpet2 += 0x100000000ULL;
344 0 : hpet2 -= hpet1;
345 0 : tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
346 0 : do_div(tmp, 1000000);
347 0 : deltatsc = div64_u64(deltatsc, tmp);
348 :
349 0 : return (unsigned long) deltatsc;
350 : }
351 :
352 : /*
353 : * Calculate the TSC frequency from PMTimer reference
354 : */
355 0 : static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
356 : {
357 0 : u64 tmp;
358 :
359 0 : if (!pm1 && !pm2)
360 : return ULONG_MAX;
361 :
362 0 : if (pm2 < pm1)
363 0 : pm2 += (u64)ACPI_PM_OVRRUN;
364 0 : pm2 -= pm1;
365 0 : tmp = pm2 * 1000000000LL;
366 0 : do_div(tmp, PMTMR_TICKS_PER_SEC);
367 0 : do_div(deltatsc, tmp);
368 :
369 0 : return (unsigned long) deltatsc;
370 : }
371 :
372 : #define CAL_MS 10
373 : #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
374 : #define CAL_PIT_LOOPS 1000
375 :
376 : #define CAL2_MS 50
377 : #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
378 : #define CAL2_PIT_LOOPS 5000
379 :
380 :
381 : /*
382 : * Try to calibrate the TSC against the Programmable
383 : * Interrupt Timer and return the frequency of the TSC
384 : * in kHz.
385 : *
386 : * Return ULONG_MAX on failure to calibrate.
387 : */
388 0 : static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
389 : {
390 0 : u64 tsc, t1, t2, delta;
391 0 : unsigned long tscmin, tscmax;
392 0 : int pitcnt;
393 :
394 0 : if (!has_legacy_pic()) {
395 : /*
396 : * Relies on tsc_early_delay_calibrate() to have given us semi
397 : * usable udelay(), wait for the same 50ms we would have with
398 : * the PIT loop below.
399 : */
400 0 : udelay(10 * USEC_PER_MSEC);
401 0 : udelay(10 * USEC_PER_MSEC);
402 0 : udelay(10 * USEC_PER_MSEC);
403 0 : udelay(10 * USEC_PER_MSEC);
404 0 : udelay(10 * USEC_PER_MSEC);
405 0 : return ULONG_MAX;
406 : }
407 :
408 : /* Set the Gate high, disable speaker */
409 0 : outb((inb(0x61) & ~0x02) | 0x01, 0x61);
410 :
411 : /*
412 : * Setup CTC channel 2* for mode 0, (interrupt on terminal
413 : * count mode), binary count. Set the latch register to 50ms
414 : * (LSB then MSB) to begin countdown.
415 : */
416 0 : outb(0xb0, 0x43);
417 0 : outb(latch & 0xff, 0x42);
418 0 : outb(latch >> 8, 0x42);
419 :
420 0 : tsc = t1 = t2 = get_cycles();
421 :
422 0 : pitcnt = 0;
423 0 : tscmax = 0;
424 0 : tscmin = ULONG_MAX;
425 0 : while ((inb(0x61) & 0x20) == 0) {
426 0 : t2 = get_cycles();
427 0 : delta = t2 - tsc;
428 0 : tsc = t2;
429 0 : if ((unsigned long) delta < tscmin)
430 0 : tscmin = (unsigned int) delta;
431 0 : if ((unsigned long) delta > tscmax)
432 0 : tscmax = (unsigned int) delta;
433 0 : pitcnt++;
434 : }
435 :
436 : /*
437 : * Sanity checks:
438 : *
439 : * If we were not able to read the PIT more than loopmin
440 : * times, then we have been hit by a massive SMI
441 : *
442 : * If the maximum is 10 times larger than the minimum,
443 : * then we got hit by an SMI as well.
444 : */
445 0 : if (pitcnt < loopmin || tscmax > 10 * tscmin)
446 : return ULONG_MAX;
447 :
448 : /* Calculate the PIT value */
449 0 : delta = t2 - t1;
450 0 : do_div(delta, ms);
451 0 : return delta;
452 : }
453 :
454 : /*
455 : * This reads the current MSB of the PIT counter, and
456 : * checks if we are running on sufficiently fast and
457 : * non-virtualized hardware.
458 : *
459 : * Our expectations are:
460 : *
461 : * - the PIT is running at roughly 1.19MHz
462 : *
463 : * - each IO is going to take about 1us on real hardware,
464 : * but we allow it to be much faster (by a factor of 10) or
465 : * _slightly_ slower (ie we allow up to a 2us read+counter
466 : * update - anything else implies a unacceptably slow CPU
467 : * or PIT for the fast calibration to work.
468 : *
469 : * - with 256 PIT ticks to read the value, we have 214us to
470 : * see the same MSB (and overhead like doing a single TSC
471 : * read per MSB value etc).
472 : *
473 : * - We're doing 2 reads per loop (LSB, MSB), and we expect
474 : * them each to take about a microsecond on real hardware.
475 : * So we expect a count value of around 100. But we'll be
476 : * generous, and accept anything over 50.
477 : *
478 : * - if the PIT is stuck, and we see *many* more reads, we
479 : * return early (and the next caller of pit_expect_msb()
480 : * then consider it a failure when they don't see the
481 : * next expected value).
482 : *
483 : * These expectations mean that we know that we have seen the
484 : * transition from one expected value to another with a fairly
485 : * high accuracy, and we didn't miss any events. We can thus
486 : * use the TSC value at the transitions to calculate a pretty
487 : * good value for the TSC frequency.
488 : */
489 0 : static inline int pit_verify_msb(unsigned char val)
490 : {
491 : /* Ignore LSB */
492 0 : inb(0x42);
493 0 : return inb(0x42) == val;
494 : }
495 :
496 0 : static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
497 : {
498 0 : int count;
499 0 : u64 tsc = 0, prev_tsc = 0;
500 :
501 0 : for (count = 0; count < 50000; count++) {
502 0 : if (!pit_verify_msb(val))
503 : break;
504 0 : prev_tsc = tsc;
505 0 : tsc = get_cycles();
506 : }
507 0 : *deltap = get_cycles() - prev_tsc;
508 0 : *tscp = tsc;
509 :
510 : /*
511 : * We require _some_ success, but the quality control
512 : * will be based on the error terms on the TSC values.
513 : */
514 0 : return count > 5;
515 : }
516 :
517 : /*
518 : * How many MSB values do we want to see? We aim for
519 : * a maximum error rate of 500ppm (in practice the
520 : * real error is much smaller), but refuse to spend
521 : * more than 50ms on it.
522 : */
523 : #define MAX_QUICK_PIT_MS 50
524 : #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
525 :
526 0 : static unsigned long quick_pit_calibrate(void)
527 : {
528 0 : int i;
529 0 : u64 tsc, delta;
530 0 : unsigned long d1, d2;
531 :
532 0 : if (!has_legacy_pic())
533 : return 0;
534 :
535 : /* Set the Gate high, disable speaker */
536 0 : outb((inb(0x61) & ~0x02) | 0x01, 0x61);
537 :
538 : /*
539 : * Counter 2, mode 0 (one-shot), binary count
540 : *
541 : * NOTE! Mode 2 decrements by two (and then the
542 : * output is flipped each time, giving the same
543 : * final output frequency as a decrement-by-one),
544 : * so mode 0 is much better when looking at the
545 : * individual counts.
546 : */
547 0 : outb(0xb0, 0x43);
548 :
549 : /* Start at 0xffff */
550 0 : outb(0xff, 0x42);
551 0 : outb(0xff, 0x42);
552 :
553 : /*
554 : * The PIT starts counting at the next edge, so we
555 : * need to delay for a microsecond. The easiest way
556 : * to do that is to just read back the 16-bit counter
557 : * once from the PIT.
558 : */
559 0 : pit_verify_msb(0);
560 :
561 0 : if (pit_expect_msb(0xff, &tsc, &d1)) {
562 0 : for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
563 0 : if (!pit_expect_msb(0xff-i, &delta, &d2))
564 : break;
565 :
566 0 : delta -= tsc;
567 :
568 : /*
569 : * Extrapolate the error and fail fast if the error will
570 : * never be below 500 ppm.
571 : */
572 0 : if (i == 1 &&
573 0 : d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
574 : return 0;
575 :
576 : /*
577 : * Iterate until the error is less than 500 ppm
578 : */
579 0 : if (d1+d2 >= delta >> 11)
580 0 : continue;
581 :
582 : /*
583 : * Check the PIT one more time to verify that
584 : * all TSC reads were stable wrt the PIT.
585 : *
586 : * This also guarantees serialization of the
587 : * last cycle read ('d2') in pit_expect_msb.
588 : */
589 0 : if (!pit_verify_msb(0xfe - i))
590 : break;
591 0 : goto success;
592 : }
593 : }
594 0 : pr_info("Fast TSC calibration failed\n");
595 0 : return 0;
596 :
597 0 : success:
598 : /*
599 : * Ok, if we get here, then we've seen the
600 : * MSB of the PIT decrement 'i' times, and the
601 : * error has shrunk to less than 500 ppm.
602 : *
603 : * As a result, we can depend on there not being
604 : * any odd delays anywhere, and the TSC reads are
605 : * reliable (within the error).
606 : *
607 : * kHz = ticks / time-in-seconds / 1000;
608 : * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
609 : * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
610 : */
611 0 : delta *= PIT_TICK_RATE;
612 0 : do_div(delta, i*256*1000);
613 0 : pr_info("Fast TSC calibration using PIT\n");
614 0 : return delta;
615 : }
616 :
617 : /**
618 : * native_calibrate_tsc
619 : * Determine TSC frequency via CPUID, else return 0.
620 : */
621 0 : unsigned long native_calibrate_tsc(void)
622 : {
623 0 : unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
624 0 : unsigned int crystal_khz;
625 :
626 0 : if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
627 : return 0;
628 :
629 0 : if (boot_cpu_data.cpuid_level < 0x15)
630 : return 0;
631 :
632 0 : eax_denominator = ebx_numerator = ecx_hz = edx = 0;
633 :
634 : /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
635 0 : cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
636 :
637 0 : if (ebx_numerator == 0 || eax_denominator == 0)
638 : return 0;
639 :
640 0 : crystal_khz = ecx_hz / 1000;
641 :
642 : /*
643 : * Denverton SoCs don't report crystal clock, and also don't support
644 : * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
645 : * clock.
646 : */
647 0 : if (crystal_khz == 0 &&
648 0 : boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
649 : crystal_khz = 25000;
650 :
651 : /*
652 : * TSC frequency reported directly by CPUID is a "hardware reported"
653 : * frequency and is the most accurate one so far we have. This
654 : * is considered a known frequency.
655 : */
656 0 : if (crystal_khz != 0)
657 0 : setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
658 :
659 : /*
660 : * Some Intel SoCs like Skylake and Kabylake don't report the crystal
661 : * clock, but we can easily calculate it to a high degree of accuracy
662 : * by considering the crystal ratio and the CPU speed.
663 : */
664 0 : if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
665 0 : unsigned int eax_base_mhz, ebx, ecx, edx;
666 :
667 0 : cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
668 0 : crystal_khz = eax_base_mhz * 1000 *
669 : eax_denominator / ebx_numerator;
670 : }
671 :
672 0 : if (crystal_khz == 0)
673 : return 0;
674 :
675 : /*
676 : * For Atom SoCs TSC is the only reliable clocksource.
677 : * Mark TSC reliable so no watchdog on it.
678 : */
679 0 : if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
680 0 : setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
681 :
682 : #ifdef CONFIG_X86_LOCAL_APIC
683 : /*
684 : * The local APIC appears to be fed by the core crystal clock
685 : * (which sounds entirely sensible). We can set the global
686 : * lapic_timer_period here to avoid having to calibrate the APIC
687 : * timer later.
688 : */
689 0 : lapic_timer_period = crystal_khz * 1000 / HZ;
690 : #endif
691 :
692 0 : return crystal_khz * ebx_numerator / eax_denominator;
693 : }
694 :
695 0 : static unsigned long cpu_khz_from_cpuid(void)
696 : {
697 0 : unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
698 :
699 0 : if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
700 : return 0;
701 :
702 0 : if (boot_cpu_data.cpuid_level < 0x16)
703 : return 0;
704 :
705 0 : eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
706 :
707 0 : cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
708 :
709 0 : return eax_base_mhz * 1000;
710 : }
711 :
712 : /*
713 : * calibrate cpu using pit, hpet, and ptimer methods. They are available
714 : * later in boot after acpi is initialized.
715 : */
716 0 : static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
717 : {
718 0 : u64 tsc1, tsc2, delta, ref1, ref2;
719 0 : unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
720 0 : unsigned long flags, latch, ms;
721 0 : int hpet = is_hpet_enabled(), i, loopmin;
722 :
723 : /*
724 : * Run 5 calibration loops to get the lowest frequency value
725 : * (the best estimate). We use two different calibration modes
726 : * here:
727 : *
728 : * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
729 : * load a timeout of 50ms. We read the time right after we
730 : * started the timer and wait until the PIT count down reaches
731 : * zero. In each wait loop iteration we read the TSC and check
732 : * the delta to the previous read. We keep track of the min
733 : * and max values of that delta. The delta is mostly defined
734 : * by the IO time of the PIT access, so we can detect when
735 : * any disturbance happened between the two reads. If the
736 : * maximum time is significantly larger than the minimum time,
737 : * then we discard the result and have another try.
738 : *
739 : * 2) Reference counter. If available we use the HPET or the
740 : * PMTIMER as a reference to check the sanity of that value.
741 : * We use separate TSC readouts and check inside of the
742 : * reference read for any possible disturbance. We dicard
743 : * disturbed values here as well. We do that around the PIT
744 : * calibration delay loop as we have to wait for a certain
745 : * amount of time anyway.
746 : */
747 :
748 : /* Preset PIT loop values */
749 0 : latch = CAL_LATCH;
750 0 : ms = CAL_MS;
751 0 : loopmin = CAL_PIT_LOOPS;
752 :
753 0 : for (i = 0; i < 3; i++) {
754 0 : unsigned long tsc_pit_khz;
755 :
756 : /*
757 : * Read the start value and the reference count of
758 : * hpet/pmtimer when available. Then do the PIT
759 : * calibration, which will take at least 50ms, and
760 : * read the end value.
761 : */
762 0 : local_irq_save(flags);
763 0 : tsc1 = tsc_read_refs(&ref1, hpet);
764 0 : tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
765 0 : tsc2 = tsc_read_refs(&ref2, hpet);
766 0 : local_irq_restore(flags);
767 :
768 : /* Pick the lowest PIT TSC calibration so far */
769 0 : tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
770 :
771 : /* hpet or pmtimer available ? */
772 0 : if (ref1 == ref2)
773 0 : continue;
774 :
775 : /* Check, whether the sampling was disturbed */
776 0 : if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
777 0 : continue;
778 :
779 0 : tsc2 = (tsc2 - tsc1) * 1000000LL;
780 0 : if (hpet)
781 0 : tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
782 : else
783 0 : tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
784 :
785 0 : tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
786 :
787 : /* Check the reference deviation */
788 0 : delta = ((u64) tsc_pit_min) * 100;
789 0 : do_div(delta, tsc_ref_min);
790 :
791 : /*
792 : * If both calibration results are inside a 10% window
793 : * then we can be sure, that the calibration
794 : * succeeded. We break out of the loop right away. We
795 : * use the reference value, as it is more precise.
796 : */
797 0 : if (delta >= 90 && delta <= 110) {
798 0 : pr_info("PIT calibration matches %s. %d loops\n",
799 : hpet ? "HPET" : "PMTIMER", i + 1);
800 0 : return tsc_ref_min;
801 : }
802 :
803 : /*
804 : * Check whether PIT failed more than once. This
805 : * happens in virtualized environments. We need to
806 : * give the virtual PC a slightly longer timeframe for
807 : * the HPET/PMTIMER to make the result precise.
808 : */
809 0 : if (i == 1 && tsc_pit_min == ULONG_MAX) {
810 0 : latch = CAL2_LATCH;
811 0 : ms = CAL2_MS;
812 0 : loopmin = CAL2_PIT_LOOPS;
813 : }
814 : }
815 :
816 : /*
817 : * Now check the results.
818 : */
819 0 : if (tsc_pit_min == ULONG_MAX) {
820 : /* PIT gave no useful value */
821 0 : pr_warn("Unable to calibrate against PIT\n");
822 :
823 : /* We don't have an alternative source, disable TSC */
824 0 : if (!hpet && !ref1 && !ref2) {
825 0 : pr_notice("No reference (HPET/PMTIMER) available\n");
826 0 : return 0;
827 : }
828 :
829 : /* The alternative source failed as well, disable TSC */
830 0 : if (tsc_ref_min == ULONG_MAX) {
831 0 : pr_warn("HPET/PMTIMER calibration failed\n");
832 0 : return 0;
833 : }
834 :
835 : /* Use the alternative source */
836 0 : pr_info("using %s reference calibration\n",
837 : hpet ? "HPET" : "PMTIMER");
838 :
839 0 : return tsc_ref_min;
840 : }
841 :
842 : /* We don't have an alternative source, use the PIT calibration value */
843 0 : if (!hpet && !ref1 && !ref2) {
844 0 : pr_info("Using PIT calibration value\n");
845 0 : return tsc_pit_min;
846 : }
847 :
848 : /* The alternative source failed, use the PIT calibration value */
849 0 : if (tsc_ref_min == ULONG_MAX) {
850 0 : pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
851 0 : return tsc_pit_min;
852 : }
853 :
854 : /*
855 : * The calibration values differ too much. In doubt, we use
856 : * the PIT value as we know that there are PMTIMERs around
857 : * running at double speed. At least we let the user know:
858 : */
859 0 : pr_warn("PIT calibration deviates from %s: %lu %lu\n",
860 : hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
861 0 : pr_info("Using PIT calibration value\n");
862 0 : return tsc_pit_min;
863 : }
864 :
865 : /**
866 : * native_calibrate_cpu_early - can calibrate the cpu early in boot
867 : */
868 0 : unsigned long native_calibrate_cpu_early(void)
869 : {
870 0 : unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
871 :
872 0 : if (!fast_calibrate)
873 0 : fast_calibrate = cpu_khz_from_msr();
874 0 : if (!fast_calibrate) {
875 0 : local_irq_save(flags);
876 0 : fast_calibrate = quick_pit_calibrate();
877 0 : local_irq_restore(flags);
878 : }
879 0 : return fast_calibrate;
880 : }
881 :
882 :
883 : /**
884 : * native_calibrate_cpu - calibrate the cpu
885 : */
886 0 : static unsigned long native_calibrate_cpu(void)
887 : {
888 0 : unsigned long tsc_freq = native_calibrate_cpu_early();
889 :
890 0 : if (!tsc_freq)
891 0 : tsc_freq = pit_hpet_ptimer_calibrate_cpu();
892 :
893 0 : return tsc_freq;
894 : }
895 :
896 0 : void recalibrate_cpu_khz(void)
897 : {
898 : #ifndef CONFIG_SMP
899 : unsigned long cpu_khz_old = cpu_khz;
900 :
901 : if (!boot_cpu_has(X86_FEATURE_TSC))
902 : return;
903 :
904 : cpu_khz = x86_platform.calibrate_cpu();
905 : tsc_khz = x86_platform.calibrate_tsc();
906 : if (tsc_khz == 0)
907 : tsc_khz = cpu_khz;
908 : else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
909 : cpu_khz = tsc_khz;
910 : cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
911 : cpu_khz_old, cpu_khz);
912 : #endif
913 0 : }
914 :
915 : EXPORT_SYMBOL(recalibrate_cpu_khz);
916 :
917 :
918 : static unsigned long long cyc2ns_suspend;
919 :
920 0 : void tsc_save_sched_clock_state(void)
921 : {
922 0 : if (!sched_clock_stable())
923 : return;
924 :
925 0 : cyc2ns_suspend = sched_clock();
926 : }
927 :
928 : /*
929 : * Even on processors with invariant TSC, TSC gets reset in some the
930 : * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
931 : * arbitrary value (still sync'd across cpu's) during resume from such sleep
932 : * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
933 : * that sched_clock() continues from the point where it was left off during
934 : * suspend.
935 : */
936 0 : void tsc_restore_sched_clock_state(void)
937 : {
938 0 : unsigned long long offset;
939 0 : unsigned long flags;
940 0 : int cpu;
941 :
942 0 : if (!sched_clock_stable())
943 : return;
944 :
945 0 : local_irq_save(flags);
946 :
947 : /*
948 : * We're coming out of suspend, there's no concurrency yet; don't
949 : * bother being nice about the RCU stuff, just write to both
950 : * data fields.
951 : */
952 :
953 0 : this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
954 0 : this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
955 :
956 0 : offset = cyc2ns_suspend - sched_clock();
957 :
958 0 : for_each_possible_cpu(cpu) {
959 0 : per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
960 0 : per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
961 : }
962 :
963 0 : local_irq_restore(flags);
964 : }
965 :
966 : #ifdef CONFIG_CPU_FREQ
967 : /*
968 : * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
969 : * changes.
970 : *
971 : * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
972 : * as unstable and give up in those cases.
973 : *
974 : * Should fix up last_tsc too. Currently gettimeofday in the
975 : * first tick after the change will be slightly wrong.
976 : */
977 :
978 : static unsigned int ref_freq;
979 : static unsigned long loops_per_jiffy_ref;
980 : static unsigned long tsc_khz_ref;
981 :
982 : static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
983 : void *data)
984 : {
985 : struct cpufreq_freqs *freq = data;
986 :
987 : if (num_online_cpus() > 1) {
988 : mark_tsc_unstable("cpufreq changes on SMP");
989 : return 0;
990 : }
991 :
992 : if (!ref_freq) {
993 : ref_freq = freq->old;
994 : loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
995 : tsc_khz_ref = tsc_khz;
996 : }
997 :
998 : if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
999 : (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1000 : boot_cpu_data.loops_per_jiffy =
1001 : cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1002 :
1003 : tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1004 : if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1005 : mark_tsc_unstable("cpufreq changes");
1006 :
1007 : set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1008 : }
1009 :
1010 : return 0;
1011 : }
1012 :
1013 : static struct notifier_block time_cpufreq_notifier_block = {
1014 : .notifier_call = time_cpufreq_notifier
1015 : };
1016 :
1017 : static int __init cpufreq_register_tsc_scaling(void)
1018 : {
1019 : if (!boot_cpu_has(X86_FEATURE_TSC))
1020 : return 0;
1021 : if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1022 : return 0;
1023 : cpufreq_register_notifier(&time_cpufreq_notifier_block,
1024 : CPUFREQ_TRANSITION_NOTIFIER);
1025 : return 0;
1026 : }
1027 :
1028 : core_initcall(cpufreq_register_tsc_scaling);
1029 :
1030 : #endif /* CONFIG_CPU_FREQ */
1031 :
1032 : #define ART_CPUID_LEAF (0x15)
1033 : #define ART_MIN_DENOMINATOR (1)
1034 :
1035 :
1036 : /*
1037 : * If ART is present detect the numerator:denominator to convert to TSC
1038 : */
1039 1 : static void __init detect_art(void)
1040 : {
1041 1 : unsigned int unused[2];
1042 :
1043 1 : if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1044 1 : return;
1045 :
1046 : /*
1047 : * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1048 : * and the TSC counter resets must not occur asynchronously.
1049 : */
1050 0 : if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1051 0 : !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1052 0 : !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1053 : tsc_async_resets)
1054 0 : return;
1055 :
1056 0 : cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1057 : &art_to_tsc_numerator, unused, unused+1);
1058 :
1059 0 : if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1060 : return;
1061 :
1062 0 : rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1063 :
1064 : /* Make this sticky over multiple CPU init calls */
1065 0 : setup_force_cpu_cap(X86_FEATURE_ART);
1066 : }
1067 :
1068 :
1069 : /* clocksource code */
1070 :
1071 0 : static void tsc_resume(struct clocksource *cs)
1072 : {
1073 0 : tsc_verify_tsc_adjust(true);
1074 0 : }
1075 :
1076 : /*
1077 : * We used to compare the TSC to the cycle_last value in the clocksource
1078 : * structure to avoid a nasty time-warp. This can be observed in a
1079 : * very small window right after one CPU updated cycle_last under
1080 : * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1081 : * is smaller than the cycle_last reference value due to a TSC which
1082 : * is slighty behind. This delta is nowhere else observable, but in
1083 : * that case it results in a forward time jump in the range of hours
1084 : * due to the unsigned delta calculation of the time keeping core
1085 : * code, which is necessary to support wrapping clocksources like pm
1086 : * timer.
1087 : *
1088 : * This sanity check is now done in the core timekeeping code.
1089 : * checking the result of read_tsc() - cycle_last for being negative.
1090 : * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1091 : */
1092 172 : static u64 read_tsc(struct clocksource *cs)
1093 : {
1094 172 : return (u64)rdtsc_ordered();
1095 : }
1096 :
1097 0 : static void tsc_cs_mark_unstable(struct clocksource *cs)
1098 : {
1099 0 : if (tsc_unstable)
1100 : return;
1101 :
1102 0 : tsc_unstable = 1;
1103 0 : if (using_native_sched_clock())
1104 0 : clear_sched_clock_stable();
1105 0 : disable_sched_clock_irqtime();
1106 0 : pr_info("Marking TSC unstable due to clocksource watchdog\n");
1107 : }
1108 :
1109 0 : static void tsc_cs_tick_stable(struct clocksource *cs)
1110 : {
1111 0 : if (tsc_unstable)
1112 : return;
1113 :
1114 0 : if (using_native_sched_clock())
1115 0 : sched_clock_tick_stable();
1116 : }
1117 :
1118 0 : static int tsc_cs_enable(struct clocksource *cs)
1119 : {
1120 0 : vclocks_set_used(VDSO_CLOCKMODE_TSC);
1121 0 : return 0;
1122 : }
1123 :
1124 : /*
1125 : * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1126 : */
1127 : static struct clocksource clocksource_tsc_early = {
1128 : .name = "tsc-early",
1129 : .rating = 299,
1130 : .read = read_tsc,
1131 : .mask = CLOCKSOURCE_MASK(64),
1132 : .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1133 : CLOCK_SOURCE_MUST_VERIFY,
1134 : .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
1135 : .enable = tsc_cs_enable,
1136 : .resume = tsc_resume,
1137 : .mark_unstable = tsc_cs_mark_unstable,
1138 : .tick_stable = tsc_cs_tick_stable,
1139 : .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1140 : };
1141 :
1142 : /*
1143 : * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1144 : * this one will immediately take over. We will only register if TSC has
1145 : * been found good.
1146 : */
1147 : static struct clocksource clocksource_tsc = {
1148 : .name = "tsc",
1149 : .rating = 300,
1150 : .read = read_tsc,
1151 : .mask = CLOCKSOURCE_MASK(64),
1152 : .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1153 : CLOCK_SOURCE_VALID_FOR_HRES |
1154 : CLOCK_SOURCE_MUST_VERIFY,
1155 : .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
1156 : .enable = tsc_cs_enable,
1157 : .resume = tsc_resume,
1158 : .mark_unstable = tsc_cs_mark_unstable,
1159 : .tick_stable = tsc_cs_tick_stable,
1160 : .list = LIST_HEAD_INIT(clocksource_tsc.list),
1161 : };
1162 :
1163 0 : void mark_tsc_unstable(char *reason)
1164 : {
1165 0 : if (tsc_unstable)
1166 : return;
1167 :
1168 0 : tsc_unstable = 1;
1169 0 : if (using_native_sched_clock())
1170 0 : clear_sched_clock_stable();
1171 0 : disable_sched_clock_irqtime();
1172 0 : pr_info("Marking TSC unstable due to %s\n", reason);
1173 :
1174 0 : clocksource_mark_unstable(&clocksource_tsc_early);
1175 0 : clocksource_mark_unstable(&clocksource_tsc);
1176 : }
1177 :
1178 : EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1179 :
1180 1 : static void __init check_system_tsc_reliable(void)
1181 : {
1182 : #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1183 : if (is_geode_lx()) {
1184 : /* RTSC counts during suspend */
1185 : #define RTSC_SUSP 0x100
1186 : unsigned long res_low, res_high;
1187 :
1188 : rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1189 : /* Geode_LX - the OLPC CPU has a very reliable TSC */
1190 : if (res_low & RTSC_SUSP)
1191 : tsc_clocksource_reliable = 1;
1192 : }
1193 : #endif
1194 1 : if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1195 0 : tsc_clocksource_reliable = 1;
1196 1 : }
1197 :
1198 : /*
1199 : * Make an educated guess if the TSC is trustworthy and synchronized
1200 : * over all CPUs.
1201 : */
1202 7 : int unsynchronized_tsc(void)
1203 : {
1204 7 : if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1205 : return 1;
1206 :
1207 : #ifdef CONFIG_SMP
1208 7 : if (apic_is_clustered_box())
1209 : return 1;
1210 : #endif
1211 :
1212 7 : if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1213 : return 0;
1214 :
1215 0 : if (tsc_clocksource_reliable)
1216 : return 0;
1217 : /*
1218 : * Intel systems are normally all synchronized.
1219 : * Exceptions must mark TSC as unstable:
1220 : */
1221 0 : if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1222 : /* assume multi socket systems are not synchronized: */
1223 0 : if (num_possible_cpus() > 1)
1224 0 : return 1;
1225 : }
1226 :
1227 : return 0;
1228 : }
1229 :
1230 : /*
1231 : * Convert ART to TSC given numerator/denominator found in detect_art()
1232 : */
1233 0 : struct system_counterval_t convert_art_to_tsc(u64 art)
1234 : {
1235 0 : u64 tmp, res, rem;
1236 :
1237 0 : rem = do_div(art, art_to_tsc_denominator);
1238 :
1239 0 : res = art * art_to_tsc_numerator;
1240 0 : tmp = rem * art_to_tsc_numerator;
1241 :
1242 0 : do_div(tmp, art_to_tsc_denominator);
1243 0 : res += tmp + art_to_tsc_offset;
1244 :
1245 0 : return (struct system_counterval_t) {.cs = art_related_clocksource,
1246 : .cycles = res};
1247 : }
1248 : EXPORT_SYMBOL(convert_art_to_tsc);
1249 :
1250 : /**
1251 : * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1252 : * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1253 : *
1254 : * PTM requires all timestamps to be in units of nanoseconds. When user
1255 : * software requests a cross-timestamp, this function converts system timestamp
1256 : * to TSC.
1257 : *
1258 : * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1259 : * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1260 : * that this flag is set before conversion to TSC is attempted.
1261 : *
1262 : * Return:
1263 : * struct system_counterval_t - system counter value with the pointer to the
1264 : * corresponding clocksource
1265 : * @cycles: System counter value
1266 : * @cs: Clocksource corresponding to system counter value. Used
1267 : * by timekeeping code to verify comparibility of two cycle
1268 : * values.
1269 : */
1270 :
1271 0 : struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1272 : {
1273 0 : u64 tmp, res, rem;
1274 :
1275 0 : rem = do_div(art_ns, USEC_PER_SEC);
1276 :
1277 0 : res = art_ns * tsc_khz;
1278 0 : tmp = rem * tsc_khz;
1279 :
1280 0 : do_div(tmp, USEC_PER_SEC);
1281 0 : res += tmp;
1282 :
1283 0 : return (struct system_counterval_t) { .cs = art_related_clocksource,
1284 : .cycles = res};
1285 : }
1286 : EXPORT_SYMBOL(convert_art_ns_to_tsc);
1287 :
1288 :
1289 : static void tsc_refine_calibration_work(struct work_struct *work);
1290 : static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1291 : /**
1292 : * tsc_refine_calibration_work - Further refine tsc freq calibration
1293 : * @work - ignored.
1294 : *
1295 : * This functions uses delayed work over a period of a
1296 : * second to further refine the TSC freq value. Since this is
1297 : * timer based, instead of loop based, we don't block the boot
1298 : * process while this longer calibration is done.
1299 : *
1300 : * If there are any calibration anomalies (too many SMIs, etc),
1301 : * or the refined calibration is off by 1% of the fast early
1302 : * calibration, we throw out the new calibration and use the
1303 : * early calibration.
1304 : */
1305 0 : static void tsc_refine_calibration_work(struct work_struct *work)
1306 : {
1307 0 : static u64 tsc_start = ULLONG_MAX, ref_start;
1308 0 : static int hpet;
1309 0 : u64 tsc_stop, ref_stop, delta;
1310 0 : unsigned long freq;
1311 0 : int cpu;
1312 :
1313 : /* Don't bother refining TSC on unstable systems */
1314 0 : if (tsc_unstable)
1315 0 : goto unreg;
1316 :
1317 : /*
1318 : * Since the work is started early in boot, we may be
1319 : * delayed the first time we expire. So set the workqueue
1320 : * again once we know timers are working.
1321 : */
1322 0 : if (tsc_start == ULLONG_MAX) {
1323 0 : restart:
1324 : /*
1325 : * Only set hpet once, to avoid mixing hardware
1326 : * if the hpet becomes enabled later.
1327 : */
1328 0 : hpet = is_hpet_enabled();
1329 0 : tsc_start = tsc_read_refs(&ref_start, hpet);
1330 0 : schedule_delayed_work(&tsc_irqwork, HZ);
1331 0 : return;
1332 : }
1333 :
1334 0 : tsc_stop = tsc_read_refs(&ref_stop, hpet);
1335 :
1336 : /* hpet or pmtimer available ? */
1337 0 : if (ref_start == ref_stop)
1338 0 : goto out;
1339 :
1340 : /* Check, whether the sampling was disturbed */
1341 0 : if (tsc_stop == ULLONG_MAX)
1342 0 : goto restart;
1343 :
1344 0 : delta = tsc_stop - tsc_start;
1345 0 : delta *= 1000000LL;
1346 0 : if (hpet)
1347 0 : freq = calc_hpet_ref(delta, ref_start, ref_stop);
1348 : else
1349 0 : freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1350 :
1351 : /* Make sure we're within 1% */
1352 0 : if (abs(tsc_khz - freq) > tsc_khz/100)
1353 0 : goto out;
1354 :
1355 0 : tsc_khz = freq;
1356 0 : pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1357 : (unsigned long)tsc_khz / 1000,
1358 : (unsigned long)tsc_khz % 1000);
1359 :
1360 : /* Inform the TSC deadline clockevent devices about the recalibration */
1361 0 : lapic_update_tsc_freq();
1362 :
1363 : /* Update the sched_clock() rate to match the clocksource one */
1364 0 : for_each_possible_cpu(cpu)
1365 0 : set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1366 :
1367 0 : out:
1368 0 : if (tsc_unstable)
1369 0 : goto unreg;
1370 :
1371 0 : if (boot_cpu_has(X86_FEATURE_ART))
1372 0 : art_related_clocksource = &clocksource_tsc;
1373 0 : clocksource_register_khz(&clocksource_tsc, tsc_khz);
1374 0 : unreg:
1375 0 : clocksource_unregister(&clocksource_tsc_early);
1376 : }
1377 :
1378 :
1379 1 : static int __init init_tsc_clocksource(void)
1380 : {
1381 1 : if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1382 : return 0;
1383 :
1384 1 : if (tsc_unstable)
1385 0 : goto unreg;
1386 :
1387 1 : if (tsc_clocksource_reliable || no_tsc_watchdog)
1388 0 : clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1389 :
1390 1 : if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1391 0 : clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1392 :
1393 : /*
1394 : * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1395 : * the refined calibration and directly register it as a clocksource.
1396 : */
1397 1 : if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1398 1 : if (boot_cpu_has(X86_FEATURE_ART))
1399 0 : art_related_clocksource = &clocksource_tsc;
1400 1 : clocksource_register_khz(&clocksource_tsc, tsc_khz);
1401 1 : unreg:
1402 1 : clocksource_unregister(&clocksource_tsc_early);
1403 1 : return 0;
1404 : }
1405 :
1406 0 : schedule_delayed_work(&tsc_irqwork, 0);
1407 0 : return 0;
1408 : }
1409 : /*
1410 : * We use device_initcall here, to ensure we run after the hpet
1411 : * is fully initialized, which may occur at fs_initcall time.
1412 : */
1413 : device_initcall(init_tsc_clocksource);
1414 :
1415 1 : static bool __init determine_cpu_tsc_frequencies(bool early)
1416 : {
1417 : /* Make sure that cpu and tsc are not already calibrated */
1418 2 : WARN_ON(cpu_khz || tsc_khz);
1419 :
1420 1 : if (early) {
1421 1 : cpu_khz = x86_platform.calibrate_cpu();
1422 1 : if (tsc_early_khz)
1423 0 : tsc_khz = tsc_early_khz;
1424 : else
1425 1 : tsc_khz = x86_platform.calibrate_tsc();
1426 : } else {
1427 : /* We should not be here with non-native cpu calibration */
1428 0 : WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1429 0 : cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1430 : }
1431 :
1432 : /*
1433 : * Trust non-zero tsc_khz as authoritative,
1434 : * and use it to sanity check cpu_khz,
1435 : * which will be off if system timer is off.
1436 : */
1437 1 : if (tsc_khz == 0)
1438 0 : tsc_khz = cpu_khz;
1439 1 : else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1440 0 : cpu_khz = tsc_khz;
1441 :
1442 1 : if (tsc_khz == 0)
1443 : return false;
1444 :
1445 1 : pr_info("Detected %lu.%03lu MHz processor\n",
1446 : (unsigned long)cpu_khz / KHZ,
1447 : (unsigned long)cpu_khz % KHZ);
1448 :
1449 1 : if (cpu_khz != tsc_khz) {
1450 0 : pr_info("Detected %lu.%03lu MHz TSC",
1451 : (unsigned long)tsc_khz / KHZ,
1452 : (unsigned long)tsc_khz % KHZ);
1453 : }
1454 : return true;
1455 : }
1456 :
1457 2 : static unsigned long __init get_loops_per_jiffy(void)
1458 : {
1459 2 : u64 lpj = (u64)tsc_khz * KHZ;
1460 :
1461 2 : do_div(lpj, HZ);
1462 2 : return lpj;
1463 : }
1464 :
1465 1 : static void __init tsc_enable_sched_clock(void)
1466 : {
1467 : /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1468 1 : tsc_store_and_check_tsc_adjust(true);
1469 1 : cyc2ns_init_boot_cpu();
1470 1 : static_branch_enable(&__use_tsc);
1471 1 : }
1472 :
1473 1 : void __init tsc_early_init(void)
1474 : {
1475 1 : if (!boot_cpu_has(X86_FEATURE_TSC))
1476 : return;
1477 : /* Don't change UV TSC multi-chassis synchronization */
1478 1 : if (is_early_uv_system())
1479 : return;
1480 1 : if (!determine_cpu_tsc_frequencies(true))
1481 : return;
1482 1 : loops_per_jiffy = get_loops_per_jiffy();
1483 :
1484 1 : tsc_enable_sched_clock();
1485 : }
1486 :
1487 1 : void __init tsc_init(void)
1488 : {
1489 : /*
1490 : * native_calibrate_cpu_early can only calibrate using methods that are
1491 : * available early in boot.
1492 : */
1493 1 : if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1494 0 : x86_platform.calibrate_cpu = native_calibrate_cpu;
1495 :
1496 1 : if (!boot_cpu_has(X86_FEATURE_TSC)) {
1497 0 : setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1498 0 : return;
1499 : }
1500 :
1501 1 : if (!tsc_khz) {
1502 : /* We failed to determine frequencies earlier, try again */
1503 0 : if (!determine_cpu_tsc_frequencies(false)) {
1504 0 : mark_tsc_unstable("could not calculate TSC khz");
1505 0 : setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1506 0 : return;
1507 : }
1508 0 : tsc_enable_sched_clock();
1509 : }
1510 :
1511 1 : cyc2ns_init_secondary_cpus();
1512 :
1513 1 : if (!no_sched_irq_time)
1514 : enable_sched_clock_irqtime();
1515 :
1516 1 : lpj_fine = get_loops_per_jiffy();
1517 1 : use_tsc_delay();
1518 :
1519 1 : check_system_tsc_reliable();
1520 :
1521 1 : if (unsynchronized_tsc()) {
1522 0 : mark_tsc_unstable("TSCs unsynchronized");
1523 0 : return;
1524 : }
1525 :
1526 1 : if (tsc_clocksource_reliable || no_tsc_watchdog)
1527 0 : clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1528 :
1529 1 : clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1530 1 : detect_art();
1531 : }
1532 :
1533 : #ifdef CONFIG_SMP
1534 : /*
1535 : * If we have a constant TSC and are using the TSC for the delay loop,
1536 : * we can skip clock calibration if another cpu in the same socket has already
1537 : * been calibrated. This assumes that CONSTANT_TSC applies to all
1538 : * cpus in the socket - this should be a safe assumption.
1539 : */
1540 0 : unsigned long calibrate_delay_is_known(void)
1541 : {
1542 0 : int sibling, cpu = smp_processor_id();
1543 0 : int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1544 0 : const struct cpumask *mask = topology_core_cpumask(cpu);
1545 :
1546 0 : if (!constant_tsc || !mask)
1547 : return 0;
1548 :
1549 0 : sibling = cpumask_any_but(mask, cpu);
1550 0 : if (sibling < nr_cpu_ids)
1551 0 : return cpu_data(sibling).loops_per_jiffy;
1552 : return 0;
1553 : }
1554 : #endif
|