Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * check TSC synchronization.
4 : *
5 : * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
6 : *
7 : * We check whether all boot CPUs have their TSC's synchronized,
8 : * print a warning if not and turn off the TSC clock-source.
9 : *
10 : * The warp-check is point-to-point between two CPUs, the CPU
11 : * initiating the bootup is the 'source CPU', the freshly booting
12 : * CPU is the 'target CPU'.
13 : *
14 : * Only two CPUs may participate - they can enter in any order.
15 : * ( The serial nature of the boot logic and the CPU hotplug lock
16 : * protects against more than 2 CPUs entering this code. )
17 : */
18 : #include <linux/topology.h>
19 : #include <linux/spinlock.h>
20 : #include <linux/kernel.h>
21 : #include <linux/smp.h>
22 : #include <linux/nmi.h>
23 : #include <asm/tsc.h>
24 :
25 : struct tsc_adjust {
26 : s64 bootval;
27 : s64 adjusted;
28 : unsigned long nextcheck;
29 : bool warned;
30 : };
31 :
32 : static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust);
33 :
34 : /*
35 : * TSC's on different sockets may be reset asynchronously.
36 : * This may cause the TSC ADJUST value on socket 0 to be NOT 0.
37 : */
38 : bool __read_mostly tsc_async_resets;
39 :
40 0 : void mark_tsc_async_resets(char *reason)
41 : {
42 0 : if (tsc_async_resets)
43 : return;
44 0 : tsc_async_resets = true;
45 0 : pr_info("tsc: Marking TSC async resets true due to %s\n", reason);
46 : }
47 :
48 53621 : void tsc_verify_tsc_adjust(bool resume)
49 : {
50 53621 : struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust);
51 53710 : s64 curval;
52 :
53 53710 : if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
54 : return;
55 :
56 : /* Skip unnecessary error messages if TSC already unstable */
57 53801 : if (check_tsc_unstable())
58 : return;
59 :
60 : /* Rate limit the MSR check */
61 53764 : if (!resume && time_before(jiffies, adj->nextcheck))
62 : return;
63 :
64 372 : adj->nextcheck = jiffies + HZ;
65 :
66 372 : rdmsrl(MSR_IA32_TSC_ADJUST, curval);
67 349 : if (adj->adjusted == curval)
68 : return;
69 :
70 : /* Restore the original value */
71 0 : wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted);
72 :
73 0 : if (!adj->warned || resume) {
74 0 : pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n",
75 : smp_processor_id(), adj->adjusted, curval);
76 0 : adj->warned = true;
77 : }
78 : }
79 :
80 4 : static void tsc_sanitize_first_cpu(struct tsc_adjust *cur, s64 bootval,
81 : unsigned int cpu, bool bootcpu)
82 : {
83 : /*
84 : * First online CPU in a package stores the boot value in the
85 : * adjustment value. This value might change later via the sync
86 : * mechanism. If that fails we still can yell about boot values not
87 : * being consistent.
88 : *
89 : * On the boot cpu we just force set the ADJUST value to 0 if it's
90 : * non zero. We don't do that on non boot cpus because physical
91 : * hotplug should have set the ADJUST register to a value > 0 so
92 : * the TSC is in sync with the already running cpus.
93 : *
94 : * Also don't force the ADJUST value to zero if that is a valid value
95 : * for socket 0 as determined by the system arch. This is required
96 : * when multiple sockets are reset asynchronously with each other
97 : * and socket 0 may not have an TSC ADJUST value of 0.
98 : */
99 4 : if (bootcpu && bootval != 0) {
100 0 : if (likely(!tsc_async_resets)) {
101 0 : pr_warn(FW_BUG "TSC ADJUST: CPU%u: %lld force to 0\n",
102 : cpu, bootval);
103 0 : wrmsrl(MSR_IA32_TSC_ADJUST, 0);
104 0 : bootval = 0;
105 : } else {
106 0 : pr_info("TSC ADJUST: CPU%u: %lld NOT forced to 0\n",
107 : cpu, bootval);
108 : }
109 : }
110 4 : cur->adjusted = bootval;
111 4 : }
112 :
113 : #ifndef CONFIG_SMP
114 : bool __init tsc_store_and_check_tsc_adjust(bool bootcpu)
115 : {
116 : struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
117 : s64 bootval;
118 :
119 : if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
120 : return false;
121 :
122 : /* Skip unnecessary error messages if TSC already unstable */
123 : if (check_tsc_unstable())
124 : return false;
125 :
126 : rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
127 : cur->bootval = bootval;
128 : cur->nextcheck = jiffies + HZ;
129 : tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), bootcpu);
130 : return false;
131 : }
132 :
133 : #else /* !CONFIG_SMP */
134 :
135 : /*
136 : * Store and check the TSC ADJUST MSR if available
137 : */
138 4 : bool tsc_store_and_check_tsc_adjust(bool bootcpu)
139 : {
140 4 : struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust);
141 4 : unsigned int refcpu, cpu = smp_processor_id();
142 4 : struct cpumask *mask;
143 4 : s64 bootval;
144 :
145 4 : if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
146 : return false;
147 :
148 4 : rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
149 4 : cur->bootval = bootval;
150 4 : cur->nextcheck = jiffies + HZ;
151 4 : cur->warned = false;
152 :
153 : /*
154 : * If a non-zero TSC value for socket 0 may be valid then the default
155 : * adjusted value cannot assumed to be zero either.
156 : */
157 4 : if (tsc_async_resets)
158 0 : cur->adjusted = bootval;
159 :
160 : /*
161 : * Check whether this CPU is the first in a package to come up. In
162 : * this case do not check the boot value against another package
163 : * because the new package might have been physically hotplugged,
164 : * where TSC_ADJUST is expected to be different. When called on the
165 : * boot CPU topology_core_cpumask() might not be available yet.
166 : */
167 4 : mask = topology_core_cpumask(cpu);
168 4 : refcpu = mask ? cpumask_any_but(mask, cpu) : nr_cpu_ids;
169 :
170 4 : if (refcpu >= nr_cpu_ids) {
171 4 : tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(),
172 : bootcpu);
173 4 : return false;
174 : }
175 :
176 0 : ref = per_cpu_ptr(&tsc_adjust, refcpu);
177 : /*
178 : * Compare the boot value and complain if it differs in the
179 : * package.
180 : */
181 0 : if (bootval != ref->bootval)
182 0 : printk_once(FW_BUG "TSC ADJUST differs within socket(s), fixing all errors\n");
183 :
184 : /*
185 : * The TSC_ADJUST values in a package must be the same. If the boot
186 : * value on this newly upcoming CPU differs from the adjustment
187 : * value of the already online CPU in this package, set it to that
188 : * adjusted value.
189 : */
190 0 : if (bootval != ref->adjusted) {
191 0 : cur->adjusted = ref->adjusted;
192 0 : wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted);
193 : }
194 : /*
195 : * We have the TSCs forced to be in sync on this package. Skip sync
196 : * test:
197 : */
198 : return true;
199 : }
200 :
201 : /*
202 : * Entry/exit counters that make sure that both CPUs
203 : * run the measurement code at once:
204 : */
205 : static atomic_t start_count;
206 : static atomic_t stop_count;
207 : static atomic_t skip_test;
208 : static atomic_t test_runs;
209 :
210 : /*
211 : * We use a raw spinlock in this exceptional case, because
212 : * we want to have the fastest, inlined, non-debug version
213 : * of a critical section, to be able to prove TSC time-warps:
214 : */
215 : static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
216 :
217 : static cycles_t last_tsc;
218 : static cycles_t max_warp;
219 : static int nr_warps;
220 : static int random_warps;
221 :
222 : /*
223 : * TSC-warp measurement loop running on both CPUs. This is not called
224 : * if there is no TSC.
225 : */
226 5 : static cycles_t check_tsc_warp(unsigned int timeout)
227 : {
228 5 : cycles_t start, now, prev, end, cur_max_warp = 0;
229 5 : int i, cur_warps = 0;
230 :
231 5 : start = rdtsc_ordered();
232 : /*
233 : * The measurement runs for 'timeout' msecs:
234 : */
235 6 : end = start + (cycles_t) tsc_khz * timeout;
236 :
237 426949 : for (i = 0; ; i++) {
238 : /*
239 : * We take the global lock, measure TSC, save the
240 : * previous TSC that was measured (possibly on
241 : * another CPU) and update the previous TSC timestamp.
242 : */
243 426949 : arch_spin_lock(&sync_lock);
244 427166 : prev = last_tsc;
245 427166 : now = rdtsc_ordered();
246 427166 : last_tsc = now;
247 427166 : arch_spin_unlock(&sync_lock);
248 :
249 : /*
250 : * Be nice every now and then (and also check whether
251 : * measurement is done [we also insert a 10 million
252 : * loops safety exit, so we dont lock up in case the
253 : * TSC readout is totally broken]):
254 : */
255 426949 : if (unlikely(!(i & 7))) {
256 53401 : if (now > end || i > 10000000)
257 : break;
258 53395 : cpu_relax();
259 53395 : touch_nmi_watchdog();
260 : }
261 : /*
262 : * Outside the critical section we can now see whether
263 : * we saw a time-warp of the TSC going backwards:
264 : */
265 426943 : if (unlikely(prev > now)) {
266 0 : arch_spin_lock(&sync_lock);
267 0 : max_warp = max(max_warp, prev - now);
268 0 : cur_max_warp = max_warp;
269 : /*
270 : * Check whether this bounces back and forth. Only
271 : * one CPU should observe time going backwards.
272 : */
273 0 : if (cur_warps != nr_warps)
274 0 : random_warps++;
275 0 : nr_warps++;
276 0 : cur_warps = nr_warps;
277 0 : arch_spin_unlock(&sync_lock);
278 : }
279 : }
280 6 : WARN(!(now-start),
281 : "Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
282 : now-start, end-start);
283 6 : return cur_max_warp;
284 : }
285 :
286 : /*
287 : * If the target CPU coming online doesn't have any of its core-siblings
288 : * online, a timeout of 20msec will be used for the TSC-warp measurement
289 : * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
290 : * information about this socket already (and this information grows as we
291 : * have more and more logical-siblings in that socket).
292 : *
293 : * Ideally we should be able to skip the TSC sync check on the other
294 : * core-siblings, if the first logical CPU in a socket passed the sync test.
295 : * But as the TSC is per-logical CPU and can potentially be modified wrongly
296 : * by the bios, TSC sync test for smaller duration should be able
297 : * to catch such errors. Also this will catch the condition where all the
298 : * cores in the socket don't get reset at the same time.
299 : */
300 5 : static inline unsigned int loop_timeout(int cpu)
301 : {
302 5 : return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
303 : }
304 :
305 : /*
306 : * Source CPU calls into this - it waits for the freshly booted
307 : * target CPU to arrive and then starts the measurement:
308 : */
309 3 : void check_tsc_sync_source(int cpu)
310 : {
311 3 : int cpus = 2;
312 :
313 : /*
314 : * No need to check if we already know that the TSC is not
315 : * synchronized or if we have no TSC.
316 : */
317 3 : if (unsynchronized_tsc())
318 : return;
319 :
320 : /*
321 : * Set the maximum number of test runs to
322 : * 1 if the CPU does not provide the TSC_ADJUST MSR
323 : * 3 if the MSR is available, so the target can try to adjust
324 : */
325 3 : if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
326 0 : atomic_set(&test_runs, 1);
327 : else
328 3 : atomic_set(&test_runs, 3);
329 : retry:
330 : /*
331 : * Wait for the target to start or to skip the test:
332 : */
333 3 : while (atomic_read(&start_count) != cpus - 1) {
334 0 : if (atomic_read(&skip_test) > 0) {
335 0 : atomic_set(&skip_test, 0);
336 0 : return;
337 : }
338 0 : cpu_relax();
339 : }
340 :
341 : /*
342 : * Trigger the target to continue into the measurement too:
343 : */
344 3 : atomic_inc(&start_count);
345 :
346 3 : check_tsc_warp(loop_timeout(cpu));
347 :
348 34 : while (atomic_read(&stop_count) != cpus-1)
349 31 : cpu_relax();
350 :
351 : /*
352 : * If the test was successful set the number of runs to zero and
353 : * stop. If not, decrement the number of runs an check if we can
354 : * retry. In case of random warps no retry is attempted.
355 : */
356 3 : if (!nr_warps) {
357 3 : atomic_set(&test_runs, 0);
358 :
359 3 : pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
360 : smp_processor_id(), cpu);
361 :
362 0 : } else if (atomic_dec_and_test(&test_runs) || random_warps) {
363 : /* Force it to 0 if random warps brought us here */
364 0 : atomic_set(&test_runs, 0);
365 :
366 0 : pr_warn("TSC synchronization [CPU#%d -> CPU#%d]:\n",
367 : smp_processor_id(), cpu);
368 0 : pr_warn("Measured %Ld cycles TSC warp between CPUs, "
369 : "turning off TSC clock.\n", max_warp);
370 0 : if (random_warps)
371 0 : pr_warn("TSC warped randomly between CPUs\n");
372 0 : mark_tsc_unstable("check_tsc_sync_source failed");
373 : }
374 :
375 : /*
376 : * Reset it - just in case we boot another CPU later:
377 : */
378 3 : atomic_set(&start_count, 0);
379 3 : random_warps = 0;
380 3 : nr_warps = 0;
381 3 : max_warp = 0;
382 3 : last_tsc = 0;
383 :
384 : /*
385 : * Let the target continue with the bootup:
386 : */
387 3 : atomic_inc(&stop_count);
388 :
389 : /*
390 : * Retry, if there is a chance to do so.
391 : */
392 3 : if (atomic_read(&test_runs) > 0)
393 0 : goto retry;
394 : }
395 :
396 : /*
397 : * Freshly booted CPUs call into this:
398 : */
399 3 : void check_tsc_sync_target(void)
400 : {
401 3 : struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
402 3 : unsigned int cpu = smp_processor_id();
403 3 : cycles_t cur_max_warp, gbl_max_warp;
404 3 : int cpus = 2;
405 :
406 : /* Also aborts if there is no TSC. */
407 3 : if (unsynchronized_tsc())
408 : return;
409 :
410 : /*
411 : * Store, verify and sanitize the TSC adjust register. If
412 : * successful skip the test.
413 : *
414 : * The test is also skipped when the TSC is marked reliable. This
415 : * is true for SoCs which have no fallback clocksource. On these
416 : * SoCs the TSC is frequency synchronized, but still the TSC ADJUST
417 : * register might have been wreckaged by the BIOS..
418 : */
419 3 : if (tsc_store_and_check_tsc_adjust(false) || tsc_clocksource_reliable) {
420 0 : atomic_inc(&skip_test);
421 0 : return;
422 : }
423 :
424 3 : retry:
425 : /*
426 : * Register this CPU's participation and wait for the
427 : * source CPU to start the measurement:
428 : */
429 3 : atomic_inc(&start_count);
430 5317 : while (atomic_read(&start_count) != cpus)
431 5314 : cpu_relax();
432 :
433 3 : cur_max_warp = check_tsc_warp(loop_timeout(cpu));
434 :
435 : /*
436 : * Store the maximum observed warp value for a potential retry:
437 : */
438 3 : gbl_max_warp = max_warp;
439 :
440 : /*
441 : * Ok, we are done:
442 : */
443 3 : atomic_inc(&stop_count);
444 :
445 : /*
446 : * Wait for the source CPU to print stuff:
447 : */
448 28 : while (atomic_read(&stop_count) != cpus)
449 25 : cpu_relax();
450 :
451 : /*
452 : * Reset it for the next sync test:
453 : */
454 3 : atomic_set(&stop_count, 0);
455 :
456 : /*
457 : * Check the number of remaining test runs. If not zero, the test
458 : * failed and a retry with adjusted TSC is possible. If zero the
459 : * test was either successful or failed terminally.
460 : */
461 3 : if (!atomic_read(&test_runs))
462 : return;
463 :
464 : /*
465 : * If the warp value of this CPU is 0, then the other CPU
466 : * observed time going backwards so this TSC was ahead and
467 : * needs to move backwards.
468 : */
469 0 : if (!cur_max_warp)
470 0 : cur_max_warp = -gbl_max_warp;
471 :
472 : /*
473 : * Add the result to the previous adjustment value.
474 : *
475 : * The adjustement value is slightly off by the overhead of the
476 : * sync mechanism (observed values are ~200 TSC cycles), but this
477 : * really depends on CPU, node distance and frequency. So
478 : * compensating for this is hard to get right. Experiments show
479 : * that the warp is not longer detectable when the observed warp
480 : * value is used. In the worst case the adjustment needs to go
481 : * through a 3rd run for fine tuning.
482 : */
483 0 : cur->adjusted += cur_max_warp;
484 :
485 0 : pr_warn("TSC ADJUST compensate: CPU%u observed %lld warp. Adjust: %lld\n",
486 : cpu, cur_max_warp, cur->adjusted);
487 :
488 0 : wrmsrl(MSR_IA32_TSC_ADJUST, cur->adjusted);
489 0 : goto retry;
490 :
491 : }
492 :
493 : #endif /* CONFIG_SMP */
|