Line data Source code
1 : #include <linux/gfp.h>
2 : #include <linux/initrd.h>
3 : #include <linux/ioport.h>
4 : #include <linux/swap.h>
5 : #include <linux/memblock.h>
6 : #include <linux/swapfile.h>
7 : #include <linux/swapops.h>
8 : #include <linux/kmemleak.h>
9 : #include <linux/sched/task.h>
10 :
11 : #include <asm/set_memory.h>
12 : #include <asm/e820/api.h>
13 : #include <asm/init.h>
14 : #include <asm/page.h>
15 : #include <asm/page_types.h>
16 : #include <asm/sections.h>
17 : #include <asm/setup.h>
18 : #include <asm/tlbflush.h>
19 : #include <asm/tlb.h>
20 : #include <asm/proto.h>
21 : #include <asm/dma.h> /* for MAX_DMA_PFN */
22 : #include <asm/microcode.h>
23 : #include <asm/kaslr.h>
24 : #include <asm/hypervisor.h>
25 : #include <asm/cpufeature.h>
26 : #include <asm/pti.h>
27 : #include <asm/text-patching.h>
28 : #include <asm/memtype.h>
29 :
30 : /*
31 : * We need to define the tracepoints somewhere, and tlb.c
32 : * is only compied when SMP=y.
33 : */
34 : #define CREATE_TRACE_POINTS
35 : #include <trace/events/tlb.h>
36 :
37 : #include "mm_internal.h"
38 :
39 : /*
40 : * Tables translating between page_cache_type_t and pte encoding.
41 : *
42 : * The default values are defined statically as minimal supported mode;
43 : * WC and WT fall back to UC-. pat_init() updates these values to support
44 : * more cache modes, WC and WT, when it is safe to do so. See pat_init()
45 : * for the details. Note, __early_ioremap() used during early boot-time
46 : * takes pgprot_t (pte encoding) and does not use these tables.
47 : *
48 : * Index into __cachemode2pte_tbl[] is the cachemode.
49 : *
50 : * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51 : * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 : */
53 : static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 : [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
55 : [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
56 : [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
57 : [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
58 : [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
59 : [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
60 : };
61 :
62 5 : unsigned long cachemode2protval(enum page_cache_mode pcm)
63 : {
64 5 : if (likely(pcm == 0))
65 : return 0;
66 5 : return __cachemode2pte_tbl[pcm];
67 : }
68 : EXPORT_SYMBOL(cachemode2protval);
69 :
70 : static uint8_t __pte2cachemode_tbl[8] = {
71 : [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
72 : [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
73 : [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 : [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
75 : [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 : [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 : [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 : [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79 : };
80 :
81 : /* Check that the write-protect PAT entry is set for write-protect */
82 0 : bool x86_has_pat_wp(void)
83 : {
84 0 : return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
85 : }
86 :
87 16 : enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
88 : {
89 16 : unsigned long masked;
90 :
91 16 : masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
92 16 : if (likely(masked == 0))
93 : return 0;
94 0 : return __pte2cachemode_tbl[__pte2cm_idx(masked)];
95 : }
96 :
97 : static unsigned long __initdata pgt_buf_start;
98 : static unsigned long __initdata pgt_buf_end;
99 : static unsigned long __initdata pgt_buf_top;
100 :
101 : static unsigned long min_pfn_mapped;
102 :
103 : static bool __initdata can_use_brk_pgt = true;
104 :
105 : /*
106 : * Pages returned are already directly mapped.
107 : *
108 : * Changing that is likely to break Xen, see commit:
109 : *
110 : * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
111 : *
112 : * for detailed information.
113 : */
114 3 : __ref void *alloc_low_pages(unsigned int num)
115 : {
116 3 : unsigned long pfn;
117 3 : int i;
118 :
119 3 : if (after_bootmem) {
120 0 : unsigned int order;
121 :
122 0 : order = get_order((unsigned long)num << PAGE_SHIFT);
123 0 : return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
124 : }
125 :
126 3 : if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
127 0 : unsigned long ret = 0;
128 :
129 0 : if (min_pfn_mapped < max_pfn_mapped) {
130 0 : ret = memblock_find_in_range(
131 0 : min_pfn_mapped << PAGE_SHIFT,
132 0 : max_pfn_mapped << PAGE_SHIFT,
133 0 : PAGE_SIZE * num , PAGE_SIZE);
134 : }
135 0 : if (ret)
136 0 : memblock_reserve(ret, PAGE_SIZE * num);
137 0 : else if (can_use_brk_pgt)
138 0 : ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
139 :
140 0 : if (!ret)
141 0 : panic("alloc_low_pages: can not alloc memory");
142 :
143 0 : pfn = ret >> PAGE_SHIFT;
144 : } else {
145 3 : pfn = pgt_buf_end;
146 3 : pgt_buf_end += num;
147 : }
148 :
149 6 : for (i = 0; i < num; i++) {
150 3 : void *adr;
151 :
152 3 : adr = __va((pfn + i) << PAGE_SHIFT);
153 3 : clear_page(adr);
154 : }
155 :
156 3 : return __va(pfn << PAGE_SHIFT);
157 : }
158 :
159 : /*
160 : * By default need to be able to allocate page tables below PGD firstly for
161 : * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
162 : * With KASLR memory randomization, depending on the machine e820 memory and the
163 : * PUD alignment, twice that many pages may be needed when KASLR memory
164 : * randomization is enabled.
165 : */
166 :
167 : #ifndef CONFIG_X86_5LEVEL
168 : #define INIT_PGD_PAGE_TABLES 3
169 : #else
170 : #define INIT_PGD_PAGE_TABLES 4
171 : #endif
172 :
173 : #ifndef CONFIG_RANDOMIZE_MEMORY
174 : #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
175 : #else
176 : #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
177 : #endif
178 :
179 : #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
180 0 : RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
181 1 : void __init early_alloc_pgt_buf(void)
182 : {
183 1 : unsigned long tables = INIT_PGT_BUF_SIZE;
184 1 : phys_addr_t base;
185 :
186 1 : base = __pa(extend_brk(tables, PAGE_SIZE));
187 :
188 1 : pgt_buf_start = base >> PAGE_SHIFT;
189 1 : pgt_buf_end = pgt_buf_start;
190 1 : pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
191 1 : }
192 :
193 : int after_bootmem;
194 :
195 0 : early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
196 :
197 : struct map_range {
198 : unsigned long start;
199 : unsigned long end;
200 : unsigned page_size_mask;
201 : };
202 :
203 : static int page_size_mask;
204 :
205 : /*
206 : * Save some of cr4 feature set we're using (e.g. Pentium 4MB
207 : * enable and PPro Global page enable), so that any CPU's that boot
208 : * up after us can get the correct flags. Invoked on the boot CPU.
209 : */
210 2 : static inline void cr4_set_bits_and_update_boot(unsigned long mask)
211 : {
212 2 : mmu_cr4_features |= mask;
213 2 : if (trampoline_cr4_features)
214 0 : *trampoline_cr4_features = mmu_cr4_features;
215 2 : cr4_set_bits(mask);
216 2 : }
217 :
218 1 : static void __init probe_page_size_mask(void)
219 : {
220 : /*
221 : * For pagealloc debugging, identity mapping will use small pages.
222 : * This will simplify cpa(), which otherwise needs to support splitting
223 : * large pages into small in interrupt context, etc.
224 : */
225 1 : if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
226 1 : page_size_mask |= 1 << PG_LEVEL_2M;
227 : else
228 : direct_gbpages = 0;
229 :
230 : /* Enable PSE if available */
231 1 : if (boot_cpu_has(X86_FEATURE_PSE))
232 1 : cr4_set_bits_and_update_boot(X86_CR4_PSE);
233 :
234 : /* Enable PGE if available */
235 1 : __supported_pte_mask &= ~_PAGE_GLOBAL;
236 1 : if (boot_cpu_has(X86_FEATURE_PGE)) {
237 1 : cr4_set_bits_and_update_boot(X86_CR4_PGE);
238 1 : __supported_pte_mask |= _PAGE_GLOBAL;
239 : }
240 :
241 : /* By the default is everything supported: */
242 1 : __default_kernel_pte_mask = __supported_pte_mask;
243 : /* Except when with PTI where the kernel is mostly non-Global: */
244 1 : if (cpu_feature_enabled(X86_FEATURE_PTI))
245 : __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
246 :
247 : /* Enable 1 GB linear kernel mappings if available: */
248 2 : if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
249 1 : printk(KERN_INFO "Using GB pages for direct mapping\n");
250 1 : page_size_mask |= 1 << PG_LEVEL_1G;
251 : } else {
252 0 : direct_gbpages = 0;
253 : }
254 1 : }
255 :
256 1 : static void setup_pcid(void)
257 : {
258 1 : if (!IS_ENABLED(CONFIG_X86_64))
259 : return;
260 :
261 1 : if (!boot_cpu_has(X86_FEATURE_PCID))
262 : return;
263 :
264 1 : if (boot_cpu_has(X86_FEATURE_PGE)) {
265 : /*
266 : * This can't be cr4_set_bits_and_update_boot() -- the
267 : * trampoline code can't handle CR4.PCIDE and it wouldn't
268 : * do any good anyway. Despite the name,
269 : * cr4_set_bits_and_update_boot() doesn't actually cause
270 : * the bits in question to remain set all the way through
271 : * the secondary boot asm.
272 : *
273 : * Instead, we brute-force it and set CR4.PCIDE manually in
274 : * start_secondary().
275 : */
276 1 : cr4_set_bits(X86_CR4_PCIDE);
277 :
278 : /*
279 : * INVPCID's single-context modes (2/3) only work if we set
280 : * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
281 : * on systems that have X86_CR4_PCIDE clear, or that have
282 : * no INVPCID support at all.
283 : */
284 1 : if (boot_cpu_has(X86_FEATURE_INVPCID))
285 1 : setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
286 : } else {
287 : /*
288 : * flush_tlb_all(), as currently implemented, won't work if
289 : * PCID is on but PGE is not. Since that combination
290 : * doesn't exist on real hardware, there's no reason to try
291 : * to fully support it, but it's polite to avoid corrupting
292 : * data if we're on an improperly configured VM.
293 : */
294 0 : setup_clear_cpu_cap(X86_FEATURE_PCID);
295 : }
296 : }
297 :
298 : #ifdef CONFIG_X86_32
299 : #define NR_RANGE_MR 3
300 : #else /* CONFIG_X86_64 */
301 : #define NR_RANGE_MR 5
302 : #endif
303 :
304 8 : static int __meminit save_mr(struct map_range *mr, int nr_range,
305 : unsigned long start_pfn, unsigned long end_pfn,
306 : unsigned long page_size_mask)
307 : {
308 8 : if (start_pfn < end_pfn) {
309 5 : if (nr_range >= NR_RANGE_MR)
310 0 : panic("run out of range for init_memory_mapping\n");
311 5 : mr[nr_range].start = start_pfn<<PAGE_SHIFT;
312 5 : mr[nr_range].end = end_pfn<<PAGE_SHIFT;
313 5 : mr[nr_range].page_size_mask = page_size_mask;
314 5 : nr_range++;
315 : }
316 :
317 8 : return nr_range;
318 : }
319 :
320 : /*
321 : * adjust the page_size_mask for small range to go with
322 : * big page size instead small one if nearby are ram too.
323 : */
324 4 : static void __ref adjust_range_page_size_mask(struct map_range *mr,
325 : int nr_range)
326 : {
327 4 : int i;
328 :
329 9 : for (i = 0; i < nr_range; i++) {
330 5 : if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
331 5 : !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
332 2 : unsigned long start = round_down(mr[i].start, PMD_SIZE);
333 2 : unsigned long end = round_up(mr[i].end, PMD_SIZE);
334 :
335 : #ifdef CONFIG_X86_32
336 : if ((end >> PAGE_SHIFT) > max_low_pfn)
337 : continue;
338 : #endif
339 :
340 2 : if (memblock_is_region_memory(start, end - start))
341 0 : mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
342 : }
343 5 : if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
344 5 : !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
345 5 : unsigned long start = round_down(mr[i].start, PUD_SIZE);
346 5 : unsigned long end = round_up(mr[i].end, PUD_SIZE);
347 :
348 5 : if (memblock_is_region_memory(start, end - start))
349 0 : mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
350 : }
351 : }
352 4 : }
353 :
354 : static const char *page_size_string(struct map_range *mr)
355 : {
356 : static const char str_1g[] = "1G";
357 : static const char str_2m[] = "2M";
358 : static const char str_4m[] = "4M";
359 : static const char str_4k[] = "4k";
360 :
361 : if (mr->page_size_mask & (1<<PG_LEVEL_1G))
362 : return str_1g;
363 : /*
364 : * 32-bit without PAE has a 4M large page size.
365 : * PG_LEVEL_2M is misnamed, but we can at least
366 : * print out the right size in the string.
367 : */
368 : if (IS_ENABLED(CONFIG_X86_32) &&
369 : !IS_ENABLED(CONFIG_X86_PAE) &&
370 : mr->page_size_mask & (1<<PG_LEVEL_2M))
371 : return str_4m;
372 :
373 : if (mr->page_size_mask & (1<<PG_LEVEL_2M))
374 : return str_2m;
375 :
376 : return str_4k;
377 : }
378 :
379 4 : static int __meminit split_mem_range(struct map_range *mr, int nr_range,
380 : unsigned long start,
381 : unsigned long end)
382 : {
383 4 : unsigned long start_pfn, end_pfn, limit_pfn;
384 4 : unsigned long pfn;
385 4 : int i;
386 :
387 4 : limit_pfn = PFN_DOWN(end);
388 :
389 : /* head if not big page alignment ? */
390 4 : pfn = start_pfn = PFN_DOWN(start);
391 : #ifdef CONFIG_X86_32
392 : /*
393 : * Don't use a large page for the first 2/4MB of memory
394 : * because there are often fixed size MTRRs in there
395 : * and overlapping MTRRs into large pages can cause
396 : * slowdowns.
397 : */
398 : if (pfn == 0)
399 : end_pfn = PFN_DOWN(PMD_SIZE);
400 : else
401 : end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
402 : #else /* CONFIG_X86_64 */
403 4 : end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
404 : #endif
405 4 : if (end_pfn > limit_pfn)
406 : end_pfn = limit_pfn;
407 4 : if (start_pfn < end_pfn) {
408 1 : nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
409 1 : pfn = end_pfn;
410 : }
411 :
412 : /* big page (2M) range */
413 4 : start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
414 : #ifdef CONFIG_X86_32
415 : end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
416 : #else /* CONFIG_X86_64 */
417 4 : end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
418 4 : if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
419 : end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
420 : #endif
421 :
422 4 : if (start_pfn < end_pfn) {
423 3 : nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
424 3 : page_size_mask & (1<<PG_LEVEL_2M));
425 3 : pfn = end_pfn;
426 : }
427 :
428 : #ifdef CONFIG_X86_64
429 : /* big page (1G) range */
430 4 : start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
431 4 : end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
432 4 : if (start_pfn < end_pfn) {
433 0 : nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
434 0 : page_size_mask &
435 : ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
436 0 : pfn = end_pfn;
437 : }
438 :
439 : /* tail is not big page (1G) alignment */
440 4 : start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
441 4 : end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
442 4 : if (start_pfn < end_pfn) {
443 0 : nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
444 0 : page_size_mask & (1<<PG_LEVEL_2M));
445 0 : pfn = end_pfn;
446 : }
447 : #endif
448 :
449 : /* tail is not big page (2M) alignment */
450 4 : start_pfn = pfn;
451 4 : end_pfn = limit_pfn;
452 4 : nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
453 :
454 4 : if (!after_bootmem)
455 4 : adjust_range_page_size_mask(mr, nr_range);
456 :
457 : /* try to merge same page size and continuous */
458 5 : for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
459 1 : unsigned long old_start;
460 1 : if (mr[i].end != mr[i+1].start ||
461 1 : mr[i].page_size_mask != mr[i+1].page_size_mask)
462 1 : continue;
463 : /* move it */
464 0 : old_start = mr[i].start;
465 0 : memmove(&mr[i], &mr[i+1],
466 0 : (nr_range - 1 - i) * sizeof(struct map_range));
467 0 : mr[i--].start = old_start;
468 0 : nr_range--;
469 : }
470 :
471 4 : for (i = 0; i < nr_range; i++)
472 : pr_debug(" [mem %#010lx-%#010lx] page %s\n",
473 : mr[i].start, mr[i].end - 1,
474 : page_size_string(&mr[i]));
475 :
476 4 : return nr_range;
477 : }
478 :
479 : struct range pfn_mapped[E820_MAX_ENTRIES];
480 : int nr_pfn_mapped;
481 :
482 4 : static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
483 : {
484 4 : nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
485 : nr_pfn_mapped, start_pfn, end_pfn);
486 4 : nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
487 :
488 4 : max_pfn_mapped = max(max_pfn_mapped, end_pfn);
489 :
490 4 : if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
491 4 : max_low_pfn_mapped = max(max_low_pfn_mapped,
492 : min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
493 4 : }
494 :
495 1002 : bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
496 : {
497 1002 : int i;
498 :
499 1002 : for (i = 0; i < nr_pfn_mapped; i++)
500 1002 : if ((start_pfn >= pfn_mapped[i].start) &&
501 1002 : (end_pfn <= pfn_mapped[i].end))
502 : return true;
503 :
504 : return false;
505 : }
506 :
507 : /*
508 : * Setup the direct mapping of the physical memory at PAGE_OFFSET.
509 : * This runs before bootmem is initialized and gets pages directly from
510 : * the physical memory. To access them they are temporarily mapped.
511 : */
512 4 : unsigned long __ref init_memory_mapping(unsigned long start,
513 : unsigned long end, pgprot_t prot)
514 : {
515 4 : struct map_range mr[NR_RANGE_MR];
516 4 : unsigned long ret = 0;
517 4 : int nr_range, i;
518 :
519 4 : pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
520 : start, end - 1);
521 :
522 4 : memset(mr, 0, sizeof(mr));
523 4 : nr_range = split_mem_range(mr, 0, start, end);
524 :
525 13 : for (i = 0; i < nr_range; i++)
526 5 : ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
527 5 : mr[i].page_size_mask,
528 : prot);
529 :
530 4 : add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
531 :
532 4 : return ret >> PAGE_SHIFT;
533 : }
534 :
535 : /*
536 : * We need to iterate through the E820 memory map and create direct mappings
537 : * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
538 : * create direct mappings for all pfns from [0 to max_low_pfn) and
539 : * [4GB to max_pfn) because of possible memory holes in high addresses
540 : * that cannot be marked as UC by fixed/variable range MTRRs.
541 : * Depending on the alignment of E820 ranges, this may possibly result
542 : * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
543 : *
544 : * init_mem_mapping() calls init_range_memory_mapping() with big range.
545 : * That range would have hole in the middle or ends, and only ram parts
546 : * will be mapped in init_range_memory_mapping().
547 : */
548 3 : static unsigned long __init init_range_memory_mapping(
549 : unsigned long r_start,
550 : unsigned long r_end)
551 : {
552 3 : unsigned long start_pfn, end_pfn;
553 3 : unsigned long mapped_ram_size = 0;
554 3 : int i;
555 :
556 9 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
557 6 : u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
558 6 : u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
559 6 : if (start >= end)
560 3 : continue;
561 :
562 : /*
563 : * if it is overlapping with brk pgt, we need to
564 : * alloc pgt buf from memblock instead.
565 : */
566 3 : can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
567 3 : min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
568 3 : init_memory_mapping(start, end, PAGE_KERNEL);
569 3 : mapped_ram_size += end - start;
570 3 : can_use_brk_pgt = true;
571 : }
572 :
573 3 : return mapped_ram_size;
574 : }
575 :
576 2 : static unsigned long __init get_new_step_size(unsigned long step_size)
577 : {
578 : /*
579 : * Initial mapped size is PMD_SIZE (2M).
580 : * We can not set step_size to be PUD_SIZE (1G) yet.
581 : * In worse case, when we cross the 1G boundary, and
582 : * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
583 : * to map 1G range with PTE. Hence we use one less than the
584 : * difference of page table level shifts.
585 : *
586 : * Don't need to worry about overflow in the top-down case, on 32bit,
587 : * when step_size is 0, round_down() returns 0 for start, and that
588 : * turns it into 0x100000000ULL.
589 : * In the bottom-up case, round_up(x, 0) returns 0 though too, which
590 : * needs to be taken into consideration by the code below.
591 : */
592 2 : return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
593 : }
594 :
595 : /**
596 : * memory_map_top_down - Map [map_start, map_end) top down
597 : * @map_start: start address of the target memory range
598 : * @map_end: end address of the target memory range
599 : *
600 : * This function will setup direct mapping for memory range
601 : * [map_start, map_end) in top-down. That said, the page tables
602 : * will be allocated at the end of the memory, and we map the
603 : * memory in top-down.
604 : */
605 1 : static void __init memory_map_top_down(unsigned long map_start,
606 : unsigned long map_end)
607 : {
608 1 : unsigned long real_end, last_start;
609 1 : unsigned long step_size;
610 1 : unsigned long addr;
611 1 : unsigned long mapped_ram_size = 0;
612 :
613 : /* xen has big range in reserved near end of ram, skip it at first.*/
614 1 : addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
615 1 : real_end = addr + PMD_SIZE;
616 :
617 : /* step_size need to be small so pgt_buf from BRK could cover it */
618 1 : step_size = PMD_SIZE;
619 1 : max_pfn_mapped = 0; /* will get exact value next */
620 1 : min_pfn_mapped = real_end >> PAGE_SHIFT;
621 1 : last_start = real_end;
622 :
623 : /*
624 : * We start from the top (end of memory) and go to the bottom.
625 : * The memblock_find_in_range() gets us a block of RAM from the
626 : * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
627 : * for page table.
628 : */
629 4 : while (last_start > map_start) {
630 3 : unsigned long start;
631 :
632 3 : if (last_start > step_size) {
633 2 : start = round_down(last_start - 1, step_size);
634 2 : if (start < map_start)
635 : start = map_start;
636 : } else
637 : start = map_start;
638 3 : mapped_ram_size += init_range_memory_mapping(start,
639 : last_start);
640 3 : last_start = start;
641 3 : min_pfn_mapped = last_start >> PAGE_SHIFT;
642 3 : if (mapped_ram_size >= step_size)
643 2 : step_size = get_new_step_size(step_size);
644 : }
645 :
646 1 : if (real_end < map_end)
647 0 : init_range_memory_mapping(real_end, map_end);
648 1 : }
649 :
650 : /**
651 : * memory_map_bottom_up - Map [map_start, map_end) bottom up
652 : * @map_start: start address of the target memory range
653 : * @map_end: end address of the target memory range
654 : *
655 : * This function will setup direct mapping for memory range
656 : * [map_start, map_end) in bottom-up. Since we have limited the
657 : * bottom-up allocation above the kernel, the page tables will
658 : * be allocated just above the kernel and we map the memory
659 : * in [map_start, map_end) in bottom-up.
660 : */
661 0 : static void __init memory_map_bottom_up(unsigned long map_start,
662 : unsigned long map_end)
663 : {
664 0 : unsigned long next, start;
665 0 : unsigned long mapped_ram_size = 0;
666 : /* step_size need to be small so pgt_buf from BRK could cover it */
667 0 : unsigned long step_size = PMD_SIZE;
668 :
669 0 : start = map_start;
670 0 : min_pfn_mapped = start >> PAGE_SHIFT;
671 :
672 : /*
673 : * We start from the bottom (@map_start) and go to the top (@map_end).
674 : * The memblock_find_in_range() gets us a block of RAM from the
675 : * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
676 : * for page table.
677 : */
678 0 : while (start < map_end) {
679 0 : if (step_size && map_end - start > step_size) {
680 0 : next = round_up(start + 1, step_size);
681 0 : if (next > map_end)
682 : next = map_end;
683 : } else {
684 : next = map_end;
685 : }
686 :
687 0 : mapped_ram_size += init_range_memory_mapping(start, next);
688 0 : start = next;
689 :
690 0 : if (mapped_ram_size >= step_size)
691 0 : step_size = get_new_step_size(step_size);
692 : }
693 0 : }
694 :
695 : /*
696 : * The real mode trampoline, which is required for bootstrapping CPUs
697 : * occupies only a small area under the low 1MB. See reserve_real_mode()
698 : * for details.
699 : *
700 : * If KASLR is disabled the first PGD entry of the direct mapping is copied
701 : * to map the real mode trampoline.
702 : *
703 : * If KASLR is enabled, copy only the PUD which covers the low 1MB
704 : * area. This limits the randomization granularity to 1GB for both 4-level
705 : * and 5-level paging.
706 : */
707 1 : static void __init init_trampoline(void)
708 : {
709 : #ifdef CONFIG_X86_64
710 1 : if (!kaslr_memory_enabled())
711 1 : trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
712 : else
713 : init_trampoline_kaslr();
714 : #endif
715 1 : }
716 :
717 1 : void __init init_mem_mapping(void)
718 : {
719 1 : unsigned long end;
720 :
721 1 : pti_check_boottime_disable();
722 1 : probe_page_size_mask();
723 1 : setup_pcid();
724 :
725 : #ifdef CONFIG_X86_64
726 1 : end = max_pfn << PAGE_SHIFT;
727 : #else
728 : end = max_low_pfn << PAGE_SHIFT;
729 : #endif
730 :
731 : /* the ISA range is always mapped regardless of memory holes */
732 1 : init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
733 :
734 : /* Init the trampoline, possibly with KASLR memory offset */
735 1 : init_trampoline();
736 :
737 : /*
738 : * If the allocation is in bottom-up direction, we setup direct mapping
739 : * in bottom-up, otherwise we setup direct mapping in top-down.
740 : */
741 1 : if (memblock_bottom_up()) {
742 0 : unsigned long kernel_end = __pa_symbol(_end);
743 :
744 : /*
745 : * we need two separate calls here. This is because we want to
746 : * allocate page tables above the kernel. So we first map
747 : * [kernel_end, end) to make memory above the kernel be mapped
748 : * as soon as possible. And then use page tables allocated above
749 : * the kernel to map [ISA_END_ADDRESS, kernel_end).
750 : */
751 0 : memory_map_bottom_up(kernel_end, end);
752 0 : memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
753 : } else {
754 1 : memory_map_top_down(ISA_END_ADDRESS, end);
755 : }
756 :
757 : #ifdef CONFIG_X86_64
758 1 : if (max_pfn > max_low_pfn) {
759 : /* can we preseve max_low_pfn ?*/
760 0 : max_low_pfn = max_pfn;
761 : }
762 : #else
763 : early_ioremap_page_table_range_init();
764 : #endif
765 :
766 1 : load_cr3(swapper_pg_dir);
767 1 : __flush_tlb_all();
768 :
769 1 : x86_init.hyper.init_mem_mapping();
770 :
771 1 : early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
772 1 : }
773 :
774 : /*
775 : * Initialize an mm_struct to be used during poking and a pointer to be used
776 : * during patching.
777 : */
778 1 : void __init poking_init(void)
779 : {
780 1 : spinlock_t *ptl;
781 1 : pte_t *ptep;
782 :
783 1 : poking_mm = copy_init_mm();
784 1 : BUG_ON(!poking_mm);
785 :
786 : /*
787 : * Randomize the poking address, but make sure that the following page
788 : * will be mapped at the same PMD. We need 2 pages, so find space for 3,
789 : * and adjust the address if the PMD ends after the first one.
790 : */
791 1 : poking_addr = TASK_UNMAPPED_BASE;
792 1 : if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
793 : poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
794 : (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
795 :
796 1 : if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
797 0 : poking_addr += PAGE_SIZE;
798 :
799 : /*
800 : * We need to trigger the allocation of the page-tables that will be
801 : * needed for poking now. Later, poking may be performed in an atomic
802 : * section, which might cause allocation to fail.
803 : */
804 1 : ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
805 1 : BUG_ON(!ptep);
806 1 : pte_unmap_unlock(ptep, ptl);
807 1 : }
808 :
809 : /*
810 : * devmem_is_allowed() checks to see if /dev/mem access to a certain address
811 : * is valid. The argument is a physical page number.
812 : *
813 : * On x86, access has to be given to the first megabyte of RAM because that
814 : * area traditionally contains BIOS code and data regions used by X, dosemu,
815 : * and similar apps. Since they map the entire memory range, the whole range
816 : * must be allowed (for mapping), but any areas that would otherwise be
817 : * disallowed are flagged as being "zero filled" instead of rejected.
818 : * Access has to be given to non-kernel-ram areas as well, these contain the
819 : * PCI mmio resources as well as potential bios/acpi data regions.
820 : */
821 0 : int devmem_is_allowed(unsigned long pagenr)
822 : {
823 0 : if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
824 : IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
825 : != REGION_DISJOINT) {
826 : /*
827 : * For disallowed memory regions in the low 1MB range,
828 : * request that the page be shown as all zeros.
829 : */
830 0 : if (pagenr < 256)
831 : return 2;
832 :
833 0 : return 0;
834 : }
835 :
836 : /*
837 : * This must follow RAM test, since System RAM is considered a
838 : * restricted resource under CONFIG_STRICT_IOMEM.
839 : */
840 0 : if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
841 : /* Low 1MB bypasses iomem restrictions. */
842 0 : if (pagenr < 256)
843 : return 1;
844 :
845 0 : return 0;
846 : }
847 :
848 : return 1;
849 : }
850 :
851 4 : void free_init_pages(const char *what, unsigned long begin, unsigned long end)
852 : {
853 4 : unsigned long begin_aligned, end_aligned;
854 :
855 : /* Make sure boundaries are page aligned */
856 4 : begin_aligned = PAGE_ALIGN(begin);
857 4 : end_aligned = end & PAGE_MASK;
858 :
859 4 : if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
860 0 : begin = begin_aligned;
861 0 : end = end_aligned;
862 : }
863 :
864 4 : if (begin >= end)
865 : return;
866 :
867 : /*
868 : * If debugging page accesses then do not free this memory but
869 : * mark them not present - any buggy init-section access will
870 : * create a kernel page fault:
871 : */
872 4 : if (debug_pagealloc_enabled()) {
873 : pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
874 : begin, end - 1);
875 : /*
876 : * Inform kmemleak about the hole in the memory since the
877 : * corresponding pages will be unmapped.
878 : */
879 : kmemleak_free_part((void *)begin, end - begin);
880 : set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
881 : } else {
882 : /*
883 : * We just marked the kernel text read only above, now that
884 : * we are going to free part of that, we need to make that
885 : * writeable and non-executable first.
886 : */
887 4 : set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
888 4 : set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
889 :
890 4 : free_reserved_area((void *)begin, (void *)end,
891 : POISON_FREE_INITMEM, what);
892 : }
893 : }
894 :
895 : /*
896 : * begin/end can be in the direct map or the "high kernel mapping"
897 : * used for the kernel image only. free_init_pages() will do the
898 : * right thing for either kind of address.
899 : */
900 3 : void free_kernel_image_pages(const char *what, void *begin, void *end)
901 : {
902 3 : unsigned long begin_ul = (unsigned long)begin;
903 3 : unsigned long end_ul = (unsigned long)end;
904 3 : unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
905 :
906 2 : free_init_pages(what, begin_ul, end_ul);
907 :
908 : /*
909 : * PTI maps some of the kernel into userspace. For performance,
910 : * this includes some kernel areas that do not contain secrets.
911 : * Those areas might be adjacent to the parts of the kernel image
912 : * being freed, which may contain secrets. Remove the "high kernel
913 : * image mapping" for these freed areas, ensuring they are not even
914 : * potentially vulnerable to Meltdown regardless of the specific
915 : * optimizations PTI is currently using.
916 : *
917 : * The "noalias" prevents unmapping the direct map alias which is
918 : * needed to access the freed pages.
919 : *
920 : * This is only valid for 64bit kernels. 32bit has only one mapping
921 : * which can't be treated in this way for obvious reasons.
922 : */
923 3 : if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
924 : set_memory_np_noalias(begin_ul, len_pages);
925 2 : }
926 :
927 1 : void __ref free_initmem(void)
928 : {
929 1 : e820__reallocate_tables();
930 :
931 1 : mem_encrypt_free_decrypted_mem();
932 :
933 1 : free_kernel_image_pages("unused kernel image (initmem)",
934 : &__init_begin, &__init_end);
935 1 : }
936 :
937 : #ifdef CONFIG_BLK_DEV_INITRD
938 0 : void __init free_initrd_mem(unsigned long start, unsigned long end)
939 : {
940 : /*
941 : * end could be not aligned, and We can not align that,
942 : * decompresser could be confused by aligned initrd_end
943 : * We already reserve the end partial page before in
944 : * - i386_start_kernel()
945 : * - x86_64_start_kernel()
946 : * - relocate_initrd()
947 : * So here We can do PAGE_ALIGN() safely to get partial page to be freed
948 : */
949 0 : free_init_pages("initrd", start, PAGE_ALIGN(end));
950 0 : }
951 : #endif
952 :
953 : /*
954 : * Calculate the precise size of the DMA zone (first 16 MB of RAM),
955 : * and pass it to the MM layer - to help it set zone watermarks more
956 : * accurately.
957 : *
958 : * Done on 64-bit systems only for the time being, although 32-bit systems
959 : * might benefit from this as well.
960 : */
961 1 : void __init memblock_find_dma_reserve(void)
962 : {
963 : #ifdef CONFIG_X86_64
964 1 : u64 nr_pages = 0, nr_free_pages = 0;
965 1 : unsigned long start_pfn, end_pfn;
966 1 : phys_addr_t start_addr, end_addr;
967 1 : int i;
968 1 : u64 u;
969 :
970 : /*
971 : * Iterate over all memory ranges (free and reserved ones alike),
972 : * to calculate the total number of pages in the first 16 MB of RAM:
973 : */
974 1 : nr_pages = 0;
975 3 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
976 2 : start_pfn = min(start_pfn, MAX_DMA_PFN);
977 2 : end_pfn = min(end_pfn, MAX_DMA_PFN);
978 :
979 2 : nr_pages += end_pfn - start_pfn;
980 : }
981 :
982 : /*
983 : * Iterate over free memory ranges to calculate the number of free
984 : * pages in the DMA zone, while not counting potential partial
985 : * pages at the beginning or the end of the range:
986 : */
987 1 : nr_free_pages = 0;
988 4 : for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
989 3 : start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
990 3 : end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
991 :
992 3 : if (start_pfn < end_pfn)
993 2 : nr_free_pages += end_pfn - start_pfn;
994 : }
995 :
996 1 : set_dma_reserve(nr_pages - nr_free_pages);
997 : #endif
998 1 : }
999 :
1000 1 : void __init zone_sizes_init(void)
1001 : {
1002 1 : unsigned long max_zone_pfns[MAX_NR_ZONES];
1003 :
1004 1 : memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1005 :
1006 : #ifdef CONFIG_ZONE_DMA
1007 : max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1008 : #endif
1009 : #ifdef CONFIG_ZONE_DMA32
1010 1 : max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1011 : #endif
1012 1 : max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1013 : #ifdef CONFIG_HIGHMEM
1014 : max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1015 : #endif
1016 :
1017 1 : free_area_init(max_zone_pfns);
1018 1 : }
1019 :
1020 : __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1021 : .loaded_mm = &init_mm,
1022 : .next_asid = 1,
1023 : .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1024 : };
1025 :
1026 8 : void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1027 : {
1028 : /* entry 0 MUST be WB (hardwired to speed up translations) */
1029 8 : BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1030 :
1031 8 : __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1032 8 : __pte2cachemode_tbl[entry] = cache;
1033 8 : }
1034 :
1035 : #ifdef CONFIG_SWAP
1036 : unsigned long max_swapfile_size(void)
1037 : {
1038 : unsigned long pages;
1039 :
1040 : pages = generic_max_swapfile_size();
1041 :
1042 : if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1043 : /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1044 : unsigned long long l1tf_limit = l1tf_pfn_limit();
1045 : /*
1046 : * We encode swap offsets also with 3 bits below those for pfn
1047 : * which makes the usable limit higher.
1048 : */
1049 : #if CONFIG_PGTABLE_LEVELS > 2
1050 : l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1051 : #endif
1052 : pages = min_t(unsigned long long, l1tf_limit, pages);
1053 : }
1054 : return pages;
1055 : }
1056 : #endif
|