Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /* Common code for 32 and 64-bit NUMA */
3 : #include <linux/acpi.h>
4 : #include <linux/kernel.h>
5 : #include <linux/mm.h>
6 : #include <linux/string.h>
7 : #include <linux/init.h>
8 : #include <linux/memblock.h>
9 : #include <linux/mmzone.h>
10 : #include <linux/ctype.h>
11 : #include <linux/nodemask.h>
12 : #include <linux/sched.h>
13 : #include <linux/topology.h>
14 :
15 : #include <asm/e820/api.h>
16 : #include <asm/proto.h>
17 : #include <asm/dma.h>
18 : #include <asm/amd_nb.h>
19 :
20 : #include "numa_internal.h"
21 :
22 : int numa_off;
23 : nodemask_t numa_nodes_parsed __initdata;
24 :
25 : struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 : EXPORT_SYMBOL(node_data);
27 :
28 : static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
29 : static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
30 :
31 : static int numa_distance_cnt;
32 : static u8 *numa_distance;
33 :
34 0 : static __init int numa_setup(char *opt)
35 : {
36 0 : if (!opt)
37 : return -EINVAL;
38 0 : if (!strncmp(opt, "off", 3))
39 0 : numa_off = 1;
40 0 : if (!strncmp(opt, "fake=", 5))
41 0 : return numa_emu_cmdline(opt + 5);
42 : if (!strncmp(opt, "noacpi", 6))
43 : disable_srat();
44 : if (!strncmp(opt, "nohmat", 6))
45 : disable_hmat();
46 : return 0;
47 : }
48 : early_param("numa", numa_setup);
49 :
50 : /*
51 : * apicid, cpu, node mappings
52 : */
53 : s16 __apicid_to_node[MAX_LOCAL_APIC] = {
54 : [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
55 : };
56 :
57 8 : int numa_cpu_node(int cpu)
58 : {
59 8 : int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
60 :
61 8 : if (apicid != BAD_APICID)
62 8 : return __apicid_to_node[apicid];
63 : return NUMA_NO_NODE;
64 : }
65 :
66 : cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
67 : EXPORT_SYMBOL(node_to_cpumask_map);
68 :
69 : /*
70 : * Map cpu index to node index
71 : */
72 : DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
73 : EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
74 :
75 20 : void numa_set_node(int cpu, int node)
76 : {
77 20 : int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
78 :
79 : /* early setting, no percpu area yet */
80 20 : if (cpu_to_node_map) {
81 16 : cpu_to_node_map[cpu] = node;
82 16 : return;
83 : }
84 :
85 : #ifdef CONFIG_DEBUG_PER_CPU_MAPS
86 : if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
87 : printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
88 : dump_stack();
89 : return;
90 : }
91 : #endif
92 4 : per_cpu(x86_cpu_to_node_map, cpu) = node;
93 :
94 4 : set_cpu_numa_node(cpu, node);
95 : }
96 :
97 0 : void numa_clear_node(int cpu)
98 : {
99 0 : numa_set_node(cpu, NUMA_NO_NODE);
100 0 : }
101 :
102 : /*
103 : * Allocate node_to_cpumask_map based on number of available nodes
104 : * Requires node_possible_map to be valid.
105 : *
106 : * Note: cpumask_of_node() is not valid until after this is done.
107 : * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
108 : */
109 1 : void __init setup_node_to_cpumask_map(void)
110 : {
111 1 : unsigned int node;
112 :
113 : /* setup nr_node_ids if not done yet */
114 1 : if (nr_node_ids == MAX_NUMNODES)
115 0 : setup_nr_node_ids();
116 :
117 : /* allocate the map */
118 2 : for (node = 0; node < nr_node_ids; node++)
119 1 : alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
120 :
121 : /* cpumask_of_node() will now work */
122 1 : pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
123 1 : }
124 :
125 1 : static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
126 : struct numa_meminfo *mi)
127 : {
128 : /* ignore zero length blks */
129 1 : if (start == end)
130 : return 0;
131 :
132 : /* whine about and ignore invalid blks */
133 1 : if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
134 0 : pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
135 : nid, start, end - 1);
136 0 : return 0;
137 : }
138 :
139 1 : if (mi->nr_blks >= NR_NODE_MEMBLKS) {
140 0 : pr_err("too many memblk ranges\n");
141 0 : return -EINVAL;
142 : }
143 :
144 1 : mi->blk[mi->nr_blks].start = start;
145 1 : mi->blk[mi->nr_blks].end = end;
146 1 : mi->blk[mi->nr_blks].nid = nid;
147 1 : mi->nr_blks++;
148 1 : return 0;
149 : }
150 :
151 : /**
152 : * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
153 : * @idx: Index of memblk to remove
154 : * @mi: numa_meminfo to remove memblk from
155 : *
156 : * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
157 : * decrementing @mi->nr_blks.
158 : */
159 0 : void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
160 : {
161 0 : mi->nr_blks--;
162 0 : memmove(&mi->blk[idx], &mi->blk[idx + 1],
163 0 : (mi->nr_blks - idx) * sizeof(mi->blk[0]));
164 0 : }
165 :
166 : /**
167 : * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
168 : * @dst: numa_meminfo to append block to
169 : * @idx: Index of memblk to remove
170 : * @src: numa_meminfo to remove memblk from
171 : */
172 0 : static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
173 : struct numa_meminfo *src)
174 : {
175 0 : dst->blk[dst->nr_blks++] = src->blk[idx];
176 0 : numa_remove_memblk_from(idx, src);
177 0 : }
178 :
179 : /**
180 : * numa_add_memblk - Add one numa_memblk to numa_meminfo
181 : * @nid: NUMA node ID of the new memblk
182 : * @start: Start address of the new memblk
183 : * @end: End address of the new memblk
184 : *
185 : * Add a new memblk to the default numa_meminfo.
186 : *
187 : * RETURNS:
188 : * 0 on success, -errno on failure.
189 : */
190 1 : int __init numa_add_memblk(int nid, u64 start, u64 end)
191 : {
192 1 : return numa_add_memblk_to(nid, start, end, &numa_meminfo);
193 : }
194 :
195 : /* Allocate NODE_DATA for a node on the local memory */
196 1 : static void __init alloc_node_data(int nid)
197 : {
198 1 : const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
199 1 : u64 nd_pa;
200 1 : void *nd;
201 1 : int tnid;
202 :
203 : /*
204 : * Allocate node data. Try node-local memory and then any node.
205 : * Never allocate in DMA zone.
206 : */
207 1 : nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
208 1 : if (!nd_pa) {
209 0 : pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
210 : nd_size, nid);
211 0 : return;
212 : }
213 1 : nd = __va(nd_pa);
214 :
215 : /* report and initialize */
216 1 : printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
217 : nd_pa, nd_pa + nd_size - 1);
218 1 : tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
219 1 : if (tnid != nid)
220 0 : printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
221 :
222 1 : node_data[nid] = nd;
223 1 : memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
224 :
225 1 : node_set_online(nid);
226 : }
227 :
228 : /**
229 : * numa_cleanup_meminfo - Cleanup a numa_meminfo
230 : * @mi: numa_meminfo to clean up
231 : *
232 : * Sanitize @mi by merging and removing unnecessary memblks. Also check for
233 : * conflicts and clear unused memblks.
234 : *
235 : * RETURNS:
236 : * 0 on success, -errno on failure.
237 : */
238 1 : int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
239 : {
240 1 : const u64 low = 0;
241 1 : const u64 high = PFN_PHYS(max_pfn);
242 1 : int i, j, k;
243 :
244 : /* first, trim all entries */
245 2 : for (i = 0; i < mi->nr_blks; i++) {
246 1 : struct numa_memblk *bi = &mi->blk[i];
247 :
248 : /* move / save reserved memory ranges */
249 1 : if (!memblock_overlaps_region(&memblock.memory,
250 1 : bi->start, bi->end - bi->start)) {
251 0 : numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
252 0 : continue;
253 : }
254 :
255 : /* make sure all non-reserved blocks are inside the limits */
256 1 : bi->start = max(bi->start, low);
257 1 : bi->end = min(bi->end, high);
258 :
259 : /* and there's no empty block */
260 1 : if (bi->start >= bi->end)
261 0 : numa_remove_memblk_from(i--, mi);
262 : }
263 :
264 : /* merge neighboring / overlapping entries */
265 2 : for (i = 0; i < mi->nr_blks; i++) {
266 1 : struct numa_memblk *bi = &mi->blk[i];
267 :
268 1 : for (j = i + 1; j < mi->nr_blks; j++) {
269 0 : struct numa_memblk *bj = &mi->blk[j];
270 0 : u64 start, end;
271 :
272 : /*
273 : * See whether there are overlapping blocks. Whine
274 : * about but allow overlaps of the same nid. They
275 : * will be merged below.
276 : */
277 0 : if (bi->end > bj->start && bi->start < bj->end) {
278 0 : if (bi->nid != bj->nid) {
279 0 : pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
280 : bi->nid, bi->start, bi->end - 1,
281 : bj->nid, bj->start, bj->end - 1);
282 0 : return -EINVAL;
283 : }
284 0 : pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
285 : bi->nid, bi->start, bi->end - 1,
286 : bj->start, bj->end - 1);
287 : }
288 :
289 : /*
290 : * Join together blocks on the same node, holes
291 : * between which don't overlap with memory on other
292 : * nodes.
293 : */
294 0 : if (bi->nid != bj->nid)
295 0 : continue;
296 0 : start = min(bi->start, bj->start);
297 0 : end = max(bi->end, bj->end);
298 0 : for (k = 0; k < mi->nr_blks; k++) {
299 0 : struct numa_memblk *bk = &mi->blk[k];
300 :
301 0 : if (bi->nid == bk->nid)
302 0 : continue;
303 0 : if (start < bk->end && end > bk->start)
304 : break;
305 : }
306 0 : if (k < mi->nr_blks)
307 0 : continue;
308 0 : printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
309 : bi->nid, bi->start, bi->end - 1, bj->start,
310 : bj->end - 1, start, end - 1);
311 0 : bi->start = start;
312 0 : bi->end = end;
313 0 : numa_remove_memblk_from(j--, mi);
314 : }
315 : }
316 :
317 : /* clear unused ones */
318 128 : for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
319 127 : mi->blk[i].start = mi->blk[i].end = 0;
320 127 : mi->blk[i].nid = NUMA_NO_NODE;
321 : }
322 :
323 : return 0;
324 : }
325 :
326 : /*
327 : * Set nodes, which have memory in @mi, in *@nodemask.
328 : */
329 1 : static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
330 : const struct numa_meminfo *mi)
331 : {
332 1 : int i;
333 :
334 129 : for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
335 128 : if (mi->blk[i].start != mi->blk[i].end &&
336 1 : mi->blk[i].nid != NUMA_NO_NODE)
337 129 : node_set(mi->blk[i].nid, *nodemask);
338 1 : }
339 :
340 : /**
341 : * numa_reset_distance - Reset NUMA distance table
342 : *
343 : * The current table is freed. The next numa_set_distance() call will
344 : * create a new one.
345 : */
346 1 : void __init numa_reset_distance(void)
347 : {
348 1 : size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
349 :
350 : /* numa_distance could be 1LU marking allocation failure, test cnt */
351 1 : if (numa_distance_cnt)
352 0 : memblock_free(__pa(numa_distance), size);
353 1 : numa_distance_cnt = 0;
354 1 : numa_distance = NULL; /* enable table creation */
355 1 : }
356 :
357 0 : static int __init numa_alloc_distance(void)
358 : {
359 0 : nodemask_t nodes_parsed;
360 0 : size_t size;
361 0 : int i, j, cnt = 0;
362 0 : u64 phys;
363 :
364 : /* size the new table and allocate it */
365 0 : nodes_parsed = numa_nodes_parsed;
366 0 : numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
367 :
368 0 : for_each_node_mask(i, nodes_parsed)
369 0 : cnt = i;
370 0 : cnt++;
371 0 : size = cnt * cnt * sizeof(numa_distance[0]);
372 :
373 0 : phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
374 : size, PAGE_SIZE);
375 0 : if (!phys) {
376 0 : pr_warn("Warning: can't allocate distance table!\n");
377 : /* don't retry until explicitly reset */
378 0 : numa_distance = (void *)1LU;
379 0 : return -ENOMEM;
380 : }
381 0 : memblock_reserve(phys, size);
382 :
383 0 : numa_distance = __va(phys);
384 0 : numa_distance_cnt = cnt;
385 :
386 : /* fill with the default distances */
387 0 : for (i = 0; i < cnt; i++)
388 0 : for (j = 0; j < cnt; j++)
389 0 : numa_distance[i * cnt + j] = i == j ?
390 : LOCAL_DISTANCE : REMOTE_DISTANCE;
391 0 : printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
392 :
393 0 : return 0;
394 : }
395 :
396 : /**
397 : * numa_set_distance - Set NUMA distance from one NUMA to another
398 : * @from: the 'from' node to set distance
399 : * @to: the 'to' node to set distance
400 : * @distance: NUMA distance
401 : *
402 : * Set the distance from node @from to @to to @distance. If distance table
403 : * doesn't exist, one which is large enough to accommodate all the currently
404 : * known nodes will be created.
405 : *
406 : * If such table cannot be allocated, a warning is printed and further
407 : * calls are ignored until the distance table is reset with
408 : * numa_reset_distance().
409 : *
410 : * If @from or @to is higher than the highest known node or lower than zero
411 : * at the time of table creation or @distance doesn't make sense, the call
412 : * is ignored.
413 : * This is to allow simplification of specific NUMA config implementations.
414 : */
415 0 : void __init numa_set_distance(int from, int to, int distance)
416 : {
417 0 : if (!numa_distance && numa_alloc_distance() < 0)
418 : return;
419 :
420 0 : if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
421 0 : from < 0 || to < 0) {
422 0 : pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
423 : from, to, distance);
424 0 : return;
425 : }
426 :
427 0 : if ((u8)distance != distance ||
428 0 : (from == to && distance != LOCAL_DISTANCE)) {
429 0 : pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
430 : from, to, distance);
431 0 : return;
432 : }
433 :
434 0 : numa_distance[from * numa_distance_cnt + to] = distance;
435 : }
436 :
437 4 : int __node_distance(int from, int to)
438 : {
439 4 : if (from >= numa_distance_cnt || to >= numa_distance_cnt)
440 4 : return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
441 0 : return numa_distance[from * numa_distance_cnt + to];
442 : }
443 : EXPORT_SYMBOL(__node_distance);
444 :
445 : /*
446 : * Sanity check to catch more bad NUMA configurations (they are amazingly
447 : * common). Make sure the nodes cover all memory.
448 : */
449 1 : static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
450 : {
451 1 : u64 numaram, e820ram;
452 1 : int i;
453 :
454 1 : numaram = 0;
455 2 : for (i = 0; i < mi->nr_blks; i++) {
456 1 : u64 s = mi->blk[i].start >> PAGE_SHIFT;
457 1 : u64 e = mi->blk[i].end >> PAGE_SHIFT;
458 1 : numaram += e - s;
459 1 : numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
460 1 : if ((s64)numaram < 0)
461 0 : numaram = 0;
462 : }
463 :
464 1 : e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
465 :
466 : /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
467 1 : if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
468 0 : printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
469 0 : (numaram << PAGE_SHIFT) >> 20,
470 0 : (e820ram << PAGE_SHIFT) >> 20);
471 0 : return false;
472 : }
473 : return true;
474 : }
475 :
476 : /*
477 : * Mark all currently memblock-reserved physical memory (which covers the
478 : * kernel's own memory ranges) as hot-unswappable.
479 : */
480 1 : static void __init numa_clear_kernel_node_hotplug(void)
481 : {
482 1 : nodemask_t reserved_nodemask = NODE_MASK_NONE;
483 1 : struct memblock_region *mb_region;
484 1 : int i;
485 :
486 : /*
487 : * We have to do some preprocessing of memblock regions, to
488 : * make them suitable for reservation.
489 : *
490 : * At this time, all memory regions reserved by memblock are
491 : * used by the kernel, but those regions are not split up
492 : * along node boundaries yet, and don't necessarily have their
493 : * node ID set yet either.
494 : *
495 : * So iterate over all memory known to the x86 architecture,
496 : * and use those ranges to set the nid in memblock.reserved.
497 : * This will split up the memblock regions along node
498 : * boundaries and will set the node IDs as well.
499 : */
500 2 : for (i = 0; i < numa_meminfo.nr_blks; i++) {
501 1 : struct numa_memblk *mb = numa_meminfo.blk + i;
502 1 : int ret;
503 :
504 1 : ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
505 1 : WARN_ON_ONCE(ret);
506 : }
507 :
508 : /*
509 : * Now go over all reserved memblock regions, to construct a
510 : * node mask of all kernel reserved memory areas.
511 : *
512 : * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
513 : * numa_meminfo might not include all memblock.reserved
514 : * memory ranges, because quirks such as trim_snb_memory()
515 : * reserve specific pages for Sandy Bridge graphics. ]
516 : */
517 4 : for_each_reserved_mem_region(mb_region) {
518 3 : int nid = memblock_get_region_node(mb_region);
519 :
520 3 : if (nid != MAX_NUMNODES)
521 6 : node_set(nid, reserved_nodemask);
522 : }
523 :
524 : /*
525 : * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
526 : * belonging to the reserved node mask.
527 : *
528 : * Note that this will include memory regions that reside
529 : * on nodes that contain kernel memory - entire nodes
530 : * become hot-unpluggable:
531 : */
532 2 : for (i = 0; i < numa_meminfo.nr_blks; i++) {
533 1 : struct numa_memblk *mb = numa_meminfo.blk + i;
534 :
535 1 : if (!node_isset(mb->nid, reserved_nodemask))
536 0 : continue;
537 :
538 1 : memblock_clear_hotplug(mb->start, mb->end - mb->start);
539 : }
540 1 : }
541 :
542 1 : static int __init numa_register_memblks(struct numa_meminfo *mi)
543 : {
544 1 : int i, nid;
545 :
546 : /* Account for nodes with cpus and no memory */
547 1 : node_possible_map = numa_nodes_parsed;
548 1 : numa_nodemask_from_meminfo(&node_possible_map, mi);
549 1 : if (WARN_ON(nodes_empty(node_possible_map)))
550 : return -EINVAL;
551 :
552 2 : for (i = 0; i < mi->nr_blks; i++) {
553 1 : struct numa_memblk *mb = &mi->blk[i];
554 1 : memblock_set_node(mb->start, mb->end - mb->start,
555 : &memblock.memory, mb->nid);
556 : }
557 :
558 : /*
559 : * At very early time, the kernel have to use some memory such as
560 : * loading the kernel image. We cannot prevent this anyway. So any
561 : * node the kernel resides in should be un-hotpluggable.
562 : *
563 : * And when we come here, alloc node data won't fail.
564 : */
565 1 : numa_clear_kernel_node_hotplug();
566 :
567 : /*
568 : * If sections array is gonna be used for pfn -> nid mapping, check
569 : * whether its granularity is fine enough.
570 : */
571 1 : if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
572 : unsigned long pfn_align = node_map_pfn_alignment();
573 :
574 : if (pfn_align && pfn_align < PAGES_PER_SECTION) {
575 : pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
576 : PFN_PHYS(pfn_align) >> 20,
577 : PFN_PHYS(PAGES_PER_SECTION) >> 20);
578 : return -EINVAL;
579 : }
580 : }
581 1 : if (!numa_meminfo_cover_memory(mi))
582 : return -EINVAL;
583 :
584 : /* Finally register nodes. */
585 2 : for_each_node_mask(nid, node_possible_map) {
586 1 : u64 start = PFN_PHYS(max_pfn);
587 1 : u64 end = 0;
588 :
589 2 : for (i = 0; i < mi->nr_blks; i++) {
590 1 : if (nid != mi->blk[i].nid)
591 0 : continue;
592 1 : start = min(mi->blk[i].start, start);
593 1 : end = max(mi->blk[i].end, end);
594 : }
595 :
596 1 : if (start >= end)
597 0 : continue;
598 :
599 : /*
600 : * Don't confuse VM with a node that doesn't have the
601 : * minimum amount of memory:
602 : */
603 1 : if (end && (end - start) < NODE_MIN_SIZE)
604 0 : continue;
605 :
606 1 : alloc_node_data(nid);
607 : }
608 :
609 : /* Dump memblock with node info and return. */
610 1 : memblock_dump_all();
611 1 : return 0;
612 : }
613 :
614 : /*
615 : * There are unfortunately some poorly designed mainboards around that
616 : * only connect memory to a single CPU. This breaks the 1:1 cpu->node
617 : * mapping. To avoid this fill in the mapping for all possible CPUs,
618 : * as the number of CPUs is not known yet. We round robin the existing
619 : * nodes.
620 : */
621 1 : static void __init numa_init_array(void)
622 : {
623 1 : int rr, i;
624 :
625 1 : rr = first_node(node_online_map);
626 17 : for (i = 0; i < nr_cpu_ids; i++) {
627 16 : if (early_cpu_to_node(i) != NUMA_NO_NODE)
628 0 : continue;
629 16 : numa_set_node(i, rr);
630 16 : rr = next_node_in(rr, node_online_map);
631 : }
632 1 : }
633 :
634 1 : static int __init numa_init(int (*init_func)(void))
635 : {
636 1 : int i;
637 1 : int ret;
638 :
639 32769 : for (i = 0; i < MAX_LOCAL_APIC; i++)
640 32768 : set_apicid_to_node(i, NUMA_NO_NODE);
641 :
642 1 : nodes_clear(numa_nodes_parsed);
643 1 : nodes_clear(node_possible_map);
644 1 : nodes_clear(node_online_map);
645 1 : memset(&numa_meminfo, 0, sizeof(numa_meminfo));
646 1 : WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
647 : MAX_NUMNODES));
648 1 : WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
649 : MAX_NUMNODES));
650 : /* In case that parsing SRAT failed. */
651 1 : WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
652 1 : numa_reset_distance();
653 :
654 1 : ret = init_func();
655 1 : if (ret < 0)
656 : return ret;
657 :
658 : /*
659 : * We reset memblock back to the top-down direction
660 : * here because if we configured ACPI_NUMA, we have
661 : * parsed SRAT in init_func(). It is ok to have the
662 : * reset here even if we did't configure ACPI_NUMA
663 : * or acpi numa init fails and fallbacks to dummy
664 : * numa init.
665 : */
666 1 : memblock_set_bottom_up(false);
667 :
668 1 : ret = numa_cleanup_meminfo(&numa_meminfo);
669 1 : if (ret < 0)
670 : return ret;
671 :
672 1 : numa_emulation(&numa_meminfo, numa_distance_cnt);
673 :
674 1 : ret = numa_register_memblks(&numa_meminfo);
675 1 : if (ret < 0)
676 : return ret;
677 :
678 17 : for (i = 0; i < nr_cpu_ids; i++) {
679 16 : int nid = early_cpu_to_node(i);
680 :
681 16 : if (nid == NUMA_NO_NODE)
682 16 : continue;
683 0 : if (!node_online(nid))
684 16 : numa_clear_node(i);
685 : }
686 1 : numa_init_array();
687 :
688 1 : return 0;
689 : }
690 :
691 : /**
692 : * dummy_numa_init - Fallback dummy NUMA init
693 : *
694 : * Used if there's no underlying NUMA architecture, NUMA initialization
695 : * fails, or NUMA is disabled on the command line.
696 : *
697 : * Must online at least one node and add memory blocks that cover all
698 : * allowed memory. This function must not fail.
699 : */
700 1 : static int __init dummy_numa_init(void)
701 : {
702 1 : printk(KERN_INFO "%s\n",
703 1 : numa_off ? "NUMA turned off" : "No NUMA configuration found");
704 1 : printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
705 1 : 0LLU, PFN_PHYS(max_pfn) - 1);
706 :
707 1 : node_set(0, numa_nodes_parsed);
708 1 : numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
709 :
710 1 : return 0;
711 : }
712 :
713 : /**
714 : * x86_numa_init - Initialize NUMA
715 : *
716 : * Try each configured NUMA initialization method until one succeeds. The
717 : * last fallback is dummy single node config encompassing whole memory and
718 : * never fails.
719 : */
720 1 : void __init x86_numa_init(void)
721 : {
722 1 : if (!numa_off) {
723 : #ifdef CONFIG_ACPI_NUMA
724 : if (!numa_init(x86_acpi_numa_init))
725 : return;
726 : #endif
727 : #ifdef CONFIG_AMD_NUMA
728 : if (!numa_init(amd_numa_init))
729 : return;
730 : #endif
731 1 : }
732 :
733 1 : numa_init(dummy_numa_init);
734 1 : }
735 :
736 0 : static void __init init_memory_less_node(int nid)
737 : {
738 : /* Allocate and initialize node data. Memory-less node is now online.*/
739 0 : alloc_node_data(nid);
740 0 : free_area_init_memoryless_node(nid);
741 :
742 : /*
743 : * All zonelists will be built later in start_kernel() after per cpu
744 : * areas are initialized.
745 : */
746 0 : }
747 :
748 : /*
749 : * A node may exist which has one or more Generic Initiators but no CPUs and no
750 : * memory.
751 : *
752 : * This function must be called after init_cpu_to_node(), to ensure that any
753 : * memoryless CPU nodes have already been brought online, and before the
754 : * node_data[nid] is needed for zone list setup in build_all_zonelists().
755 : *
756 : * When this function is called, any nodes containing either memory and/or CPUs
757 : * will already be online and there is no need to do anything extra, even if
758 : * they also contain one or more Generic Initiators.
759 : */
760 1 : void __init init_gi_nodes(void)
761 : {
762 1 : int nid;
763 :
764 1 : for_each_node_state(nid, N_GENERIC_INITIATOR)
765 0 : if (!node_online(nid))
766 0 : init_memory_less_node(nid);
767 1 : }
768 :
769 : /*
770 : * Setup early cpu_to_node.
771 : *
772 : * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
773 : * and apicid_to_node[] tables have valid entries for a CPU.
774 : * This means we skip cpu_to_node[] initialisation for NUMA
775 : * emulation and faking node case (when running a kernel compiled
776 : * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
777 : * is already initialized in a round robin manner at numa_init_array,
778 : * prior to this call, and this initialization is good enough
779 : * for the fake NUMA cases.
780 : *
781 : * Called before the per_cpu areas are setup.
782 : */
783 1 : void __init init_cpu_to_node(void)
784 : {
785 1 : int cpu;
786 1 : u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
787 :
788 1 : BUG_ON(cpu_to_apicid == NULL);
789 :
790 5 : for_each_possible_cpu(cpu) {
791 4 : int node = numa_cpu_node(cpu);
792 :
793 4 : if (node == NUMA_NO_NODE)
794 4 : continue;
795 :
796 0 : if (!node_online(node))
797 0 : init_memory_less_node(node);
798 :
799 0 : numa_set_node(cpu, node);
800 : }
801 1 : }
802 :
803 : #ifndef CONFIG_DEBUG_PER_CPU_MAPS
804 :
805 : # ifndef CONFIG_NUMA_EMU
806 4 : void numa_add_cpu(int cpu)
807 : {
808 4 : cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
809 4 : }
810 :
811 0 : void numa_remove_cpu(int cpu)
812 : {
813 0 : cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
814 0 : }
815 : # endif /* !CONFIG_NUMA_EMU */
816 :
817 : #else /* !CONFIG_DEBUG_PER_CPU_MAPS */
818 :
819 : int __cpu_to_node(int cpu)
820 : {
821 : if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
822 : printk(KERN_WARNING
823 : "cpu_to_node(%d): usage too early!\n", cpu);
824 : dump_stack();
825 : return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
826 : }
827 : return per_cpu(x86_cpu_to_node_map, cpu);
828 : }
829 : EXPORT_SYMBOL(__cpu_to_node);
830 :
831 : /*
832 : * Same function as cpu_to_node() but used if called before the
833 : * per_cpu areas are setup.
834 : */
835 : int early_cpu_to_node(int cpu)
836 : {
837 : if (early_per_cpu_ptr(x86_cpu_to_node_map))
838 : return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
839 :
840 : if (!cpu_possible(cpu)) {
841 : printk(KERN_WARNING
842 : "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
843 : dump_stack();
844 : return NUMA_NO_NODE;
845 : }
846 : return per_cpu(x86_cpu_to_node_map, cpu);
847 : }
848 :
849 : void debug_cpumask_set_cpu(int cpu, int node, bool enable)
850 : {
851 : struct cpumask *mask;
852 :
853 : if (node == NUMA_NO_NODE) {
854 : /* early_cpu_to_node() already emits a warning and trace */
855 : return;
856 : }
857 : mask = node_to_cpumask_map[node];
858 : if (!mask) {
859 : pr_err("node_to_cpumask_map[%i] NULL\n", node);
860 : dump_stack();
861 : return;
862 : }
863 :
864 : if (enable)
865 : cpumask_set_cpu(cpu, mask);
866 : else
867 : cpumask_clear_cpu(cpu, mask);
868 :
869 : printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
870 : enable ? "numa_add_cpu" : "numa_remove_cpu",
871 : cpu, node, cpumask_pr_args(mask));
872 : return;
873 : }
874 :
875 : # ifndef CONFIG_NUMA_EMU
876 : static void numa_set_cpumask(int cpu, bool enable)
877 : {
878 : debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
879 : }
880 :
881 : void numa_add_cpu(int cpu)
882 : {
883 : numa_set_cpumask(cpu, true);
884 : }
885 :
886 : void numa_remove_cpu(int cpu)
887 : {
888 : numa_set_cpumask(cpu, false);
889 : }
890 : # endif /* !CONFIG_NUMA_EMU */
891 :
892 : /*
893 : * Returns a pointer to the bitmask of CPUs on Node 'node'.
894 : */
895 : const struct cpumask *cpumask_of_node(int node)
896 : {
897 : if ((unsigned)node >= nr_node_ids) {
898 : printk(KERN_WARNING
899 : "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
900 : node, nr_node_ids);
901 : dump_stack();
902 : return cpu_none_mask;
903 : }
904 : if (node_to_cpumask_map[node] == NULL) {
905 : printk(KERN_WARNING
906 : "cpumask_of_node(%d): no node_to_cpumask_map!\n",
907 : node);
908 : dump_stack();
909 : return cpu_online_mask;
910 : }
911 : return node_to_cpumask_map[node];
912 : }
913 : EXPORT_SYMBOL(cpumask_of_node);
914 :
915 : #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
916 :
917 : #ifdef CONFIG_NUMA_KEEP_MEMINFO
918 : static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
919 : {
920 : int i;
921 :
922 : for (i = 0; i < mi->nr_blks; i++)
923 : if (mi->blk[i].start <= start && mi->blk[i].end > start)
924 : return mi->blk[i].nid;
925 : return NUMA_NO_NODE;
926 : }
927 :
928 : int phys_to_target_node(phys_addr_t start)
929 : {
930 : int nid = meminfo_to_nid(&numa_meminfo, start);
931 :
932 : /*
933 : * Prefer online nodes, but if reserved memory might be
934 : * hot-added continue the search with reserved ranges.
935 : */
936 : if (nid != NUMA_NO_NODE)
937 : return nid;
938 :
939 : return meminfo_to_nid(&numa_reserved_meminfo, start);
940 : }
941 : EXPORT_SYMBOL_GPL(phys_to_target_node);
942 :
943 : int memory_add_physaddr_to_nid(u64 start)
944 : {
945 : int nid = meminfo_to_nid(&numa_meminfo, start);
946 :
947 : if (nid == NUMA_NO_NODE)
948 : nid = numa_meminfo.blk[0].nid;
949 : return nid;
950 : }
951 : EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
952 : #endif
|