Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4 : *
5 : * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6 : * Suresh B Siddha <suresh.b.siddha@intel.com>
7 : *
8 : * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9 : *
10 : * Basic principles:
11 : *
12 : * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13 : * the kernel to set one of a handful of 'caching type' attributes for physical
14 : * memory ranges: uncached, write-combining, write-through, write-protected,
15 : * and the most commonly used and default attribute: write-back caching.
16 : *
17 : * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
18 : * a hardware interface to enumerate a limited number of physical memory ranges
19 : * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20 : * Even modern CPUs have MTRRs enabled - but these are typically not touched
21 : * by the kernel or by user-space (such as the X server), we rely on PAT for any
22 : * additional cache attribute logic.
23 : *
24 : * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25 : * cache attribute information to the mapped memory range: there's 3 bits used,
26 : * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27 : * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28 : *
29 : * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30 : * that only support 4 types of PAT entries, and interaction with MTRRs, see
31 : * below for details. )
32 : */
33 :
34 : #include <linux/seq_file.h>
35 : #include <linux/memblock.h>
36 : #include <linux/debugfs.h>
37 : #include <linux/ioport.h>
38 : #include <linux/kernel.h>
39 : #include <linux/pfn_t.h>
40 : #include <linux/slab.h>
41 : #include <linux/mm.h>
42 : #include <linux/fs.h>
43 : #include <linux/rbtree.h>
44 :
45 : #include <asm/cacheflush.h>
46 : #include <asm/processor.h>
47 : #include <asm/tlbflush.h>
48 : #include <asm/x86_init.h>
49 : #include <asm/fcntl.h>
50 : #include <asm/e820/api.h>
51 : #include <asm/mtrr.h>
52 : #include <asm/page.h>
53 : #include <asm/msr.h>
54 : #include <asm/memtype.h>
55 : #include <asm/io.h>
56 :
57 : #include "memtype.h"
58 : #include "../mm_internal.h"
59 :
60 : #undef pr_fmt
61 : #define pr_fmt(fmt) "" fmt
62 :
63 : static bool __read_mostly pat_bp_initialized;
64 : static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
65 : static bool __read_mostly pat_bp_enabled;
66 : static bool __read_mostly pat_cm_initialized;
67 :
68 : /*
69 : * PAT support is enabled by default, but can be disabled for
70 : * various user-requested or hardware-forced reasons:
71 : */
72 1 : void pat_disable(const char *msg_reason)
73 : {
74 1 : if (pat_disabled)
75 : return;
76 :
77 0 : if (pat_bp_initialized) {
78 0 : WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
79 0 : return;
80 : }
81 :
82 0 : pat_disabled = true;
83 0 : pr_info("x86/PAT: %s\n", msg_reason);
84 : }
85 :
86 0 : static int __init nopat(char *str)
87 : {
88 0 : pat_disable("PAT support disabled via boot option.");
89 0 : return 0;
90 : }
91 : early_param("nopat", nopat);
92 :
93 137 : bool pat_enabled(void)
94 : {
95 137 : return pat_bp_enabled;
96 : }
97 : EXPORT_SYMBOL_GPL(pat_enabled);
98 :
99 : int pat_debug_enable;
100 :
101 0 : static int __init pat_debug_setup(char *str)
102 : {
103 0 : pat_debug_enable = 1;
104 0 : return 0;
105 : }
106 : __setup("debugpat", pat_debug_setup);
107 :
108 : #ifdef CONFIG_X86_PAT
109 : /*
110 : * X86 PAT uses page flags arch_1 and uncached together to keep track of
111 : * memory type of pages that have backing page struct.
112 : *
113 : * X86 PAT supports 4 different memory types:
114 : * - _PAGE_CACHE_MODE_WB
115 : * - _PAGE_CACHE_MODE_WC
116 : * - _PAGE_CACHE_MODE_UC_MINUS
117 : * - _PAGE_CACHE_MODE_WT
118 : *
119 : * _PAGE_CACHE_MODE_WB is the default type.
120 : */
121 :
122 : #define _PGMT_WB 0
123 : #define _PGMT_WC (1UL << PG_arch_1)
124 : #define _PGMT_UC_MINUS (1UL << PG_uncached)
125 : #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
126 : #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
127 : #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
128 :
129 : static inline enum page_cache_mode get_page_memtype(struct page *pg)
130 : {
131 : unsigned long pg_flags = pg->flags & _PGMT_MASK;
132 :
133 : if (pg_flags == _PGMT_WB)
134 : return _PAGE_CACHE_MODE_WB;
135 : else if (pg_flags == _PGMT_WC)
136 : return _PAGE_CACHE_MODE_WC;
137 : else if (pg_flags == _PGMT_UC_MINUS)
138 : return _PAGE_CACHE_MODE_UC_MINUS;
139 : else
140 : return _PAGE_CACHE_MODE_WT;
141 : }
142 :
143 : static inline void set_page_memtype(struct page *pg,
144 : enum page_cache_mode memtype)
145 : {
146 : unsigned long memtype_flags;
147 : unsigned long old_flags;
148 : unsigned long new_flags;
149 :
150 : switch (memtype) {
151 : case _PAGE_CACHE_MODE_WC:
152 : memtype_flags = _PGMT_WC;
153 : break;
154 : case _PAGE_CACHE_MODE_UC_MINUS:
155 : memtype_flags = _PGMT_UC_MINUS;
156 : break;
157 : case _PAGE_CACHE_MODE_WT:
158 : memtype_flags = _PGMT_WT;
159 : break;
160 : case _PAGE_CACHE_MODE_WB:
161 : default:
162 : memtype_flags = _PGMT_WB;
163 : break;
164 : }
165 :
166 : do {
167 : old_flags = pg->flags;
168 : new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
169 : } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
170 : }
171 : #else
172 0 : static inline enum page_cache_mode get_page_memtype(struct page *pg)
173 : {
174 0 : return -1;
175 : }
176 0 : static inline void set_page_memtype(struct page *pg,
177 : enum page_cache_mode memtype)
178 : {
179 0 : }
180 : #endif
181 :
182 : enum {
183 : PAT_UC = 0, /* uncached */
184 : PAT_WC = 1, /* Write combining */
185 : PAT_WT = 4, /* Write Through */
186 : PAT_WP = 5, /* Write Protected */
187 : PAT_WB = 6, /* Write Back (default) */
188 : PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */
189 : };
190 :
191 : #define CM(c) (_PAGE_CACHE_MODE_ ## c)
192 :
193 8 : static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
194 : {
195 8 : enum page_cache_mode cache;
196 8 : char *cache_mode;
197 :
198 8 : switch (pat_val) {
199 : case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
200 : case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
201 : case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
202 : case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
203 : case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
204 : case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
205 : default: cache = CM(WB); cache_mode = "WB "; break;
206 : }
207 :
208 8 : memcpy(msg, cache_mode, 4);
209 :
210 8 : return cache;
211 : }
212 :
213 : #undef CM
214 :
215 : /*
216 : * Update the cache mode to pgprot translation tables according to PAT
217 : * configuration.
218 : * Using lower indices is preferred, so we start with highest index.
219 : */
220 1 : static void __init_cache_modes(u64 pat)
221 : {
222 1 : enum page_cache_mode cache;
223 1 : char pat_msg[33];
224 1 : int i;
225 :
226 1 : WARN_ON_ONCE(pat_cm_initialized);
227 :
228 1 : pat_msg[32] = 0;
229 9 : for (i = 7; i >= 0; i--) {
230 8 : cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
231 8 : pat_msg + 4 * i);
232 8 : update_cache_mode_entry(i, cache);
233 : }
234 1 : pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
235 :
236 1 : pat_cm_initialized = true;
237 1 : }
238 :
239 : #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
240 :
241 0 : static void pat_bp_init(u64 pat)
242 : {
243 0 : u64 tmp_pat;
244 :
245 0 : if (!boot_cpu_has(X86_FEATURE_PAT)) {
246 0 : pat_disable("PAT not supported by the CPU.");
247 0 : return;
248 : }
249 :
250 0 : rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
251 0 : if (!tmp_pat) {
252 0 : pat_disable("PAT support disabled by the firmware.");
253 0 : return;
254 : }
255 :
256 0 : wrmsrl(MSR_IA32_CR_PAT, pat);
257 0 : pat_bp_enabled = true;
258 :
259 0 : __init_cache_modes(pat);
260 : }
261 :
262 0 : static void pat_ap_init(u64 pat)
263 : {
264 0 : if (!boot_cpu_has(X86_FEATURE_PAT)) {
265 : /*
266 : * If this happens we are on a secondary CPU, but switched to
267 : * PAT on the boot CPU. We have no way to undo PAT.
268 : */
269 0 : panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
270 : }
271 :
272 0 : wrmsrl(MSR_IA32_CR_PAT, pat);
273 0 : }
274 :
275 1 : void init_cache_modes(void)
276 : {
277 1 : u64 pat = 0;
278 :
279 1 : if (pat_cm_initialized)
280 : return;
281 :
282 1 : if (boot_cpu_has(X86_FEATURE_PAT)) {
283 : /*
284 : * CPU supports PAT. Set PAT table to be consistent with
285 : * PAT MSR. This case supports "nopat" boot option, and
286 : * virtual machine environments which support PAT without
287 : * MTRRs. In specific, Xen has unique setup to PAT MSR.
288 : *
289 : * If PAT MSR returns 0, it is considered invalid and emulates
290 : * as No PAT.
291 : */
292 1 : rdmsrl(MSR_IA32_CR_PAT, pat);
293 : }
294 :
295 1 : if (!pat) {
296 : /*
297 : * No PAT. Emulate the PAT table that corresponds to the two
298 : * cache bits, PWT (Write Through) and PCD (Cache Disable).
299 : * This setup is also the same as the BIOS default setup.
300 : *
301 : * PTE encoding:
302 : *
303 : * PCD
304 : * |PWT PAT
305 : * || slot
306 : * 00 0 WB : _PAGE_CACHE_MODE_WB
307 : * 01 1 WT : _PAGE_CACHE_MODE_WT
308 : * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
309 : * 11 3 UC : _PAGE_CACHE_MODE_UC
310 : *
311 : * NOTE: When WC or WP is used, it is redirected to UC- per
312 : * the default setup in __cachemode2pte_tbl[].
313 : */
314 : pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
315 : PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
316 : }
317 :
318 1 : __init_cache_modes(pat);
319 : }
320 :
321 : /**
322 : * pat_init - Initialize the PAT MSR and PAT table on the current CPU
323 : *
324 : * This function initializes PAT MSR and PAT table with an OS-defined value
325 : * to enable additional cache attributes, WC, WT and WP.
326 : *
327 : * This function must be called on all CPUs using the specific sequence of
328 : * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
329 : * procedure for PAT.
330 : */
331 0 : void pat_init(void)
332 : {
333 0 : u64 pat;
334 0 : struct cpuinfo_x86 *c = &boot_cpu_data;
335 :
336 : #ifndef CONFIG_X86_PAT
337 0 : pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
338 : #endif
339 :
340 0 : if (pat_disabled)
341 : return;
342 :
343 0 : if ((c->x86_vendor == X86_VENDOR_INTEL) &&
344 0 : (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
345 0 : ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
346 : /*
347 : * PAT support with the lower four entries. Intel Pentium 2,
348 : * 3, M, and 4 are affected by PAT errata, which makes the
349 : * upper four entries unusable. To be on the safe side, we don't
350 : * use those.
351 : *
352 : * PTE encoding:
353 : * PAT
354 : * |PCD
355 : * ||PWT PAT
356 : * ||| slot
357 : * 000 0 WB : _PAGE_CACHE_MODE_WB
358 : * 001 1 WC : _PAGE_CACHE_MODE_WC
359 : * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
360 : * 011 3 UC : _PAGE_CACHE_MODE_UC
361 : * PAT bit unused
362 : *
363 : * NOTE: When WT or WP is used, it is redirected to UC- per
364 : * the default setup in __cachemode2pte_tbl[].
365 : */
366 : pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
367 : PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
368 : } else {
369 : /*
370 : * Full PAT support. We put WT in slot 7 to improve
371 : * robustness in the presence of errata that might cause
372 : * the high PAT bit to be ignored. This way, a buggy slot 7
373 : * access will hit slot 3, and slot 3 is UC, so at worst
374 : * we lose performance without causing a correctness issue.
375 : * Pentium 4 erratum N46 is an example for such an erratum,
376 : * although we try not to use PAT at all on affected CPUs.
377 : *
378 : * PTE encoding:
379 : * PAT
380 : * |PCD
381 : * ||PWT PAT
382 : * ||| slot
383 : * 000 0 WB : _PAGE_CACHE_MODE_WB
384 : * 001 1 WC : _PAGE_CACHE_MODE_WC
385 : * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
386 : * 011 3 UC : _PAGE_CACHE_MODE_UC
387 : * 100 4 WB : Reserved
388 : * 101 5 WP : _PAGE_CACHE_MODE_WP
389 : * 110 6 UC-: Reserved
390 : * 111 7 WT : _PAGE_CACHE_MODE_WT
391 : *
392 : * The reserved slots are unused, but mapped to their
393 : * corresponding types in the presence of PAT errata.
394 : */
395 0 : pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
396 : PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
397 : }
398 :
399 0 : if (!pat_bp_initialized) {
400 0 : pat_bp_init(pat);
401 0 : pat_bp_initialized = true;
402 : } else {
403 0 : pat_ap_init(pat);
404 : }
405 : }
406 :
407 : #undef PAT
408 :
409 : static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
410 :
411 : /*
412 : * Does intersection of PAT memory type and MTRR memory type and returns
413 : * the resulting memory type as PAT understands it.
414 : * (Type in pat and mtrr will not have same value)
415 : * The intersection is based on "Effective Memory Type" tables in IA-32
416 : * SDM vol 3a
417 : */
418 0 : static unsigned long pat_x_mtrr_type(u64 start, u64 end,
419 : enum page_cache_mode req_type)
420 : {
421 : /*
422 : * Look for MTRR hint to get the effective type in case where PAT
423 : * request is for WB.
424 : */
425 0 : if (req_type == _PAGE_CACHE_MODE_WB) {
426 0 : u8 mtrr_type, uniform;
427 :
428 0 : mtrr_type = mtrr_type_lookup(start, end, &uniform);
429 0 : if (mtrr_type != MTRR_TYPE_WRBACK)
430 : return _PAGE_CACHE_MODE_UC_MINUS;
431 :
432 0 : return _PAGE_CACHE_MODE_WB;
433 : }
434 :
435 0 : return req_type;
436 : }
437 :
438 : struct pagerange_state {
439 : unsigned long cur_pfn;
440 : int ram;
441 : int not_ram;
442 : };
443 :
444 : static int
445 0 : pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
446 : {
447 0 : struct pagerange_state *state = arg;
448 :
449 0 : state->not_ram |= initial_pfn > state->cur_pfn;
450 0 : state->ram |= total_nr_pages > 0;
451 0 : state->cur_pfn = initial_pfn + total_nr_pages;
452 :
453 0 : return state->ram && state->not_ram;
454 : }
455 :
456 0 : static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
457 : {
458 0 : int ret = 0;
459 0 : unsigned long start_pfn = start >> PAGE_SHIFT;
460 0 : unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
461 0 : struct pagerange_state state = {start_pfn, 0, 0};
462 :
463 : /*
464 : * For legacy reasons, physical address range in the legacy ISA
465 : * region is tracked as non-RAM. This will allow users of
466 : * /dev/mem to map portions of legacy ISA region, even when
467 : * some of those portions are listed(or not even listed) with
468 : * different e820 types(RAM/reserved/..)
469 : */
470 0 : if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
471 : start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
472 :
473 0 : if (start_pfn < end_pfn) {
474 0 : ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
475 : &state, pagerange_is_ram_callback);
476 : }
477 :
478 0 : return (ret > 0) ? -1 : (state.ram ? 1 : 0);
479 : }
480 :
481 : /*
482 : * For RAM pages, we use page flags to mark the pages with appropriate type.
483 : * The page flags are limited to four types, WB (default), WC, WT and UC-.
484 : * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
485 : * a new memory type is only allowed for a page mapped with the default WB
486 : * type.
487 : *
488 : * Here we do two passes:
489 : * - Find the memtype of all the pages in the range, look for any conflicts.
490 : * - In case of no conflicts, set the new memtype for pages in the range.
491 : */
492 0 : static int reserve_ram_pages_type(u64 start, u64 end,
493 : enum page_cache_mode req_type,
494 : enum page_cache_mode *new_type)
495 : {
496 0 : struct page *page;
497 0 : u64 pfn;
498 :
499 0 : if (req_type == _PAGE_CACHE_MODE_WP) {
500 0 : if (new_type)
501 0 : *new_type = _PAGE_CACHE_MODE_UC_MINUS;
502 0 : return -EINVAL;
503 : }
504 :
505 0 : if (req_type == _PAGE_CACHE_MODE_UC) {
506 : /* We do not support strong UC */
507 0 : WARN_ON_ONCE(1);
508 0 : req_type = _PAGE_CACHE_MODE_UC_MINUS;
509 : }
510 :
511 0 : for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
512 0 : enum page_cache_mode type;
513 :
514 0 : page = pfn_to_page(pfn);
515 0 : type = get_page_memtype(page);
516 0 : if (type != _PAGE_CACHE_MODE_WB) {
517 0 : pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
518 : start, end - 1, type, req_type);
519 0 : if (new_type)
520 0 : *new_type = type;
521 :
522 0 : return -EBUSY;
523 : }
524 : }
525 :
526 0 : if (new_type)
527 0 : *new_type = req_type;
528 :
529 : for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
530 : page = pfn_to_page(pfn);
531 : set_page_memtype(page, req_type);
532 : }
533 : return 0;
534 : }
535 :
536 0 : static int free_ram_pages_type(u64 start, u64 end)
537 : {
538 0 : struct page *page;
539 0 : u64 pfn;
540 :
541 0 : for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
542 0 : page = pfn_to_page(pfn);
543 0 : set_page_memtype(page, _PAGE_CACHE_MODE_WB);
544 : }
545 : return 0;
546 : }
547 :
548 2 : static u64 sanitize_phys(u64 address)
549 : {
550 : /*
551 : * When changing the memtype for pages containing poison allow
552 : * for a "decoy" virtual address (bit 63 clear) passed to
553 : * set_memory_X(). __pa() on a "decoy" address results in a
554 : * physical address with bit 63 set.
555 : *
556 : * Decoy addresses are not present for 32-bit builds, see
557 : * set_mce_nospec().
558 : */
559 2 : if (IS_ENABLED(CONFIG_X86_64))
560 2 : return address & __PHYSICAL_MASK;
561 : return address;
562 : }
563 :
564 : /*
565 : * req_type typically has one of the:
566 : * - _PAGE_CACHE_MODE_WB
567 : * - _PAGE_CACHE_MODE_WC
568 : * - _PAGE_CACHE_MODE_UC_MINUS
569 : * - _PAGE_CACHE_MODE_UC
570 : * - _PAGE_CACHE_MODE_WT
571 : *
572 : * If new_type is NULL, function will return an error if it cannot reserve the
573 : * region with req_type. If new_type is non-NULL, function will return
574 : * available type in new_type in case of no error. In case of any error
575 : * it will return a negative return value.
576 : */
577 2 : int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
578 : enum page_cache_mode *new_type)
579 : {
580 2 : struct memtype *entry_new;
581 2 : enum page_cache_mode actual_type;
582 2 : int is_range_ram;
583 2 : int err = 0;
584 :
585 2 : start = sanitize_phys(start);
586 2 : end = sanitize_phys(end);
587 2 : if (start >= end) {
588 0 : WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
589 : start, end - 1, cattr_name(req_type));
590 0 : return -EINVAL;
591 : }
592 :
593 2 : if (!pat_enabled()) {
594 : /* This is identical to page table setting without PAT */
595 2 : if (new_type)
596 2 : *new_type = req_type;
597 2 : return 0;
598 : }
599 :
600 : /* Low ISA region is always mapped WB in page table. No need to track */
601 0 : if (x86_platform.is_untracked_pat_range(start, end)) {
602 0 : if (new_type)
603 0 : *new_type = _PAGE_CACHE_MODE_WB;
604 0 : return 0;
605 : }
606 :
607 : /*
608 : * Call mtrr_lookup to get the type hint. This is an
609 : * optimization for /dev/mem mmap'ers into WB memory (BIOS
610 : * tools and ACPI tools). Use WB request for WB memory and use
611 : * UC_MINUS otherwise.
612 : */
613 0 : actual_type = pat_x_mtrr_type(start, end, req_type);
614 :
615 0 : if (new_type)
616 0 : *new_type = actual_type;
617 :
618 0 : is_range_ram = pat_pagerange_is_ram(start, end);
619 0 : if (is_range_ram == 1) {
620 :
621 0 : err = reserve_ram_pages_type(start, end, req_type, new_type);
622 :
623 0 : return err;
624 0 : } else if (is_range_ram < 0) {
625 : return -EINVAL;
626 : }
627 :
628 0 : entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
629 0 : if (!entry_new)
630 : return -ENOMEM;
631 :
632 0 : entry_new->start = start;
633 0 : entry_new->end = end;
634 0 : entry_new->type = actual_type;
635 :
636 0 : spin_lock(&memtype_lock);
637 :
638 0 : err = memtype_check_insert(entry_new, new_type);
639 0 : if (err) {
640 : pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
641 : start, end - 1,
642 : cattr_name(entry_new->type), cattr_name(req_type));
643 : kfree(entry_new);
644 : spin_unlock(&memtype_lock);
645 :
646 : return err;
647 : }
648 :
649 0 : spin_unlock(&memtype_lock);
650 :
651 0 : dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
652 : start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
653 : new_type ? cattr_name(*new_type) : "-");
654 :
655 : return err;
656 : }
657 :
658 0 : int memtype_free(u64 start, u64 end)
659 : {
660 0 : int is_range_ram;
661 0 : struct memtype *entry_old;
662 :
663 0 : if (!pat_enabled())
664 : return 0;
665 :
666 0 : start = sanitize_phys(start);
667 0 : end = sanitize_phys(end);
668 :
669 : /* Low ISA region is always mapped WB. No need to track */
670 0 : if (x86_platform.is_untracked_pat_range(start, end))
671 : return 0;
672 :
673 0 : is_range_ram = pat_pagerange_is_ram(start, end);
674 0 : if (is_range_ram == 1)
675 0 : return free_ram_pages_type(start, end);
676 0 : if (is_range_ram < 0)
677 : return -EINVAL;
678 :
679 0 : spin_lock(&memtype_lock);
680 0 : entry_old = memtype_erase(start, end);
681 0 : spin_unlock(&memtype_lock);
682 :
683 0 : if (IS_ERR(entry_old)) {
684 : pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
685 : current->comm, current->pid, start, end - 1);
686 : return -EINVAL;
687 : }
688 :
689 0 : kfree(entry_old);
690 :
691 0 : dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
692 :
693 : return 0;
694 : }
695 :
696 :
697 : /**
698 : * lookup_memtype - Looksup the memory type for a physical address
699 : * @paddr: physical address of which memory type needs to be looked up
700 : *
701 : * Only to be called when PAT is enabled
702 : *
703 : * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
704 : * or _PAGE_CACHE_MODE_WT.
705 : */
706 0 : static enum page_cache_mode lookup_memtype(u64 paddr)
707 : {
708 0 : enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
709 0 : struct memtype *entry;
710 :
711 0 : if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
712 : return rettype;
713 :
714 0 : if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
715 : struct page *page;
716 :
717 0 : page = pfn_to_page(paddr >> PAGE_SHIFT);
718 0 : return get_page_memtype(page);
719 : }
720 :
721 0 : spin_lock(&memtype_lock);
722 :
723 0 : entry = memtype_lookup(paddr);
724 0 : if (entry != NULL)
725 : rettype = entry->type;
726 : else
727 0 : rettype = _PAGE_CACHE_MODE_UC_MINUS;
728 :
729 0 : spin_unlock(&memtype_lock);
730 :
731 0 : return rettype;
732 : }
733 :
734 : /**
735 : * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
736 : * of @pfn cannot be overridden by UC MTRR memory type.
737 : *
738 : * Only to be called when PAT is enabled.
739 : *
740 : * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
741 : * Returns false in other cases.
742 : */
743 0 : bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
744 : {
745 0 : enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
746 :
747 0 : return cm == _PAGE_CACHE_MODE_UC ||
748 0 : cm == _PAGE_CACHE_MODE_UC_MINUS ||
749 : cm == _PAGE_CACHE_MODE_WC;
750 : }
751 : EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
752 :
753 : /**
754 : * memtype_reserve_io - Request a memory type mapping for a region of memory
755 : * @start: start (physical address) of the region
756 : * @end: end (physical address) of the region
757 : * @type: A pointer to memtype, with requested type. On success, requested
758 : * or any other compatible type that was available for the region is returned
759 : *
760 : * On success, returns 0
761 : * On failure, returns non-zero
762 : */
763 0 : int memtype_reserve_io(resource_size_t start, resource_size_t end,
764 : enum page_cache_mode *type)
765 : {
766 0 : resource_size_t size = end - start;
767 0 : enum page_cache_mode req_type = *type;
768 0 : enum page_cache_mode new_type;
769 0 : int ret;
770 :
771 0 : WARN_ON_ONCE(iomem_map_sanity_check(start, size));
772 :
773 0 : ret = memtype_reserve(start, end, req_type, &new_type);
774 0 : if (ret)
775 0 : goto out_err;
776 :
777 0 : if (!is_new_memtype_allowed(start, size, req_type, new_type))
778 0 : goto out_free;
779 :
780 0 : if (memtype_kernel_map_sync(start, size, new_type) < 0)
781 0 : goto out_free;
782 :
783 0 : *type = new_type;
784 0 : return 0;
785 :
786 0 : out_free:
787 0 : memtype_free(start, end);
788 0 : ret = -EBUSY;
789 : out_err:
790 : return ret;
791 : }
792 :
793 : /**
794 : * memtype_free_io - Release a memory type mapping for a region of memory
795 : * @start: start (physical address) of the region
796 : * @end: end (physical address) of the region
797 : */
798 0 : void memtype_free_io(resource_size_t start, resource_size_t end)
799 : {
800 0 : memtype_free(start, end);
801 0 : }
802 :
803 0 : int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
804 : {
805 0 : enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
806 :
807 0 : return memtype_reserve_io(start, start + size, &type);
808 : }
809 : EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
810 :
811 0 : void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
812 : {
813 0 : memtype_free_io(start, start + size);
814 0 : }
815 : EXPORT_SYMBOL(arch_io_free_memtype_wc);
816 :
817 0 : pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
818 : unsigned long size, pgprot_t vma_prot)
819 : {
820 0 : if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
821 : vma_prot = pgprot_decrypted(vma_prot);
822 :
823 0 : return vma_prot;
824 : }
825 :
826 : #ifdef CONFIG_STRICT_DEVMEM
827 : /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
828 : static inline int range_is_allowed(unsigned long pfn, unsigned long size)
829 : {
830 : return 1;
831 : }
832 : #else
833 : /* This check is needed to avoid cache aliasing when PAT is enabled */
834 0 : static inline int range_is_allowed(unsigned long pfn, unsigned long size)
835 : {
836 0 : u64 from = ((u64)pfn) << PAGE_SHIFT;
837 0 : u64 to = from + size;
838 0 : u64 cursor = from;
839 :
840 0 : if (!pat_enabled())
841 : return 1;
842 :
843 0 : while (cursor < to) {
844 0 : if (!devmem_is_allowed(pfn))
845 : return 0;
846 0 : cursor += PAGE_SIZE;
847 0 : pfn++;
848 : }
849 : return 1;
850 : }
851 : #endif /* CONFIG_STRICT_DEVMEM */
852 :
853 0 : int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
854 : unsigned long size, pgprot_t *vma_prot)
855 : {
856 0 : enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
857 :
858 0 : if (!range_is_allowed(pfn, size))
859 : return 0;
860 :
861 0 : if (file->f_flags & O_DSYNC)
862 0 : pcm = _PAGE_CACHE_MODE_UC_MINUS;
863 :
864 0 : *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
865 : cachemode2protval(pcm));
866 0 : return 1;
867 : }
868 :
869 : /*
870 : * Change the memory type for the physical address range in kernel identity
871 : * mapping space if that range is a part of identity map.
872 : */
873 2 : int memtype_kernel_map_sync(u64 base, unsigned long size,
874 : enum page_cache_mode pcm)
875 : {
876 2 : unsigned long id_sz;
877 :
878 2 : if (base > __pa(high_memory-1))
879 : return 0;
880 :
881 : /*
882 : * Some areas in the middle of the kernel identity range
883 : * are not mapped, for example the PCI space.
884 : */
885 0 : if (!page_is_ram(base >> PAGE_SHIFT))
886 : return 0;
887 :
888 0 : id_sz = (__pa(high_memory-1) <= base + size) ?
889 0 : __pa(high_memory) - base : size;
890 :
891 0 : if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
892 0 : pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
893 : current->comm, current->pid,
894 : cattr_name(pcm),
895 : base, (unsigned long long)(base + size-1));
896 0 : return -EINVAL;
897 : }
898 : return 0;
899 : }
900 :
901 : /*
902 : * Internal interface to reserve a range of physical memory with prot.
903 : * Reserved non RAM regions only and after successful memtype_reserve,
904 : * this func also keeps identity mapping (if any) in sync with this new prot.
905 : */
906 0 : static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
907 : int strict_prot)
908 : {
909 0 : int is_ram = 0;
910 0 : int ret;
911 0 : enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
912 0 : enum page_cache_mode pcm = want_pcm;
913 :
914 0 : is_ram = pat_pagerange_is_ram(paddr, paddr + size);
915 :
916 : /*
917 : * reserve_pfn_range() for RAM pages. We do not refcount to keep
918 : * track of number of mappings of RAM pages. We can assert that
919 : * the type requested matches the type of first page in the range.
920 : */
921 0 : if (is_ram) {
922 0 : if (!pat_enabled())
923 : return 0;
924 :
925 0 : pcm = lookup_memtype(paddr);
926 0 : if (want_pcm != pcm) {
927 0 : pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
928 : current->comm, current->pid,
929 : cattr_name(want_pcm),
930 : (unsigned long long)paddr,
931 : (unsigned long long)(paddr + size - 1),
932 : cattr_name(pcm));
933 0 : *vma_prot = __pgprot((pgprot_val(*vma_prot) &
934 : (~_PAGE_CACHE_MASK)) |
935 : cachemode2protval(pcm));
936 : }
937 0 : return 0;
938 : }
939 :
940 0 : ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
941 0 : if (ret)
942 : return ret;
943 :
944 0 : if (pcm != want_pcm) {
945 0 : if (strict_prot ||
946 0 : !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
947 0 : memtype_free(paddr, paddr + size);
948 0 : pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
949 : current->comm, current->pid,
950 : cattr_name(want_pcm),
951 : (unsigned long long)paddr,
952 : (unsigned long long)(paddr + size - 1),
953 : cattr_name(pcm));
954 0 : return -EINVAL;
955 : }
956 : /*
957 : * We allow returning different type than the one requested in
958 : * non strict case.
959 : */
960 0 : *vma_prot = __pgprot((pgprot_val(*vma_prot) &
961 : (~_PAGE_CACHE_MASK)) |
962 : cachemode2protval(pcm));
963 : }
964 :
965 0 : if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
966 0 : memtype_free(paddr, paddr + size);
967 0 : return -EINVAL;
968 : }
969 : return 0;
970 : }
971 :
972 : /*
973 : * Internal interface to free a range of physical memory.
974 : * Frees non RAM regions only.
975 : */
976 0 : static void free_pfn_range(u64 paddr, unsigned long size)
977 : {
978 0 : int is_ram;
979 :
980 0 : is_ram = pat_pagerange_is_ram(paddr, paddr + size);
981 0 : if (is_ram == 0)
982 0 : memtype_free(paddr, paddr + size);
983 0 : }
984 :
985 : /*
986 : * track_pfn_copy is called when vma that is covering the pfnmap gets
987 : * copied through copy_page_range().
988 : *
989 : * If the vma has a linear pfn mapping for the entire range, we get the prot
990 : * from pte and reserve the entire vma range with single reserve_pfn_range call.
991 : */
992 2719 : int track_pfn_copy(struct vm_area_struct *vma)
993 : {
994 2719 : resource_size_t paddr;
995 2719 : unsigned long prot;
996 2719 : unsigned long vma_size = vma->vm_end - vma->vm_start;
997 2719 : pgprot_t pgprot;
998 :
999 2719 : if (vma->vm_flags & VM_PAT) {
1000 : /*
1001 : * reserve the whole chunk covered by vma. We need the
1002 : * starting address and protection from pte.
1003 : */
1004 0 : if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1005 0 : WARN_ON_ONCE(1);
1006 0 : return -EINVAL;
1007 : }
1008 0 : pgprot = __pgprot(prot);
1009 0 : return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1010 : }
1011 :
1012 : return 0;
1013 : }
1014 :
1015 : /*
1016 : * prot is passed in as a parameter for the new mapping. If the vma has
1017 : * a linear pfn mapping for the entire range, or no vma is provided,
1018 : * reserve the entire pfn + size range with single reserve_pfn_range
1019 : * call.
1020 : */
1021 0 : int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1022 : unsigned long pfn, unsigned long addr, unsigned long size)
1023 : {
1024 0 : resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1025 0 : enum page_cache_mode pcm;
1026 :
1027 : /* reserve the whole chunk starting from paddr */
1028 0 : if (!vma || (addr == vma->vm_start
1029 0 : && size == (vma->vm_end - vma->vm_start))) {
1030 0 : int ret;
1031 :
1032 0 : ret = reserve_pfn_range(paddr, size, prot, 0);
1033 0 : if (ret == 0 && vma)
1034 0 : vma->vm_flags |= VM_PAT;
1035 0 : return ret;
1036 : }
1037 :
1038 0 : if (!pat_enabled())
1039 : return 0;
1040 :
1041 : /*
1042 : * For anything smaller than the vma size we set prot based on the
1043 : * lookup.
1044 : */
1045 0 : pcm = lookup_memtype(paddr);
1046 :
1047 : /* Check memtype for the remaining pages */
1048 0 : while (size > PAGE_SIZE) {
1049 0 : size -= PAGE_SIZE;
1050 0 : paddr += PAGE_SIZE;
1051 0 : if (pcm != lookup_memtype(paddr))
1052 : return -EINVAL;
1053 : }
1054 :
1055 0 : *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1056 : cachemode2protval(pcm));
1057 :
1058 0 : return 0;
1059 : }
1060 :
1061 135 : void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1062 : {
1063 135 : enum page_cache_mode pcm;
1064 :
1065 135 : if (!pat_enabled())
1066 : return;
1067 :
1068 : /* Set prot based on lookup */
1069 0 : pcm = lookup_memtype(pfn_t_to_phys(pfn));
1070 0 : *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1071 : cachemode2protval(pcm));
1072 : }
1073 :
1074 : /*
1075 : * untrack_pfn is called while unmapping a pfnmap for a region.
1076 : * untrack can be called for a specific region indicated by pfn and size or
1077 : * can be for the entire vma (in which case pfn, size are zero).
1078 : */
1079 5111 : void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1080 : unsigned long size)
1081 : {
1082 5111 : resource_size_t paddr;
1083 5111 : unsigned long prot;
1084 :
1085 5111 : if (vma && !(vma->vm_flags & VM_PAT))
1086 5111 : return;
1087 :
1088 : /* free the chunk starting from pfn or the whole chunk */
1089 0 : paddr = (resource_size_t)pfn << PAGE_SHIFT;
1090 0 : if (!paddr && !size) {
1091 0 : if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1092 0 : WARN_ON_ONCE(1);
1093 0 : return;
1094 : }
1095 :
1096 0 : size = vma->vm_end - vma->vm_start;
1097 : }
1098 0 : free_pfn_range(paddr, size);
1099 0 : if (vma)
1100 0 : vma->vm_flags &= ~VM_PAT;
1101 : }
1102 :
1103 : /*
1104 : * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1105 : * with the old vma after its pfnmap page table has been removed. The new
1106 : * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1107 : */
1108 0 : void untrack_pfn_moved(struct vm_area_struct *vma)
1109 : {
1110 0 : vma->vm_flags &= ~VM_PAT;
1111 0 : }
1112 :
1113 0 : pgprot_t pgprot_writecombine(pgprot_t prot)
1114 : {
1115 0 : return __pgprot(pgprot_val(prot) |
1116 : cachemode2protval(_PAGE_CACHE_MODE_WC));
1117 : }
1118 : EXPORT_SYMBOL_GPL(pgprot_writecombine);
1119 :
1120 0 : pgprot_t pgprot_writethrough(pgprot_t prot)
1121 : {
1122 0 : return __pgprot(pgprot_val(prot) |
1123 : cachemode2protval(_PAGE_CACHE_MODE_WT));
1124 : }
1125 : EXPORT_SYMBOL_GPL(pgprot_writethrough);
1126 :
1127 : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1128 :
1129 : /*
1130 : * We are allocating a temporary printout-entry to be passed
1131 : * between seq_start()/next() and seq_show():
1132 : */
1133 : static struct memtype *memtype_get_idx(loff_t pos)
1134 : {
1135 : struct memtype *entry_print;
1136 : int ret;
1137 :
1138 : entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1139 : if (!entry_print)
1140 : return NULL;
1141 :
1142 : spin_lock(&memtype_lock);
1143 : ret = memtype_copy_nth_element(entry_print, pos);
1144 : spin_unlock(&memtype_lock);
1145 :
1146 : /* Free it on error: */
1147 : if (ret) {
1148 : kfree(entry_print);
1149 : return NULL;
1150 : }
1151 :
1152 : return entry_print;
1153 : }
1154 :
1155 : static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1156 : {
1157 : if (*pos == 0) {
1158 : ++*pos;
1159 : seq_puts(seq, "PAT memtype list:\n");
1160 : }
1161 :
1162 : return memtype_get_idx(*pos);
1163 : }
1164 :
1165 : static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1166 : {
1167 : kfree(v);
1168 : ++*pos;
1169 : return memtype_get_idx(*pos);
1170 : }
1171 :
1172 : static void memtype_seq_stop(struct seq_file *seq, void *v)
1173 : {
1174 : kfree(v);
1175 : }
1176 :
1177 : static int memtype_seq_show(struct seq_file *seq, void *v)
1178 : {
1179 : struct memtype *entry_print = (struct memtype *)v;
1180 :
1181 : seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1182 : entry_print->start,
1183 : entry_print->end,
1184 : cattr_name(entry_print->type));
1185 :
1186 : return 0;
1187 : }
1188 :
1189 : static const struct seq_operations memtype_seq_ops = {
1190 : .start = memtype_seq_start,
1191 : .next = memtype_seq_next,
1192 : .stop = memtype_seq_stop,
1193 : .show = memtype_seq_show,
1194 : };
1195 :
1196 : static int memtype_seq_open(struct inode *inode, struct file *file)
1197 : {
1198 : return seq_open(file, &memtype_seq_ops);
1199 : }
1200 :
1201 : static const struct file_operations memtype_fops = {
1202 : .open = memtype_seq_open,
1203 : .read = seq_read,
1204 : .llseek = seq_lseek,
1205 : .release = seq_release,
1206 : };
1207 :
1208 : static int __init pat_memtype_list_init(void)
1209 : {
1210 : if (pat_enabled()) {
1211 : debugfs_create_file("pat_memtype_list", S_IRUSR,
1212 : arch_debugfs_dir, NULL, &memtype_fops);
1213 : }
1214 : return 0;
1215 : }
1216 : late_initcall(pat_memtype_list_init);
1217 :
1218 : #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
|