Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : #include <linux/init.h>
3 :
4 : #include <linux/mm.h>
5 : #include <linux/spinlock.h>
6 : #include <linux/smp.h>
7 : #include <linux/interrupt.h>
8 : #include <linux/export.h>
9 : #include <linux/cpu.h>
10 : #include <linux/debugfs.h>
11 :
12 : #include <asm/tlbflush.h>
13 : #include <asm/mmu_context.h>
14 : #include <asm/nospec-branch.h>
15 : #include <asm/cache.h>
16 : #include <asm/apic.h>
17 :
18 : #include "mm_internal.h"
19 :
20 : #ifdef CONFIG_PARAVIRT
21 : # define STATIC_NOPV
22 : #else
23 : # define STATIC_NOPV static
24 : # define __flush_tlb_local native_flush_tlb_local
25 : # define __flush_tlb_global native_flush_tlb_global
26 : # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
27 : # define __flush_tlb_others(msk, info) native_flush_tlb_others(msk, info)
28 : #endif
29 :
30 : /*
31 : * TLB flushing, formerly SMP-only
32 : * c/o Linus Torvalds.
33 : *
34 : * These mean you can really definitely utterly forget about
35 : * writing to user space from interrupts. (Its not allowed anyway).
36 : *
37 : * Optimizations Manfred Spraul <manfred@colorfullife.com>
38 : *
39 : * More scalable flush, from Andi Kleen
40 : *
41 : * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
42 : */
43 :
44 : /*
45 : * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
46 : * stored in cpu_tlb_state.last_user_mm_ibpb.
47 : */
48 : #define LAST_USER_MM_IBPB 0x1UL
49 :
50 : /*
51 : * The x86 feature is called PCID (Process Context IDentifier). It is similar
52 : * to what is traditionally called ASID on the RISC processors.
53 : *
54 : * We don't use the traditional ASID implementation, where each process/mm gets
55 : * its own ASID and flush/restart when we run out of ASID space.
56 : *
57 : * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
58 : * that came by on this CPU, allowing cheaper switch_mm between processes on
59 : * this CPU.
60 : *
61 : * We end up with different spaces for different things. To avoid confusion we
62 : * use different names for each of them:
63 : *
64 : * ASID - [0, TLB_NR_DYN_ASIDS-1]
65 : * the canonical identifier for an mm
66 : *
67 : * kPCID - [1, TLB_NR_DYN_ASIDS]
68 : * the value we write into the PCID part of CR3; corresponds to the
69 : * ASID+1, because PCID 0 is special.
70 : *
71 : * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
72 : * for KPTI each mm has two address spaces and thus needs two
73 : * PCID values, but we can still do with a single ASID denomination
74 : * for each mm. Corresponds to kPCID + 2048.
75 : *
76 : */
77 :
78 : /* There are 12 bits of space for ASIDS in CR3 */
79 : #define CR3_HW_ASID_BITS 12
80 :
81 : /*
82 : * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
83 : * user/kernel switches
84 : */
85 : #ifdef CONFIG_PAGE_TABLE_ISOLATION
86 : # define PTI_CONSUMED_PCID_BITS 1
87 : #else
88 : # define PTI_CONSUMED_PCID_BITS 0
89 : #endif
90 :
91 : #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
92 :
93 : /*
94 : * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
95 : * for them being zero-based. Another -1 is because PCID 0 is reserved for
96 : * use by non-PCID-aware users.
97 : */
98 : #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
99 :
100 : /*
101 : * Given @asid, compute kPCID
102 : */
103 34890 : static inline u16 kern_pcid(u16 asid)
104 : {
105 0 : VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
106 :
107 : #ifdef CONFIG_PAGE_TABLE_ISOLATION
108 : /*
109 : * Make sure that the dynamic ASID space does not confict with the
110 : * bit we are using to switch between user and kernel ASIDs.
111 : */
112 : BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
113 :
114 : /*
115 : * The ASID being passed in here should have respected the
116 : * MAX_ASID_AVAILABLE and thus never have the switch bit set.
117 : */
118 : VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
119 : #endif
120 : /*
121 : * The dynamically-assigned ASIDs that get passed in are small
122 : * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
123 : * so do not bother to clear it.
124 : *
125 : * If PCID is on, ASID-aware code paths put the ASID+1 into the
126 : * PCID bits. This serves two purposes. It prevents a nasty
127 : * situation in which PCID-unaware code saves CR3, loads some other
128 : * value (with PCID == 0), and then restores CR3, thus corrupting
129 : * the TLB for ASID 0 if the saved ASID was nonzero. It also means
130 : * that any bugs involving loading a PCID-enabled CR3 with
131 : * CR4.PCIDE off will trigger deterministically.
132 : */
133 34890 : return asid + 1;
134 : }
135 :
136 : /*
137 : * Given @asid, compute uPCID
138 : */
139 0 : static inline u16 user_pcid(u16 asid)
140 : {
141 0 : u16 ret = kern_pcid(asid);
142 : #ifdef CONFIG_PAGE_TABLE_ISOLATION
143 : ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
144 : #endif
145 0 : return ret;
146 : }
147 :
148 29289 : static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
149 : {
150 29289 : if (static_cpu_has(X86_FEATURE_PCID)) {
151 33177 : return __sme_pa(pgd) | kern_pcid(asid);
152 : } else {
153 0 : VM_WARN_ON_ONCE(asid != 0);
154 0 : return __sme_pa(pgd);
155 : }
156 : }
157 :
158 5601 : static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
159 : {
160 5601 : VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
161 : /*
162 : * Use boot_cpu_has() instead of this_cpu_has() as this function
163 : * might be called during early boot. This should work even after
164 : * boot because all CPU's the have same capabilities:
165 : */
166 5601 : VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
167 7581 : return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
168 : }
169 :
170 : /*
171 : * We get here when we do something requiring a TLB invalidation
172 : * but could not go invalidate all of the contexts. We do the
173 : * necessary invalidation by clearing out the 'ctx_id' which
174 : * forces a TLB flush when the context is loaded.
175 : */
176 0 : static void clear_asid_other(void)
177 : {
178 0 : u16 asid;
179 :
180 : /*
181 : * This is only expected to be set if we have disabled
182 : * kernel _PAGE_GLOBAL pages.
183 : */
184 0 : if (!static_cpu_has(X86_FEATURE_PTI)) {
185 0 : WARN_ON_ONCE(1);
186 0 : return;
187 : }
188 :
189 0 : for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
190 : /* Do not need to flush the current asid */
191 0 : if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
192 0 : continue;
193 : /*
194 : * Make sure the next time we go to switch to
195 : * this asid, we do a flush:
196 : */
197 0 : this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
198 : }
199 0 : this_cpu_write(cpu_tlbstate.invalidate_other, false);
200 : }
201 :
202 : atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
203 :
204 :
205 13306 : static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
206 : u16 *new_asid, bool *need_flush)
207 : {
208 13306 : u16 asid;
209 :
210 13306 : if (!static_cpu_has(X86_FEATURE_PCID)) {
211 0 : *new_asid = 0;
212 0 : *need_flush = true;
213 0 : return;
214 : }
215 :
216 13306 : if (this_cpu_read(cpu_tlbstate.invalidate_other))
217 0 : clear_asid_other();
218 :
219 72731 : for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
220 65164 : if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
221 65165 : next->context.ctx_id)
222 59425 : continue;
223 :
224 5740 : *new_asid = asid;
225 5740 : *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
226 : next_tlb_gen);
227 5740 : return;
228 : }
229 :
230 : /*
231 : * We don't currently own an ASID slot on this CPU.
232 : * Allocate a slot.
233 : */
234 7567 : *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
235 7567 : if (*new_asid >= TLB_NR_DYN_ASIDS) {
236 1259 : *new_asid = 0;
237 7567 : this_cpu_write(cpu_tlbstate.next_asid, 1);
238 : }
239 7567 : *need_flush = true;
240 : }
241 :
242 : /*
243 : * Given an ASID, flush the corresponding user ASID. We can delay this
244 : * until the next time we switch to it.
245 : *
246 : * See SWITCH_TO_USER_CR3.
247 : */
248 12918 : static inline void invalidate_user_asid(u16 asid)
249 : {
250 : /* There is no user ASID if address space separation is off */
251 12918 : if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
252 12918 : return;
253 :
254 : /*
255 : * We only have a single ASID if PCID is off and the CR3
256 : * write will have flushed it.
257 : */
258 : if (!cpu_feature_enabled(X86_FEATURE_PCID))
259 : return;
260 :
261 : if (!static_cpu_has(X86_FEATURE_PTI))
262 : return;
263 :
264 : __set_bit(kern_pcid(asid),
265 : (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
266 : }
267 :
268 13313 : static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
269 : {
270 13313 : unsigned long new_mm_cr3;
271 :
272 13313 : if (need_flush) {
273 7712 : invalidate_user_asid(new_asid);
274 7712 : new_mm_cr3 = build_cr3(pgdir, new_asid);
275 : } else {
276 5601 : new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
277 : }
278 :
279 : /*
280 : * Caution: many callers of this function expect
281 : * that load_cr3() is serializing and orders TLB
282 : * fills with respect to the mm_cpumask writes.
283 : */
284 13313 : write_cr3(new_mm_cr3);
285 13313 : }
286 :
287 0 : void leave_mm(int cpu)
288 : {
289 0 : struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
290 :
291 : /*
292 : * It's plausible that we're in lazy TLB mode while our mm is init_mm.
293 : * If so, our callers still expect us to flush the TLB, but there
294 : * aren't any user TLB entries in init_mm to worry about.
295 : *
296 : * This needs to happen before any other sanity checks due to
297 : * intel_idle's shenanigans.
298 : */
299 0 : if (loaded_mm == &init_mm)
300 : return;
301 :
302 : /* Warn if we're not lazy. */
303 0 : WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
304 :
305 0 : switch_mm(NULL, &init_mm, NULL);
306 : }
307 : EXPORT_SYMBOL_GPL(leave_mm);
308 :
309 2405 : void switch_mm(struct mm_struct *prev, struct mm_struct *next,
310 : struct task_struct *tsk)
311 : {
312 2405 : unsigned long flags;
313 :
314 4810 : local_irq_save(flags);
315 2405 : switch_mm_irqs_off(prev, next, tsk);
316 2405 : local_irq_restore(flags);
317 2405 : }
318 :
319 0 : static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
320 : {
321 0 : unsigned long next_tif = task_thread_info(next)->flags;
322 0 : unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
323 :
324 0 : return (unsigned long)next->mm | ibpb;
325 : }
326 :
327 13305 : static void cond_ibpb(struct task_struct *next)
328 : {
329 13305 : if (!next || !next->mm)
330 : return;
331 :
332 : /*
333 : * Both, the conditional and the always IBPB mode use the mm
334 : * pointer to avoid the IBPB when switching between tasks of the
335 : * same process. Using the mm pointer instead of mm->context.ctx_id
336 : * opens a hypothetical hole vs. mm_struct reuse, which is more or
337 : * less impossible to control by an attacker. Aside of that it
338 : * would only affect the first schedule so the theoretically
339 : * exposed data is not really interesting.
340 : */
341 7855 : if (static_branch_likely(&switch_mm_cond_ibpb)) {
342 0 : unsigned long prev_mm, next_mm;
343 :
344 : /*
345 : * This is a bit more complex than the always mode because
346 : * it has to handle two cases:
347 : *
348 : * 1) Switch from a user space task (potential attacker)
349 : * which has TIF_SPEC_IB set to a user space task
350 : * (potential victim) which has TIF_SPEC_IB not set.
351 : *
352 : * 2) Switch from a user space task (potential attacker)
353 : * which has TIF_SPEC_IB not set to a user space task
354 : * (potential victim) which has TIF_SPEC_IB set.
355 : *
356 : * This could be done by unconditionally issuing IBPB when
357 : * a task which has TIF_SPEC_IB set is either scheduled in
358 : * or out. Though that results in two flushes when:
359 : *
360 : * - the same user space task is scheduled out and later
361 : * scheduled in again and only a kernel thread ran in
362 : * between.
363 : *
364 : * - a user space task belonging to the same process is
365 : * scheduled in after a kernel thread ran in between
366 : *
367 : * - a user space task belonging to the same process is
368 : * scheduled in immediately.
369 : *
370 : * Optimize this with reasonably small overhead for the
371 : * above cases. Mangle the TIF_SPEC_IB bit into the mm
372 : * pointer of the incoming task which is stored in
373 : * cpu_tlbstate.last_user_mm_ibpb for comparison.
374 : */
375 0 : next_mm = mm_mangle_tif_spec_ib(next);
376 0 : prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
377 :
378 : /*
379 : * Issue IBPB only if the mm's are different and one or
380 : * both have the IBPB bit set.
381 : */
382 0 : if (next_mm != prev_mm &&
383 0 : (next_mm | prev_mm) & LAST_USER_MM_IBPB)
384 0 : indirect_branch_prediction_barrier();
385 :
386 7855 : this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
387 : }
388 :
389 7855 : if (static_branch_unlikely(&switch_mm_always_ibpb)) {
390 : /*
391 : * Only flush when switching to a user space task with a
392 : * different context than the user space task which ran
393 : * last on this CPU.
394 : */
395 0 : if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
396 0 : indirect_branch_prediction_barrier();
397 7855 : this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
398 : }
399 : }
400 : }
401 :
402 : #ifdef CONFIG_PERF_EVENTS
403 13305 : static inline void cr4_update_pce_mm(struct mm_struct *mm)
404 : {
405 13305 : if (static_branch_unlikely(&rdpmc_always_available_key) ||
406 13307 : (!static_branch_unlikely(&rdpmc_never_available_key) &&
407 13307 : atomic_read(&mm->context.perf_rdpmc_allowed)))
408 0 : cr4_set_bits_irqsoff(X86_CR4_PCE);
409 : else
410 13306 : cr4_clear_bits_irqsoff(X86_CR4_PCE);
411 13307 : }
412 :
413 0 : void cr4_update_pce(void *ignored)
414 : {
415 0 : cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
416 0 : }
417 :
418 : #else
419 : static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
420 : #endif
421 :
422 21570 : void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
423 : struct task_struct *tsk)
424 : {
425 21570 : struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
426 21572 : u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
427 21574 : bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
428 21574 : unsigned cpu = smp_processor_id();
429 21574 : u64 next_tlb_gen;
430 21574 : bool need_flush;
431 21574 : u16 new_asid;
432 :
433 : /*
434 : * NB: The scheduler will call us with prev == next when switching
435 : * from lazy TLB mode to normal mode if active_mm isn't changing.
436 : * When this happens, we don't assume that CR3 (and hence
437 : * cpu_tlbstate.loaded_mm) matches next.
438 : *
439 : * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
440 : */
441 :
442 : /* We don't want flush_tlb_func_* to run concurrently with us. */
443 21574 : if (IS_ENABLED(CONFIG_PROVE_LOCKING))
444 21574 : WARN_ON_ONCE(!irqs_disabled());
445 :
446 : /*
447 : * Verify that CR3 is what we think it is. This will catch
448 : * hypothetical buggy code that directly switches to swapper_pg_dir
449 : * without going through leave_mm() / switch_mm_irqs_off() or that
450 : * does something like write_cr3(read_cr3_pa()).
451 : *
452 : * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
453 : * isn't free.
454 : */
455 : #ifdef CONFIG_DEBUG_VM
456 21573 : if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
457 : /*
458 : * If we were to BUG here, we'd be very likely to kill
459 : * the system so hard that we don't see the call trace.
460 : * Try to recover instead by ignoring the error and doing
461 : * a global flush to minimize the chance of corruption.
462 : *
463 : * (This is far from being a fully correct recovery.
464 : * Architecturally, the CPU could prefetch something
465 : * back into an incorrect ASID slot and leave it there
466 : * to cause trouble down the road. It's better than
467 : * nothing, though.)
468 : */
469 0 : __flush_tlb_all();
470 : }
471 : #endif
472 21572 : this_cpu_write(cpu_tlbstate.is_lazy, false);
473 :
474 : /*
475 : * The membarrier system call requires a full memory barrier and
476 : * core serialization before returning to user-space, after
477 : * storing to rq->curr, when changing mm. This is because
478 : * membarrier() sends IPIs to all CPUs that are in the target mm
479 : * to make them issue memory barriers. However, if another CPU
480 : * switches to/from the target mm concurrently with
481 : * membarrier(), it can cause that CPU not to receive an IPI
482 : * when it really should issue a memory barrier. Writing to CR3
483 : * provides that full memory barrier and core serializing
484 : * instruction.
485 : */
486 21572 : if (real_prev == next) {
487 8267 : VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
488 : next->context.ctx_id);
489 :
490 : /*
491 : * Even in lazy TLB mode, the CPU should stay set in the
492 : * mm_cpumask. The TLB shootdown code can figure out from
493 : * from cpu_tlbstate.is_lazy whether or not to send an IPI.
494 : */
495 16534 : if (WARN_ON_ONCE(real_prev != &init_mm &&
496 : !cpumask_test_cpu(cpu, mm_cpumask(next))))
497 0 : cpumask_set_cpu(cpu, mm_cpumask(next));
498 :
499 : /*
500 : * If the CPU is not in lazy TLB mode, we are just switching
501 : * from one thread in a process to another thread in the same
502 : * process. No TLB flush required.
503 : */
504 8267 : if (!was_lazy)
505 8262 : return;
506 :
507 : /*
508 : * Read the tlb_gen to check whether a flush is needed.
509 : * If the TLB is up to date, just use it.
510 : * The barrier synchronizes with the tlb_gen increment in
511 : * the TLB shootdown code.
512 : */
513 8135 : smp_mb();
514 8136 : next_tlb_gen = atomic64_read(&next->context.tlb_gen);
515 8136 : if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
516 : next_tlb_gen)
517 : return;
518 :
519 : /*
520 : * TLB contents went out of date while we were in lazy
521 : * mode. Fall through to the TLB switching code below.
522 : */
523 6 : new_asid = prev_asid;
524 6 : need_flush = true;
525 : } else {
526 : /*
527 : * Avoid user/user BTB poisoning by flushing the branch
528 : * predictor when switching between processes. This stops
529 : * one process from doing Spectre-v2 attacks on another.
530 : */
531 13305 : cond_ibpb(tsk);
532 :
533 : /*
534 : * Stop remote flushes for the previous mm.
535 : * Skip kernel threads; we never send init_mm TLB flushing IPIs,
536 : * but the bitmap manipulation can cause cache line contention.
537 : */
538 13305 : if (real_prev != &init_mm) {
539 10371 : VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
540 : mm_cpumask(real_prev)));
541 10373 : cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
542 : }
543 :
544 : /*
545 : * Start remote flushes and then read tlb_gen.
546 : */
547 13307 : if (next != &init_mm)
548 10376 : cpumask_set_cpu(cpu, mm_cpumask(next));
549 13307 : next_tlb_gen = atomic64_read(&next->context.tlb_gen);
550 :
551 13306 : choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
552 :
553 : /* Let nmi_uaccess_okay() know that we're changing CR3. */
554 13307 : this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
555 13306 : barrier();
556 : }
557 :
558 13312 : if (need_flush) {
559 7711 : this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
560 7712 : this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
561 7712 : load_new_mm_cr3(next->pgd, new_asid, true);
562 :
563 7712 : trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
564 : } else {
565 : /* The new ASID is already up to date. */
566 5601 : load_new_mm_cr3(next->pgd, new_asid, false);
567 :
568 5601 : trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
569 : }
570 :
571 : /* Make sure we write CR3 before loaded_mm. */
572 13311 : barrier();
573 :
574 13311 : this_cpu_write(cpu_tlbstate.loaded_mm, next);
575 13311 : this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
576 :
577 13311 : if (next != real_prev) {
578 13305 : cr4_update_pce_mm(next);
579 13306 : switch_ldt(real_prev, next);
580 : }
581 : }
582 :
583 : /*
584 : * Please ignore the name of this function. It should be called
585 : * switch_to_kernel_thread().
586 : *
587 : * enter_lazy_tlb() is a hint from the scheduler that we are entering a
588 : * kernel thread or other context without an mm. Acceptable implementations
589 : * include doing nothing whatsoever, switching to init_mm, or various clever
590 : * lazy tricks to try to minimize TLB flushes.
591 : *
592 : * The scheduler reserves the right to call enter_lazy_tlb() several times
593 : * in a row. It will notify us that we're going back to a real mm by
594 : * calling switch_mm_irqs_off().
595 : */
596 43731 : void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
597 : {
598 43731 : if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
599 : return;
600 :
601 26524 : this_cpu_write(cpu_tlbstate.is_lazy, true);
602 : }
603 :
604 : /*
605 : * Call this when reinitializing a CPU. It fixes the following potential
606 : * problems:
607 : *
608 : * - The ASID changed from what cpu_tlbstate thinks it is (most likely
609 : * because the CPU was taken down and came back up with CR3's PCID
610 : * bits clear. CPU hotplug can do this.
611 : *
612 : * - The TLB contains junk in slots corresponding to inactive ASIDs.
613 : *
614 : * - The CPU went so far out to lunch that it may have missed a TLB
615 : * flush.
616 : */
617 4 : void initialize_tlbstate_and_flush(void)
618 : {
619 4 : int i;
620 4 : struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
621 4 : u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
622 4 : unsigned long cr3 = __read_cr3();
623 :
624 : /* Assert that CR3 already references the right mm. */
625 8 : WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
626 :
627 : /*
628 : * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
629 : * doesn't work like other CR4 bits because it can only be set from
630 : * long mode.)
631 : */
632 8 : WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
633 : !(cr4_read_shadow() & X86_CR4_PCIDE));
634 :
635 : /* Force ASID 0 and force a TLB flush. */
636 4 : write_cr3(build_cr3(mm->pgd, 0));
637 :
638 : /* Reinitialize tlbstate. */
639 4 : this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
640 4 : this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
641 4 : this_cpu_write(cpu_tlbstate.next_asid, 1);
642 4 : this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
643 4 : this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
644 :
645 28 : for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
646 20 : this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
647 4 : }
648 :
649 : /*
650 : * flush_tlb_func_common()'s memory ordering requirement is that any
651 : * TLB fills that happen after we flush the TLB are ordered after we
652 : * read active_mm's tlb_gen. We don't need any explicit barriers
653 : * because all x86 flush operations are serializing and the
654 : * atomic64_read operation won't be reordered by the compiler.
655 : */
656 78789 : static void flush_tlb_func_common(const struct flush_tlb_info *f,
657 : bool local, enum tlb_flush_reason reason)
658 : {
659 : /*
660 : * We have three different tlb_gen values in here. They are:
661 : *
662 : * - mm_tlb_gen: the latest generation.
663 : * - local_tlb_gen: the generation that this CPU has already caught
664 : * up to.
665 : * - f->new_tlb_gen: the generation that the requester of the flush
666 : * wants us to catch up to.
667 : */
668 78789 : struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
669 78789 : u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
670 78789 : u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
671 78790 : u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
672 :
673 : /* This code cannot presently handle being reentered. */
674 78789 : VM_WARN_ON(!irqs_disabled());
675 :
676 78792 : if (unlikely(loaded_mm == &init_mm))
677 : return;
678 :
679 78791 : VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
680 : loaded_mm->context.ctx_id);
681 :
682 78792 : if (this_cpu_read(cpu_tlbstate.is_lazy)) {
683 : /*
684 : * We're in lazy mode. We need to at least flush our
685 : * paging-structure cache to avoid speculatively reading
686 : * garbage into our TLB. Since switching to init_mm is barely
687 : * slower than a minimal flush, just switch to init_mm.
688 : *
689 : * This should be rare, with native_flush_tlb_others skipping
690 : * IPIs to lazy TLB mode CPUs.
691 : */
692 2817 : switch_mm_irqs_off(NULL, &init_mm, NULL);
693 2817 : return;
694 : }
695 :
696 75975 : if (unlikely(local_tlb_gen == mm_tlb_gen)) {
697 : /*
698 : * There's nothing to do: we're already up to date. This can
699 : * happen if two concurrent flushes happen -- the first flush to
700 : * be handled can catch us all the way up, leaving no work for
701 : * the second flush.
702 : */
703 2579 : trace_tlb_flush(reason, 0);
704 2579 : return;
705 : }
706 :
707 73396 : WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
708 73396 : WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
709 :
710 : /*
711 : * If we get to this point, we know that our TLB is out of date.
712 : * This does not strictly imply that we need to flush (it's
713 : * possible that f->new_tlb_gen <= local_tlb_gen), but we're
714 : * going to need to flush in the very near future, so we might
715 : * as well get it over with.
716 : *
717 : * The only question is whether to do a full or partial flush.
718 : *
719 : * We do a partial flush if requested and two extra conditions
720 : * are met:
721 : *
722 : * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
723 : * we've always done all needed flushes to catch up to
724 : * local_tlb_gen. If, for example, local_tlb_gen == 2 and
725 : * f->new_tlb_gen == 3, then we know that the flush needed to bring
726 : * us up to date for tlb_gen 3 is the partial flush we're
727 : * processing.
728 : *
729 : * As an example of why this check is needed, suppose that there
730 : * are two concurrent flushes. The first is a full flush that
731 : * changes context.tlb_gen from 1 to 2. The second is a partial
732 : * flush that changes context.tlb_gen from 2 to 3. If they get
733 : * processed on this CPU in reverse order, we'll see
734 : * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
735 : * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
736 : * 3, we'd be break the invariant: we'd update local_tlb_gen above
737 : * 1 without the full flush that's needed for tlb_gen 2.
738 : *
739 : * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
740 : * Partial TLB flushes are not all that much cheaper than full TLB
741 : * flushes, so it seems unlikely that it would be a performance win
742 : * to do a partial flush if that won't bring our TLB fully up to
743 : * date. By doing a full flush instead, we can increase
744 : * local_tlb_gen all the way to mm_tlb_gen and we can probably
745 : * avoid another flush in the very near future.
746 : */
747 73396 : if (f->end != TLB_FLUSH_ALL &&
748 68190 : f->new_tlb_gen == local_tlb_gen + 1 &&
749 68193 : f->new_tlb_gen == mm_tlb_gen) {
750 : /* Partial flush */
751 68190 : unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
752 68190 : unsigned long addr = f->start;
753 :
754 169036 : while (addr < f->end) {
755 201687 : flush_tlb_one_user(addr);
756 100846 : addr += 1UL << f->stride_shift;
757 : }
758 68195 : if (local)
759 68195 : count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
760 68195 : trace_tlb_flush(reason, nr_invalidate);
761 : } else {
762 : /* Full flush. */
763 5206 : flush_tlb_local();
764 5206 : if (local)
765 5206 : count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
766 5206 : trace_tlb_flush(reason, TLB_FLUSH_ALL);
767 : }
768 :
769 : /* Both paths above update our state to mm_tlb_gen. */
770 73399 : this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
771 : }
772 :
773 76068 : static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
774 : {
775 76068 : const struct flush_tlb_info *f = info;
776 :
777 76068 : flush_tlb_func_common(f, true, reason);
778 : }
779 :
780 2724 : static void flush_tlb_func_remote(void *info)
781 : {
782 2724 : const struct flush_tlb_info *f = info;
783 :
784 2724 : inc_irq_stat(irq_tlb_count);
785 :
786 2724 : if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
787 : return;
788 :
789 2722 : count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
790 2722 : flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
791 : }
792 :
793 3104 : static bool tlb_is_not_lazy(int cpu, void *data)
794 : {
795 3104 : return !per_cpu(cpu_tlbstate.is_lazy, cpu);
796 : }
797 :
798 3287 : STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
799 : const struct flush_tlb_info *info)
800 : {
801 3287 : count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
802 3287 : if (info->end == TLB_FLUSH_ALL)
803 703 : trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
804 : else
805 2584 : trace_tlb_flush(TLB_REMOTE_SEND_IPI,
806 2584 : (info->end - info->start) >> PAGE_SHIFT);
807 :
808 : /*
809 : * If no page tables were freed, we can skip sending IPIs to
810 : * CPUs in lazy TLB mode. They will flush the CPU themselves
811 : * at the next context switch.
812 : *
813 : * However, if page tables are getting freed, we need to send the
814 : * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
815 : * up on the new contents of what used to be page tables, while
816 : * doing a speculative memory access.
817 : */
818 3287 : if (info->freed_tables)
819 707 : smp_call_function_many(cpumask, flush_tlb_func_remote,
820 : (void *)info, 1);
821 : else
822 2580 : on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
823 : (void *)info, 1, cpumask);
824 3287 : }
825 :
826 3287 : void flush_tlb_others(const struct cpumask *cpumask,
827 : const struct flush_tlb_info *info)
828 : {
829 3287 : __flush_tlb_others(cpumask, info);
830 3287 : }
831 :
832 : /*
833 : * See Documentation/x86/tlb.rst for details. We choose 33
834 : * because it is large enough to cover the vast majority (at
835 : * least 95%) of allocations, and is small enough that we are
836 : * confident it will not cause too much overhead. Each single
837 : * flush is about 100 ns, so this caps the maximum overhead at
838 : * _about_ 3,000 ns.
839 : *
840 : * This is in units of pages.
841 : */
842 : unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
843 :
844 : static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
845 :
846 : #ifdef CONFIG_DEBUG_VM
847 : static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
848 : #endif
849 :
850 83857 : static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
851 : unsigned long start, unsigned long end,
852 : unsigned int stride_shift, bool freed_tables,
853 : u64 new_tlb_gen)
854 : {
855 83857 : struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
856 :
857 : #ifdef CONFIG_DEBUG_VM
858 : /*
859 : * Ensure that the following code is non-reentrant and flush_tlb_info
860 : * is not overwritten. This means no TLB flushing is initiated by
861 : * interrupt handlers and machine-check exception handlers.
862 : */
863 83857 : BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
864 : #endif
865 :
866 83858 : info->start = start;
867 83858 : info->end = end;
868 83858 : info->mm = mm;
869 83858 : info->stride_shift = stride_shift;
870 83858 : info->freed_tables = freed_tables;
871 83858 : info->new_tlb_gen = new_tlb_gen;
872 :
873 83858 : return info;
874 : }
875 :
876 83857 : static inline void put_flush_tlb_info(void)
877 : {
878 : #ifdef CONFIG_DEBUG_VM
879 : /* Complete reentrency prevention checks */
880 83857 : barrier();
881 83857 : this_cpu_dec(flush_tlb_info_idx);
882 : #endif
883 : }
884 :
885 83844 : void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
886 : unsigned long end, unsigned int stride_shift,
887 : bool freed_tables)
888 : {
889 83844 : struct flush_tlb_info *info;
890 83844 : u64 new_tlb_gen;
891 83844 : int cpu;
892 :
893 83844 : cpu = get_cpu();
894 :
895 : /* Should we flush just the requested range? */
896 83845 : if ((end == TLB_FLUSH_ALL) ||
897 70803 : ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
898 15540 : start = 0;
899 15540 : end = TLB_FLUSH_ALL;
900 : }
901 :
902 : /* This is also a barrier that synchronizes with switch_mm(). */
903 83845 : new_tlb_gen = inc_mm_tlb_gen(mm);
904 :
905 83845 : info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
906 : new_tlb_gen);
907 :
908 83846 : if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
909 152151 : lockdep_assert_irqs_enabled();
910 76076 : local_irq_disable();
911 76068 : flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
912 76074 : local_irq_enable();
913 : }
914 :
915 83839 : if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
916 3287 : flush_tlb_others(mm_cpumask(mm), info);
917 :
918 83845 : put_flush_tlb_info();
919 83845 : put_cpu();
920 83844 : }
921 :
922 :
923 129 : static void do_flush_tlb_all(void *info)
924 : {
925 129 : count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
926 129 : __flush_tlb_all();
927 139 : }
928 :
929 27 : void flush_tlb_all(void)
930 : {
931 27 : count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
932 27 : on_each_cpu(do_flush_tlb_all, NULL, 1);
933 27 : }
934 :
935 41 : static void do_kernel_range_flush(void *info)
936 : {
937 41 : struct flush_tlb_info *f = info;
938 41 : unsigned long addr;
939 :
940 : /* flush range by one by one 'invlpg' */
941 417 : for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
942 369 : flush_tlb_one_kernel(addr);
943 48 : }
944 :
945 22 : void flush_tlb_kernel_range(unsigned long start, unsigned long end)
946 : {
947 : /* Balance as user space task's flush, a bit conservative */
948 22 : if (end == TLB_FLUSH_ALL ||
949 22 : (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
950 10 : on_each_cpu(do_flush_tlb_all, NULL, 1);
951 : } else {
952 12 : struct flush_tlb_info *info;
953 :
954 12 : preempt_disable();
955 12 : info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
956 :
957 12 : on_each_cpu(do_kernel_range_flush, info, 1);
958 :
959 12 : put_flush_tlb_info();
960 12 : preempt_enable();
961 : }
962 22 : }
963 :
964 : /*
965 : * This can be used from process context to figure out what the value of
966 : * CR3 is without needing to do a (slow) __read_cr3().
967 : *
968 : * It's intended to be used for code like KVM that sneakily changes CR3
969 : * and needs to restore it. It needs to be used very carefully.
970 : */
971 0 : unsigned long __get_current_cr3_fast(void)
972 : {
973 0 : unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
974 0 : this_cpu_read(cpu_tlbstate.loaded_mm_asid));
975 :
976 : /* For now, be very restrictive about when this can be called. */
977 0 : VM_WARN_ON(in_nmi() || preemptible());
978 :
979 0 : VM_BUG_ON(cr3 != __read_cr3());
980 0 : return cr3;
981 : }
982 : EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
983 :
984 : /*
985 : * Flush one page in the kernel mapping
986 : */
987 714 : void flush_tlb_one_kernel(unsigned long addr)
988 : {
989 714 : count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
990 :
991 : /*
992 : * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
993 : * paravirt equivalent. Even with PCID, this is sufficient: we only
994 : * use PCID if we also use global PTEs for the kernel mapping, and
995 : * INVLPG flushes global translations across all address spaces.
996 : *
997 : * If PTI is on, then the kernel is mapped with non-global PTEs, and
998 : * __flush_tlb_one_user() will flush the given address for the current
999 : * kernel address space and for its usermode counterpart, but it does
1000 : * not flush it for other address spaces.
1001 : */
1002 1433 : flush_tlb_one_user(addr);
1003 :
1004 719 : if (!static_cpu_has(X86_FEATURE_PTI))
1005 : return;
1006 :
1007 : /*
1008 : * See above. We need to propagate the flush to all other address
1009 : * spaces. In principle, we only need to propagate it to kernelmode
1010 : * address spaces, but the extra bookkeeping we would need is not
1011 : * worth it.
1012 : */
1013 0 : this_cpu_write(cpu_tlbstate.invalidate_other, true);
1014 : }
1015 :
1016 : /*
1017 : * Flush one page in the user mapping
1018 : */
1019 101550 : STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1020 : {
1021 101550 : u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1022 :
1023 101553 : asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1024 :
1025 101567 : if (!static_cpu_has(X86_FEATURE_PTI))
1026 : return;
1027 :
1028 : /*
1029 : * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1030 : * Just use invalidate_user_asid() in case we are called early.
1031 : */
1032 0 : if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1033 101567 : invalidate_user_asid(loaded_mm_asid);
1034 : else
1035 0 : invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1036 : }
1037 :
1038 101555 : void flush_tlb_one_user(unsigned long addr)
1039 : {
1040 101555 : __flush_tlb_one_user(addr);
1041 0 : }
1042 :
1043 : /*
1044 : * Flush everything
1045 : */
1046 130 : STATIC_NOPV void native_flush_tlb_global(void)
1047 : {
1048 130 : unsigned long cr4, flags;
1049 :
1050 130 : if (static_cpu_has(X86_FEATURE_INVPCID)) {
1051 : /*
1052 : * Using INVPCID is considerably faster than a pair of writes
1053 : * to CR4 sandwiched inside an IRQ flag save/restore.
1054 : *
1055 : * Note, this works with CR4.PCIDE=0 or 1.
1056 : */
1057 131 : invpcid_flush_all();
1058 143 : return;
1059 : }
1060 :
1061 : /*
1062 : * Read-modify-write to CR4 - protect it from preemption and
1063 : * from interrupts. (Use the raw variant because this code can
1064 : * be called from deep inside debugging code.)
1065 : */
1066 0 : raw_local_irq_save(flags);
1067 :
1068 0 : cr4 = this_cpu_read(cpu_tlbstate.cr4);
1069 : /* toggle PGE */
1070 0 : native_write_cr4(cr4 ^ X86_CR4_PGE);
1071 : /* write old PGE again and flush TLBs */
1072 0 : native_write_cr4(cr4);
1073 :
1074 0 : raw_local_irq_restore(flags);
1075 : }
1076 :
1077 : /*
1078 : * Flush the entire current user mapping
1079 : */
1080 5206 : STATIC_NOPV void native_flush_tlb_local(void)
1081 : {
1082 : /*
1083 : * Preemption or interrupts must be disabled to protect the access
1084 : * to the per CPU variable and to prevent being preempted between
1085 : * read_cr3() and write_cr3().
1086 : */
1087 5206 : WARN_ON_ONCE(preemptible());
1088 :
1089 5206 : invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1090 :
1091 : /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1092 5206 : native_write_cr3(__native_read_cr3());
1093 5206 : }
1094 :
1095 5206 : void flush_tlb_local(void)
1096 : {
1097 5206 : __flush_tlb_local();
1098 0 : }
1099 :
1100 : /*
1101 : * Flush everything
1102 : */
1103 132 : void __flush_tlb_all(void)
1104 : {
1105 : /*
1106 : * This is to catch users with enabled preemption and the PGE feature
1107 : * and don't trigger the warning in __native_flush_tlb().
1108 : */
1109 132 : VM_WARN_ON_ONCE(preemptible());
1110 :
1111 132 : if (boot_cpu_has(X86_FEATURE_PGE)) {
1112 133 : __flush_tlb_global();
1113 : } else {
1114 : /*
1115 : * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1116 : */
1117 0 : flush_tlb_local();
1118 : }
1119 143 : }
1120 : EXPORT_SYMBOL_GPL(__flush_tlb_all);
1121 :
1122 : /*
1123 : * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
1124 : * This means that the 'struct flush_tlb_info' that describes which mappings to
1125 : * flush is actually fixed. We therefore set a single fixed struct and use it in
1126 : * arch_tlbbatch_flush().
1127 : */
1128 : static const struct flush_tlb_info full_flush_tlb_info = {
1129 : .mm = NULL,
1130 : .start = 0,
1131 : .end = TLB_FLUSH_ALL,
1132 : };
1133 :
1134 0 : void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1135 : {
1136 0 : int cpu = get_cpu();
1137 :
1138 0 : if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1139 0 : lockdep_assert_irqs_enabled();
1140 0 : local_irq_disable();
1141 0 : flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
1142 0 : local_irq_enable();
1143 : }
1144 :
1145 0 : if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
1146 0 : flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
1147 :
1148 0 : cpumask_clear(&batch->cpumask);
1149 :
1150 0 : put_cpu();
1151 0 : }
1152 :
1153 : /*
1154 : * Blindly accessing user memory from NMI context can be dangerous
1155 : * if we're in the middle of switching the current user task or
1156 : * switching the loaded mm. It can also be dangerous if we
1157 : * interrupted some kernel code that was temporarily using a
1158 : * different mm.
1159 : */
1160 1 : bool nmi_uaccess_okay(void)
1161 : {
1162 1 : struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1163 1 : struct mm_struct *current_mm = current->mm;
1164 :
1165 1 : VM_WARN_ON_ONCE(!loaded_mm);
1166 :
1167 : /*
1168 : * The condition we want to check is
1169 : * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1170 : * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1171 : * is supposed to be reasonably fast.
1172 : *
1173 : * Instead, we check the almost equivalent but somewhat conservative
1174 : * condition below, and we rely on the fact that switch_mm_irqs_off()
1175 : * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1176 : */
1177 1 : if (loaded_mm != current_mm)
1178 : return false;
1179 :
1180 1 : VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1181 :
1182 : return true;
1183 : }
1184 :
1185 0 : static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1186 : size_t count, loff_t *ppos)
1187 : {
1188 0 : char buf[32];
1189 0 : unsigned int len;
1190 :
1191 0 : len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1192 0 : return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1193 : }
1194 :
1195 0 : static ssize_t tlbflush_write_file(struct file *file,
1196 : const char __user *user_buf, size_t count, loff_t *ppos)
1197 : {
1198 0 : char buf[32];
1199 0 : ssize_t len;
1200 0 : int ceiling;
1201 :
1202 0 : len = min(count, sizeof(buf) - 1);
1203 0 : if (copy_from_user(buf, user_buf, len))
1204 : return -EFAULT;
1205 :
1206 0 : buf[len] = '\0';
1207 0 : if (kstrtoint(buf, 0, &ceiling))
1208 : return -EINVAL;
1209 :
1210 0 : if (ceiling < 0)
1211 : return -EINVAL;
1212 :
1213 0 : tlb_single_page_flush_ceiling = ceiling;
1214 0 : return count;
1215 : }
1216 :
1217 : static const struct file_operations fops_tlbflush = {
1218 : .read = tlbflush_read_file,
1219 : .write = tlbflush_write_file,
1220 : .llseek = default_llseek,
1221 : };
1222 :
1223 1 : static int __init create_tlb_single_page_flush_ceiling(void)
1224 : {
1225 1 : debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1226 : arch_debugfs_dir, NULL, &fops_tlbflush);
1227 1 : return 0;
1228 : }
1229 : late_initcall(create_tlb_single_page_flush_ceiling);
|