LCOV - code coverage report
Current view: top level - arch/x86/mm - tlb.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 270 358 75.4 %
Date: 2021-04-22 12:43:58 Functions: 27 37 73.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : #include <linux/init.h>
       3             : 
       4             : #include <linux/mm.h>
       5             : #include <linux/spinlock.h>
       6             : #include <linux/smp.h>
       7             : #include <linux/interrupt.h>
       8             : #include <linux/export.h>
       9             : #include <linux/cpu.h>
      10             : #include <linux/debugfs.h>
      11             : 
      12             : #include <asm/tlbflush.h>
      13             : #include <asm/mmu_context.h>
      14             : #include <asm/nospec-branch.h>
      15             : #include <asm/cache.h>
      16             : #include <asm/apic.h>
      17             : 
      18             : #include "mm_internal.h"
      19             : 
      20             : #ifdef CONFIG_PARAVIRT
      21             : # define STATIC_NOPV
      22             : #else
      23             : # define STATIC_NOPV                    static
      24             : # define __flush_tlb_local              native_flush_tlb_local
      25             : # define __flush_tlb_global             native_flush_tlb_global
      26             : # define __flush_tlb_one_user(addr)     native_flush_tlb_one_user(addr)
      27             : # define __flush_tlb_others(msk, info)  native_flush_tlb_others(msk, info)
      28             : #endif
      29             : 
      30             : /*
      31             :  *      TLB flushing, formerly SMP-only
      32             :  *              c/o Linus Torvalds.
      33             :  *
      34             :  *      These mean you can really definitely utterly forget about
      35             :  *      writing to user space from interrupts. (Its not allowed anyway).
      36             :  *
      37             :  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
      38             :  *
      39             :  *      More scalable flush, from Andi Kleen
      40             :  *
      41             :  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
      42             :  */
      43             : 
      44             : /*
      45             :  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
      46             :  * stored in cpu_tlb_state.last_user_mm_ibpb.
      47             :  */
      48             : #define LAST_USER_MM_IBPB       0x1UL
      49             : 
      50             : /*
      51             :  * The x86 feature is called PCID (Process Context IDentifier). It is similar
      52             :  * to what is traditionally called ASID on the RISC processors.
      53             :  *
      54             :  * We don't use the traditional ASID implementation, where each process/mm gets
      55             :  * its own ASID and flush/restart when we run out of ASID space.
      56             :  *
      57             :  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
      58             :  * that came by on this CPU, allowing cheaper switch_mm between processes on
      59             :  * this CPU.
      60             :  *
      61             :  * We end up with different spaces for different things. To avoid confusion we
      62             :  * use different names for each of them:
      63             :  *
      64             :  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
      65             :  *         the canonical identifier for an mm
      66             :  *
      67             :  * kPCID - [1, TLB_NR_DYN_ASIDS]
      68             :  *         the value we write into the PCID part of CR3; corresponds to the
      69             :  *         ASID+1, because PCID 0 is special.
      70             :  *
      71             :  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
      72             :  *         for KPTI each mm has two address spaces and thus needs two
      73             :  *         PCID values, but we can still do with a single ASID denomination
      74             :  *         for each mm. Corresponds to kPCID + 2048.
      75             :  *
      76             :  */
      77             : 
      78             : /* There are 12 bits of space for ASIDS in CR3 */
      79             : #define CR3_HW_ASID_BITS                12
      80             : 
      81             : /*
      82             :  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
      83             :  * user/kernel switches
      84             :  */
      85             : #ifdef CONFIG_PAGE_TABLE_ISOLATION
      86             : # define PTI_CONSUMED_PCID_BITS 1
      87             : #else
      88             : # define PTI_CONSUMED_PCID_BITS 0
      89             : #endif
      90             : 
      91             : #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
      92             : 
      93             : /*
      94             :  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
      95             :  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
      96             :  * use by non-PCID-aware users.
      97             :  */
      98             : #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
      99             : 
     100             : /*
     101             :  * Given @asid, compute kPCID
     102             :  */
     103       34890 : static inline u16 kern_pcid(u16 asid)
     104             : {
     105           0 :         VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
     106             : 
     107             : #ifdef CONFIG_PAGE_TABLE_ISOLATION
     108             :         /*
     109             :          * Make sure that the dynamic ASID space does not confict with the
     110             :          * bit we are using to switch between user and kernel ASIDs.
     111             :          */
     112             :         BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
     113             : 
     114             :         /*
     115             :          * The ASID being passed in here should have respected the
     116             :          * MAX_ASID_AVAILABLE and thus never have the switch bit set.
     117             :          */
     118             :         VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
     119             : #endif
     120             :         /*
     121             :          * The dynamically-assigned ASIDs that get passed in are small
     122             :          * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
     123             :          * so do not bother to clear it.
     124             :          *
     125             :          * If PCID is on, ASID-aware code paths put the ASID+1 into the
     126             :          * PCID bits.  This serves two purposes.  It prevents a nasty
     127             :          * situation in which PCID-unaware code saves CR3, loads some other
     128             :          * value (with PCID == 0), and then restores CR3, thus corrupting
     129             :          * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
     130             :          * that any bugs involving loading a PCID-enabled CR3 with
     131             :          * CR4.PCIDE off will trigger deterministically.
     132             :          */
     133       34890 :         return asid + 1;
     134             : }
     135             : 
     136             : /*
     137             :  * Given @asid, compute uPCID
     138             :  */
     139           0 : static inline u16 user_pcid(u16 asid)
     140             : {
     141           0 :         u16 ret = kern_pcid(asid);
     142             : #ifdef CONFIG_PAGE_TABLE_ISOLATION
     143             :         ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
     144             : #endif
     145           0 :         return ret;
     146             : }
     147             : 
     148       29289 : static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
     149             : {
     150       29289 :         if (static_cpu_has(X86_FEATURE_PCID)) {
     151       33177 :                 return __sme_pa(pgd) | kern_pcid(asid);
     152             :         } else {
     153           0 :                 VM_WARN_ON_ONCE(asid != 0);
     154           0 :                 return __sme_pa(pgd);
     155             :         }
     156             : }
     157             : 
     158        5601 : static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
     159             : {
     160        5601 :         VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
     161             :         /*
     162             :          * Use boot_cpu_has() instead of this_cpu_has() as this function
     163             :          * might be called during early boot. This should work even after
     164             :          * boot because all CPU's the have same capabilities:
     165             :          */
     166        5601 :         VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
     167        7581 :         return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
     168             : }
     169             : 
     170             : /*
     171             :  * We get here when we do something requiring a TLB invalidation
     172             :  * but could not go invalidate all of the contexts.  We do the
     173             :  * necessary invalidation by clearing out the 'ctx_id' which
     174             :  * forces a TLB flush when the context is loaded.
     175             :  */
     176           0 : static void clear_asid_other(void)
     177             : {
     178           0 :         u16 asid;
     179             : 
     180             :         /*
     181             :          * This is only expected to be set if we have disabled
     182             :          * kernel _PAGE_GLOBAL pages.
     183             :          */
     184           0 :         if (!static_cpu_has(X86_FEATURE_PTI)) {
     185           0 :                 WARN_ON_ONCE(1);
     186           0 :                 return;
     187             :         }
     188             : 
     189           0 :         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
     190             :                 /* Do not need to flush the current asid */
     191           0 :                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
     192           0 :                         continue;
     193             :                 /*
     194             :                  * Make sure the next time we go to switch to
     195             :                  * this asid, we do a flush:
     196             :                  */
     197           0 :                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
     198             :         }
     199           0 :         this_cpu_write(cpu_tlbstate.invalidate_other, false);
     200             : }
     201             : 
     202             : atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
     203             : 
     204             : 
     205       13306 : static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
     206             :                             u16 *new_asid, bool *need_flush)
     207             : {
     208       13306 :         u16 asid;
     209             : 
     210       13306 :         if (!static_cpu_has(X86_FEATURE_PCID)) {
     211           0 :                 *new_asid = 0;
     212           0 :                 *need_flush = true;
     213           0 :                 return;
     214             :         }
     215             : 
     216       13306 :         if (this_cpu_read(cpu_tlbstate.invalidate_other))
     217           0 :                 clear_asid_other();
     218             : 
     219       72731 :         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
     220       65164 :                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
     221       65165 :                     next->context.ctx_id)
     222       59425 :                         continue;
     223             : 
     224        5740 :                 *new_asid = asid;
     225        5740 :                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
     226             :                                next_tlb_gen);
     227        5740 :                 return;
     228             :         }
     229             : 
     230             :         /*
     231             :          * We don't currently own an ASID slot on this CPU.
     232             :          * Allocate a slot.
     233             :          */
     234        7567 :         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
     235        7567 :         if (*new_asid >= TLB_NR_DYN_ASIDS) {
     236        1259 :                 *new_asid = 0;
     237        7567 :                 this_cpu_write(cpu_tlbstate.next_asid, 1);
     238             :         }
     239        7567 :         *need_flush = true;
     240             : }
     241             : 
     242             : /*
     243             :  * Given an ASID, flush the corresponding user ASID.  We can delay this
     244             :  * until the next time we switch to it.
     245             :  *
     246             :  * See SWITCH_TO_USER_CR3.
     247             :  */
     248       12918 : static inline void invalidate_user_asid(u16 asid)
     249             : {
     250             :         /* There is no user ASID if address space separation is off */
     251       12918 :         if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
     252       12918 :                 return;
     253             : 
     254             :         /*
     255             :          * We only have a single ASID if PCID is off and the CR3
     256             :          * write will have flushed it.
     257             :          */
     258             :         if (!cpu_feature_enabled(X86_FEATURE_PCID))
     259             :                 return;
     260             : 
     261             :         if (!static_cpu_has(X86_FEATURE_PTI))
     262             :                 return;
     263             : 
     264             :         __set_bit(kern_pcid(asid),
     265             :                   (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
     266             : }
     267             : 
     268       13313 : static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
     269             : {
     270       13313 :         unsigned long new_mm_cr3;
     271             : 
     272       13313 :         if (need_flush) {
     273        7712 :                 invalidate_user_asid(new_asid);
     274        7712 :                 new_mm_cr3 = build_cr3(pgdir, new_asid);
     275             :         } else {
     276        5601 :                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
     277             :         }
     278             : 
     279             :         /*
     280             :          * Caution: many callers of this function expect
     281             :          * that load_cr3() is serializing and orders TLB
     282             :          * fills with respect to the mm_cpumask writes.
     283             :          */
     284       13313 :         write_cr3(new_mm_cr3);
     285       13313 : }
     286             : 
     287           0 : void leave_mm(int cpu)
     288             : {
     289           0 :         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
     290             : 
     291             :         /*
     292             :          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
     293             :          * If so, our callers still expect us to flush the TLB, but there
     294             :          * aren't any user TLB entries in init_mm to worry about.
     295             :          *
     296             :          * This needs to happen before any other sanity checks due to
     297             :          * intel_idle's shenanigans.
     298             :          */
     299           0 :         if (loaded_mm == &init_mm)
     300             :                 return;
     301             : 
     302             :         /* Warn if we're not lazy. */
     303           0 :         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
     304             : 
     305           0 :         switch_mm(NULL, &init_mm, NULL);
     306             : }
     307             : EXPORT_SYMBOL_GPL(leave_mm);
     308             : 
     309        2405 : void switch_mm(struct mm_struct *prev, struct mm_struct *next,
     310             :                struct task_struct *tsk)
     311             : {
     312        2405 :         unsigned long flags;
     313             : 
     314        4810 :         local_irq_save(flags);
     315        2405 :         switch_mm_irqs_off(prev, next, tsk);
     316        2405 :         local_irq_restore(flags);
     317        2405 : }
     318             : 
     319           0 : static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
     320             : {
     321           0 :         unsigned long next_tif = task_thread_info(next)->flags;
     322           0 :         unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
     323             : 
     324           0 :         return (unsigned long)next->mm | ibpb;
     325             : }
     326             : 
     327       13305 : static void cond_ibpb(struct task_struct *next)
     328             : {
     329       13305 :         if (!next || !next->mm)
     330             :                 return;
     331             : 
     332             :         /*
     333             :          * Both, the conditional and the always IBPB mode use the mm
     334             :          * pointer to avoid the IBPB when switching between tasks of the
     335             :          * same process. Using the mm pointer instead of mm->context.ctx_id
     336             :          * opens a hypothetical hole vs. mm_struct reuse, which is more or
     337             :          * less impossible to control by an attacker. Aside of that it
     338             :          * would only affect the first schedule so the theoretically
     339             :          * exposed data is not really interesting.
     340             :          */
     341        7855 :         if (static_branch_likely(&switch_mm_cond_ibpb)) {
     342           0 :                 unsigned long prev_mm, next_mm;
     343             : 
     344             :                 /*
     345             :                  * This is a bit more complex than the always mode because
     346             :                  * it has to handle two cases:
     347             :                  *
     348             :                  * 1) Switch from a user space task (potential attacker)
     349             :                  *    which has TIF_SPEC_IB set to a user space task
     350             :                  *    (potential victim) which has TIF_SPEC_IB not set.
     351             :                  *
     352             :                  * 2) Switch from a user space task (potential attacker)
     353             :                  *    which has TIF_SPEC_IB not set to a user space task
     354             :                  *    (potential victim) which has TIF_SPEC_IB set.
     355             :                  *
     356             :                  * This could be done by unconditionally issuing IBPB when
     357             :                  * a task which has TIF_SPEC_IB set is either scheduled in
     358             :                  * or out. Though that results in two flushes when:
     359             :                  *
     360             :                  * - the same user space task is scheduled out and later
     361             :                  *   scheduled in again and only a kernel thread ran in
     362             :                  *   between.
     363             :                  *
     364             :                  * - a user space task belonging to the same process is
     365             :                  *   scheduled in after a kernel thread ran in between
     366             :                  *
     367             :                  * - a user space task belonging to the same process is
     368             :                  *   scheduled in immediately.
     369             :                  *
     370             :                  * Optimize this with reasonably small overhead for the
     371             :                  * above cases. Mangle the TIF_SPEC_IB bit into the mm
     372             :                  * pointer of the incoming task which is stored in
     373             :                  * cpu_tlbstate.last_user_mm_ibpb for comparison.
     374             :                  */
     375           0 :                 next_mm = mm_mangle_tif_spec_ib(next);
     376           0 :                 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
     377             : 
     378             :                 /*
     379             :                  * Issue IBPB only if the mm's are different and one or
     380             :                  * both have the IBPB bit set.
     381             :                  */
     382           0 :                 if (next_mm != prev_mm &&
     383           0 :                     (next_mm | prev_mm) & LAST_USER_MM_IBPB)
     384           0 :                         indirect_branch_prediction_barrier();
     385             : 
     386        7855 :                 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
     387             :         }
     388             : 
     389        7855 :         if (static_branch_unlikely(&switch_mm_always_ibpb)) {
     390             :                 /*
     391             :                  * Only flush when switching to a user space task with a
     392             :                  * different context than the user space task which ran
     393             :                  * last on this CPU.
     394             :                  */
     395           0 :                 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
     396           0 :                         indirect_branch_prediction_barrier();
     397        7855 :                         this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
     398             :                 }
     399             :         }
     400             : }
     401             : 
     402             : #ifdef CONFIG_PERF_EVENTS
     403       13305 : static inline void cr4_update_pce_mm(struct mm_struct *mm)
     404             : {
     405       13305 :         if (static_branch_unlikely(&rdpmc_always_available_key) ||
     406       13307 :             (!static_branch_unlikely(&rdpmc_never_available_key) &&
     407       13307 :              atomic_read(&mm->context.perf_rdpmc_allowed)))
     408           0 :                 cr4_set_bits_irqsoff(X86_CR4_PCE);
     409             :         else
     410       13306 :                 cr4_clear_bits_irqsoff(X86_CR4_PCE);
     411       13307 : }
     412             : 
     413           0 : void cr4_update_pce(void *ignored)
     414             : {
     415           0 :         cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
     416           0 : }
     417             : 
     418             : #else
     419             : static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
     420             : #endif
     421             : 
     422       21570 : void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
     423             :                         struct task_struct *tsk)
     424             : {
     425       21570 :         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
     426       21572 :         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
     427       21574 :         bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
     428       21574 :         unsigned cpu = smp_processor_id();
     429       21574 :         u64 next_tlb_gen;
     430       21574 :         bool need_flush;
     431       21574 :         u16 new_asid;
     432             : 
     433             :         /*
     434             :          * NB: The scheduler will call us with prev == next when switching
     435             :          * from lazy TLB mode to normal mode if active_mm isn't changing.
     436             :          * When this happens, we don't assume that CR3 (and hence
     437             :          * cpu_tlbstate.loaded_mm) matches next.
     438             :          *
     439             :          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
     440             :          */
     441             : 
     442             :         /* We don't want flush_tlb_func_* to run concurrently with us. */
     443       21574 :         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
     444       21574 :                 WARN_ON_ONCE(!irqs_disabled());
     445             : 
     446             :         /*
     447             :          * Verify that CR3 is what we think it is.  This will catch
     448             :          * hypothetical buggy code that directly switches to swapper_pg_dir
     449             :          * without going through leave_mm() / switch_mm_irqs_off() or that
     450             :          * does something like write_cr3(read_cr3_pa()).
     451             :          *
     452             :          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
     453             :          * isn't free.
     454             :          */
     455             : #ifdef CONFIG_DEBUG_VM
     456       21573 :         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
     457             :                 /*
     458             :                  * If we were to BUG here, we'd be very likely to kill
     459             :                  * the system so hard that we don't see the call trace.
     460             :                  * Try to recover instead by ignoring the error and doing
     461             :                  * a global flush to minimize the chance of corruption.
     462             :                  *
     463             :                  * (This is far from being a fully correct recovery.
     464             :                  *  Architecturally, the CPU could prefetch something
     465             :                  *  back into an incorrect ASID slot and leave it there
     466             :                  *  to cause trouble down the road.  It's better than
     467             :                  *  nothing, though.)
     468             :                  */
     469           0 :                 __flush_tlb_all();
     470             :         }
     471             : #endif
     472       21572 :         this_cpu_write(cpu_tlbstate.is_lazy, false);
     473             : 
     474             :         /*
     475             :          * The membarrier system call requires a full memory barrier and
     476             :          * core serialization before returning to user-space, after
     477             :          * storing to rq->curr, when changing mm.  This is because
     478             :          * membarrier() sends IPIs to all CPUs that are in the target mm
     479             :          * to make them issue memory barriers.  However, if another CPU
     480             :          * switches to/from the target mm concurrently with
     481             :          * membarrier(), it can cause that CPU not to receive an IPI
     482             :          * when it really should issue a memory barrier.  Writing to CR3
     483             :          * provides that full memory barrier and core serializing
     484             :          * instruction.
     485             :          */
     486       21572 :         if (real_prev == next) {
     487        8267 :                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
     488             :                            next->context.ctx_id);
     489             : 
     490             :                 /*
     491             :                  * Even in lazy TLB mode, the CPU should stay set in the
     492             :                  * mm_cpumask. The TLB shootdown code can figure out from
     493             :                  * from cpu_tlbstate.is_lazy whether or not to send an IPI.
     494             :                  */
     495       16534 :                 if (WARN_ON_ONCE(real_prev != &init_mm &&
     496             :                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
     497           0 :                         cpumask_set_cpu(cpu, mm_cpumask(next));
     498             : 
     499             :                 /*
     500             :                  * If the CPU is not in lazy TLB mode, we are just switching
     501             :                  * from one thread in a process to another thread in the same
     502             :                  * process. No TLB flush required.
     503             :                  */
     504        8267 :                 if (!was_lazy)
     505        8262 :                         return;
     506             : 
     507             :                 /*
     508             :                  * Read the tlb_gen to check whether a flush is needed.
     509             :                  * If the TLB is up to date, just use it.
     510             :                  * The barrier synchronizes with the tlb_gen increment in
     511             :                  * the TLB shootdown code.
     512             :                  */
     513        8135 :                 smp_mb();
     514        8136 :                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
     515        8136 :                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
     516             :                                 next_tlb_gen)
     517             :                         return;
     518             : 
     519             :                 /*
     520             :                  * TLB contents went out of date while we were in lazy
     521             :                  * mode. Fall through to the TLB switching code below.
     522             :                  */
     523           6 :                 new_asid = prev_asid;
     524           6 :                 need_flush = true;
     525             :         } else {
     526             :                 /*
     527             :                  * Avoid user/user BTB poisoning by flushing the branch
     528             :                  * predictor when switching between processes. This stops
     529             :                  * one process from doing Spectre-v2 attacks on another.
     530             :                  */
     531       13305 :                 cond_ibpb(tsk);
     532             : 
     533             :                 /*
     534             :                  * Stop remote flushes for the previous mm.
     535             :                  * Skip kernel threads; we never send init_mm TLB flushing IPIs,
     536             :                  * but the bitmap manipulation can cause cache line contention.
     537             :                  */
     538       13305 :                 if (real_prev != &init_mm) {
     539       10371 :                         VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
     540             :                                                 mm_cpumask(real_prev)));
     541       10373 :                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
     542             :                 }
     543             : 
     544             :                 /*
     545             :                  * Start remote flushes and then read tlb_gen.
     546             :                  */
     547       13307 :                 if (next != &init_mm)
     548       10376 :                         cpumask_set_cpu(cpu, mm_cpumask(next));
     549       13307 :                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
     550             : 
     551       13306 :                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
     552             : 
     553             :                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
     554       13307 :                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
     555       13306 :                 barrier();
     556             :         }
     557             : 
     558       13312 :         if (need_flush) {
     559        7711 :                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
     560        7712 :                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
     561        7712 :                 load_new_mm_cr3(next->pgd, new_asid, true);
     562             : 
     563        7712 :                 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
     564             :         } else {
     565             :                 /* The new ASID is already up to date. */
     566        5601 :                 load_new_mm_cr3(next->pgd, new_asid, false);
     567             : 
     568        5601 :                 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
     569             :         }
     570             : 
     571             :         /* Make sure we write CR3 before loaded_mm. */
     572       13311 :         barrier();
     573             : 
     574       13311 :         this_cpu_write(cpu_tlbstate.loaded_mm, next);
     575       13311 :         this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
     576             : 
     577       13311 :         if (next != real_prev) {
     578       13305 :                 cr4_update_pce_mm(next);
     579       13306 :                 switch_ldt(real_prev, next);
     580             :         }
     581             : }
     582             : 
     583             : /*
     584             :  * Please ignore the name of this function.  It should be called
     585             :  * switch_to_kernel_thread().
     586             :  *
     587             :  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
     588             :  * kernel thread or other context without an mm.  Acceptable implementations
     589             :  * include doing nothing whatsoever, switching to init_mm, or various clever
     590             :  * lazy tricks to try to minimize TLB flushes.
     591             :  *
     592             :  * The scheduler reserves the right to call enter_lazy_tlb() several times
     593             :  * in a row.  It will notify us that we're going back to a real mm by
     594             :  * calling switch_mm_irqs_off().
     595             :  */
     596       43731 : void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
     597             : {
     598       43731 :         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
     599             :                 return;
     600             : 
     601       26524 :         this_cpu_write(cpu_tlbstate.is_lazy, true);
     602             : }
     603             : 
     604             : /*
     605             :  * Call this when reinitializing a CPU.  It fixes the following potential
     606             :  * problems:
     607             :  *
     608             :  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
     609             :  *   because the CPU was taken down and came back up with CR3's PCID
     610             :  *   bits clear.  CPU hotplug can do this.
     611             :  *
     612             :  * - The TLB contains junk in slots corresponding to inactive ASIDs.
     613             :  *
     614             :  * - The CPU went so far out to lunch that it may have missed a TLB
     615             :  *   flush.
     616             :  */
     617           4 : void initialize_tlbstate_and_flush(void)
     618             : {
     619           4 :         int i;
     620           4 :         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
     621           4 :         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
     622           4 :         unsigned long cr3 = __read_cr3();
     623             : 
     624             :         /* Assert that CR3 already references the right mm. */
     625           8 :         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
     626             : 
     627             :         /*
     628             :          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
     629             :          * doesn't work like other CR4 bits because it can only be set from
     630             :          * long mode.)
     631             :          */
     632           8 :         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
     633             :                 !(cr4_read_shadow() & X86_CR4_PCIDE));
     634             : 
     635             :         /* Force ASID 0 and force a TLB flush. */
     636           4 :         write_cr3(build_cr3(mm->pgd, 0));
     637             : 
     638             :         /* Reinitialize tlbstate. */
     639           4 :         this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
     640           4 :         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
     641           4 :         this_cpu_write(cpu_tlbstate.next_asid, 1);
     642           4 :         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
     643           4 :         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
     644             : 
     645          28 :         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
     646          20 :                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
     647           4 : }
     648             : 
     649             : /*
     650             :  * flush_tlb_func_common()'s memory ordering requirement is that any
     651             :  * TLB fills that happen after we flush the TLB are ordered after we
     652             :  * read active_mm's tlb_gen.  We don't need any explicit barriers
     653             :  * because all x86 flush operations are serializing and the
     654             :  * atomic64_read operation won't be reordered by the compiler.
     655             :  */
     656       78789 : static void flush_tlb_func_common(const struct flush_tlb_info *f,
     657             :                                   bool local, enum tlb_flush_reason reason)
     658             : {
     659             :         /*
     660             :          * We have three different tlb_gen values in here.  They are:
     661             :          *
     662             :          * - mm_tlb_gen:     the latest generation.
     663             :          * - local_tlb_gen:  the generation that this CPU has already caught
     664             :          *                   up to.
     665             :          * - f->new_tlb_gen: the generation that the requester of the flush
     666             :          *                   wants us to catch up to.
     667             :          */
     668       78789 :         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
     669       78789 :         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
     670       78789 :         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
     671       78790 :         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
     672             : 
     673             :         /* This code cannot presently handle being reentered. */
     674       78789 :         VM_WARN_ON(!irqs_disabled());
     675             : 
     676       78792 :         if (unlikely(loaded_mm == &init_mm))
     677             :                 return;
     678             : 
     679       78791 :         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
     680             :                    loaded_mm->context.ctx_id);
     681             : 
     682       78792 :         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
     683             :                 /*
     684             :                  * We're in lazy mode.  We need to at least flush our
     685             :                  * paging-structure cache to avoid speculatively reading
     686             :                  * garbage into our TLB.  Since switching to init_mm is barely
     687             :                  * slower than a minimal flush, just switch to init_mm.
     688             :                  *
     689             :                  * This should be rare, with native_flush_tlb_others skipping
     690             :                  * IPIs to lazy TLB mode CPUs.
     691             :                  */
     692        2817 :                 switch_mm_irqs_off(NULL, &init_mm, NULL);
     693        2817 :                 return;
     694             :         }
     695             : 
     696       75975 :         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
     697             :                 /*
     698             :                  * There's nothing to do: we're already up to date.  This can
     699             :                  * happen if two concurrent flushes happen -- the first flush to
     700             :                  * be handled can catch us all the way up, leaving no work for
     701             :                  * the second flush.
     702             :                  */
     703        2579 :                 trace_tlb_flush(reason, 0);
     704        2579 :                 return;
     705             :         }
     706             : 
     707       73396 :         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
     708       73396 :         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
     709             : 
     710             :         /*
     711             :          * If we get to this point, we know that our TLB is out of date.
     712             :          * This does not strictly imply that we need to flush (it's
     713             :          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
     714             :          * going to need to flush in the very near future, so we might
     715             :          * as well get it over with.
     716             :          *
     717             :          * The only question is whether to do a full or partial flush.
     718             :          *
     719             :          * We do a partial flush if requested and two extra conditions
     720             :          * are met:
     721             :          *
     722             :          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
     723             :          *    we've always done all needed flushes to catch up to
     724             :          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
     725             :          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
     726             :          *    us up to date for tlb_gen 3 is the partial flush we're
     727             :          *    processing.
     728             :          *
     729             :          *    As an example of why this check is needed, suppose that there
     730             :          *    are two concurrent flushes.  The first is a full flush that
     731             :          *    changes context.tlb_gen from 1 to 2.  The second is a partial
     732             :          *    flush that changes context.tlb_gen from 2 to 3.  If they get
     733             :          *    processed on this CPU in reverse order, we'll see
     734             :          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
     735             :          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
     736             :          *    3, we'd be break the invariant: we'd update local_tlb_gen above
     737             :          *    1 without the full flush that's needed for tlb_gen 2.
     738             :          *
     739             :          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
     740             :          *    Partial TLB flushes are not all that much cheaper than full TLB
     741             :          *    flushes, so it seems unlikely that it would be a performance win
     742             :          *    to do a partial flush if that won't bring our TLB fully up to
     743             :          *    date.  By doing a full flush instead, we can increase
     744             :          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
     745             :          *    avoid another flush in the very near future.
     746             :          */
     747       73396 :         if (f->end != TLB_FLUSH_ALL &&
     748       68190 :             f->new_tlb_gen == local_tlb_gen + 1 &&
     749       68193 :             f->new_tlb_gen == mm_tlb_gen) {
     750             :                 /* Partial flush */
     751       68190 :                 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
     752       68190 :                 unsigned long addr = f->start;
     753             : 
     754      169036 :                 while (addr < f->end) {
     755      201687 :                         flush_tlb_one_user(addr);
     756      100846 :                         addr += 1UL << f->stride_shift;
     757             :                 }
     758       68195 :                 if (local)
     759       68195 :                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
     760       68195 :                 trace_tlb_flush(reason, nr_invalidate);
     761             :         } else {
     762             :                 /* Full flush. */
     763        5206 :                 flush_tlb_local();
     764        5206 :                 if (local)
     765        5206 :                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
     766        5206 :                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
     767             :         }
     768             : 
     769             :         /* Both paths above update our state to mm_tlb_gen. */
     770       73399 :         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
     771             : }
     772             : 
     773       76068 : static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
     774             : {
     775       76068 :         const struct flush_tlb_info *f = info;
     776             : 
     777       76068 :         flush_tlb_func_common(f, true, reason);
     778             : }
     779             : 
     780        2724 : static void flush_tlb_func_remote(void *info)
     781             : {
     782        2724 :         const struct flush_tlb_info *f = info;
     783             : 
     784        2724 :         inc_irq_stat(irq_tlb_count);
     785             : 
     786        2724 :         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
     787             :                 return;
     788             : 
     789        2722 :         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
     790        2722 :         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
     791             : }
     792             : 
     793        3104 : static bool tlb_is_not_lazy(int cpu, void *data)
     794             : {
     795        3104 :         return !per_cpu(cpu_tlbstate.is_lazy, cpu);
     796             : }
     797             : 
     798        3287 : STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
     799             :                                          const struct flush_tlb_info *info)
     800             : {
     801        3287 :         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
     802        3287 :         if (info->end == TLB_FLUSH_ALL)
     803         703 :                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
     804             :         else
     805        2584 :                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
     806        2584 :                                 (info->end - info->start) >> PAGE_SHIFT);
     807             : 
     808             :         /*
     809             :          * If no page tables were freed, we can skip sending IPIs to
     810             :          * CPUs in lazy TLB mode. They will flush the CPU themselves
     811             :          * at the next context switch.
     812             :          *
     813             :          * However, if page tables are getting freed, we need to send the
     814             :          * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
     815             :          * up on the new contents of what used to be page tables, while
     816             :          * doing a speculative memory access.
     817             :          */
     818        3287 :         if (info->freed_tables)
     819         707 :                 smp_call_function_many(cpumask, flush_tlb_func_remote,
     820             :                                (void *)info, 1);
     821             :         else
     822        2580 :                 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
     823             :                                 (void *)info, 1, cpumask);
     824        3287 : }
     825             : 
     826        3287 : void flush_tlb_others(const struct cpumask *cpumask,
     827             :                       const struct flush_tlb_info *info)
     828             : {
     829        3287 :         __flush_tlb_others(cpumask, info);
     830        3287 : }
     831             : 
     832             : /*
     833             :  * See Documentation/x86/tlb.rst for details.  We choose 33
     834             :  * because it is large enough to cover the vast majority (at
     835             :  * least 95%) of allocations, and is small enough that we are
     836             :  * confident it will not cause too much overhead.  Each single
     837             :  * flush is about 100 ns, so this caps the maximum overhead at
     838             :  * _about_ 3,000 ns.
     839             :  *
     840             :  * This is in units of pages.
     841             :  */
     842             : unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
     843             : 
     844             : static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
     845             : 
     846             : #ifdef CONFIG_DEBUG_VM
     847             : static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
     848             : #endif
     849             : 
     850       83857 : static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
     851             :                         unsigned long start, unsigned long end,
     852             :                         unsigned int stride_shift, bool freed_tables,
     853             :                         u64 new_tlb_gen)
     854             : {
     855       83857 :         struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
     856             : 
     857             : #ifdef CONFIG_DEBUG_VM
     858             :         /*
     859             :          * Ensure that the following code is non-reentrant and flush_tlb_info
     860             :          * is not overwritten. This means no TLB flushing is initiated by
     861             :          * interrupt handlers and machine-check exception handlers.
     862             :          */
     863       83857 :         BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
     864             : #endif
     865             : 
     866       83858 :         info->start          = start;
     867       83858 :         info->end            = end;
     868       83858 :         info->mm             = mm;
     869       83858 :         info->stride_shift   = stride_shift;
     870       83858 :         info->freed_tables   = freed_tables;
     871       83858 :         info->new_tlb_gen    = new_tlb_gen;
     872             : 
     873       83858 :         return info;
     874             : }
     875             : 
     876       83857 : static inline void put_flush_tlb_info(void)
     877             : {
     878             : #ifdef CONFIG_DEBUG_VM
     879             :         /* Complete reentrency prevention checks */
     880       83857 :         barrier();
     881       83857 :         this_cpu_dec(flush_tlb_info_idx);
     882             : #endif
     883             : }
     884             : 
     885       83844 : void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
     886             :                                 unsigned long end, unsigned int stride_shift,
     887             :                                 bool freed_tables)
     888             : {
     889       83844 :         struct flush_tlb_info *info;
     890       83844 :         u64 new_tlb_gen;
     891       83844 :         int cpu;
     892             : 
     893       83844 :         cpu = get_cpu();
     894             : 
     895             :         /* Should we flush just the requested range? */
     896       83845 :         if ((end == TLB_FLUSH_ALL) ||
     897       70803 :             ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
     898       15540 :                 start = 0;
     899       15540 :                 end = TLB_FLUSH_ALL;
     900             :         }
     901             : 
     902             :         /* This is also a barrier that synchronizes with switch_mm(). */
     903       83845 :         new_tlb_gen = inc_mm_tlb_gen(mm);
     904             : 
     905       83845 :         info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
     906             :                                   new_tlb_gen);
     907             : 
     908       83846 :         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
     909      152151 :                 lockdep_assert_irqs_enabled();
     910       76076 :                 local_irq_disable();
     911       76068 :                 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
     912       76074 :                 local_irq_enable();
     913             :         }
     914             : 
     915       83839 :         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
     916        3287 :                 flush_tlb_others(mm_cpumask(mm), info);
     917             : 
     918       83845 :         put_flush_tlb_info();
     919       83845 :         put_cpu();
     920       83844 : }
     921             : 
     922             : 
     923         129 : static void do_flush_tlb_all(void *info)
     924             : {
     925         129 :         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
     926         129 :         __flush_tlb_all();
     927         139 : }
     928             : 
     929          27 : void flush_tlb_all(void)
     930             : {
     931          27 :         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
     932          27 :         on_each_cpu(do_flush_tlb_all, NULL, 1);
     933          27 : }
     934             : 
     935          41 : static void do_kernel_range_flush(void *info)
     936             : {
     937          41 :         struct flush_tlb_info *f = info;
     938          41 :         unsigned long addr;
     939             : 
     940             :         /* flush range by one by one 'invlpg' */
     941         417 :         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
     942         369 :                 flush_tlb_one_kernel(addr);
     943          48 : }
     944             : 
     945          22 : void flush_tlb_kernel_range(unsigned long start, unsigned long end)
     946             : {
     947             :         /* Balance as user space task's flush, a bit conservative */
     948          22 :         if (end == TLB_FLUSH_ALL ||
     949          22 :             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
     950          10 :                 on_each_cpu(do_flush_tlb_all, NULL, 1);
     951             :         } else {
     952          12 :                 struct flush_tlb_info *info;
     953             : 
     954          12 :                 preempt_disable();
     955          12 :                 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
     956             : 
     957          12 :                 on_each_cpu(do_kernel_range_flush, info, 1);
     958             : 
     959          12 :                 put_flush_tlb_info();
     960          12 :                 preempt_enable();
     961             :         }
     962          22 : }
     963             : 
     964             : /*
     965             :  * This can be used from process context to figure out what the value of
     966             :  * CR3 is without needing to do a (slow) __read_cr3().
     967             :  *
     968             :  * It's intended to be used for code like KVM that sneakily changes CR3
     969             :  * and needs to restore it.  It needs to be used very carefully.
     970             :  */
     971           0 : unsigned long __get_current_cr3_fast(void)
     972             : {
     973           0 :         unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
     974           0 :                 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
     975             : 
     976             :         /* For now, be very restrictive about when this can be called. */
     977           0 :         VM_WARN_ON(in_nmi() || preemptible());
     978             : 
     979           0 :         VM_BUG_ON(cr3 != __read_cr3());
     980           0 :         return cr3;
     981             : }
     982             : EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
     983             : 
     984             : /*
     985             :  * Flush one page in the kernel mapping
     986             :  */
     987         714 : void flush_tlb_one_kernel(unsigned long addr)
     988             : {
     989         714 :         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
     990             : 
     991             :         /*
     992             :          * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
     993             :          * paravirt equivalent.  Even with PCID, this is sufficient: we only
     994             :          * use PCID if we also use global PTEs for the kernel mapping, and
     995             :          * INVLPG flushes global translations across all address spaces.
     996             :          *
     997             :          * If PTI is on, then the kernel is mapped with non-global PTEs, and
     998             :          * __flush_tlb_one_user() will flush the given address for the current
     999             :          * kernel address space and for its usermode counterpart, but it does
    1000             :          * not flush it for other address spaces.
    1001             :          */
    1002        1433 :         flush_tlb_one_user(addr);
    1003             : 
    1004         719 :         if (!static_cpu_has(X86_FEATURE_PTI))
    1005             :                 return;
    1006             : 
    1007             :         /*
    1008             :          * See above.  We need to propagate the flush to all other address
    1009             :          * spaces.  In principle, we only need to propagate it to kernelmode
    1010             :          * address spaces, but the extra bookkeeping we would need is not
    1011             :          * worth it.
    1012             :          */
    1013           0 :         this_cpu_write(cpu_tlbstate.invalidate_other, true);
    1014             : }
    1015             : 
    1016             : /*
    1017             :  * Flush one page in the user mapping
    1018             :  */
    1019      101550 : STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
    1020             : {
    1021      101550 :         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
    1022             : 
    1023      101553 :         asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
    1024             : 
    1025      101567 :         if (!static_cpu_has(X86_FEATURE_PTI))
    1026             :                 return;
    1027             : 
    1028             :         /*
    1029             :          * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
    1030             :          * Just use invalidate_user_asid() in case we are called early.
    1031             :          */
    1032           0 :         if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
    1033      101567 :                 invalidate_user_asid(loaded_mm_asid);
    1034             :         else
    1035           0 :                 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
    1036             : }
    1037             : 
    1038      101555 : void flush_tlb_one_user(unsigned long addr)
    1039             : {
    1040      101555 :         __flush_tlb_one_user(addr);
    1041           0 : }
    1042             : 
    1043             : /*
    1044             :  * Flush everything
    1045             :  */
    1046         130 : STATIC_NOPV void native_flush_tlb_global(void)
    1047             : {
    1048         130 :         unsigned long cr4, flags;
    1049             : 
    1050         130 :         if (static_cpu_has(X86_FEATURE_INVPCID)) {
    1051             :                 /*
    1052             :                  * Using INVPCID is considerably faster than a pair of writes
    1053             :                  * to CR4 sandwiched inside an IRQ flag save/restore.
    1054             :                  *
    1055             :                  * Note, this works with CR4.PCIDE=0 or 1.
    1056             :                  */
    1057         131 :                 invpcid_flush_all();
    1058         143 :                 return;
    1059             :         }
    1060             : 
    1061             :         /*
    1062             :          * Read-modify-write to CR4 - protect it from preemption and
    1063             :          * from interrupts. (Use the raw variant because this code can
    1064             :          * be called from deep inside debugging code.)
    1065             :          */
    1066           0 :         raw_local_irq_save(flags);
    1067             : 
    1068           0 :         cr4 = this_cpu_read(cpu_tlbstate.cr4);
    1069             :         /* toggle PGE */
    1070           0 :         native_write_cr4(cr4 ^ X86_CR4_PGE);
    1071             :         /* write old PGE again and flush TLBs */
    1072           0 :         native_write_cr4(cr4);
    1073             : 
    1074           0 :         raw_local_irq_restore(flags);
    1075             : }
    1076             : 
    1077             : /*
    1078             :  * Flush the entire current user mapping
    1079             :  */
    1080        5206 : STATIC_NOPV void native_flush_tlb_local(void)
    1081             : {
    1082             :         /*
    1083             :          * Preemption or interrupts must be disabled to protect the access
    1084             :          * to the per CPU variable and to prevent being preempted between
    1085             :          * read_cr3() and write_cr3().
    1086             :          */
    1087        5206 :         WARN_ON_ONCE(preemptible());
    1088             : 
    1089        5206 :         invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
    1090             : 
    1091             :         /* If current->mm == NULL then the read_cr3() "borrows" an mm */
    1092        5206 :         native_write_cr3(__native_read_cr3());
    1093        5206 : }
    1094             : 
    1095        5206 : void flush_tlb_local(void)
    1096             : {
    1097        5206 :         __flush_tlb_local();
    1098           0 : }
    1099             : 
    1100             : /*
    1101             :  * Flush everything
    1102             :  */
    1103         132 : void __flush_tlb_all(void)
    1104             : {
    1105             :         /*
    1106             :          * This is to catch users with enabled preemption and the PGE feature
    1107             :          * and don't trigger the warning in __native_flush_tlb().
    1108             :          */
    1109         132 :         VM_WARN_ON_ONCE(preemptible());
    1110             : 
    1111         132 :         if (boot_cpu_has(X86_FEATURE_PGE)) {
    1112         133 :                 __flush_tlb_global();
    1113             :         } else {
    1114             :                 /*
    1115             :                  * !PGE -> !PCID (setup_pcid()), thus every flush is total.
    1116             :                  */
    1117           0 :                 flush_tlb_local();
    1118             :         }
    1119         143 : }
    1120             : EXPORT_SYMBOL_GPL(__flush_tlb_all);
    1121             : 
    1122             : /*
    1123             :  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
    1124             :  * This means that the 'struct flush_tlb_info' that describes which mappings to
    1125             :  * flush is actually fixed. We therefore set a single fixed struct and use it in
    1126             :  * arch_tlbbatch_flush().
    1127             :  */
    1128             : static const struct flush_tlb_info full_flush_tlb_info = {
    1129             :         .mm = NULL,
    1130             :         .start = 0,
    1131             :         .end = TLB_FLUSH_ALL,
    1132             : };
    1133             : 
    1134           0 : void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
    1135             : {
    1136           0 :         int cpu = get_cpu();
    1137             : 
    1138           0 :         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
    1139           0 :                 lockdep_assert_irqs_enabled();
    1140           0 :                 local_irq_disable();
    1141           0 :                 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
    1142           0 :                 local_irq_enable();
    1143             :         }
    1144             : 
    1145           0 :         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
    1146           0 :                 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
    1147             : 
    1148           0 :         cpumask_clear(&batch->cpumask);
    1149             : 
    1150           0 :         put_cpu();
    1151           0 : }
    1152             : 
    1153             : /*
    1154             :  * Blindly accessing user memory from NMI context can be dangerous
    1155             :  * if we're in the middle of switching the current user task or
    1156             :  * switching the loaded mm.  It can also be dangerous if we
    1157             :  * interrupted some kernel code that was temporarily using a
    1158             :  * different mm.
    1159             :  */
    1160           1 : bool nmi_uaccess_okay(void)
    1161             : {
    1162           1 :         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
    1163           1 :         struct mm_struct *current_mm = current->mm;
    1164             : 
    1165           1 :         VM_WARN_ON_ONCE(!loaded_mm);
    1166             : 
    1167             :         /*
    1168             :          * The condition we want to check is
    1169             :          * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
    1170             :          * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
    1171             :          * is supposed to be reasonably fast.
    1172             :          *
    1173             :          * Instead, we check the almost equivalent but somewhat conservative
    1174             :          * condition below, and we rely on the fact that switch_mm_irqs_off()
    1175             :          * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
    1176             :          */
    1177           1 :         if (loaded_mm != current_mm)
    1178             :                 return false;
    1179             : 
    1180           1 :         VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
    1181             : 
    1182             :         return true;
    1183             : }
    1184             : 
    1185           0 : static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
    1186             :                              size_t count, loff_t *ppos)
    1187             : {
    1188           0 :         char buf[32];
    1189           0 :         unsigned int len;
    1190             : 
    1191           0 :         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
    1192           0 :         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
    1193             : }
    1194             : 
    1195           0 : static ssize_t tlbflush_write_file(struct file *file,
    1196             :                  const char __user *user_buf, size_t count, loff_t *ppos)
    1197             : {
    1198           0 :         char buf[32];
    1199           0 :         ssize_t len;
    1200           0 :         int ceiling;
    1201             : 
    1202           0 :         len = min(count, sizeof(buf) - 1);
    1203           0 :         if (copy_from_user(buf, user_buf, len))
    1204             :                 return -EFAULT;
    1205             : 
    1206           0 :         buf[len] = '\0';
    1207           0 :         if (kstrtoint(buf, 0, &ceiling))
    1208             :                 return -EINVAL;
    1209             : 
    1210           0 :         if (ceiling < 0)
    1211             :                 return -EINVAL;
    1212             : 
    1213           0 :         tlb_single_page_flush_ceiling = ceiling;
    1214           0 :         return count;
    1215             : }
    1216             : 
    1217             : static const struct file_operations fops_tlbflush = {
    1218             :         .read = tlbflush_read_file,
    1219             :         .write = tlbflush_write_file,
    1220             :         .llseek = default_llseek,
    1221             : };
    1222             : 
    1223           1 : static int __init create_tlb_single_page_flush_ceiling(void)
    1224             : {
    1225           1 :         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
    1226             :                             arch_debugfs_dir, NULL, &fops_tlbflush);
    1227           1 :         return 0;
    1228             : }
    1229             : late_initcall(create_tlb_single_page_flush_ceiling);

Generated by: LCOV version 1.14