Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef INT_BLK_MQ_H
3 : #define INT_BLK_MQ_H
4 :
5 : #include "blk-stat.h"
6 : #include "blk-mq-tag.h"
7 :
8 : struct blk_mq_tag_set;
9 :
10 : struct blk_mq_ctxs {
11 : struct kobject kobj;
12 : struct blk_mq_ctx __percpu *queue_ctx;
13 : };
14 :
15 : /**
16 : * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17 : */
18 : struct blk_mq_ctx {
19 : struct {
20 : spinlock_t lock;
21 : struct list_head rq_lists[HCTX_MAX_TYPES];
22 : } ____cacheline_aligned_in_smp;
23 :
24 : unsigned int cpu;
25 : unsigned short index_hw[HCTX_MAX_TYPES];
26 : struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27 :
28 : /* incremented at dispatch time */
29 : unsigned long rq_dispatched[2];
30 : unsigned long rq_merged;
31 :
32 : /* incremented at completion time */
33 : unsigned long ____cacheline_aligned_in_smp rq_completed[2];
34 :
35 : struct request_queue *queue;
36 : struct blk_mq_ctxs *ctxs;
37 : struct kobject kobj;
38 : } ____cacheline_aligned_in_smp;
39 :
40 : void blk_mq_exit_queue(struct request_queue *q);
41 : int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
42 : void blk_mq_wake_waiters(struct request_queue *q);
43 : bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
44 : unsigned int);
45 : void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
46 : bool kick_requeue_list);
47 : void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
48 : struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
49 : struct blk_mq_ctx *start);
50 :
51 : /*
52 : * Internal helpers for allocating/freeing the request map
53 : */
54 : void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
55 : unsigned int hctx_idx);
56 : void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags);
57 : struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
58 : unsigned int hctx_idx,
59 : unsigned int nr_tags,
60 : unsigned int reserved_tags,
61 : unsigned int flags);
62 : int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
63 : unsigned int hctx_idx, unsigned int depth);
64 :
65 : /*
66 : * Internal helpers for request insertion into sw queues
67 : */
68 : void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
69 : bool at_head);
70 : void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
71 : bool run_queue);
72 : void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
73 : struct list_head *list);
74 :
75 : /* Used by blk_insert_cloned_request() to issue request directly */
76 : blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
77 : void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
78 : struct list_head *list);
79 :
80 : /*
81 : * CPU -> queue mappings
82 : */
83 : extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
84 :
85 : /*
86 : * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
87 : * @q: request queue
88 : * @type: the hctx type index
89 : * @cpu: CPU
90 : */
91 144 : static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
92 : enum hctx_type type,
93 : unsigned int cpu)
94 : {
95 144 : return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
96 : }
97 :
98 : /*
99 : * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
100 : * @q: request queue
101 : * @flags: request command flags
102 : * @ctx: software queue cpu ctx
103 : */
104 6757 : static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
105 : unsigned int flags,
106 : struct blk_mq_ctx *ctx)
107 : {
108 6757 : enum hctx_type type = HCTX_TYPE_DEFAULT;
109 :
110 : /*
111 : * The caller ensure that if REQ_HIPRI, poll must be enabled.
112 : */
113 6757 : if (flags & REQ_HIPRI)
114 : type = HCTX_TYPE_POLL;
115 6757 : else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
116 5122 : type = HCTX_TYPE_READ;
117 :
118 6757 : return ctx->hctxs[type];
119 : }
120 :
121 : /*
122 : * sysfs helpers
123 : */
124 : extern void blk_mq_sysfs_init(struct request_queue *q);
125 : extern void blk_mq_sysfs_deinit(struct request_queue *q);
126 : extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
127 : extern int blk_mq_sysfs_register(struct request_queue *q);
128 : extern void blk_mq_sysfs_unregister(struct request_queue *q);
129 : extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
130 :
131 : void blk_mq_release(struct request_queue *q);
132 :
133 6374 : static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
134 : unsigned int cpu)
135 : {
136 3120 : return per_cpu_ptr(q->queue_ctx, cpu);
137 : }
138 :
139 : /*
140 : * This assumes per-cpu software queueing queues. They could be per-node
141 : * as well, for instance. For now this is hardcoded as-is. Note that we don't
142 : * care about preemption, since we know the ctx's are persistent. This does
143 : * mean that we can't rely on ctx always matching the currently running CPU.
144 : */
145 6374 : static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
146 : {
147 6374 : return __blk_mq_get_ctx(q, raw_smp_processor_id());
148 : }
149 :
150 : struct blk_mq_alloc_data {
151 : /* input parameter */
152 : struct request_queue *q;
153 : blk_mq_req_flags_t flags;
154 : unsigned int shallow_depth;
155 : unsigned int cmd_flags;
156 :
157 : /* input & output parameter */
158 : struct blk_mq_ctx *ctx;
159 : struct blk_mq_hw_ctx *hctx;
160 : };
161 :
162 9 : static inline bool blk_mq_is_sbitmap_shared(unsigned int flags)
163 : {
164 9 : return flags & BLK_MQ_F_TAG_HCTX_SHARED;
165 : }
166 :
167 6508 : static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
168 : {
169 6508 : if (data->q->elevator)
170 1 : return data->hctx->sched_tags;
171 :
172 6507 : return data->hctx->tags;
173 : }
174 :
175 6577 : static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
176 : {
177 6577 : return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
178 : }
179 :
180 16 : static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
181 : {
182 16 : return hctx->nr_ctx && hctx->tags;
183 : }
184 :
185 : unsigned int blk_mq_in_flight(struct request_queue *q,
186 : struct block_device *part);
187 : void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
188 : unsigned int inflight[2]);
189 :
190 0 : static inline void blk_mq_put_dispatch_budget(struct request_queue *q)
191 : {
192 0 : if (q->mq_ops->put_budget)
193 0 : q->mq_ops->put_budget(q);
194 : }
195 :
196 3373 : static inline bool blk_mq_get_dispatch_budget(struct request_queue *q)
197 : {
198 3373 : if (q->mq_ops->get_budget)
199 0 : return q->mq_ops->get_budget(q);
200 : return true;
201 : }
202 :
203 0 : static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
204 : {
205 0 : if (blk_mq_is_sbitmap_shared(hctx->flags))
206 0 : atomic_inc(&hctx->queue->nr_active_requests_shared_sbitmap);
207 : else
208 0 : atomic_inc(&hctx->nr_active);
209 0 : }
210 :
211 0 : static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
212 : {
213 0 : if (blk_mq_is_sbitmap_shared(hctx->flags))
214 0 : atomic_dec(&hctx->queue->nr_active_requests_shared_sbitmap);
215 : else
216 0 : atomic_dec(&hctx->nr_active);
217 0 : }
218 :
219 0 : static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
220 : {
221 0 : if (blk_mq_is_sbitmap_shared(hctx->flags))
222 0 : return atomic_read(&hctx->queue->nr_active_requests_shared_sbitmap);
223 0 : return atomic_read(&hctx->nr_active);
224 : }
225 0 : static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
226 : struct request *rq)
227 : {
228 0 : blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
229 0 : rq->tag = BLK_MQ_NO_TAG;
230 :
231 0 : if (rq->rq_flags & RQF_MQ_INFLIGHT) {
232 0 : rq->rq_flags &= ~RQF_MQ_INFLIGHT;
233 0 : __blk_mq_dec_active_requests(hctx);
234 : }
235 0 : }
236 :
237 0 : static inline void blk_mq_put_driver_tag(struct request *rq)
238 : {
239 0 : if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
240 : return;
241 :
242 0 : __blk_mq_put_driver_tag(rq->mq_hctx, rq);
243 : }
244 :
245 1 : static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
246 : {
247 1 : int cpu;
248 :
249 5 : for_each_possible_cpu(cpu)
250 4 : qmap->mq_map[cpu] = 0;
251 1 : }
252 :
253 : /*
254 : * blk_mq_plug() - Get caller context plug
255 : * @q: request queue
256 : * @bio : the bio being submitted by the caller context
257 : *
258 : * Plugging, by design, may delay the insertion of BIOs into the elevator in
259 : * order to increase BIO merging opportunities. This however can cause BIO
260 : * insertion order to change from the order in which submit_bio() is being
261 : * executed in the case of multiple contexts concurrently issuing BIOs to a
262 : * device, even if these context are synchronized to tightly control BIO issuing
263 : * order. While this is not a problem with regular block devices, this ordering
264 : * change can cause write BIO failures with zoned block devices as these
265 : * require sequential write patterns to zones. Prevent this from happening by
266 : * ignoring the plug state of a BIO issuing context if the target request queue
267 : * is for a zoned block device and the BIO to plug is a write operation.
268 : *
269 : * Return current->plug if the bio can be plugged and NULL otherwise
270 : */
271 20594 : static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
272 : struct bio *bio)
273 : {
274 : /*
275 : * For regular block devices or read operations, use the context plug
276 : * which may be NULL if blk_start_plug() was not executed.
277 : */
278 20594 : if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
279 20594 : return current->plug;
280 :
281 : /* Zoned block device write operation case: do not plug the BIO */
282 : return NULL;
283 : }
284 :
285 : /*
286 : * For shared tag users, we track the number of currently active users
287 : * and attempt to provide a fair share of the tag depth for each of them.
288 : */
289 3253 : static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
290 : struct sbitmap_queue *bt)
291 : {
292 3253 : unsigned int depth, users;
293 :
294 3253 : if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
295 : return true;
296 :
297 : /*
298 : * Don't try dividing an ant
299 : */
300 0 : if (bt->sb.depth == 1)
301 : return true;
302 :
303 0 : if (blk_mq_is_sbitmap_shared(hctx->flags)) {
304 0 : struct request_queue *q = hctx->queue;
305 0 : struct blk_mq_tag_set *set = q->tag_set;
306 :
307 0 : if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
308 : return true;
309 0 : users = atomic_read(&set->active_queues_shared_sbitmap);
310 : } else {
311 0 : if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
312 : return true;
313 0 : users = atomic_read(&hctx->tags->active_queues);
314 : }
315 :
316 0 : if (!users)
317 : return true;
318 :
319 : /*
320 : * Allow at least some tags
321 : */
322 0 : depth = max((bt->sb.depth + users - 1) / users, 4U);
323 0 : return __blk_mq_active_requests(hctx) < depth;
324 : }
325 :
326 :
327 : #endif
|