LCOV - code coverage report
Current view: top level - block - blk-settings.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 90 297 30.3 %
Date: 2021-04-22 12:43:58 Functions: 13 35 37.1 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Functions related to setting various queue properties from drivers
       4             :  */
       5             : #include <linux/kernel.h>
       6             : #include <linux/module.h>
       7             : #include <linux/init.h>
       8             : #include <linux/bio.h>
       9             : #include <linux/blkdev.h>
      10             : #include <linux/memblock.h>       /* for max_pfn/max_low_pfn */
      11             : #include <linux/gcd.h>
      12             : #include <linux/lcm.h>
      13             : #include <linux/jiffies.h>
      14             : #include <linux/gfp.h>
      15             : #include <linux/dma-mapping.h>
      16             : 
      17             : #include "blk.h"
      18             : #include "blk-wbt.h"
      19             : 
      20             : unsigned long blk_max_low_pfn;
      21             : EXPORT_SYMBOL(blk_max_low_pfn);
      22             : 
      23             : unsigned long blk_max_pfn;
      24             : 
      25           9 : void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
      26             : {
      27           9 :         q->rq_timeout = timeout;
      28           9 : }
      29             : EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
      30             : 
      31             : /**
      32             :  * blk_set_default_limits - reset limits to default values
      33             :  * @lim:  the queue_limits structure to reset
      34             :  *
      35             :  * Description:
      36             :  *   Returns a queue_limit struct to its default state.
      37             :  */
      38           9 : void blk_set_default_limits(struct queue_limits *lim)
      39             : {
      40           9 :         lim->max_segments = BLK_MAX_SEGMENTS;
      41           9 :         lim->max_discard_segments = 1;
      42           9 :         lim->max_integrity_segments = 0;
      43           9 :         lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
      44           9 :         lim->virt_boundary_mask = 0;
      45           9 :         lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
      46           9 :         lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
      47           9 :         lim->max_dev_sectors = 0;
      48           9 :         lim->chunk_sectors = 0;
      49           9 :         lim->max_write_same_sectors = 0;
      50           9 :         lim->max_write_zeroes_sectors = 0;
      51           9 :         lim->max_zone_append_sectors = 0;
      52           9 :         lim->max_discard_sectors = 0;
      53           9 :         lim->max_hw_discard_sectors = 0;
      54           9 :         lim->discard_granularity = 0;
      55           9 :         lim->discard_alignment = 0;
      56           9 :         lim->discard_misaligned = 0;
      57           9 :         lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
      58           9 :         lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
      59           9 :         lim->alignment_offset = 0;
      60           9 :         lim->io_opt = 0;
      61           9 :         lim->misaligned = 0;
      62           9 :         lim->zoned = BLK_ZONED_NONE;
      63           9 :         lim->zone_write_granularity = 0;
      64           9 : }
      65             : EXPORT_SYMBOL(blk_set_default_limits);
      66             : 
      67             : /**
      68             :  * blk_set_stacking_limits - set default limits for stacking devices
      69             :  * @lim:  the queue_limits structure to reset
      70             :  *
      71             :  * Description:
      72             :  *   Returns a queue_limit struct to its default state. Should be used
      73             :  *   by stacking drivers like DM that have no internal limits.
      74             :  */
      75           0 : void blk_set_stacking_limits(struct queue_limits *lim)
      76             : {
      77           0 :         blk_set_default_limits(lim);
      78             : 
      79             :         /* Inherit limits from component devices */
      80           0 :         lim->max_segments = USHRT_MAX;
      81           0 :         lim->max_discard_segments = USHRT_MAX;
      82           0 :         lim->max_hw_sectors = UINT_MAX;
      83           0 :         lim->max_segment_size = UINT_MAX;
      84           0 :         lim->max_sectors = UINT_MAX;
      85           0 :         lim->max_dev_sectors = UINT_MAX;
      86           0 :         lim->max_write_same_sectors = UINT_MAX;
      87           0 :         lim->max_write_zeroes_sectors = UINT_MAX;
      88           0 :         lim->max_zone_append_sectors = UINT_MAX;
      89           0 : }
      90             : EXPORT_SYMBOL(blk_set_stacking_limits);
      91             : 
      92             : /**
      93             :  * blk_queue_bounce_limit - set bounce buffer limit for queue
      94             :  * @q: the request queue for the device
      95             :  * @max_addr: the maximum address the device can handle
      96             :  *
      97             :  * Description:
      98             :  *    Different hardware can have different requirements as to what pages
      99             :  *    it can do I/O directly to. A low level driver can call
     100             :  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
     101             :  *    buffers for doing I/O to pages residing above @max_addr.
     102             :  **/
     103           0 : void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
     104             : {
     105           0 :         unsigned long b_pfn = max_addr >> PAGE_SHIFT;
     106           0 :         int dma = 0;
     107             : 
     108           0 :         q->bounce_gfp = GFP_NOIO;
     109             : #if BITS_PER_LONG == 64
     110             :         /*
     111             :          * Assume anything <= 4GB can be handled by IOMMU.  Actually
     112             :          * some IOMMUs can handle everything, but I don't know of a
     113             :          * way to test this here.
     114             :          */
     115           0 :         if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
     116           0 :                 dma = 1;
     117           0 :         q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
     118             : #else
     119             :         if (b_pfn < blk_max_low_pfn)
     120             :                 dma = 1;
     121             :         q->limits.bounce_pfn = b_pfn;
     122             : #endif
     123           0 :         if (dma) {
     124           0 :                 init_emergency_isa_pool();
     125           0 :                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
     126           0 :                 q->limits.bounce_pfn = b_pfn;
     127             :         }
     128           0 : }
     129             : EXPORT_SYMBOL(blk_queue_bounce_limit);
     130             : 
     131             : /**
     132             :  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
     133             :  * @q:  the request queue for the device
     134             :  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
     135             :  *
     136             :  * Description:
     137             :  *    Enables a low level driver to set a hard upper limit,
     138             :  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
     139             :  *    the device driver based upon the capabilities of the I/O
     140             :  *    controller.
     141             :  *
     142             :  *    max_dev_sectors is a hard limit imposed by the storage device for
     143             :  *    READ/WRITE requests. It is set by the disk driver.
     144             :  *
     145             :  *    max_sectors is a soft limit imposed by the block layer for
     146             :  *    filesystem type requests.  This value can be overridden on a
     147             :  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
     148             :  *    The soft limit can not exceed max_hw_sectors.
     149             :  **/
     150           9 : void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
     151             : {
     152           9 :         struct queue_limits *limits = &q->limits;
     153           9 :         unsigned int max_sectors;
     154             : 
     155           9 :         if ((max_hw_sectors << 9) < PAGE_SIZE) {
     156           0 :                 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
     157           0 :                 printk(KERN_INFO "%s: set to minimum %d\n",
     158             :                        __func__, max_hw_sectors);
     159             :         }
     160             : 
     161           9 :         max_hw_sectors = round_down(max_hw_sectors,
     162             :                                     limits->logical_block_size >> SECTOR_SHIFT);
     163           9 :         limits->max_hw_sectors = max_hw_sectors;
     164             : 
     165           9 :         max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
     166           9 :         max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
     167           9 :         max_sectors = round_down(max_sectors,
     168             :                                  limits->logical_block_size >> SECTOR_SHIFT);
     169           9 :         limits->max_sectors = max_sectors;
     170             : 
     171           9 :         q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
     172           9 : }
     173             : EXPORT_SYMBOL(blk_queue_max_hw_sectors);
     174             : 
     175             : /**
     176             :  * blk_queue_chunk_sectors - set size of the chunk for this queue
     177             :  * @q:  the request queue for the device
     178             :  * @chunk_sectors:  chunk sectors in the usual 512b unit
     179             :  *
     180             :  * Description:
     181             :  *    If a driver doesn't want IOs to cross a given chunk size, it can set
     182             :  *    this limit and prevent merging across chunks. Note that the block layer
     183             :  *    must accept a page worth of data at any offset. So if the crossing of
     184             :  *    chunks is a hard limitation in the driver, it must still be prepared
     185             :  *    to split single page bios.
     186             :  **/
     187           0 : void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
     188             : {
     189           0 :         q->limits.chunk_sectors = chunk_sectors;
     190           0 : }
     191             : EXPORT_SYMBOL(blk_queue_chunk_sectors);
     192             : 
     193             : /**
     194             :  * blk_queue_max_discard_sectors - set max sectors for a single discard
     195             :  * @q:  the request queue for the device
     196             :  * @max_discard_sectors: maximum number of sectors to discard
     197             :  **/
     198           1 : void blk_queue_max_discard_sectors(struct request_queue *q,
     199             :                 unsigned int max_discard_sectors)
     200             : {
     201           1 :         q->limits.max_hw_discard_sectors = max_discard_sectors;
     202           1 :         q->limits.max_discard_sectors = max_discard_sectors;
     203           1 : }
     204             : EXPORT_SYMBOL(blk_queue_max_discard_sectors);
     205             : 
     206             : /**
     207             :  * blk_queue_max_write_same_sectors - set max sectors for a single write same
     208             :  * @q:  the request queue for the device
     209             :  * @max_write_same_sectors: maximum number of sectors to write per command
     210             :  **/
     211           0 : void blk_queue_max_write_same_sectors(struct request_queue *q,
     212             :                                       unsigned int max_write_same_sectors)
     213             : {
     214           0 :         q->limits.max_write_same_sectors = max_write_same_sectors;
     215           0 : }
     216             : EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
     217             : 
     218             : /**
     219             :  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
     220             :  *                                      write zeroes
     221             :  * @q:  the request queue for the device
     222             :  * @max_write_zeroes_sectors: maximum number of sectors to write per command
     223             :  **/
     224           1 : void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
     225             :                 unsigned int max_write_zeroes_sectors)
     226             : {
     227           1 :         q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
     228           1 : }
     229             : EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
     230             : 
     231             : /**
     232             :  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
     233             :  * @q:  the request queue for the device
     234             :  * @max_zone_append_sectors: maximum number of sectors to write per command
     235             :  **/
     236           0 : void blk_queue_max_zone_append_sectors(struct request_queue *q,
     237             :                 unsigned int max_zone_append_sectors)
     238             : {
     239           0 :         unsigned int max_sectors;
     240             : 
     241           0 :         if (WARN_ON(!blk_queue_is_zoned(q)))
     242           0 :                 return;
     243             : 
     244             :         max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
     245             :         max_sectors = min(q->limits.chunk_sectors, max_sectors);
     246             : 
     247             :         /*
     248             :          * Signal eventual driver bugs resulting in the max_zone_append sectors limit
     249             :          * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
     250             :          * or the max_hw_sectors limit not set.
     251             :          */
     252             :         WARN_ON(!max_sectors);
     253             : 
     254             :         q->limits.max_zone_append_sectors = max_sectors;
     255             : }
     256             : EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
     257             : 
     258             : /**
     259             :  * blk_queue_max_segments - set max hw segments for a request for this queue
     260             :  * @q:  the request queue for the device
     261             :  * @max_segments:  max number of segments
     262             :  *
     263             :  * Description:
     264             :  *    Enables a low level driver to set an upper limit on the number of
     265             :  *    hw data segments in a request.
     266             :  **/
     267           1 : void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
     268             : {
     269           1 :         if (!max_segments) {
     270           0 :                 max_segments = 1;
     271           0 :                 printk(KERN_INFO "%s: set to minimum %d\n",
     272             :                        __func__, max_segments);
     273             :         }
     274             : 
     275           1 :         q->limits.max_segments = max_segments;
     276           1 : }
     277             : EXPORT_SYMBOL(blk_queue_max_segments);
     278             : 
     279             : /**
     280             :  * blk_queue_max_discard_segments - set max segments for discard requests
     281             :  * @q:  the request queue for the device
     282             :  * @max_segments:  max number of segments
     283             :  *
     284             :  * Description:
     285             :  *    Enables a low level driver to set an upper limit on the number of
     286             :  *    segments in a discard request.
     287             :  **/
     288           1 : void blk_queue_max_discard_segments(struct request_queue *q,
     289             :                 unsigned short max_segments)
     290             : {
     291           1 :         q->limits.max_discard_segments = max_segments;
     292           1 : }
     293             : EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
     294             : 
     295             : /**
     296             :  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
     297             :  * @q:  the request queue for the device
     298             :  * @max_size:  max size of segment in bytes
     299             :  *
     300             :  * Description:
     301             :  *    Enables a low level driver to set an upper limit on the size of a
     302             :  *    coalesced segment
     303             :  **/
     304           1 : void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
     305             : {
     306           1 :         if (max_size < PAGE_SIZE) {
     307           0 :                 max_size = PAGE_SIZE;
     308           0 :                 printk(KERN_INFO "%s: set to minimum %d\n",
     309             :                        __func__, max_size);
     310             :         }
     311             : 
     312             :         /* see blk_queue_virt_boundary() for the explanation */
     313           1 :         WARN_ON_ONCE(q->limits.virt_boundary_mask);
     314             : 
     315           1 :         q->limits.max_segment_size = max_size;
     316           1 : }
     317             : EXPORT_SYMBOL(blk_queue_max_segment_size);
     318             : 
     319             : /**
     320             :  * blk_queue_logical_block_size - set logical block size for the queue
     321             :  * @q:  the request queue for the device
     322             :  * @size:  the logical block size, in bytes
     323             :  *
     324             :  * Description:
     325             :  *   This should be set to the lowest possible block size that the
     326             :  *   storage device can address.  The default of 512 covers most
     327             :  *   hardware.
     328             :  **/
     329           1 : void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
     330             : {
     331           1 :         struct queue_limits *limits = &q->limits;
     332             : 
     333           1 :         limits->logical_block_size = size;
     334             : 
     335           1 :         if (limits->physical_block_size < size)
     336           0 :                 limits->physical_block_size = size;
     337             : 
     338           1 :         if (limits->io_min < limits->physical_block_size)
     339           0 :                 limits->io_min = limits->physical_block_size;
     340             : 
     341           1 :         limits->max_hw_sectors =
     342           1 :                 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
     343           1 :         limits->max_sectors =
     344           1 :                 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
     345           1 : }
     346             : EXPORT_SYMBOL(blk_queue_logical_block_size);
     347             : 
     348             : /**
     349             :  * blk_queue_physical_block_size - set physical block size for the queue
     350             :  * @q:  the request queue for the device
     351             :  * @size:  the physical block size, in bytes
     352             :  *
     353             :  * Description:
     354             :  *   This should be set to the lowest possible sector size that the
     355             :  *   hardware can operate on without reverting to read-modify-write
     356             :  *   operations.
     357             :  */
     358           0 : void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
     359             : {
     360           0 :         q->limits.physical_block_size = size;
     361             : 
     362           0 :         if (q->limits.physical_block_size < q->limits.logical_block_size)
     363           0 :                 q->limits.physical_block_size = q->limits.logical_block_size;
     364             : 
     365           0 :         if (q->limits.io_min < q->limits.physical_block_size)
     366           0 :                 q->limits.io_min = q->limits.physical_block_size;
     367           0 : }
     368             : EXPORT_SYMBOL(blk_queue_physical_block_size);
     369             : 
     370             : /**
     371             :  * blk_queue_zone_write_granularity - set zone write granularity for the queue
     372             :  * @q:  the request queue for the zoned device
     373             :  * @size:  the zone write granularity size, in bytes
     374             :  *
     375             :  * Description:
     376             :  *   This should be set to the lowest possible size allowing to write in
     377             :  *   sequential zones of a zoned block device.
     378             :  */
     379           0 : void blk_queue_zone_write_granularity(struct request_queue *q,
     380             :                                       unsigned int size)
     381             : {
     382           0 :         if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
     383           0 :                 return;
     384             : 
     385             :         q->limits.zone_write_granularity = size;
     386             : 
     387             :         if (q->limits.zone_write_granularity < q->limits.logical_block_size)
     388             :                 q->limits.zone_write_granularity = q->limits.logical_block_size;
     389             : }
     390             : EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
     391             : 
     392             : /**
     393             :  * blk_queue_alignment_offset - set physical block alignment offset
     394             :  * @q:  the request queue for the device
     395             :  * @offset: alignment offset in bytes
     396             :  *
     397             :  * Description:
     398             :  *   Some devices are naturally misaligned to compensate for things like
     399             :  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
     400             :  *   should call this function for devices whose first sector is not
     401             :  *   naturally aligned.
     402             :  */
     403           0 : void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
     404             : {
     405           0 :         q->limits.alignment_offset =
     406           0 :                 offset & (q->limits.physical_block_size - 1);
     407           0 :         q->limits.misaligned = 0;
     408           0 : }
     409             : EXPORT_SYMBOL(blk_queue_alignment_offset);
     410             : 
     411           9 : void blk_queue_update_readahead(struct request_queue *q)
     412             : {
     413             :         /*
     414             :          * For read-ahead of large files to be effective, we need to read ahead
     415             :          * at least twice the optimal I/O size.
     416             :          */
     417           9 :         q->backing_dev_info->ra_pages =
     418           9 :                 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
     419           9 :         q->backing_dev_info->io_pages =
     420           9 :                 queue_max_sectors(q) >> (PAGE_SHIFT - 9);
     421           9 : }
     422             : EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
     423             : 
     424             : /**
     425             :  * blk_limits_io_min - set minimum request size for a device
     426             :  * @limits: the queue limits
     427             :  * @min:  smallest I/O size in bytes
     428             :  *
     429             :  * Description:
     430             :  *   Some devices have an internal block size bigger than the reported
     431             :  *   hardware sector size.  This function can be used to signal the
     432             :  *   smallest I/O the device can perform without incurring a performance
     433             :  *   penalty.
     434             :  */
     435           0 : void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
     436             : {
     437           0 :         limits->io_min = min;
     438             : 
     439           0 :         if (limits->io_min < limits->logical_block_size)
     440           0 :                 limits->io_min = limits->logical_block_size;
     441             : 
     442           0 :         if (limits->io_min < limits->physical_block_size)
     443           0 :                 limits->io_min = limits->physical_block_size;
     444           0 : }
     445             : EXPORT_SYMBOL(blk_limits_io_min);
     446             : 
     447             : /**
     448             :  * blk_queue_io_min - set minimum request size for the queue
     449             :  * @q:  the request queue for the device
     450             :  * @min:  smallest I/O size in bytes
     451             :  *
     452             :  * Description:
     453             :  *   Storage devices may report a granularity or preferred minimum I/O
     454             :  *   size which is the smallest request the device can perform without
     455             :  *   incurring a performance penalty.  For disk drives this is often the
     456             :  *   physical block size.  For RAID arrays it is often the stripe chunk
     457             :  *   size.  A properly aligned multiple of minimum_io_size is the
     458             :  *   preferred request size for workloads where a high number of I/O
     459             :  *   operations is desired.
     460             :  */
     461           0 : void blk_queue_io_min(struct request_queue *q, unsigned int min)
     462             : {
     463           0 :         blk_limits_io_min(&q->limits, min);
     464           0 : }
     465             : EXPORT_SYMBOL(blk_queue_io_min);
     466             : 
     467             : /**
     468             :  * blk_limits_io_opt - set optimal request size for a device
     469             :  * @limits: the queue limits
     470             :  * @opt:  smallest I/O size in bytes
     471             :  *
     472             :  * Description:
     473             :  *   Storage devices may report an optimal I/O size, which is the
     474             :  *   device's preferred unit for sustained I/O.  This is rarely reported
     475             :  *   for disk drives.  For RAID arrays it is usually the stripe width or
     476             :  *   the internal track size.  A properly aligned multiple of
     477             :  *   optimal_io_size is the preferred request size for workloads where
     478             :  *   sustained throughput is desired.
     479             :  */
     480           0 : void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
     481             : {
     482           0 :         limits->io_opt = opt;
     483           0 : }
     484             : EXPORT_SYMBOL(blk_limits_io_opt);
     485             : 
     486             : /**
     487             :  * blk_queue_io_opt - set optimal request size for the queue
     488             :  * @q:  the request queue for the device
     489             :  * @opt:  optimal request size in bytes
     490             :  *
     491             :  * Description:
     492             :  *   Storage devices may report an optimal I/O size, which is the
     493             :  *   device's preferred unit for sustained I/O.  This is rarely reported
     494             :  *   for disk drives.  For RAID arrays it is usually the stripe width or
     495             :  *   the internal track size.  A properly aligned multiple of
     496             :  *   optimal_io_size is the preferred request size for workloads where
     497             :  *   sustained throughput is desired.
     498             :  */
     499           0 : void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
     500             : {
     501           0 :         blk_limits_io_opt(&q->limits, opt);
     502           0 :         q->backing_dev_info->ra_pages =
     503           0 :                 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
     504           0 : }
     505             : EXPORT_SYMBOL(blk_queue_io_opt);
     506             : 
     507           0 : static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
     508             : {
     509           0 :         sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
     510           0 :         if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
     511             :                 sectors = PAGE_SIZE >> SECTOR_SHIFT;
     512           0 :         return sectors;
     513             : }
     514             : 
     515             : /**
     516             :  * blk_stack_limits - adjust queue_limits for stacked devices
     517             :  * @t:  the stacking driver limits (top device)
     518             :  * @b:  the underlying queue limits (bottom, component device)
     519             :  * @start:  first data sector within component device
     520             :  *
     521             :  * Description:
     522             :  *    This function is used by stacking drivers like MD and DM to ensure
     523             :  *    that all component devices have compatible block sizes and
     524             :  *    alignments.  The stacking driver must provide a queue_limits
     525             :  *    struct (top) and then iteratively call the stacking function for
     526             :  *    all component (bottom) devices.  The stacking function will
     527             :  *    attempt to combine the values and ensure proper alignment.
     528             :  *
     529             :  *    Returns 0 if the top and bottom queue_limits are compatible.  The
     530             :  *    top device's block sizes and alignment offsets may be adjusted to
     531             :  *    ensure alignment with the bottom device. If no compatible sizes
     532             :  *    and alignments exist, -1 is returned and the resulting top
     533             :  *    queue_limits will have the misaligned flag set to indicate that
     534             :  *    the alignment_offset is undefined.
     535             :  */
     536           0 : int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
     537             :                      sector_t start)
     538             : {
     539           0 :         unsigned int top, bottom, alignment, ret = 0;
     540             : 
     541           0 :         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
     542           0 :         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
     543           0 :         t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
     544           0 :         t->max_write_same_sectors = min(t->max_write_same_sectors,
     545             :                                         b->max_write_same_sectors);
     546           0 :         t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
     547             :                                         b->max_write_zeroes_sectors);
     548           0 :         t->max_zone_append_sectors = min(t->max_zone_append_sectors,
     549             :                                         b->max_zone_append_sectors);
     550           0 :         t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
     551             : 
     552           0 :         t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
     553             :                                             b->seg_boundary_mask);
     554           0 :         t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
     555             :                                             b->virt_boundary_mask);
     556             : 
     557           0 :         t->max_segments = min_not_zero(t->max_segments, b->max_segments);
     558           0 :         t->max_discard_segments = min_not_zero(t->max_discard_segments,
     559             :                                                b->max_discard_segments);
     560           0 :         t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
     561             :                                                  b->max_integrity_segments);
     562             : 
     563           0 :         t->max_segment_size = min_not_zero(t->max_segment_size,
     564             :                                            b->max_segment_size);
     565             : 
     566           0 :         t->misaligned |= b->misaligned;
     567             : 
     568           0 :         alignment = queue_limit_alignment_offset(b, start);
     569             : 
     570             :         /* Bottom device has different alignment.  Check that it is
     571             :          * compatible with the current top alignment.
     572             :          */
     573           0 :         if (t->alignment_offset != alignment) {
     574             : 
     575           0 :                 top = max(t->physical_block_size, t->io_min)
     576             :                         + t->alignment_offset;
     577           0 :                 bottom = max(b->physical_block_size, b->io_min) + alignment;
     578             : 
     579             :                 /* Verify that top and bottom intervals line up */
     580           0 :                 if (max(top, bottom) % min(top, bottom)) {
     581           0 :                         t->misaligned = 1;
     582           0 :                         ret = -1;
     583             :                 }
     584             :         }
     585             : 
     586           0 :         t->logical_block_size = max(t->logical_block_size,
     587             :                                     b->logical_block_size);
     588             : 
     589           0 :         t->physical_block_size = max(t->physical_block_size,
     590             :                                      b->physical_block_size);
     591             : 
     592           0 :         t->io_min = max(t->io_min, b->io_min);
     593           0 :         t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
     594             : 
     595             :         /* Set non-power-of-2 compatible chunk_sectors boundary */
     596           0 :         if (b->chunk_sectors)
     597           0 :                 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
     598             : 
     599             :         /* Physical block size a multiple of the logical block size? */
     600           0 :         if (t->physical_block_size & (t->logical_block_size - 1)) {
     601           0 :                 t->physical_block_size = t->logical_block_size;
     602           0 :                 t->misaligned = 1;
     603           0 :                 ret = -1;
     604             :         }
     605             : 
     606             :         /* Minimum I/O a multiple of the physical block size? */
     607           0 :         if (t->io_min & (t->physical_block_size - 1)) {
     608           0 :                 t->io_min = t->physical_block_size;
     609           0 :                 t->misaligned = 1;
     610           0 :                 ret = -1;
     611             :         }
     612             : 
     613             :         /* Optimal I/O a multiple of the physical block size? */
     614           0 :         if (t->io_opt & (t->physical_block_size - 1)) {
     615           0 :                 t->io_opt = 0;
     616           0 :                 t->misaligned = 1;
     617           0 :                 ret = -1;
     618             :         }
     619             : 
     620             :         /* chunk_sectors a multiple of the physical block size? */
     621           0 :         if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
     622           0 :                 t->chunk_sectors = 0;
     623           0 :                 t->misaligned = 1;
     624           0 :                 ret = -1;
     625             :         }
     626             : 
     627           0 :         t->raid_partial_stripes_expensive =
     628           0 :                 max(t->raid_partial_stripes_expensive,
     629             :                     b->raid_partial_stripes_expensive);
     630             : 
     631             :         /* Find lowest common alignment_offset */
     632           0 :         t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
     633           0 :                 % max(t->physical_block_size, t->io_min);
     634             : 
     635             :         /* Verify that new alignment_offset is on a logical block boundary */
     636           0 :         if (t->alignment_offset & (t->logical_block_size - 1)) {
     637           0 :                 t->misaligned = 1;
     638           0 :                 ret = -1;
     639             :         }
     640             : 
     641           0 :         t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
     642           0 :         t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
     643           0 :         t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
     644             : 
     645             :         /* Discard alignment and granularity */
     646           0 :         if (b->discard_granularity) {
     647           0 :                 alignment = queue_limit_discard_alignment(b, start);
     648             : 
     649           0 :                 if (t->discard_granularity != 0 &&
     650           0 :                     t->discard_alignment != alignment) {
     651           0 :                         top = t->discard_granularity + t->discard_alignment;
     652           0 :                         bottom = b->discard_granularity + alignment;
     653             : 
     654             :                         /* Verify that top and bottom intervals line up */
     655           0 :                         if ((max(top, bottom) % min(top, bottom)) != 0)
     656           0 :                                 t->discard_misaligned = 1;
     657             :                 }
     658             : 
     659           0 :                 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
     660             :                                                       b->max_discard_sectors);
     661           0 :                 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
     662             :                                                          b->max_hw_discard_sectors);
     663           0 :                 t->discard_granularity = max(t->discard_granularity,
     664             :                                              b->discard_granularity);
     665           0 :                 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
     666           0 :                         t->discard_granularity;
     667             :         }
     668             : 
     669           0 :         t->zone_write_granularity = max(t->zone_write_granularity,
     670             :                                         b->zone_write_granularity);
     671           0 :         t->zoned = max(t->zoned, b->zoned);
     672           0 :         return ret;
     673             : }
     674             : EXPORT_SYMBOL(blk_stack_limits);
     675             : 
     676             : /**
     677             :  * disk_stack_limits - adjust queue limits for stacked drivers
     678             :  * @disk:  MD/DM gendisk (top)
     679             :  * @bdev:  the underlying block device (bottom)
     680             :  * @offset:  offset to beginning of data within component device
     681             :  *
     682             :  * Description:
     683             :  *    Merges the limits for a top level gendisk and a bottom level
     684             :  *    block_device.
     685             :  */
     686           0 : void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
     687             :                        sector_t offset)
     688             : {
     689           0 :         struct request_queue *t = disk->queue;
     690             : 
     691           0 :         if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
     692           0 :                         get_start_sect(bdev) + (offset >> 9)) < 0) {
     693           0 :                 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
     694             : 
     695           0 :                 disk_name(disk, 0, top);
     696           0 :                 bdevname(bdev, bottom);
     697             : 
     698           0 :                 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
     699             :                        top, bottom);
     700             :         }
     701             : 
     702           0 :         blk_queue_update_readahead(disk->queue);
     703           0 : }
     704             : EXPORT_SYMBOL(disk_stack_limits);
     705             : 
     706             : /**
     707             :  * blk_queue_update_dma_pad - update pad mask
     708             :  * @q:     the request queue for the device
     709             :  * @mask:  pad mask
     710             :  *
     711             :  * Update dma pad mask.
     712             :  *
     713             :  * Appending pad buffer to a request modifies the last entry of a
     714             :  * scatter list such that it includes the pad buffer.
     715             :  **/
     716           0 : void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
     717             : {
     718           0 :         if (mask > q->dma_pad_mask)
     719           0 :                 q->dma_pad_mask = mask;
     720           0 : }
     721             : EXPORT_SYMBOL(blk_queue_update_dma_pad);
     722             : 
     723             : /**
     724             :  * blk_queue_segment_boundary - set boundary rules for segment merging
     725             :  * @q:  the request queue for the device
     726             :  * @mask:  the memory boundary mask
     727             :  **/
     728           0 : void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
     729             : {
     730           0 :         if (mask < PAGE_SIZE - 1) {
     731           0 :                 mask = PAGE_SIZE - 1;
     732           0 :                 printk(KERN_INFO "%s: set to minimum %lx\n",
     733             :                        __func__, mask);
     734             :         }
     735             : 
     736           0 :         q->limits.seg_boundary_mask = mask;
     737           0 : }
     738             : EXPORT_SYMBOL(blk_queue_segment_boundary);
     739             : 
     740             : /**
     741             :  * blk_queue_virt_boundary - set boundary rules for bio merging
     742             :  * @q:  the request queue for the device
     743             :  * @mask:  the memory boundary mask
     744             :  **/
     745           0 : void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
     746             : {
     747           0 :         q->limits.virt_boundary_mask = mask;
     748             : 
     749             :         /*
     750             :          * Devices that require a virtual boundary do not support scatter/gather
     751             :          * I/O natively, but instead require a descriptor list entry for each
     752             :          * page (which might not be idential to the Linux PAGE_SIZE).  Because
     753             :          * of that they are not limited by our notion of "segment size".
     754             :          */
     755           0 :         if (mask)
     756           0 :                 q->limits.max_segment_size = UINT_MAX;
     757           0 : }
     758             : EXPORT_SYMBOL(blk_queue_virt_boundary);
     759             : 
     760             : /**
     761             :  * blk_queue_dma_alignment - set dma length and memory alignment
     762             :  * @q:     the request queue for the device
     763             :  * @mask:  alignment mask
     764             :  *
     765             :  * description:
     766             :  *    set required memory and length alignment for direct dma transactions.
     767             :  *    this is used when building direct io requests for the queue.
     768             :  *
     769             :  **/
     770           9 : void blk_queue_dma_alignment(struct request_queue *q, int mask)
     771             : {
     772           9 :         q->dma_alignment = mask;
     773           9 : }
     774             : EXPORT_SYMBOL(blk_queue_dma_alignment);
     775             : 
     776             : /**
     777             :  * blk_queue_update_dma_alignment - update dma length and memory alignment
     778             :  * @q:     the request queue for the device
     779             :  * @mask:  alignment mask
     780             :  *
     781             :  * description:
     782             :  *    update required memory and length alignment for direct dma transactions.
     783             :  *    If the requested alignment is larger than the current alignment, then
     784             :  *    the current queue alignment is updated to the new value, otherwise it
     785             :  *    is left alone.  The design of this is to allow multiple objects
     786             :  *    (driver, device, transport etc) to set their respective
     787             :  *    alignments without having them interfere.
     788             :  *
     789             :  **/
     790           0 : void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
     791             : {
     792           0 :         BUG_ON(mask > PAGE_SIZE);
     793             : 
     794           0 :         if (mask > q->dma_alignment)
     795           0 :                 q->dma_alignment = mask;
     796           0 : }
     797             : EXPORT_SYMBOL(blk_queue_update_dma_alignment);
     798             : 
     799             : /**
     800             :  * blk_set_queue_depth - tell the block layer about the device queue depth
     801             :  * @q:          the request queue for the device
     802             :  * @depth:              queue depth
     803             :  *
     804             :  */
     805           0 : void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
     806             : {
     807           0 :         q->queue_depth = depth;
     808           0 :         rq_qos_queue_depth_changed(q);
     809           0 : }
     810             : EXPORT_SYMBOL(blk_set_queue_depth);
     811             : 
     812             : /**
     813             :  * blk_queue_write_cache - configure queue's write cache
     814             :  * @q:          the request queue for the device
     815             :  * @wc:         write back cache on or off
     816             :  * @fua:        device supports FUA writes, if true
     817             :  *
     818             :  * Tell the block layer about the write cache of @q.
     819             :  */
     820           1 : void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
     821             : {
     822           1 :         if (wc)
     823           1 :                 blk_queue_flag_set(QUEUE_FLAG_WC, q);
     824             :         else
     825           0 :                 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
     826           1 :         if (fua)
     827           0 :                 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
     828             :         else
     829           1 :                 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
     830             : 
     831           1 :         wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
     832           1 : }
     833             : EXPORT_SYMBOL_GPL(blk_queue_write_cache);
     834             : 
     835             : /**
     836             :  * blk_queue_required_elevator_features - Set a queue required elevator features
     837             :  * @q:          the request queue for the target device
     838             :  * @features:   Required elevator features OR'ed together
     839             :  *
     840             :  * Tell the block layer that for the device controlled through @q, only the
     841             :  * only elevators that can be used are those that implement at least the set of
     842             :  * features specified by @features.
     843             :  */
     844           0 : void blk_queue_required_elevator_features(struct request_queue *q,
     845             :                                           unsigned int features)
     846             : {
     847           0 :         q->required_elevator_features = features;
     848           0 : }
     849             : EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
     850             : 
     851             : /**
     852             :  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
     853             :  * @q:          the request queue for the device
     854             :  * @dev:        the device pointer for dma
     855             :  *
     856             :  * Tell the block layer about merging the segments by dma map of @q.
     857             :  */
     858           0 : bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
     859             :                                        struct device *dev)
     860             : {
     861           0 :         unsigned long boundary = dma_get_merge_boundary(dev);
     862             : 
     863           0 :         if (!boundary)
     864             :                 return false;
     865             : 
     866             :         /* No need to update max_segment_size. see blk_queue_virt_boundary() */
     867           0 :         blk_queue_virt_boundary(q, boundary);
     868             : 
     869           0 :         return true;
     870             : }
     871             : EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
     872             : 
     873             : /**
     874             :  * blk_queue_set_zoned - configure a disk queue zoned model.
     875             :  * @disk:       the gendisk of the queue to configure
     876             :  * @model:      the zoned model to set
     877             :  *
     878             :  * Set the zoned model of the request queue of @disk according to @model.
     879             :  * When @model is BLK_ZONED_HM (host managed), this should be called only
     880             :  * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
     881             :  * If @model specifies BLK_ZONED_HA (host aware), the effective model used
     882             :  * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
     883             :  * on the disk.
     884             :  */
     885           0 : void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
     886             : {
     887           0 :         struct request_queue *q = disk->queue;
     888             : 
     889           0 :         switch (model) {
     890             :         case BLK_ZONED_HM:
     891             :                 /*
     892             :                  * Host managed devices are supported only if
     893             :                  * CONFIG_BLK_DEV_ZONED is enabled.
     894             :                  */
     895           0 :                 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
     896           0 :                 break;
     897             :         case BLK_ZONED_HA:
     898             :                 /*
     899             :                  * Host aware devices can be treated either as regular block
     900             :                  * devices (similar to drive managed devices) or as zoned block
     901             :                  * devices to take advantage of the zone command set, similarly
     902             :                  * to host managed devices. We try the latter if there are no
     903             :                  * partitions and zoned block device support is enabled, else
     904             :                  * we do nothing special as far as the block layer is concerned.
     905             :                  */
     906             :                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
     907             :                     !xa_empty(&disk->part_tbl))
     908             :                         model = BLK_ZONED_NONE;
     909             :                 break;
     910           0 :         case BLK_ZONED_NONE:
     911             :         default:
     912           0 :                 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
     913           0 :                         model = BLK_ZONED_NONE;
     914             :                 break;
     915             :         }
     916             : 
     917           0 :         q->limits.zoned = model;
     918           0 :         if (model != BLK_ZONED_NONE) {
     919             :                 /*
     920             :                  * Set the zone write granularity to the device logical block
     921             :                  * size by default. The driver can change this value if needed.
     922             :                  */
     923           0 :                 blk_queue_zone_write_granularity(q,
     924             :                                                 queue_logical_block_size(q));
     925             :         } else {
     926           0 :                 blk_queue_clear_zone_settings(q);
     927             :         }
     928           0 : }
     929             : EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
     930             : 
     931           1 : static int __init blk_settings_init(void)
     932             : {
     933           1 :         blk_max_low_pfn = max_low_pfn - 1;
     934           1 :         blk_max_pfn = max_pfn - 1;
     935           1 :         return 0;
     936             : }
     937             : subsys_initcall(blk_settings_init);

Generated by: LCOV version 1.14