Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * Symmetric key cipher operations.
4 : *
5 : * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6 : * multiple page boundaries by using temporary blocks. In user context,
7 : * the kernel is given a chance to schedule us once per page.
8 : *
9 : * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10 : */
11 :
12 : #include <crypto/internal/aead.h>
13 : #include <crypto/internal/cipher.h>
14 : #include <crypto/internal/skcipher.h>
15 : #include <crypto/scatterwalk.h>
16 : #include <linux/bug.h>
17 : #include <linux/cryptouser.h>
18 : #include <linux/compiler.h>
19 : #include <linux/list.h>
20 : #include <linux/module.h>
21 : #include <linux/rtnetlink.h>
22 : #include <linux/seq_file.h>
23 : #include <net/netlink.h>
24 :
25 : #include "internal.h"
26 :
27 : enum {
28 : SKCIPHER_WALK_PHYS = 1 << 0,
29 : SKCIPHER_WALK_SLOW = 1 << 1,
30 : SKCIPHER_WALK_COPY = 1 << 2,
31 : SKCIPHER_WALK_DIFF = 1 << 3,
32 : SKCIPHER_WALK_SLEEP = 1 << 4,
33 : };
34 :
35 : struct skcipher_walk_buffer {
36 : struct list_head entry;
37 : struct scatter_walk dst;
38 : unsigned int len;
39 : u8 *data;
40 : u8 buffer[];
41 : };
42 :
43 : static int skcipher_walk_next(struct skcipher_walk *walk);
44 :
45 0 : static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
46 : {
47 0 : if (PageHighMem(scatterwalk_page(walk)))
48 0 : kunmap_atomic(vaddr);
49 : }
50 :
51 0 : static inline void *skcipher_map(struct scatter_walk *walk)
52 : {
53 0 : struct page *page = scatterwalk_page(walk);
54 :
55 0 : return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
56 0 : offset_in_page(walk->offset);
57 : }
58 :
59 0 : static inline void skcipher_map_src(struct skcipher_walk *walk)
60 : {
61 0 : walk->src.virt.addr = skcipher_map(&walk->in);
62 : }
63 :
64 0 : static inline void skcipher_map_dst(struct skcipher_walk *walk)
65 : {
66 0 : walk->dst.virt.addr = skcipher_map(&walk->out);
67 0 : }
68 :
69 0 : static inline void skcipher_unmap_src(struct skcipher_walk *walk)
70 : {
71 0 : skcipher_unmap(&walk->in, walk->src.virt.addr);
72 : }
73 :
74 0 : static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
75 : {
76 0 : skcipher_unmap(&walk->out, walk->dst.virt.addr);
77 : }
78 :
79 0 : static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
80 : {
81 0 : return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
82 : }
83 :
84 : /* Get a spot of the specified length that does not straddle a page.
85 : * The caller needs to ensure that there is enough space for this operation.
86 : */
87 0 : static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
88 : {
89 0 : u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
90 :
91 0 : return max(start, end_page);
92 : }
93 :
94 0 : static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
95 : {
96 0 : u8 *addr;
97 :
98 0 : addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
99 0 : addr = skcipher_get_spot(addr, bsize);
100 0 : scatterwalk_copychunks(addr, &walk->out, bsize,
101 0 : (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
102 0 : return 0;
103 : }
104 :
105 0 : int skcipher_walk_done(struct skcipher_walk *walk, int err)
106 : {
107 0 : unsigned int n = walk->nbytes;
108 0 : unsigned int nbytes = 0;
109 :
110 0 : if (!n)
111 0 : goto finish;
112 :
113 0 : if (likely(err >= 0)) {
114 0 : n -= err;
115 0 : nbytes = walk->total - n;
116 : }
117 :
118 0 : if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
119 : SKCIPHER_WALK_SLOW |
120 : SKCIPHER_WALK_COPY |
121 : SKCIPHER_WALK_DIFF)))) {
122 0 : unmap_src:
123 0 : skcipher_unmap_src(walk);
124 0 : } else if (walk->flags & SKCIPHER_WALK_DIFF) {
125 0 : skcipher_unmap_dst(walk);
126 0 : goto unmap_src;
127 0 : } else if (walk->flags & SKCIPHER_WALK_COPY) {
128 0 : skcipher_map_dst(walk);
129 0 : memcpy(walk->dst.virt.addr, walk->page, n);
130 0 : skcipher_unmap_dst(walk);
131 0 : } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
132 0 : if (err > 0) {
133 : /*
134 : * Didn't process all bytes. Either the algorithm is
135 : * broken, or this was the last step and it turned out
136 : * the message wasn't evenly divisible into blocks but
137 : * the algorithm requires it.
138 : */
139 : err = -EINVAL;
140 : nbytes = 0;
141 : } else
142 0 : n = skcipher_done_slow(walk, n);
143 : }
144 :
145 0 : if (err > 0)
146 : err = 0;
147 :
148 0 : walk->total = nbytes;
149 0 : walk->nbytes = 0;
150 :
151 0 : scatterwalk_advance(&walk->in, n);
152 0 : scatterwalk_advance(&walk->out, n);
153 0 : scatterwalk_done(&walk->in, 0, nbytes);
154 0 : scatterwalk_done(&walk->out, 1, nbytes);
155 :
156 0 : if (nbytes) {
157 0 : crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
158 0 : CRYPTO_TFM_REQ_MAY_SLEEP : 0);
159 0 : return skcipher_walk_next(walk);
160 : }
161 :
162 0 : finish:
163 : /* Short-circuit for the common/fast path. */
164 0 : if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
165 0 : goto out;
166 :
167 0 : if (walk->flags & SKCIPHER_WALK_PHYS)
168 0 : goto out;
169 :
170 0 : if (walk->iv != walk->oiv)
171 0 : memcpy(walk->oiv, walk->iv, walk->ivsize);
172 0 : if (walk->buffer != walk->page)
173 0 : kfree(walk->buffer);
174 0 : if (walk->page)
175 0 : free_page((unsigned long)walk->page);
176 :
177 0 : out:
178 : return err;
179 : }
180 : EXPORT_SYMBOL_GPL(skcipher_walk_done);
181 :
182 0 : void skcipher_walk_complete(struct skcipher_walk *walk, int err)
183 : {
184 0 : struct skcipher_walk_buffer *p, *tmp;
185 :
186 0 : list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
187 0 : u8 *data;
188 :
189 0 : if (err)
190 0 : goto done;
191 :
192 0 : data = p->data;
193 0 : if (!data) {
194 0 : data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
195 0 : data = skcipher_get_spot(data, walk->stride);
196 : }
197 :
198 0 : scatterwalk_copychunks(data, &p->dst, p->len, 1);
199 :
200 0 : if (offset_in_page(p->data) + p->len + walk->stride >
201 : PAGE_SIZE)
202 0 : free_page((unsigned long)p->data);
203 :
204 0 : done:
205 0 : list_del(&p->entry);
206 0 : kfree(p);
207 : }
208 :
209 0 : if (!err && walk->iv != walk->oiv)
210 0 : memcpy(walk->oiv, walk->iv, walk->ivsize);
211 0 : if (walk->buffer != walk->page)
212 0 : kfree(walk->buffer);
213 0 : if (walk->page)
214 0 : free_page((unsigned long)walk->page);
215 0 : }
216 : EXPORT_SYMBOL_GPL(skcipher_walk_complete);
217 :
218 0 : static void skcipher_queue_write(struct skcipher_walk *walk,
219 : struct skcipher_walk_buffer *p)
220 : {
221 0 : p->dst = walk->out;
222 0 : list_add_tail(&p->entry, &walk->buffers);
223 : }
224 :
225 0 : static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
226 : {
227 0 : bool phys = walk->flags & SKCIPHER_WALK_PHYS;
228 0 : unsigned alignmask = walk->alignmask;
229 0 : struct skcipher_walk_buffer *p;
230 0 : unsigned a;
231 0 : unsigned n;
232 0 : u8 *buffer;
233 0 : void *v;
234 :
235 0 : if (!phys) {
236 0 : if (!walk->buffer)
237 0 : walk->buffer = walk->page;
238 0 : buffer = walk->buffer;
239 0 : if (buffer)
240 0 : goto ok;
241 : }
242 :
243 : /* Start with the minimum alignment of kmalloc. */
244 0 : a = crypto_tfm_ctx_alignment() - 1;
245 0 : n = bsize;
246 :
247 0 : if (phys) {
248 : /* Calculate the minimum alignment of p->buffer. */
249 0 : a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
250 0 : n += sizeof(*p);
251 : }
252 :
253 : /* Minimum size to align p->buffer by alignmask. */
254 0 : n += alignmask & ~a;
255 :
256 : /* Minimum size to ensure p->buffer does not straddle a page. */
257 0 : n += (bsize - 1) & ~(alignmask | a);
258 :
259 0 : v = kzalloc(n, skcipher_walk_gfp(walk));
260 0 : if (!v)
261 0 : return skcipher_walk_done(walk, -ENOMEM);
262 :
263 0 : if (phys) {
264 0 : p = v;
265 0 : p->len = bsize;
266 0 : skcipher_queue_write(walk, p);
267 0 : buffer = p->buffer;
268 : } else {
269 0 : walk->buffer = v;
270 0 : buffer = v;
271 : }
272 :
273 0 : ok:
274 0 : walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
275 0 : walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
276 0 : walk->src.virt.addr = walk->dst.virt.addr;
277 :
278 0 : scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
279 :
280 0 : walk->nbytes = bsize;
281 0 : walk->flags |= SKCIPHER_WALK_SLOW;
282 :
283 0 : return 0;
284 : }
285 :
286 0 : static int skcipher_next_copy(struct skcipher_walk *walk)
287 : {
288 0 : struct skcipher_walk_buffer *p;
289 0 : u8 *tmp = walk->page;
290 :
291 0 : skcipher_map_src(walk);
292 0 : memcpy(tmp, walk->src.virt.addr, walk->nbytes);
293 0 : skcipher_unmap_src(walk);
294 :
295 0 : walk->src.virt.addr = tmp;
296 0 : walk->dst.virt.addr = tmp;
297 :
298 0 : if (!(walk->flags & SKCIPHER_WALK_PHYS))
299 : return 0;
300 :
301 0 : p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
302 0 : if (!p)
303 : return -ENOMEM;
304 :
305 0 : p->data = walk->page;
306 0 : p->len = walk->nbytes;
307 0 : skcipher_queue_write(walk, p);
308 :
309 0 : if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
310 : PAGE_SIZE)
311 0 : walk->page = NULL;
312 : else
313 0 : walk->page += walk->nbytes;
314 :
315 : return 0;
316 : }
317 :
318 0 : static int skcipher_next_fast(struct skcipher_walk *walk)
319 : {
320 0 : unsigned long diff;
321 :
322 0 : walk->src.phys.page = scatterwalk_page(&walk->in);
323 0 : walk->src.phys.offset = offset_in_page(walk->in.offset);
324 0 : walk->dst.phys.page = scatterwalk_page(&walk->out);
325 0 : walk->dst.phys.offset = offset_in_page(walk->out.offset);
326 :
327 0 : if (walk->flags & SKCIPHER_WALK_PHYS)
328 : return 0;
329 :
330 0 : diff = walk->src.phys.offset - walk->dst.phys.offset;
331 0 : diff |= walk->src.virt.page - walk->dst.virt.page;
332 :
333 0 : skcipher_map_src(walk);
334 0 : walk->dst.virt.addr = walk->src.virt.addr;
335 :
336 0 : if (diff) {
337 0 : walk->flags |= SKCIPHER_WALK_DIFF;
338 0 : skcipher_map_dst(walk);
339 : }
340 :
341 : return 0;
342 : }
343 :
344 0 : static int skcipher_walk_next(struct skcipher_walk *walk)
345 : {
346 0 : unsigned int bsize;
347 0 : unsigned int n;
348 0 : int err;
349 :
350 0 : walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
351 : SKCIPHER_WALK_DIFF);
352 :
353 0 : n = walk->total;
354 0 : bsize = min(walk->stride, max(n, walk->blocksize));
355 0 : n = scatterwalk_clamp(&walk->in, n);
356 0 : n = scatterwalk_clamp(&walk->out, n);
357 :
358 0 : if (unlikely(n < bsize)) {
359 0 : if (unlikely(walk->total < walk->blocksize))
360 0 : return skcipher_walk_done(walk, -EINVAL);
361 :
362 0 : slow_path:
363 0 : err = skcipher_next_slow(walk, bsize);
364 0 : goto set_phys_lowmem;
365 : }
366 :
367 0 : if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
368 0 : if (!walk->page) {
369 0 : gfp_t gfp = skcipher_walk_gfp(walk);
370 :
371 0 : walk->page = (void *)__get_free_page(gfp);
372 0 : if (!walk->page)
373 0 : goto slow_path;
374 : }
375 :
376 0 : walk->nbytes = min_t(unsigned, n,
377 : PAGE_SIZE - offset_in_page(walk->page));
378 0 : walk->flags |= SKCIPHER_WALK_COPY;
379 0 : err = skcipher_next_copy(walk);
380 0 : goto set_phys_lowmem;
381 : }
382 :
383 0 : walk->nbytes = n;
384 :
385 0 : return skcipher_next_fast(walk);
386 :
387 0 : set_phys_lowmem:
388 0 : if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
389 0 : walk->src.phys.page = virt_to_page(walk->src.virt.addr);
390 0 : walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
391 0 : walk->src.phys.offset &= PAGE_SIZE - 1;
392 0 : walk->dst.phys.offset &= PAGE_SIZE - 1;
393 : }
394 : return err;
395 : }
396 :
397 0 : static int skcipher_copy_iv(struct skcipher_walk *walk)
398 : {
399 0 : unsigned a = crypto_tfm_ctx_alignment() - 1;
400 0 : unsigned alignmask = walk->alignmask;
401 0 : unsigned ivsize = walk->ivsize;
402 0 : unsigned bs = walk->stride;
403 0 : unsigned aligned_bs;
404 0 : unsigned size;
405 0 : u8 *iv;
406 :
407 0 : aligned_bs = ALIGN(bs, alignmask + 1);
408 :
409 : /* Minimum size to align buffer by alignmask. */
410 0 : size = alignmask & ~a;
411 :
412 0 : if (walk->flags & SKCIPHER_WALK_PHYS)
413 0 : size += ivsize;
414 : else {
415 0 : size += aligned_bs + ivsize;
416 :
417 : /* Minimum size to ensure buffer does not straddle a page. */
418 0 : size += (bs - 1) & ~(alignmask | a);
419 : }
420 :
421 0 : walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
422 0 : if (!walk->buffer)
423 : return -ENOMEM;
424 :
425 0 : iv = PTR_ALIGN(walk->buffer, alignmask + 1);
426 0 : iv = skcipher_get_spot(iv, bs) + aligned_bs;
427 :
428 0 : walk->iv = memcpy(iv, walk->iv, walk->ivsize);
429 0 : return 0;
430 : }
431 :
432 0 : static int skcipher_walk_first(struct skcipher_walk *walk)
433 : {
434 0 : if (WARN_ON_ONCE(in_irq()))
435 : return -EDEADLK;
436 :
437 0 : walk->buffer = NULL;
438 0 : if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
439 0 : int err = skcipher_copy_iv(walk);
440 0 : if (err)
441 : return err;
442 : }
443 :
444 0 : walk->page = NULL;
445 :
446 0 : return skcipher_walk_next(walk);
447 : }
448 :
449 0 : static int skcipher_walk_skcipher(struct skcipher_walk *walk,
450 : struct skcipher_request *req)
451 : {
452 0 : struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
453 :
454 0 : walk->total = req->cryptlen;
455 0 : walk->nbytes = 0;
456 0 : walk->iv = req->iv;
457 0 : walk->oiv = req->iv;
458 :
459 0 : if (unlikely(!walk->total))
460 : return 0;
461 :
462 0 : scatterwalk_start(&walk->in, req->src);
463 0 : scatterwalk_start(&walk->out, req->dst);
464 :
465 0 : walk->flags &= ~SKCIPHER_WALK_SLEEP;
466 0 : walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
467 0 : SKCIPHER_WALK_SLEEP : 0;
468 :
469 0 : walk->blocksize = crypto_skcipher_blocksize(tfm);
470 0 : walk->stride = crypto_skcipher_walksize(tfm);
471 0 : walk->ivsize = crypto_skcipher_ivsize(tfm);
472 0 : walk->alignmask = crypto_skcipher_alignmask(tfm);
473 :
474 0 : return skcipher_walk_first(walk);
475 : }
476 :
477 0 : int skcipher_walk_virt(struct skcipher_walk *walk,
478 : struct skcipher_request *req, bool atomic)
479 : {
480 0 : int err;
481 :
482 0 : might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
483 :
484 0 : walk->flags &= ~SKCIPHER_WALK_PHYS;
485 :
486 0 : err = skcipher_walk_skcipher(walk, req);
487 :
488 0 : walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
489 :
490 0 : return err;
491 : }
492 : EXPORT_SYMBOL_GPL(skcipher_walk_virt);
493 :
494 0 : int skcipher_walk_async(struct skcipher_walk *walk,
495 : struct skcipher_request *req)
496 : {
497 0 : walk->flags |= SKCIPHER_WALK_PHYS;
498 :
499 0 : INIT_LIST_HEAD(&walk->buffers);
500 :
501 0 : return skcipher_walk_skcipher(walk, req);
502 : }
503 : EXPORT_SYMBOL_GPL(skcipher_walk_async);
504 :
505 0 : static int skcipher_walk_aead_common(struct skcipher_walk *walk,
506 : struct aead_request *req, bool atomic)
507 : {
508 0 : struct crypto_aead *tfm = crypto_aead_reqtfm(req);
509 0 : int err;
510 :
511 0 : walk->nbytes = 0;
512 0 : walk->iv = req->iv;
513 0 : walk->oiv = req->iv;
514 :
515 0 : if (unlikely(!walk->total))
516 : return 0;
517 :
518 0 : walk->flags &= ~SKCIPHER_WALK_PHYS;
519 :
520 0 : scatterwalk_start(&walk->in, req->src);
521 0 : scatterwalk_start(&walk->out, req->dst);
522 :
523 0 : scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
524 0 : scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
525 :
526 0 : scatterwalk_done(&walk->in, 0, walk->total);
527 0 : scatterwalk_done(&walk->out, 0, walk->total);
528 :
529 0 : if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
530 0 : walk->flags |= SKCIPHER_WALK_SLEEP;
531 : else
532 0 : walk->flags &= ~SKCIPHER_WALK_SLEEP;
533 :
534 0 : walk->blocksize = crypto_aead_blocksize(tfm);
535 0 : walk->stride = crypto_aead_chunksize(tfm);
536 0 : walk->ivsize = crypto_aead_ivsize(tfm);
537 0 : walk->alignmask = crypto_aead_alignmask(tfm);
538 :
539 0 : err = skcipher_walk_first(walk);
540 :
541 0 : if (atomic)
542 0 : walk->flags &= ~SKCIPHER_WALK_SLEEP;
543 :
544 : return err;
545 : }
546 :
547 0 : int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
548 : struct aead_request *req, bool atomic)
549 : {
550 0 : walk->total = req->cryptlen;
551 :
552 0 : return skcipher_walk_aead_common(walk, req, atomic);
553 : }
554 : EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
555 :
556 0 : int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
557 : struct aead_request *req, bool atomic)
558 : {
559 0 : struct crypto_aead *tfm = crypto_aead_reqtfm(req);
560 :
561 0 : walk->total = req->cryptlen - crypto_aead_authsize(tfm);
562 :
563 0 : return skcipher_walk_aead_common(walk, req, atomic);
564 : }
565 : EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
566 :
567 0 : static void skcipher_set_needkey(struct crypto_skcipher *tfm)
568 : {
569 0 : if (crypto_skcipher_max_keysize(tfm) != 0)
570 0 : crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
571 : }
572 :
573 0 : static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
574 : const u8 *key, unsigned int keylen)
575 : {
576 0 : unsigned long alignmask = crypto_skcipher_alignmask(tfm);
577 0 : struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
578 0 : u8 *buffer, *alignbuffer;
579 0 : unsigned long absize;
580 0 : int ret;
581 :
582 0 : absize = keylen + alignmask;
583 0 : buffer = kmalloc(absize, GFP_ATOMIC);
584 0 : if (!buffer)
585 : return -ENOMEM;
586 :
587 0 : alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
588 0 : memcpy(alignbuffer, key, keylen);
589 0 : ret = cipher->setkey(tfm, alignbuffer, keylen);
590 0 : kfree_sensitive(buffer);
591 0 : return ret;
592 : }
593 :
594 0 : int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
595 : unsigned int keylen)
596 : {
597 0 : struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
598 0 : unsigned long alignmask = crypto_skcipher_alignmask(tfm);
599 0 : int err;
600 :
601 0 : if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
602 : return -EINVAL;
603 :
604 0 : if ((unsigned long)key & alignmask)
605 0 : err = skcipher_setkey_unaligned(tfm, key, keylen);
606 : else
607 0 : err = cipher->setkey(tfm, key, keylen);
608 :
609 0 : if (unlikely(err)) {
610 0 : skcipher_set_needkey(tfm);
611 0 : return err;
612 : }
613 :
614 0 : crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
615 0 : return 0;
616 : }
617 : EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
618 :
619 0 : int crypto_skcipher_encrypt(struct skcipher_request *req)
620 : {
621 0 : struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
622 0 : struct crypto_alg *alg = tfm->base.__crt_alg;
623 0 : unsigned int cryptlen = req->cryptlen;
624 0 : int ret;
625 :
626 0 : crypto_stats_get(alg);
627 0 : if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
628 : ret = -ENOKEY;
629 : else
630 0 : ret = crypto_skcipher_alg(tfm)->encrypt(req);
631 0 : crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
632 0 : return ret;
633 : }
634 : EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
635 :
636 0 : int crypto_skcipher_decrypt(struct skcipher_request *req)
637 : {
638 0 : struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
639 0 : struct crypto_alg *alg = tfm->base.__crt_alg;
640 0 : unsigned int cryptlen = req->cryptlen;
641 0 : int ret;
642 :
643 0 : crypto_stats_get(alg);
644 0 : if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
645 : ret = -ENOKEY;
646 : else
647 0 : ret = crypto_skcipher_alg(tfm)->decrypt(req);
648 0 : crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
649 0 : return ret;
650 : }
651 : EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
652 :
653 0 : static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
654 : {
655 0 : struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
656 0 : struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
657 :
658 0 : alg->exit(skcipher);
659 0 : }
660 :
661 0 : static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
662 : {
663 0 : struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
664 0 : struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
665 :
666 0 : skcipher_set_needkey(skcipher);
667 :
668 0 : if (alg->exit)
669 0 : skcipher->base.exit = crypto_skcipher_exit_tfm;
670 :
671 0 : if (alg->init)
672 0 : return alg->init(skcipher);
673 :
674 : return 0;
675 : }
676 :
677 0 : static void crypto_skcipher_free_instance(struct crypto_instance *inst)
678 : {
679 0 : struct skcipher_instance *skcipher =
680 0 : container_of(inst, struct skcipher_instance, s.base);
681 :
682 0 : skcipher->free(skcipher);
683 0 : }
684 :
685 : static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
686 : __maybe_unused;
687 0 : static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
688 : {
689 0 : struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
690 : base);
691 :
692 0 : seq_printf(m, "type : skcipher\n");
693 0 : seq_printf(m, "async : %s\n",
694 0 : alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
695 0 : seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
696 0 : seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
697 0 : seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
698 0 : seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
699 0 : seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
700 0 : seq_printf(m, "walksize : %u\n", skcipher->walksize);
701 0 : }
702 :
703 : #ifdef CONFIG_NET
704 0 : static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
705 : {
706 0 : struct crypto_report_blkcipher rblkcipher;
707 0 : struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
708 : base);
709 :
710 0 : memset(&rblkcipher, 0, sizeof(rblkcipher));
711 :
712 0 : strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
713 0 : strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
714 :
715 0 : rblkcipher.blocksize = alg->cra_blocksize;
716 0 : rblkcipher.min_keysize = skcipher->min_keysize;
717 0 : rblkcipher.max_keysize = skcipher->max_keysize;
718 0 : rblkcipher.ivsize = skcipher->ivsize;
719 :
720 0 : return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
721 : sizeof(rblkcipher), &rblkcipher);
722 : }
723 : #else
724 : static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
725 : {
726 : return -ENOSYS;
727 : }
728 : #endif
729 :
730 : static const struct crypto_type crypto_skcipher_type = {
731 : .extsize = crypto_alg_extsize,
732 : .init_tfm = crypto_skcipher_init_tfm,
733 : .free = crypto_skcipher_free_instance,
734 : #ifdef CONFIG_PROC_FS
735 : .show = crypto_skcipher_show,
736 : #endif
737 : .report = crypto_skcipher_report,
738 : .maskclear = ~CRYPTO_ALG_TYPE_MASK,
739 : .maskset = CRYPTO_ALG_TYPE_MASK,
740 : .type = CRYPTO_ALG_TYPE_SKCIPHER,
741 : .tfmsize = offsetof(struct crypto_skcipher, base),
742 : };
743 :
744 0 : int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
745 : struct crypto_instance *inst,
746 : const char *name, u32 type, u32 mask)
747 : {
748 0 : spawn->base.frontend = &crypto_skcipher_type;
749 0 : return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
750 : }
751 : EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
752 :
753 0 : struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
754 : u32 type, u32 mask)
755 : {
756 0 : return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
757 : }
758 : EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
759 :
760 0 : struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
761 : const char *alg_name, u32 type, u32 mask)
762 : {
763 0 : struct crypto_skcipher *tfm;
764 :
765 : /* Only sync algorithms allowed. */
766 0 : mask |= CRYPTO_ALG_ASYNC;
767 :
768 0 : tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
769 :
770 : /*
771 : * Make sure we do not allocate something that might get used with
772 : * an on-stack request: check the request size.
773 : */
774 0 : if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
775 : MAX_SYNC_SKCIPHER_REQSIZE)) {
776 0 : crypto_free_skcipher(tfm);
777 0 : return ERR_PTR(-EINVAL);
778 : }
779 :
780 : return (struct crypto_sync_skcipher *)tfm;
781 : }
782 : EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
783 :
784 0 : int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
785 : {
786 0 : return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
787 : }
788 : EXPORT_SYMBOL_GPL(crypto_has_skcipher);
789 :
790 1 : static int skcipher_prepare_alg(struct skcipher_alg *alg)
791 : {
792 1 : struct crypto_alg *base = &alg->base;
793 :
794 1 : if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
795 1 : alg->walksize > PAGE_SIZE / 8)
796 : return -EINVAL;
797 :
798 1 : if (!alg->chunksize)
799 1 : alg->chunksize = base->cra_blocksize;
800 1 : if (!alg->walksize)
801 1 : alg->walksize = alg->chunksize;
802 :
803 1 : base->cra_type = &crypto_skcipher_type;
804 1 : base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
805 1 : base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
806 :
807 1 : return 0;
808 : }
809 :
810 1 : int crypto_register_skcipher(struct skcipher_alg *alg)
811 : {
812 1 : struct crypto_alg *base = &alg->base;
813 1 : int err;
814 :
815 1 : err = skcipher_prepare_alg(alg);
816 1 : if (err)
817 : return err;
818 :
819 1 : return crypto_register_alg(base);
820 : }
821 : EXPORT_SYMBOL_GPL(crypto_register_skcipher);
822 :
823 0 : void crypto_unregister_skcipher(struct skcipher_alg *alg)
824 : {
825 0 : crypto_unregister_alg(&alg->base);
826 0 : }
827 : EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
828 :
829 0 : int crypto_register_skciphers(struct skcipher_alg *algs, int count)
830 : {
831 0 : int i, ret;
832 :
833 0 : for (i = 0; i < count; i++) {
834 0 : ret = crypto_register_skcipher(&algs[i]);
835 0 : if (ret)
836 0 : goto err;
837 : }
838 :
839 : return 0;
840 :
841 0 : err:
842 0 : for (--i; i >= 0; --i)
843 0 : crypto_unregister_skcipher(&algs[i]);
844 :
845 : return ret;
846 : }
847 : EXPORT_SYMBOL_GPL(crypto_register_skciphers);
848 :
849 0 : void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
850 : {
851 0 : int i;
852 :
853 0 : for (i = count - 1; i >= 0; --i)
854 0 : crypto_unregister_skcipher(&algs[i]);
855 0 : }
856 : EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
857 :
858 0 : int skcipher_register_instance(struct crypto_template *tmpl,
859 : struct skcipher_instance *inst)
860 : {
861 0 : int err;
862 :
863 0 : if (WARN_ON(!inst->free))
864 : return -EINVAL;
865 :
866 0 : err = skcipher_prepare_alg(&inst->alg);
867 0 : if (err)
868 : return err;
869 :
870 0 : return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
871 : }
872 : EXPORT_SYMBOL_GPL(skcipher_register_instance);
873 :
874 0 : static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
875 : unsigned int keylen)
876 : {
877 0 : struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
878 :
879 0 : crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
880 0 : crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
881 : CRYPTO_TFM_REQ_MASK);
882 0 : return crypto_cipher_setkey(cipher, key, keylen);
883 : }
884 :
885 0 : static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
886 : {
887 0 : struct skcipher_instance *inst = skcipher_alg_instance(tfm);
888 0 : struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
889 0 : struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
890 0 : struct crypto_cipher *cipher;
891 :
892 0 : cipher = crypto_spawn_cipher(spawn);
893 0 : if (IS_ERR(cipher))
894 0 : return PTR_ERR(cipher);
895 :
896 0 : ctx->cipher = cipher;
897 0 : return 0;
898 : }
899 :
900 0 : static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
901 : {
902 0 : struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
903 :
904 0 : crypto_free_cipher(ctx->cipher);
905 0 : }
906 :
907 0 : static void skcipher_free_instance_simple(struct skcipher_instance *inst)
908 : {
909 0 : crypto_drop_cipher(skcipher_instance_ctx(inst));
910 0 : kfree(inst);
911 0 : }
912 :
913 : /**
914 : * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
915 : *
916 : * Allocate an skcipher_instance for a simple block cipher mode of operation,
917 : * e.g. cbc or ecb. The instance context will have just a single crypto_spawn,
918 : * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize,
919 : * alignmask, and priority are set from the underlying cipher but can be
920 : * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and
921 : * default ->setkey(), ->init(), and ->exit() methods are installed.
922 : *
923 : * @tmpl: the template being instantiated
924 : * @tb: the template parameters
925 : *
926 : * Return: a pointer to the new instance, or an ERR_PTR(). The caller still
927 : * needs to register the instance.
928 : */
929 0 : struct skcipher_instance *skcipher_alloc_instance_simple(
930 : struct crypto_template *tmpl, struct rtattr **tb)
931 : {
932 0 : u32 mask;
933 0 : struct skcipher_instance *inst;
934 0 : struct crypto_cipher_spawn *spawn;
935 0 : struct crypto_alg *cipher_alg;
936 0 : int err;
937 :
938 0 : err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
939 0 : if (err)
940 0 : return ERR_PTR(err);
941 :
942 0 : inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
943 0 : if (!inst)
944 0 : return ERR_PTR(-ENOMEM);
945 0 : spawn = skcipher_instance_ctx(inst);
946 :
947 0 : err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
948 : crypto_attr_alg_name(tb[1]), 0, mask);
949 0 : if (err)
950 0 : goto err_free_inst;
951 0 : cipher_alg = crypto_spawn_cipher_alg(spawn);
952 :
953 0 : err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
954 : cipher_alg);
955 0 : if (err)
956 0 : goto err_free_inst;
957 :
958 0 : inst->free = skcipher_free_instance_simple;
959 :
960 : /* Default algorithm properties, can be overridden */
961 0 : inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
962 0 : inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
963 0 : inst->alg.base.cra_priority = cipher_alg->cra_priority;
964 0 : inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
965 0 : inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
966 0 : inst->alg.ivsize = cipher_alg->cra_blocksize;
967 :
968 : /* Use skcipher_ctx_simple by default, can be overridden */
969 0 : inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
970 0 : inst->alg.setkey = skcipher_setkey_simple;
971 0 : inst->alg.init = skcipher_init_tfm_simple;
972 0 : inst->alg.exit = skcipher_exit_tfm_simple;
973 :
974 0 : return inst;
975 :
976 0 : err_free_inst:
977 0 : skcipher_free_instance_simple(inst);
978 0 : return ERR_PTR(err);
979 : }
980 : EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
981 :
982 : MODULE_LICENSE("GPL");
983 : MODULE_DESCRIPTION("Symmetric key cipher type");
984 : MODULE_IMPORT_NS(CRYPTO_INTERNAL);
|