Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * cacheinfo support - processor cache information via sysfs
4 : *
5 : * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6 : * Author: Sudeep Holla <sudeep.holla@arm.com>
7 : */
8 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 :
10 : #include <linux/acpi.h>
11 : #include <linux/bitops.h>
12 : #include <linux/cacheinfo.h>
13 : #include <linux/compiler.h>
14 : #include <linux/cpu.h>
15 : #include <linux/device.h>
16 : #include <linux/init.h>
17 : #include <linux/of.h>
18 : #include <linux/sched.h>
19 : #include <linux/slab.h>
20 : #include <linux/smp.h>
21 : #include <linux/sysfs.h>
22 :
23 : /* pointer to per cpu cacheinfo */
24 : static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 : #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
26 : #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
27 : #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
28 :
29 32 : struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 : {
31 32 : return ci_cacheinfo(cpu);
32 : }
33 :
34 : #ifdef CONFIG_OF
35 : static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36 : struct cacheinfo *sib_leaf)
37 : {
38 : return sib_leaf->fw_token == this_leaf->fw_token;
39 : }
40 :
41 : /* OF properties to query for a given cache type */
42 : struct cache_type_info {
43 : const char *size_prop;
44 : const char *line_size_props[2];
45 : const char *nr_sets_prop;
46 : };
47 :
48 : static const struct cache_type_info cache_type_info[] = {
49 : {
50 : .size_prop = "cache-size",
51 : .line_size_props = { "cache-line-size",
52 : "cache-block-size", },
53 : .nr_sets_prop = "cache-sets",
54 : }, {
55 : .size_prop = "i-cache-size",
56 : .line_size_props = { "i-cache-line-size",
57 : "i-cache-block-size", },
58 : .nr_sets_prop = "i-cache-sets",
59 : }, {
60 : .size_prop = "d-cache-size",
61 : .line_size_props = { "d-cache-line-size",
62 : "d-cache-block-size", },
63 : .nr_sets_prop = "d-cache-sets",
64 : },
65 : };
66 :
67 : static inline int get_cacheinfo_idx(enum cache_type type)
68 : {
69 : if (type == CACHE_TYPE_UNIFIED)
70 : return 0;
71 : return type;
72 : }
73 :
74 : static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 : {
76 : const char *propname;
77 : int ct_idx;
78 :
79 : ct_idx = get_cacheinfo_idx(this_leaf->type);
80 : propname = cache_type_info[ct_idx].size_prop;
81 :
82 : of_property_read_u32(np, propname, &this_leaf->size);
83 : }
84 :
85 : /* not cache_line_size() because that's a macro in include/linux/cache.h */
86 : static void cache_get_line_size(struct cacheinfo *this_leaf,
87 : struct device_node *np)
88 : {
89 : int i, lim, ct_idx;
90 :
91 : ct_idx = get_cacheinfo_idx(this_leaf->type);
92 : lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
93 :
94 : for (i = 0; i < lim; i++) {
95 : int ret;
96 : u32 line_size;
97 : const char *propname;
98 :
99 : propname = cache_type_info[ct_idx].line_size_props[i];
100 : ret = of_property_read_u32(np, propname, &line_size);
101 : if (!ret) {
102 : this_leaf->coherency_line_size = line_size;
103 : break;
104 : }
105 : }
106 : }
107 :
108 : static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
109 : {
110 : const char *propname;
111 : int ct_idx;
112 :
113 : ct_idx = get_cacheinfo_idx(this_leaf->type);
114 : propname = cache_type_info[ct_idx].nr_sets_prop;
115 :
116 : of_property_read_u32(np, propname, &this_leaf->number_of_sets);
117 : }
118 :
119 : static void cache_associativity(struct cacheinfo *this_leaf)
120 : {
121 : unsigned int line_size = this_leaf->coherency_line_size;
122 : unsigned int nr_sets = this_leaf->number_of_sets;
123 : unsigned int size = this_leaf->size;
124 :
125 : /*
126 : * If the cache is fully associative, there is no need to
127 : * check the other properties.
128 : */
129 : if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
130 : this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
131 : }
132 :
133 : static bool cache_node_is_unified(struct cacheinfo *this_leaf,
134 : struct device_node *np)
135 : {
136 : return of_property_read_bool(np, "cache-unified");
137 : }
138 :
139 : static void cache_of_set_props(struct cacheinfo *this_leaf,
140 : struct device_node *np)
141 : {
142 : /*
143 : * init_cache_level must setup the cache level correctly
144 : * overriding the architecturally specified levels, so
145 : * if type is NONE at this stage, it should be unified
146 : */
147 : if (this_leaf->type == CACHE_TYPE_NOCACHE &&
148 : cache_node_is_unified(this_leaf, np))
149 : this_leaf->type = CACHE_TYPE_UNIFIED;
150 : cache_size(this_leaf, np);
151 : cache_get_line_size(this_leaf, np);
152 : cache_nr_sets(this_leaf, np);
153 : cache_associativity(this_leaf);
154 : }
155 :
156 : static int cache_setup_of_node(unsigned int cpu)
157 : {
158 : struct device_node *np;
159 : struct cacheinfo *this_leaf;
160 : struct device *cpu_dev = get_cpu_device(cpu);
161 : struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
162 : unsigned int index = 0;
163 :
164 : /* skip if fw_token is already populated */
165 : if (this_cpu_ci->info_list->fw_token) {
166 : return 0;
167 : }
168 :
169 : if (!cpu_dev) {
170 : pr_err("No cpu device for CPU %d\n", cpu);
171 : return -ENODEV;
172 : }
173 : np = cpu_dev->of_node;
174 : if (!np) {
175 : pr_err("Failed to find cpu%d device node\n", cpu);
176 : return -ENOENT;
177 : }
178 :
179 : while (index < cache_leaves(cpu)) {
180 : this_leaf = this_cpu_ci->info_list + index;
181 : if (this_leaf->level != 1)
182 : np = of_find_next_cache_node(np);
183 : else
184 : np = of_node_get(np);/* cpu node itself */
185 : if (!np)
186 : break;
187 : cache_of_set_props(this_leaf, np);
188 : this_leaf->fw_token = np;
189 : index++;
190 : }
191 :
192 : if (index != cache_leaves(cpu)) /* not all OF nodes populated */
193 : return -ENOENT;
194 :
195 : return 0;
196 : }
197 : #else
198 : static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
199 0 : static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
200 : struct cacheinfo *sib_leaf)
201 : {
202 : /*
203 : * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
204 : * shared caches for all other levels. This will be used only if
205 : * arch specific code has not populated shared_cpu_map
206 : */
207 0 : return !(this_leaf->level == 1);
208 : }
209 : #endif
210 :
211 0 : int __weak cache_setup_acpi(unsigned int cpu)
212 : {
213 0 : return -ENOTSUPP;
214 : }
215 :
216 : unsigned int coherency_max_size;
217 :
218 4 : static int cache_shared_cpu_map_setup(unsigned int cpu)
219 : {
220 4 : struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
221 4 : struct cacheinfo *this_leaf, *sib_leaf;
222 4 : unsigned int index;
223 4 : int ret = 0;
224 :
225 4 : if (this_cpu_ci->cpu_map_populated)
226 : return 0;
227 :
228 : if (of_have_populated_dt())
229 : ret = cache_setup_of_node(cpu);
230 : else if (!acpi_disabled)
231 : ret = cache_setup_acpi(cpu);
232 :
233 : if (ret)
234 : return ret;
235 :
236 0 : for (index = 0; index < cache_leaves(cpu); index++) {
237 0 : unsigned int i;
238 :
239 0 : this_leaf = this_cpu_ci->info_list + index;
240 : /* skip if shared_cpu_map is already populated */
241 0 : if (!cpumask_empty(&this_leaf->shared_cpu_map))
242 0 : continue;
243 :
244 0 : cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
245 0 : for_each_online_cpu(i) {
246 0 : struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
247 :
248 0 : if (i == cpu || !sib_cpu_ci->info_list)
249 0 : continue;/* skip if itself or no cacheinfo */
250 0 : sib_leaf = sib_cpu_ci->info_list + index;
251 0 : if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
252 0 : cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
253 0 : cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
254 : }
255 : }
256 : /* record the maximum cache line size */
257 0 : if (this_leaf->coherency_line_size > coherency_max_size)
258 0 : coherency_max_size = this_leaf->coherency_line_size;
259 : }
260 :
261 : return 0;
262 : }
263 :
264 0 : static void cache_shared_cpu_map_remove(unsigned int cpu)
265 : {
266 0 : struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
267 0 : struct cacheinfo *this_leaf, *sib_leaf;
268 0 : unsigned int sibling, index;
269 :
270 0 : for (index = 0; index < cache_leaves(cpu); index++) {
271 0 : this_leaf = this_cpu_ci->info_list + index;
272 0 : for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
273 0 : struct cpu_cacheinfo *sib_cpu_ci;
274 :
275 0 : if (sibling == cpu) /* skip itself */
276 0 : continue;
277 :
278 0 : sib_cpu_ci = get_cpu_cacheinfo(sibling);
279 0 : if (!sib_cpu_ci->info_list)
280 0 : continue;
281 :
282 0 : sib_leaf = sib_cpu_ci->info_list + index;
283 0 : cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
284 0 : cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
285 : }
286 0 : if (of_have_populated_dt())
287 0 : of_node_put(this_leaf->fw_token);
288 : }
289 0 : }
290 :
291 0 : static void free_cache_attributes(unsigned int cpu)
292 : {
293 0 : if (!per_cpu_cacheinfo(cpu))
294 : return;
295 :
296 0 : cache_shared_cpu_map_remove(cpu);
297 :
298 0 : kfree(per_cpu_cacheinfo(cpu));
299 0 : per_cpu_cacheinfo(cpu) = NULL;
300 : }
301 :
302 0 : int __weak init_cache_level(unsigned int cpu)
303 : {
304 0 : return -ENOENT;
305 : }
306 :
307 0 : int __weak populate_cache_leaves(unsigned int cpu)
308 : {
309 0 : return -ENOENT;
310 : }
311 :
312 4 : static int detect_cache_attributes(unsigned int cpu)
313 : {
314 4 : int ret;
315 :
316 4 : if (init_cache_level(cpu) || !cache_leaves(cpu))
317 : return -ENOENT;
318 :
319 4 : per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
320 : sizeof(struct cacheinfo), GFP_KERNEL);
321 4 : if (per_cpu_cacheinfo(cpu) == NULL)
322 : return -ENOMEM;
323 :
324 : /*
325 : * populate_cache_leaves() may completely setup the cache leaves and
326 : * shared_cpu_map or it may leave it partially setup.
327 : */
328 4 : ret = populate_cache_leaves(cpu);
329 4 : if (ret)
330 0 : goto free_ci;
331 : /*
332 : * For systems using DT for cache hierarchy, fw_token
333 : * and shared_cpu_map will be set up here only if they are
334 : * not populated already
335 : */
336 4 : ret = cache_shared_cpu_map_setup(cpu);
337 4 : if (ret) {
338 0 : pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
339 0 : goto free_ci;
340 : }
341 :
342 : return 0;
343 :
344 0 : free_ci:
345 0 : free_cache_attributes(cpu);
346 0 : return ret;
347 : }
348 :
349 : /* pointer to cpuX/cache device */
350 : static DEFINE_PER_CPU(struct device *, ci_cache_dev);
351 : #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
352 :
353 : static cpumask_t cache_dev_map;
354 :
355 : /* pointer to array of devices for cpuX/cache/indexY */
356 : static DEFINE_PER_CPU(struct device **, ci_index_dev);
357 : #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
358 : #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
359 :
360 : #define show_one(file_name, object) \
361 : static ssize_t file_name##_show(struct device *dev, \
362 : struct device_attribute *attr, char *buf) \
363 : { \
364 : struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
365 : return sysfs_emit(buf, "%u\n", this_leaf->object); \
366 : }
367 :
368 0 : show_one(id, id);
369 0 : show_one(level, level);
370 0 : show_one(coherency_line_size, coherency_line_size);
371 0 : show_one(number_of_sets, number_of_sets);
372 0 : show_one(physical_line_partition, physical_line_partition);
373 0 : show_one(ways_of_associativity, ways_of_associativity);
374 :
375 0 : static ssize_t size_show(struct device *dev,
376 : struct device_attribute *attr, char *buf)
377 : {
378 0 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
379 :
380 0 : return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
381 : }
382 :
383 0 : static ssize_t shared_cpu_map_show(struct device *dev,
384 : struct device_attribute *attr, char *buf)
385 : {
386 0 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
387 0 : const struct cpumask *mask = &this_leaf->shared_cpu_map;
388 :
389 0 : return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
390 : }
391 :
392 0 : static ssize_t shared_cpu_list_show(struct device *dev,
393 : struct device_attribute *attr, char *buf)
394 : {
395 0 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
396 0 : const struct cpumask *mask = &this_leaf->shared_cpu_map;
397 :
398 0 : return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
399 : }
400 :
401 0 : static ssize_t type_show(struct device *dev,
402 : struct device_attribute *attr, char *buf)
403 : {
404 0 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
405 0 : const char *output;
406 :
407 0 : switch (this_leaf->type) {
408 : case CACHE_TYPE_DATA:
409 : output = "Data";
410 : break;
411 0 : case CACHE_TYPE_INST:
412 0 : output = "Instruction";
413 0 : break;
414 0 : case CACHE_TYPE_UNIFIED:
415 0 : output = "Unified";
416 0 : break;
417 : default:
418 : return -EINVAL;
419 : }
420 :
421 0 : return sysfs_emit(buf, "%s\n", output);
422 : }
423 :
424 0 : static ssize_t allocation_policy_show(struct device *dev,
425 : struct device_attribute *attr, char *buf)
426 : {
427 0 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
428 0 : unsigned int ci_attr = this_leaf->attributes;
429 0 : const char *output;
430 :
431 0 : if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
432 : output = "ReadWriteAllocate";
433 0 : else if (ci_attr & CACHE_READ_ALLOCATE)
434 : output = "ReadAllocate";
435 0 : else if (ci_attr & CACHE_WRITE_ALLOCATE)
436 : output = "WriteAllocate";
437 : else
438 : return 0;
439 :
440 0 : return sysfs_emit(buf, "%s\n", output);
441 : }
442 :
443 0 : static ssize_t write_policy_show(struct device *dev,
444 : struct device_attribute *attr, char *buf)
445 : {
446 0 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
447 0 : unsigned int ci_attr = this_leaf->attributes;
448 0 : int n = 0;
449 :
450 0 : if (ci_attr & CACHE_WRITE_THROUGH)
451 0 : n = sysfs_emit(buf, "WriteThrough\n");
452 0 : else if (ci_attr & CACHE_WRITE_BACK)
453 0 : n = sysfs_emit(buf, "WriteBack\n");
454 0 : return n;
455 : }
456 :
457 : static DEVICE_ATTR_RO(id);
458 : static DEVICE_ATTR_RO(level);
459 : static DEVICE_ATTR_RO(type);
460 : static DEVICE_ATTR_RO(coherency_line_size);
461 : static DEVICE_ATTR_RO(ways_of_associativity);
462 : static DEVICE_ATTR_RO(number_of_sets);
463 : static DEVICE_ATTR_RO(size);
464 : static DEVICE_ATTR_RO(allocation_policy);
465 : static DEVICE_ATTR_RO(write_policy);
466 : static DEVICE_ATTR_RO(shared_cpu_map);
467 : static DEVICE_ATTR_RO(shared_cpu_list);
468 : static DEVICE_ATTR_RO(physical_line_partition);
469 :
470 : static struct attribute *cache_default_attrs[] = {
471 : &dev_attr_id.attr,
472 : &dev_attr_type.attr,
473 : &dev_attr_level.attr,
474 : &dev_attr_shared_cpu_map.attr,
475 : &dev_attr_shared_cpu_list.attr,
476 : &dev_attr_coherency_line_size.attr,
477 : &dev_attr_ways_of_associativity.attr,
478 : &dev_attr_number_of_sets.attr,
479 : &dev_attr_size.attr,
480 : &dev_attr_allocation_policy.attr,
481 : &dev_attr_write_policy.attr,
482 : &dev_attr_physical_line_partition.attr,
483 : NULL
484 : };
485 :
486 : static umode_t
487 192 : cache_default_attrs_is_visible(struct kobject *kobj,
488 : struct attribute *attr, int unused)
489 : {
490 192 : struct device *dev = kobj_to_dev(kobj);
491 192 : struct cacheinfo *this_leaf = dev_get_drvdata(dev);
492 192 : const struct cpumask *mask = &this_leaf->shared_cpu_map;
493 192 : umode_t mode = attr->mode;
494 :
495 192 : if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
496 : return mode;
497 176 : if ((attr == &dev_attr_type.attr) && this_leaf->type)
498 : return mode;
499 160 : if ((attr == &dev_attr_level.attr) && this_leaf->level)
500 : return mode;
501 144 : if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
502 : return mode;
503 128 : if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
504 : return mode;
505 112 : if ((attr == &dev_attr_coherency_line_size.attr) &&
506 16 : this_leaf->coherency_line_size)
507 : return mode;
508 96 : if ((attr == &dev_attr_ways_of_associativity.attr) &&
509 16 : this_leaf->size) /* allow 0 = full associativity */
510 : return mode;
511 80 : if ((attr == &dev_attr_number_of_sets.attr) &&
512 16 : this_leaf->number_of_sets)
513 : return mode;
514 64 : if ((attr == &dev_attr_size.attr) && this_leaf->size)
515 : return mode;
516 48 : if ((attr == &dev_attr_write_policy.attr) &&
517 16 : (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
518 : return mode;
519 48 : if ((attr == &dev_attr_allocation_policy.attr) &&
520 16 : (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
521 : return mode;
522 48 : if ((attr == &dev_attr_physical_line_partition.attr) &&
523 16 : this_leaf->physical_line_partition)
524 16 : return mode;
525 :
526 : return 0;
527 : }
528 :
529 : static const struct attribute_group cache_default_group = {
530 : .attrs = cache_default_attrs,
531 : .is_visible = cache_default_attrs_is_visible,
532 : };
533 :
534 : static const struct attribute_group *cache_default_groups[] = {
535 : &cache_default_group,
536 : NULL,
537 : };
538 :
539 : static const struct attribute_group *cache_private_groups[] = {
540 : &cache_default_group,
541 : NULL, /* Place holder for private group */
542 : NULL,
543 : };
544 :
545 : const struct attribute_group *
546 16 : __weak cache_get_priv_group(struct cacheinfo *this_leaf)
547 : {
548 16 : return NULL;
549 : }
550 :
551 : static const struct attribute_group **
552 16 : cache_get_attribute_groups(struct cacheinfo *this_leaf)
553 : {
554 16 : const struct attribute_group *priv_group =
555 16 : cache_get_priv_group(this_leaf);
556 :
557 16 : if (!priv_group)
558 : return cache_default_groups;
559 :
560 0 : if (!cache_private_groups[1])
561 0 : cache_private_groups[1] = priv_group;
562 :
563 : return cache_private_groups;
564 : }
565 :
566 : /* Add/Remove cache interface for CPU device */
567 0 : static void cpu_cache_sysfs_exit(unsigned int cpu)
568 : {
569 0 : int i;
570 0 : struct device *ci_dev;
571 :
572 0 : if (per_cpu_index_dev(cpu)) {
573 0 : for (i = 0; i < cache_leaves(cpu); i++) {
574 0 : ci_dev = per_cache_index_dev(cpu, i);
575 0 : if (!ci_dev)
576 0 : continue;
577 0 : device_unregister(ci_dev);
578 : }
579 0 : kfree(per_cpu_index_dev(cpu));
580 0 : per_cpu_index_dev(cpu) = NULL;
581 : }
582 0 : device_unregister(per_cpu_cache_dev(cpu));
583 0 : per_cpu_cache_dev(cpu) = NULL;
584 0 : }
585 :
586 4 : static int cpu_cache_sysfs_init(unsigned int cpu)
587 : {
588 4 : struct device *dev = get_cpu_device(cpu);
589 :
590 4 : if (per_cpu_cacheinfo(cpu) == NULL)
591 : return -ENOENT;
592 :
593 4 : per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
594 4 : if (IS_ERR(per_cpu_cache_dev(cpu)))
595 0 : return PTR_ERR(per_cpu_cache_dev(cpu));
596 :
597 : /* Allocate all required memory */
598 4 : per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
599 : sizeof(struct device *), GFP_KERNEL);
600 4 : if (unlikely(per_cpu_index_dev(cpu) == NULL))
601 0 : goto err_out;
602 :
603 : return 0;
604 :
605 0 : err_out:
606 0 : cpu_cache_sysfs_exit(cpu);
607 0 : return -ENOMEM;
608 : }
609 :
610 4 : static int cache_add_dev(unsigned int cpu)
611 : {
612 4 : unsigned int i;
613 4 : int rc;
614 4 : struct device *ci_dev, *parent;
615 4 : struct cacheinfo *this_leaf;
616 4 : struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
617 4 : const struct attribute_group **cache_groups;
618 :
619 4 : rc = cpu_cache_sysfs_init(cpu);
620 4 : if (unlikely(rc < 0))
621 : return rc;
622 :
623 4 : parent = per_cpu_cache_dev(cpu);
624 20 : for (i = 0; i < cache_leaves(cpu); i++) {
625 16 : this_leaf = this_cpu_ci->info_list + i;
626 16 : if (this_leaf->disable_sysfs)
627 0 : continue;
628 16 : if (this_leaf->type == CACHE_TYPE_NOCACHE)
629 : break;
630 16 : cache_groups = cache_get_attribute_groups(this_leaf);
631 16 : ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
632 : "index%1u", i);
633 16 : if (IS_ERR(ci_dev)) {
634 0 : rc = PTR_ERR(ci_dev);
635 0 : goto err;
636 : }
637 16 : per_cache_index_dev(cpu, i) = ci_dev;
638 : }
639 4 : cpumask_set_cpu(cpu, &cache_dev_map);
640 :
641 4 : return 0;
642 0 : err:
643 0 : cpu_cache_sysfs_exit(cpu);
644 0 : return rc;
645 : }
646 :
647 4 : static int cacheinfo_cpu_online(unsigned int cpu)
648 : {
649 4 : int rc = detect_cache_attributes(cpu);
650 :
651 4 : if (rc)
652 : return rc;
653 4 : rc = cache_add_dev(cpu);
654 4 : if (rc)
655 0 : free_cache_attributes(cpu);
656 : return rc;
657 : }
658 :
659 0 : static int cacheinfo_cpu_pre_down(unsigned int cpu)
660 : {
661 0 : if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
662 0 : cpu_cache_sysfs_exit(cpu);
663 :
664 0 : free_cache_attributes(cpu);
665 0 : return 0;
666 : }
667 :
668 1 : static int __init cacheinfo_sysfs_init(void)
669 : {
670 1 : return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
671 : "base/cacheinfo:online",
672 : cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
673 : }
674 : device_initcall(cacheinfo_sysfs_init);
|