Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * drivers/base/devres.c - device resource management
4 : *
5 : * Copyright (c) 2006 SUSE Linux Products GmbH
6 : * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 : */
8 :
9 : #include <linux/device.h>
10 : #include <linux/module.h>
11 : #include <linux/slab.h>
12 : #include <linux/percpu.h>
13 :
14 : #include <asm/sections.h>
15 :
16 : #include "base.h"
17 :
18 : struct devres_node {
19 : struct list_head entry;
20 : dr_release_t release;
21 : #ifdef CONFIG_DEBUG_DEVRES
22 : const char *name;
23 : size_t size;
24 : #endif
25 : };
26 :
27 : struct devres {
28 : struct devres_node node;
29 : /*
30 : * Some archs want to perform DMA into kmalloc caches
31 : * and need a guaranteed alignment larger than
32 : * the alignment of a 64-bit integer.
33 : * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
34 : * buffer alignment as if it was allocated by plain kmalloc().
35 : */
36 : u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
37 : };
38 :
39 : struct devres_group {
40 : struct devres_node node[2];
41 : void *id;
42 : int color;
43 : /* -- 8 pointers */
44 : };
45 :
46 : #ifdef CONFIG_DEBUG_DEVRES
47 : static int log_devres = 0;
48 : module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
49 :
50 : static void set_node_dbginfo(struct devres_node *node, const char *name,
51 : size_t size)
52 : {
53 : node->name = name;
54 : node->size = size;
55 : }
56 :
57 : static void devres_log(struct device *dev, struct devres_node *node,
58 : const char *op)
59 : {
60 : if (unlikely(log_devres))
61 : dev_err(dev, "DEVRES %3s %p %s (%lu bytes)\n",
62 : op, node, node->name, (unsigned long)node->size);
63 : }
64 : #else /* CONFIG_DEBUG_DEVRES */
65 : #define set_node_dbginfo(node, n, s) do {} while (0)
66 : #define devres_log(dev, node, op) do {} while (0)
67 : #endif /* CONFIG_DEBUG_DEVRES */
68 :
69 : /*
70 : * Release functions for devres group. These callbacks are used only
71 : * for identification.
72 : */
73 0 : static void group_open_release(struct device *dev, void *res)
74 : {
75 : /* noop */
76 0 : }
77 :
78 0 : static void group_close_release(struct device *dev, void *res)
79 : {
80 : /* noop */
81 0 : }
82 :
83 1 : static struct devres_group * node_to_group(struct devres_node *node)
84 : {
85 1 : if (node->release == &group_open_release)
86 1 : return container_of(node, struct devres_group, node[0]);
87 1 : if (node->release == &group_close_release)
88 0 : return container_of(node, struct devres_group, node[1]);
89 : return NULL;
90 : }
91 :
92 9 : static bool check_dr_size(size_t size, size_t *tot_size)
93 : {
94 : /* We must catch any near-SIZE_MAX cases that could overflow. */
95 9 : if (unlikely(check_add_overflow(sizeof(struct devres),
96 : size, tot_size)))
97 : return false;
98 :
99 : return true;
100 : }
101 :
102 9 : static __always_inline struct devres * alloc_dr(dr_release_t release,
103 : size_t size, gfp_t gfp, int nid)
104 : {
105 9 : size_t tot_size;
106 9 : struct devres *dr;
107 :
108 4 : if (!check_dr_size(size, &tot_size))
109 : return NULL;
110 :
111 9 : dr = kmalloc_node_track_caller(tot_size, gfp, nid);
112 9 : if (unlikely(!dr))
113 : return NULL;
114 :
115 9 : memset(dr, 0, offsetof(struct devres, data));
116 :
117 9 : INIT_LIST_HEAD(&dr->node.entry);
118 9 : dr->node.release = release;
119 9 : return dr;
120 : }
121 :
122 9 : static void add_dr(struct device *dev, struct devres_node *node)
123 : {
124 9 : devres_log(dev, node, "ADD");
125 9 : BUG_ON(!list_empty(&node->entry));
126 9 : list_add_tail(&node->entry, &dev->devres_head);
127 9 : }
128 :
129 0 : static void replace_dr(struct device *dev,
130 : struct devres_node *old, struct devres_node *new)
131 : {
132 0 : devres_log(dev, old, "REPLACE");
133 0 : BUG_ON(!list_empty(&new->entry));
134 0 : list_replace(&old->entry, &new->entry);
135 0 : }
136 :
137 : #ifdef CONFIG_DEBUG_DEVRES
138 : void * __devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
139 : const char *name)
140 : {
141 : struct devres *dr;
142 :
143 : dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
144 : if (unlikely(!dr))
145 : return NULL;
146 : set_node_dbginfo(&dr->node, name, size);
147 : return dr->data;
148 : }
149 : EXPORT_SYMBOL_GPL(__devres_alloc_node);
150 : #else
151 : /**
152 : * devres_alloc_node - Allocate device resource data
153 : * @release: Release function devres will be associated with
154 : * @size: Allocation size
155 : * @gfp: Allocation flags
156 : * @nid: NUMA node
157 : *
158 : * Allocate devres of @size bytes. The allocated area is zeroed, then
159 : * associated with @release. The returned pointer can be passed to
160 : * other devres_*() functions.
161 : *
162 : * RETURNS:
163 : * Pointer to allocated devres on success, NULL on failure.
164 : */
165 5 : void * devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid)
166 : {
167 5 : struct devres *dr;
168 :
169 5 : dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
170 5 : if (unlikely(!dr))
171 : return NULL;
172 5 : return dr->data;
173 : }
174 : EXPORT_SYMBOL_GPL(devres_alloc_node);
175 : #endif
176 :
177 : /**
178 : * devres_for_each_res - Resource iterator
179 : * @dev: Device to iterate resource from
180 : * @release: Look for resources associated with this release function
181 : * @match: Match function (optional)
182 : * @match_data: Data for the match function
183 : * @fn: Function to be called for each matched resource.
184 : * @data: Data for @fn, the 3rd parameter of @fn
185 : *
186 : * Call @fn for each devres of @dev which is associated with @release
187 : * and for which @match returns 1.
188 : *
189 : * RETURNS:
190 : * void
191 : */
192 0 : void devres_for_each_res(struct device *dev, dr_release_t release,
193 : dr_match_t match, void *match_data,
194 : void (*fn)(struct device *, void *, void *),
195 : void *data)
196 : {
197 0 : struct devres_node *node;
198 0 : struct devres_node *tmp;
199 0 : unsigned long flags;
200 :
201 0 : if (!fn)
202 : return;
203 :
204 0 : spin_lock_irqsave(&dev->devres_lock, flags);
205 0 : list_for_each_entry_safe_reverse(node, tmp,
206 : &dev->devres_head, entry) {
207 0 : struct devres *dr = container_of(node, struct devres, node);
208 :
209 0 : if (node->release != release)
210 0 : continue;
211 0 : if (match && !match(dev, dr->data, match_data))
212 0 : continue;
213 0 : fn(dev, dr->data, data);
214 : }
215 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
216 : }
217 : EXPORT_SYMBOL_GPL(devres_for_each_res);
218 :
219 : /**
220 : * devres_free - Free device resource data
221 : * @res: Pointer to devres data to free
222 : *
223 : * Free devres created with devres_alloc().
224 : */
225 0 : void devres_free(void *res)
226 : {
227 0 : if (res) {
228 0 : struct devres *dr = container_of(res, struct devres, data);
229 :
230 0 : BUG_ON(!list_empty(&dr->node.entry));
231 0 : kfree(dr);
232 : }
233 0 : }
234 : EXPORT_SYMBOL_GPL(devres_free);
235 :
236 : /**
237 : * devres_add - Register device resource
238 : * @dev: Device to add resource to
239 : * @res: Resource to register
240 : *
241 : * Register devres @res to @dev. @res should have been allocated
242 : * using devres_alloc(). On driver detach, the associated release
243 : * function will be invoked and devres will be freed automatically.
244 : */
245 9 : void devres_add(struct device *dev, void *res)
246 : {
247 9 : struct devres *dr = container_of(res, struct devres, data);
248 9 : unsigned long flags;
249 :
250 9 : spin_lock_irqsave(&dev->devres_lock, flags);
251 9 : add_dr(dev, &dr->node);
252 9 : spin_unlock_irqrestore(&dev->devres_lock, flags);
253 9 : }
254 : EXPORT_SYMBOL_GPL(devres_add);
255 :
256 0 : static struct devres *find_dr(struct device *dev, dr_release_t release,
257 : dr_match_t match, void *match_data)
258 : {
259 0 : struct devres_node *node;
260 :
261 0 : list_for_each_entry_reverse(node, &dev->devres_head, entry) {
262 0 : struct devres *dr = container_of(node, struct devres, node);
263 :
264 0 : if (node->release != release)
265 0 : continue;
266 0 : if (match && !match(dev, dr->data, match_data))
267 0 : continue;
268 : return dr;
269 : }
270 :
271 : return NULL;
272 : }
273 :
274 : /**
275 : * devres_find - Find device resource
276 : * @dev: Device to lookup resource from
277 : * @release: Look for resources associated with this release function
278 : * @match: Match function (optional)
279 : * @match_data: Data for the match function
280 : *
281 : * Find the latest devres of @dev which is associated with @release
282 : * and for which @match returns 1. If @match is NULL, it's considered
283 : * to match all.
284 : *
285 : * RETURNS:
286 : * Pointer to found devres, NULL if not found.
287 : */
288 0 : void * devres_find(struct device *dev, dr_release_t release,
289 : dr_match_t match, void *match_data)
290 : {
291 0 : struct devres *dr;
292 0 : unsigned long flags;
293 :
294 0 : spin_lock_irqsave(&dev->devres_lock, flags);
295 0 : dr = find_dr(dev, release, match, match_data);
296 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
297 :
298 0 : if (dr)
299 0 : return dr->data;
300 : return NULL;
301 : }
302 : EXPORT_SYMBOL_GPL(devres_find);
303 :
304 : /**
305 : * devres_get - Find devres, if non-existent, add one atomically
306 : * @dev: Device to lookup or add devres for
307 : * @new_res: Pointer to new initialized devres to add if not found
308 : * @match: Match function (optional)
309 : * @match_data: Data for the match function
310 : *
311 : * Find the latest devres of @dev which has the same release function
312 : * as @new_res and for which @match return 1. If found, @new_res is
313 : * freed; otherwise, @new_res is added atomically.
314 : *
315 : * RETURNS:
316 : * Pointer to found or added devres.
317 : */
318 0 : void * devres_get(struct device *dev, void *new_res,
319 : dr_match_t match, void *match_data)
320 : {
321 0 : struct devres *new_dr = container_of(new_res, struct devres, data);
322 0 : struct devres *dr;
323 0 : unsigned long flags;
324 :
325 0 : spin_lock_irqsave(&dev->devres_lock, flags);
326 0 : dr = find_dr(dev, new_dr->node.release, match, match_data);
327 0 : if (!dr) {
328 0 : add_dr(dev, &new_dr->node);
329 0 : dr = new_dr;
330 0 : new_res = NULL;
331 : }
332 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
333 0 : devres_free(new_res);
334 :
335 0 : return dr->data;
336 : }
337 : EXPORT_SYMBOL_GPL(devres_get);
338 :
339 : /**
340 : * devres_remove - Find a device resource and remove it
341 : * @dev: Device to find resource from
342 : * @release: Look for resources associated with this release function
343 : * @match: Match function (optional)
344 : * @match_data: Data for the match function
345 : *
346 : * Find the latest devres of @dev associated with @release and for
347 : * which @match returns 1. If @match is NULL, it's considered to
348 : * match all. If found, the resource is removed atomically and
349 : * returned.
350 : *
351 : * RETURNS:
352 : * Pointer to removed devres on success, NULL if not found.
353 : */
354 0 : void * devres_remove(struct device *dev, dr_release_t release,
355 : dr_match_t match, void *match_data)
356 : {
357 0 : struct devres *dr;
358 0 : unsigned long flags;
359 :
360 0 : spin_lock_irqsave(&dev->devres_lock, flags);
361 0 : dr = find_dr(dev, release, match, match_data);
362 0 : if (dr) {
363 0 : list_del_init(&dr->node.entry);
364 0 : devres_log(dev, &dr->node, "REM");
365 : }
366 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
367 :
368 0 : if (dr)
369 0 : return dr->data;
370 : return NULL;
371 : }
372 : EXPORT_SYMBOL_GPL(devres_remove);
373 :
374 : /**
375 : * devres_destroy - Find a device resource and destroy it
376 : * @dev: Device to find resource from
377 : * @release: Look for resources associated with this release function
378 : * @match: Match function (optional)
379 : * @match_data: Data for the match function
380 : *
381 : * Find the latest devres of @dev associated with @release and for
382 : * which @match returns 1. If @match is NULL, it's considered to
383 : * match all. If found, the resource is removed atomically and freed.
384 : *
385 : * Note that the release function for the resource will not be called,
386 : * only the devres-allocated data will be freed. The caller becomes
387 : * responsible for freeing any other data.
388 : *
389 : * RETURNS:
390 : * 0 if devres is found and freed, -ENOENT if not found.
391 : */
392 0 : int devres_destroy(struct device *dev, dr_release_t release,
393 : dr_match_t match, void *match_data)
394 : {
395 0 : void *res;
396 :
397 0 : res = devres_remove(dev, release, match, match_data);
398 0 : if (unlikely(!res))
399 : return -ENOENT;
400 :
401 0 : devres_free(res);
402 0 : return 0;
403 : }
404 : EXPORT_SYMBOL_GPL(devres_destroy);
405 :
406 :
407 : /**
408 : * devres_release - Find a device resource and destroy it, calling release
409 : * @dev: Device to find resource from
410 : * @release: Look for resources associated with this release function
411 : * @match: Match function (optional)
412 : * @match_data: Data for the match function
413 : *
414 : * Find the latest devres of @dev associated with @release and for
415 : * which @match returns 1. If @match is NULL, it's considered to
416 : * match all. If found, the resource is removed atomically, the
417 : * release function called and the resource freed.
418 : *
419 : * RETURNS:
420 : * 0 if devres is found and freed, -ENOENT if not found.
421 : */
422 0 : int devres_release(struct device *dev, dr_release_t release,
423 : dr_match_t match, void *match_data)
424 : {
425 0 : void *res;
426 :
427 0 : res = devres_remove(dev, release, match, match_data);
428 0 : if (unlikely(!res))
429 : return -ENOENT;
430 :
431 0 : (*release)(dev, res);
432 0 : devres_free(res);
433 0 : return 0;
434 : }
435 : EXPORT_SYMBOL_GPL(devres_release);
436 :
437 2 : static int remove_nodes(struct device *dev,
438 : struct list_head *first, struct list_head *end,
439 : struct list_head *todo)
440 : {
441 2 : int cnt = 0, nr_groups = 0;
442 2 : struct list_head *cur;
443 :
444 : /* First pass - move normal devres entries to @todo and clear
445 : * devres_group colors.
446 : */
447 2 : cur = first;
448 3 : while (cur != end) {
449 1 : struct devres_node *node;
450 1 : struct devres_group *grp;
451 :
452 1 : node = list_entry(cur, struct devres_node, entry);
453 1 : cur = cur->next;
454 :
455 1 : grp = node_to_group(node);
456 0 : if (grp) {
457 : /* clear color of group markers in the first pass */
458 0 : grp->color = 0;
459 0 : nr_groups++;
460 : } else {
461 : /* regular devres entry */
462 1 : if (&node->entry == first)
463 1 : first = first->next;
464 1 : list_move_tail(&node->entry, todo);
465 1 : cnt++;
466 : }
467 : }
468 :
469 2 : if (!nr_groups)
470 : return cnt;
471 :
472 : /* Second pass - Scan groups and color them. A group gets
473 : * color value of two iff the group is wholly contained in
474 : * [cur, end). That is, for a closed group, both opening and
475 : * closing markers should be in the range, while just the
476 : * opening marker is enough for an open group.
477 : */
478 : cur = first;
479 0 : while (cur != end) {
480 0 : struct devres_node *node;
481 0 : struct devres_group *grp;
482 :
483 0 : node = list_entry(cur, struct devres_node, entry);
484 0 : cur = cur->next;
485 :
486 0 : grp = node_to_group(node);
487 0 : BUG_ON(!grp || list_empty(&grp->node[0].entry));
488 :
489 0 : grp->color++;
490 0 : if (list_empty(&grp->node[1].entry))
491 0 : grp->color++;
492 :
493 0 : BUG_ON(grp->color <= 0 || grp->color > 2);
494 0 : if (grp->color == 2) {
495 : /* No need to update cur or end. The removed
496 : * nodes are always before both.
497 : */
498 0 : list_move_tail(&grp->node[0].entry, todo);
499 0 : list_del_init(&grp->node[1].entry);
500 : }
501 : }
502 :
503 : return cnt;
504 : }
505 :
506 2 : static int release_nodes(struct device *dev, struct list_head *first,
507 : struct list_head *end, unsigned long flags)
508 : __releases(&dev->devres_lock)
509 : {
510 2 : LIST_HEAD(todo);
511 2 : int cnt;
512 2 : struct devres *dr, *tmp;
513 :
514 2 : cnt = remove_nodes(dev, first, end, &todo);
515 :
516 2 : spin_unlock_irqrestore(&dev->devres_lock, flags);
517 :
518 : /* Release. Note that both devres and devres_group are
519 : * handled as devres in the following loop. This is safe.
520 : */
521 3 : list_for_each_entry_safe_reverse(dr, tmp, &todo, node.entry) {
522 1 : devres_log(dev, &dr->node, "REL");
523 1 : dr->node.release(dev, dr->data);
524 1 : kfree(dr);
525 : }
526 :
527 2 : return cnt;
528 : }
529 :
530 : /**
531 : * devres_release_all - Release all managed resources
532 : * @dev: Device to release resources for
533 : *
534 : * Release all resources associated with @dev. This function is
535 : * called on driver detach.
536 : */
537 2 : int devres_release_all(struct device *dev)
538 : {
539 2 : unsigned long flags;
540 :
541 : /* Looks like an uninitialized device structure */
542 2 : if (WARN_ON(dev->devres_head.next == NULL))
543 : return -ENODEV;
544 2 : spin_lock_irqsave(&dev->devres_lock, flags);
545 2 : return release_nodes(dev, dev->devres_head.next, &dev->devres_head,
546 : flags);
547 : }
548 :
549 : /**
550 : * devres_open_group - Open a new devres group
551 : * @dev: Device to open devres group for
552 : * @id: Separator ID
553 : * @gfp: Allocation flags
554 : *
555 : * Open a new devres group for @dev with @id. For @id, using a
556 : * pointer to an object which won't be used for another group is
557 : * recommended. If @id is NULL, address-wise unique ID is created.
558 : *
559 : * RETURNS:
560 : * ID of the new group, NULL on failure.
561 : */
562 0 : void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
563 : {
564 0 : struct devres_group *grp;
565 0 : unsigned long flags;
566 :
567 0 : grp = kmalloc(sizeof(*grp), gfp);
568 0 : if (unlikely(!grp))
569 : return NULL;
570 :
571 0 : grp->node[0].release = &group_open_release;
572 0 : grp->node[1].release = &group_close_release;
573 0 : INIT_LIST_HEAD(&grp->node[0].entry);
574 0 : INIT_LIST_HEAD(&grp->node[1].entry);
575 0 : set_node_dbginfo(&grp->node[0], "grp<", 0);
576 0 : set_node_dbginfo(&grp->node[1], "grp>", 0);
577 0 : grp->id = grp;
578 0 : if (id)
579 0 : grp->id = id;
580 :
581 0 : spin_lock_irqsave(&dev->devres_lock, flags);
582 0 : add_dr(dev, &grp->node[0]);
583 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
584 0 : return grp->id;
585 : }
586 : EXPORT_SYMBOL_GPL(devres_open_group);
587 :
588 : /* Find devres group with ID @id. If @id is NULL, look for the latest. */
589 0 : static struct devres_group * find_group(struct device *dev, void *id)
590 : {
591 0 : struct devres_node *node;
592 :
593 0 : list_for_each_entry_reverse(node, &dev->devres_head, entry) {
594 0 : struct devres_group *grp;
595 :
596 0 : if (node->release != &group_open_release)
597 0 : continue;
598 :
599 0 : grp = container_of(node, struct devres_group, node[0]);
600 :
601 0 : if (id) {
602 0 : if (grp->id == id)
603 0 : return grp;
604 0 : } else if (list_empty(&grp->node[1].entry))
605 0 : return grp;
606 : }
607 :
608 : return NULL;
609 : }
610 :
611 : /**
612 : * devres_close_group - Close a devres group
613 : * @dev: Device to close devres group for
614 : * @id: ID of target group, can be NULL
615 : *
616 : * Close the group identified by @id. If @id is NULL, the latest open
617 : * group is selected.
618 : */
619 0 : void devres_close_group(struct device *dev, void *id)
620 : {
621 0 : struct devres_group *grp;
622 0 : unsigned long flags;
623 :
624 0 : spin_lock_irqsave(&dev->devres_lock, flags);
625 :
626 0 : grp = find_group(dev, id);
627 0 : if (grp)
628 0 : add_dr(dev, &grp->node[1]);
629 : else
630 0 : WARN_ON(1);
631 :
632 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
633 0 : }
634 : EXPORT_SYMBOL_GPL(devres_close_group);
635 :
636 : /**
637 : * devres_remove_group - Remove a devres group
638 : * @dev: Device to remove group for
639 : * @id: ID of target group, can be NULL
640 : *
641 : * Remove the group identified by @id. If @id is NULL, the latest
642 : * open group is selected. Note that removing a group doesn't affect
643 : * any other resources.
644 : */
645 0 : void devres_remove_group(struct device *dev, void *id)
646 : {
647 0 : struct devres_group *grp;
648 0 : unsigned long flags;
649 :
650 0 : spin_lock_irqsave(&dev->devres_lock, flags);
651 :
652 0 : grp = find_group(dev, id);
653 0 : if (grp) {
654 0 : list_del_init(&grp->node[0].entry);
655 0 : list_del_init(&grp->node[1].entry);
656 : devres_log(dev, &grp->node[0], "REM");
657 : } else
658 0 : WARN_ON(1);
659 :
660 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
661 :
662 0 : kfree(grp);
663 0 : }
664 : EXPORT_SYMBOL_GPL(devres_remove_group);
665 :
666 : /**
667 : * devres_release_group - Release resources in a devres group
668 : * @dev: Device to release group for
669 : * @id: ID of target group, can be NULL
670 : *
671 : * Release all resources in the group identified by @id. If @id is
672 : * NULL, the latest open group is selected. The selected group and
673 : * groups properly nested inside the selected group are removed.
674 : *
675 : * RETURNS:
676 : * The number of released non-group resources.
677 : */
678 0 : int devres_release_group(struct device *dev, void *id)
679 : {
680 0 : struct devres_group *grp;
681 0 : unsigned long flags;
682 0 : int cnt = 0;
683 :
684 0 : spin_lock_irqsave(&dev->devres_lock, flags);
685 :
686 0 : grp = find_group(dev, id);
687 0 : if (grp) {
688 0 : struct list_head *first = &grp->node[0].entry;
689 0 : struct list_head *end = &dev->devres_head;
690 :
691 0 : if (!list_empty(&grp->node[1].entry))
692 0 : end = grp->node[1].entry.next;
693 :
694 0 : cnt = release_nodes(dev, first, end, flags);
695 : } else {
696 0 : WARN_ON(1);
697 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
698 : }
699 :
700 0 : return cnt;
701 : }
702 : EXPORT_SYMBOL_GPL(devres_release_group);
703 :
704 : /*
705 : * Custom devres actions allow inserting a simple function call
706 : * into the teadown sequence.
707 : */
708 :
709 : struct action_devres {
710 : void *data;
711 : void (*action)(void *);
712 : };
713 :
714 0 : static int devm_action_match(struct device *dev, void *res, void *p)
715 : {
716 0 : struct action_devres *devres = res;
717 0 : struct action_devres *target = p;
718 :
719 0 : return devres->action == target->action &&
720 0 : devres->data == target->data;
721 : }
722 :
723 1 : static void devm_action_release(struct device *dev, void *res)
724 : {
725 1 : struct action_devres *devres = res;
726 :
727 1 : devres->action(devres->data);
728 1 : }
729 :
730 : /**
731 : * devm_add_action() - add a custom action to list of managed resources
732 : * @dev: Device that owns the action
733 : * @action: Function that should be called
734 : * @data: Pointer to data passed to @action implementation
735 : *
736 : * This adds a custom action to the list of managed resources so that
737 : * it gets executed as part of standard resource unwinding.
738 : */
739 1 : int devm_add_action(struct device *dev, void (*action)(void *), void *data)
740 : {
741 1 : struct action_devres *devres;
742 :
743 1 : devres = devres_alloc(devm_action_release,
744 : sizeof(struct action_devres), GFP_KERNEL);
745 1 : if (!devres)
746 : return -ENOMEM;
747 :
748 1 : devres->data = data;
749 1 : devres->action = action;
750 :
751 1 : devres_add(dev, devres);
752 1 : return 0;
753 : }
754 : EXPORT_SYMBOL_GPL(devm_add_action);
755 :
756 : /**
757 : * devm_remove_action() - removes previously added custom action
758 : * @dev: Device that owns the action
759 : * @action: Function implementing the action
760 : * @data: Pointer to data passed to @action implementation
761 : *
762 : * Removes instance of @action previously added by devm_add_action().
763 : * Both action and data should match one of the existing entries.
764 : */
765 0 : void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
766 : {
767 0 : struct action_devres devres = {
768 : .data = data,
769 : .action = action,
770 : };
771 :
772 0 : WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
773 : &devres));
774 0 : }
775 : EXPORT_SYMBOL_GPL(devm_remove_action);
776 :
777 : /**
778 : * devm_release_action() - release previously added custom action
779 : * @dev: Device that owns the action
780 : * @action: Function implementing the action
781 : * @data: Pointer to data passed to @action implementation
782 : *
783 : * Releases and removes instance of @action previously added by
784 : * devm_add_action(). Both action and data should match one of the
785 : * existing entries.
786 : */
787 0 : void devm_release_action(struct device *dev, void (*action)(void *), void *data)
788 : {
789 0 : struct action_devres devres = {
790 : .data = data,
791 : .action = action,
792 : };
793 :
794 0 : WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
795 : &devres));
796 :
797 0 : }
798 : EXPORT_SYMBOL_GPL(devm_release_action);
799 :
800 : /*
801 : * Managed kmalloc/kfree
802 : */
803 0 : static void devm_kmalloc_release(struct device *dev, void *res)
804 : {
805 : /* noop */
806 0 : }
807 :
808 0 : static int devm_kmalloc_match(struct device *dev, void *res, void *data)
809 : {
810 0 : return res == data;
811 : }
812 :
813 : /**
814 : * devm_kmalloc - Resource-managed kmalloc
815 : * @dev: Device to allocate memory for
816 : * @size: Allocation size
817 : * @gfp: Allocation gfp flags
818 : *
819 : * Managed kmalloc. Memory allocated with this function is
820 : * automatically freed on driver detach. Like all other devres
821 : * resources, guaranteed alignment is unsigned long long.
822 : *
823 : * RETURNS:
824 : * Pointer to allocated memory on success, NULL on failure.
825 : */
826 4 : void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
827 : {
828 4 : struct devres *dr;
829 :
830 4 : if (unlikely(!size))
831 : return ZERO_SIZE_PTR;
832 :
833 : /* use raw alloc_dr for kmalloc caller tracing */
834 4 : dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
835 4 : if (unlikely(!dr))
836 : return NULL;
837 :
838 : /*
839 : * This is named devm_kzalloc_release for historical reasons
840 : * The initial implementation did not support kmalloc, only kzalloc
841 : */
842 4 : set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
843 4 : devres_add(dev, dr->data);
844 4 : return dr->data;
845 : }
846 : EXPORT_SYMBOL_GPL(devm_kmalloc);
847 :
848 : /**
849 : * devm_krealloc - Resource-managed krealloc()
850 : * @dev: Device to re-allocate memory for
851 : * @ptr: Pointer to the memory chunk to re-allocate
852 : * @new_size: New allocation size
853 : * @gfp: Allocation gfp flags
854 : *
855 : * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
856 : * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
857 : * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
858 : * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
859 : * change the order in which the release callback for the re-alloc'ed devres
860 : * will be called (except when falling back to devm_kmalloc() or when freeing
861 : * resources when new_size is zero). The contents of the memory are preserved
862 : * up to the lesser of new and old sizes.
863 : */
864 0 : void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
865 : {
866 0 : size_t total_new_size, total_old_size;
867 0 : struct devres *old_dr, *new_dr;
868 0 : unsigned long flags;
869 :
870 0 : if (unlikely(!new_size)) {
871 0 : devm_kfree(dev, ptr);
872 0 : return ZERO_SIZE_PTR;
873 : }
874 :
875 0 : if (unlikely(ZERO_OR_NULL_PTR(ptr)))
876 0 : return devm_kmalloc(dev, new_size, gfp);
877 :
878 0 : if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
879 : /*
880 : * We cannot reliably realloc a const string returned by
881 : * devm_kstrdup_const().
882 : */
883 : return NULL;
884 :
885 0 : if (!check_dr_size(new_size, &total_new_size))
886 : return NULL;
887 :
888 0 : total_old_size = ksize(container_of(ptr, struct devres, data));
889 0 : if (total_old_size == 0) {
890 0 : WARN(1, "Pointer doesn't point to dynamically allocated memory.");
891 0 : return NULL;
892 : }
893 :
894 : /*
895 : * If new size is smaller or equal to the actual number of bytes
896 : * allocated previously - just return the same pointer.
897 : */
898 0 : if (total_new_size <= total_old_size)
899 : return ptr;
900 :
901 : /*
902 : * Otherwise: allocate new, larger chunk. We need to allocate before
903 : * taking the lock as most probably the caller uses GFP_KERNEL.
904 : */
905 0 : new_dr = alloc_dr(devm_kmalloc_release,
906 : total_new_size, gfp, dev_to_node(dev));
907 0 : if (!new_dr)
908 0 : return NULL;
909 :
910 : /*
911 : * The spinlock protects the linked list against concurrent
912 : * modifications but not the resource itself.
913 : */
914 0 : spin_lock_irqsave(&dev->devres_lock, flags);
915 :
916 0 : old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
917 0 : if (!old_dr) {
918 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
919 0 : kfree(new_dr);
920 0 : WARN(1, "Memory chunk not managed or managed by a different device.");
921 0 : return NULL;
922 : }
923 :
924 0 : replace_dr(dev, &old_dr->node, &new_dr->node);
925 :
926 0 : spin_unlock_irqrestore(&dev->devres_lock, flags);
927 :
928 : /*
929 : * We can copy the memory contents after releasing the lock as we're
930 : * no longer modyfing the list links.
931 : */
932 0 : memcpy(new_dr->data, old_dr->data,
933 : total_old_size - offsetof(struct devres, data));
934 : /*
935 : * Same for releasing the old devres - it's now been removed from the
936 : * list. This is also the reason why we must not use devm_kfree() - the
937 : * links are no longer valid.
938 : */
939 0 : kfree(old_dr);
940 :
941 0 : return new_dr->data;
942 : }
943 : EXPORT_SYMBOL_GPL(devm_krealloc);
944 :
945 : /**
946 : * devm_kstrdup - Allocate resource managed space and
947 : * copy an existing string into that.
948 : * @dev: Device to allocate memory for
949 : * @s: the string to duplicate
950 : * @gfp: the GFP mask used in the devm_kmalloc() call when
951 : * allocating memory
952 : * RETURNS:
953 : * Pointer to allocated string on success, NULL on failure.
954 : */
955 0 : char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
956 : {
957 0 : size_t size;
958 0 : char *buf;
959 :
960 0 : if (!s)
961 : return NULL;
962 :
963 0 : size = strlen(s) + 1;
964 0 : buf = devm_kmalloc(dev, size, gfp);
965 0 : if (buf)
966 0 : memcpy(buf, s, size);
967 : return buf;
968 : }
969 : EXPORT_SYMBOL_GPL(devm_kstrdup);
970 :
971 : /**
972 : * devm_kstrdup_const - resource managed conditional string duplication
973 : * @dev: device for which to duplicate the string
974 : * @s: the string to duplicate
975 : * @gfp: the GFP mask used in the kmalloc() call when allocating memory
976 : *
977 : * Strings allocated by devm_kstrdup_const will be automatically freed when
978 : * the associated device is detached.
979 : *
980 : * RETURNS:
981 : * Source string if it is in .rodata section otherwise it falls back to
982 : * devm_kstrdup.
983 : */
984 0 : const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
985 : {
986 0 : if (is_kernel_rodata((unsigned long)s))
987 : return s;
988 :
989 0 : return devm_kstrdup(dev, s, gfp);
990 : }
991 : EXPORT_SYMBOL_GPL(devm_kstrdup_const);
992 :
993 : /**
994 : * devm_kvasprintf - Allocate resource managed space and format a string
995 : * into that.
996 : * @dev: Device to allocate memory for
997 : * @gfp: the GFP mask used in the devm_kmalloc() call when
998 : * allocating memory
999 : * @fmt: The printf()-style format string
1000 : * @ap: Arguments for the format string
1001 : * RETURNS:
1002 : * Pointer to allocated string on success, NULL on failure.
1003 : */
1004 2 : char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1005 : va_list ap)
1006 : {
1007 2 : unsigned int len;
1008 2 : char *p;
1009 2 : va_list aq;
1010 :
1011 2 : va_copy(aq, ap);
1012 2 : len = vsnprintf(NULL, 0, fmt, aq);
1013 2 : va_end(aq);
1014 :
1015 2 : p = devm_kmalloc(dev, len+1, gfp);
1016 2 : if (!p)
1017 : return NULL;
1018 :
1019 2 : vsnprintf(p, len+1, fmt, ap);
1020 :
1021 2 : return p;
1022 : }
1023 : EXPORT_SYMBOL(devm_kvasprintf);
1024 :
1025 : /**
1026 : * devm_kasprintf - Allocate resource managed space and format a string
1027 : * into that.
1028 : * @dev: Device to allocate memory for
1029 : * @gfp: the GFP mask used in the devm_kmalloc() call when
1030 : * allocating memory
1031 : * @fmt: The printf()-style format string
1032 : * @...: Arguments for the format string
1033 : * RETURNS:
1034 : * Pointer to allocated string on success, NULL on failure.
1035 : */
1036 2 : char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1037 : {
1038 2 : va_list ap;
1039 2 : char *p;
1040 :
1041 2 : va_start(ap, fmt);
1042 2 : p = devm_kvasprintf(dev, gfp, fmt, ap);
1043 2 : va_end(ap);
1044 :
1045 2 : return p;
1046 : }
1047 : EXPORT_SYMBOL_GPL(devm_kasprintf);
1048 :
1049 : /**
1050 : * devm_kfree - Resource-managed kfree
1051 : * @dev: Device this memory belongs to
1052 : * @p: Memory to free
1053 : *
1054 : * Free memory allocated with devm_kmalloc().
1055 : */
1056 0 : void devm_kfree(struct device *dev, const void *p)
1057 : {
1058 0 : int rc;
1059 :
1060 : /*
1061 : * Special cases: pointer to a string in .rodata returned by
1062 : * devm_kstrdup_const() or NULL/ZERO ptr.
1063 : */
1064 0 : if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1065 : return;
1066 :
1067 0 : rc = devres_destroy(dev, devm_kmalloc_release,
1068 : devm_kmalloc_match, (void *)p);
1069 0 : WARN_ON(rc);
1070 : }
1071 : EXPORT_SYMBOL_GPL(devm_kfree);
1072 :
1073 : /**
1074 : * devm_kmemdup - Resource-managed kmemdup
1075 : * @dev: Device this memory belongs to
1076 : * @src: Memory region to duplicate
1077 : * @len: Memory region length
1078 : * @gfp: GFP mask to use
1079 : *
1080 : * Duplicate region of a memory using resource managed kmalloc
1081 : */
1082 0 : void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1083 : {
1084 0 : void *p;
1085 :
1086 0 : p = devm_kmalloc(dev, len, gfp);
1087 0 : if (p)
1088 0 : memcpy(p, src, len);
1089 :
1090 0 : return p;
1091 : }
1092 : EXPORT_SYMBOL_GPL(devm_kmemdup);
1093 :
1094 : struct pages_devres {
1095 : unsigned long addr;
1096 : unsigned int order;
1097 : };
1098 :
1099 0 : static int devm_pages_match(struct device *dev, void *res, void *p)
1100 : {
1101 0 : struct pages_devres *devres = res;
1102 0 : struct pages_devres *target = p;
1103 :
1104 0 : return devres->addr == target->addr;
1105 : }
1106 :
1107 0 : static void devm_pages_release(struct device *dev, void *res)
1108 : {
1109 0 : struct pages_devres *devres = res;
1110 :
1111 0 : free_pages(devres->addr, devres->order);
1112 0 : }
1113 :
1114 : /**
1115 : * devm_get_free_pages - Resource-managed __get_free_pages
1116 : * @dev: Device to allocate memory for
1117 : * @gfp_mask: Allocation gfp flags
1118 : * @order: Allocation size is (1 << order) pages
1119 : *
1120 : * Managed get_free_pages. Memory allocated with this function is
1121 : * automatically freed on driver detach.
1122 : *
1123 : * RETURNS:
1124 : * Address of allocated memory on success, 0 on failure.
1125 : */
1126 :
1127 0 : unsigned long devm_get_free_pages(struct device *dev,
1128 : gfp_t gfp_mask, unsigned int order)
1129 : {
1130 0 : struct pages_devres *devres;
1131 0 : unsigned long addr;
1132 :
1133 0 : addr = __get_free_pages(gfp_mask, order);
1134 :
1135 0 : if (unlikely(!addr))
1136 : return 0;
1137 :
1138 0 : devres = devres_alloc(devm_pages_release,
1139 : sizeof(struct pages_devres), GFP_KERNEL);
1140 0 : if (unlikely(!devres)) {
1141 0 : free_pages(addr, order);
1142 0 : return 0;
1143 : }
1144 :
1145 0 : devres->addr = addr;
1146 0 : devres->order = order;
1147 :
1148 0 : devres_add(dev, devres);
1149 0 : return addr;
1150 : }
1151 : EXPORT_SYMBOL_GPL(devm_get_free_pages);
1152 :
1153 : /**
1154 : * devm_free_pages - Resource-managed free_pages
1155 : * @dev: Device this memory belongs to
1156 : * @addr: Memory to free
1157 : *
1158 : * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1159 : * there is no need to supply the @order.
1160 : */
1161 0 : void devm_free_pages(struct device *dev, unsigned long addr)
1162 : {
1163 0 : struct pages_devres devres = { .addr = addr };
1164 :
1165 0 : WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1166 : &devres));
1167 0 : }
1168 : EXPORT_SYMBOL_GPL(devm_free_pages);
1169 :
1170 0 : static void devm_percpu_release(struct device *dev, void *pdata)
1171 : {
1172 0 : void __percpu *p;
1173 :
1174 0 : p = *(void __percpu **)pdata;
1175 0 : free_percpu(p);
1176 0 : }
1177 :
1178 0 : static int devm_percpu_match(struct device *dev, void *data, void *p)
1179 : {
1180 0 : struct devres *devr = container_of(data, struct devres, data);
1181 :
1182 0 : return *(void **)devr->data == p;
1183 : }
1184 :
1185 : /**
1186 : * __devm_alloc_percpu - Resource-managed alloc_percpu
1187 : * @dev: Device to allocate per-cpu memory for
1188 : * @size: Size of per-cpu memory to allocate
1189 : * @align: Alignment of per-cpu memory to allocate
1190 : *
1191 : * Managed alloc_percpu. Per-cpu memory allocated with this function is
1192 : * automatically freed on driver detach.
1193 : *
1194 : * RETURNS:
1195 : * Pointer to allocated memory on success, NULL on failure.
1196 : */
1197 0 : void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1198 : size_t align)
1199 : {
1200 0 : void *p;
1201 0 : void __percpu *pcpu;
1202 :
1203 0 : pcpu = __alloc_percpu(size, align);
1204 0 : if (!pcpu)
1205 : return NULL;
1206 :
1207 0 : p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1208 0 : if (!p) {
1209 0 : free_percpu(pcpu);
1210 0 : return NULL;
1211 : }
1212 :
1213 0 : *(void __percpu **)p = pcpu;
1214 :
1215 0 : devres_add(dev, p);
1216 :
1217 0 : return pcpu;
1218 : }
1219 : EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1220 :
1221 : /**
1222 : * devm_free_percpu - Resource-managed free_percpu
1223 : * @dev: Device this memory belongs to
1224 : * @pdata: Per-cpu memory to free
1225 : *
1226 : * Free memory allocated with devm_alloc_percpu().
1227 : */
1228 0 : void devm_free_percpu(struct device *dev, void __percpu *pdata)
1229 : {
1230 0 : WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1231 : (void *)pdata));
1232 0 : }
1233 : EXPORT_SYMBOL_GPL(devm_free_percpu);
|