Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/drivers/char/mem.c
4 : *
5 : * Copyright (C) 1991, 1992 Linus Torvalds
6 : *
7 : * Added devfs support.
8 : * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9 : * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10 : */
11 :
12 : #include <linux/mm.h>
13 : #include <linux/miscdevice.h>
14 : #include <linux/slab.h>
15 : #include <linux/vmalloc.h>
16 : #include <linux/mman.h>
17 : #include <linux/random.h>
18 : #include <linux/init.h>
19 : #include <linux/raw.h>
20 : #include <linux/tty.h>
21 : #include <linux/capability.h>
22 : #include <linux/ptrace.h>
23 : #include <linux/device.h>
24 : #include <linux/highmem.h>
25 : #include <linux/backing-dev.h>
26 : #include <linux/shmem_fs.h>
27 : #include <linux/splice.h>
28 : #include <linux/pfn.h>
29 : #include <linux/export.h>
30 : #include <linux/io.h>
31 : #include <linux/uio.h>
32 : #include <linux/uaccess.h>
33 : #include <linux/security.h>
34 :
35 : #ifdef CONFIG_IA64
36 : # include <linux/efi.h>
37 : #endif
38 :
39 : #define DEVMEM_MINOR 1
40 : #define DEVPORT_MINOR 4
41 :
42 : static inline unsigned long size_inside_page(unsigned long start,
43 : unsigned long size)
44 : {
45 : unsigned long sz;
46 :
47 : sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
48 :
49 : return min(sz, size);
50 : }
51 :
52 : #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
53 : static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
54 : {
55 : return addr + count <= __pa(high_memory);
56 : }
57 :
58 : static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
59 : {
60 : return 1;
61 : }
62 : #endif
63 :
64 : #ifdef CONFIG_STRICT_DEVMEM
65 : static inline int page_is_allowed(unsigned long pfn)
66 : {
67 : return devmem_is_allowed(pfn);
68 : }
69 : static inline int range_is_allowed(unsigned long pfn, unsigned long size)
70 : {
71 : u64 from = ((u64)pfn) << PAGE_SHIFT;
72 : u64 to = from + size;
73 : u64 cursor = from;
74 :
75 : while (cursor < to) {
76 : if (!devmem_is_allowed(pfn))
77 : return 0;
78 : cursor += PAGE_SIZE;
79 : pfn++;
80 : }
81 : return 1;
82 : }
83 : #else
84 : static inline int page_is_allowed(unsigned long pfn)
85 : {
86 : return 1;
87 : }
88 : static inline int range_is_allowed(unsigned long pfn, unsigned long size)
89 : {
90 : return 1;
91 : }
92 : #endif
93 :
94 : #ifndef unxlate_dev_mem_ptr
95 : #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
96 : void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
97 : {
98 : }
99 : #endif
100 :
101 : static inline bool should_stop_iteration(void)
102 : {
103 : if (need_resched())
104 : cond_resched();
105 : return fatal_signal_pending(current);
106 : }
107 :
108 : /*
109 : * This funcion reads the *physical* memory. The f_pos points directly to the
110 : * memory location.
111 : */
112 : static ssize_t read_mem(struct file *file, char __user *buf,
113 : size_t count, loff_t *ppos)
114 : {
115 : phys_addr_t p = *ppos;
116 : ssize_t read, sz;
117 : void *ptr;
118 : char *bounce;
119 : int err;
120 :
121 : if (p != *ppos)
122 : return 0;
123 :
124 : if (!valid_phys_addr_range(p, count))
125 : return -EFAULT;
126 : read = 0;
127 : #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
128 : /* we don't have page 0 mapped on sparc and m68k.. */
129 : if (p < PAGE_SIZE) {
130 : sz = size_inside_page(p, count);
131 : if (sz > 0) {
132 : if (clear_user(buf, sz))
133 : return -EFAULT;
134 : buf += sz;
135 : p += sz;
136 : count -= sz;
137 : read += sz;
138 : }
139 : }
140 : #endif
141 :
142 : bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
143 : if (!bounce)
144 : return -ENOMEM;
145 :
146 : while (count > 0) {
147 : unsigned long remaining;
148 : int allowed, probe;
149 :
150 : sz = size_inside_page(p, count);
151 :
152 : err = -EPERM;
153 : allowed = page_is_allowed(p >> PAGE_SHIFT);
154 : if (!allowed)
155 : goto failed;
156 :
157 : err = -EFAULT;
158 : if (allowed == 2) {
159 : /* Show zeros for restricted memory. */
160 : remaining = clear_user(buf, sz);
161 : } else {
162 : /*
163 : * On ia64 if a page has been mapped somewhere as
164 : * uncached, then it must also be accessed uncached
165 : * by the kernel or data corruption may occur.
166 : */
167 : ptr = xlate_dev_mem_ptr(p);
168 : if (!ptr)
169 : goto failed;
170 :
171 : probe = copy_from_kernel_nofault(bounce, ptr, sz);
172 : unxlate_dev_mem_ptr(p, ptr);
173 : if (probe)
174 : goto failed;
175 :
176 : remaining = copy_to_user(buf, bounce, sz);
177 : }
178 :
179 : if (remaining)
180 : goto failed;
181 :
182 : buf += sz;
183 : p += sz;
184 : count -= sz;
185 : read += sz;
186 : if (should_stop_iteration())
187 : break;
188 : }
189 : kfree(bounce);
190 :
191 : *ppos += read;
192 : return read;
193 :
194 : failed:
195 : kfree(bounce);
196 : return err;
197 : }
198 :
199 : static ssize_t write_mem(struct file *file, const char __user *buf,
200 : size_t count, loff_t *ppos)
201 : {
202 : phys_addr_t p = *ppos;
203 : ssize_t written, sz;
204 : unsigned long copied;
205 : void *ptr;
206 :
207 : if (p != *ppos)
208 : return -EFBIG;
209 :
210 : if (!valid_phys_addr_range(p, count))
211 : return -EFAULT;
212 :
213 : written = 0;
214 :
215 : #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
216 : /* we don't have page 0 mapped on sparc and m68k.. */
217 : if (p < PAGE_SIZE) {
218 : sz = size_inside_page(p, count);
219 : /* Hmm. Do something? */
220 : buf += sz;
221 : p += sz;
222 : count -= sz;
223 : written += sz;
224 : }
225 : #endif
226 :
227 : while (count > 0) {
228 : int allowed;
229 :
230 : sz = size_inside_page(p, count);
231 :
232 : allowed = page_is_allowed(p >> PAGE_SHIFT);
233 : if (!allowed)
234 : return -EPERM;
235 :
236 : /* Skip actual writing when a page is marked as restricted. */
237 : if (allowed == 1) {
238 : /*
239 : * On ia64 if a page has been mapped somewhere as
240 : * uncached, then it must also be accessed uncached
241 : * by the kernel or data corruption may occur.
242 : */
243 : ptr = xlate_dev_mem_ptr(p);
244 : if (!ptr) {
245 : if (written)
246 : break;
247 : return -EFAULT;
248 : }
249 :
250 : copied = copy_from_user(ptr, buf, sz);
251 : unxlate_dev_mem_ptr(p, ptr);
252 : if (copied) {
253 : written += sz - copied;
254 : if (written)
255 : break;
256 : return -EFAULT;
257 : }
258 : }
259 :
260 : buf += sz;
261 : p += sz;
262 : count -= sz;
263 : written += sz;
264 : if (should_stop_iteration())
265 : break;
266 : }
267 :
268 : *ppos += written;
269 : return written;
270 : }
271 :
272 0 : int __weak phys_mem_access_prot_allowed(struct file *file,
273 : unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
274 : {
275 0 : return 1;
276 : }
277 :
278 : #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
279 :
280 : /*
281 : * Architectures vary in how they handle caching for addresses
282 : * outside of main memory.
283 : *
284 : */
285 : #ifdef pgprot_noncached
286 : static int uncached_access(struct file *file, phys_addr_t addr)
287 : {
288 : #if defined(CONFIG_IA64)
289 : /*
290 : * On ia64, we ignore O_DSYNC because we cannot tolerate memory
291 : * attribute aliases.
292 : */
293 : return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
294 : #else
295 : /*
296 : * Accessing memory above the top the kernel knows about or through a
297 : * file pointer
298 : * that was marked O_DSYNC will be done non-cached.
299 : */
300 : if (file->f_flags & O_DSYNC)
301 : return 1;
302 : return addr >= __pa(high_memory);
303 : #endif
304 : }
305 : #endif
306 :
307 : static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
308 : unsigned long size, pgprot_t vma_prot)
309 : {
310 : #ifdef pgprot_noncached
311 : phys_addr_t offset = pfn << PAGE_SHIFT;
312 :
313 : if (uncached_access(file, offset))
314 : return pgprot_noncached(vma_prot);
315 : #endif
316 : return vma_prot;
317 : }
318 : #endif
319 :
320 : #ifndef CONFIG_MMU
321 : static unsigned long get_unmapped_area_mem(struct file *file,
322 : unsigned long addr,
323 : unsigned long len,
324 : unsigned long pgoff,
325 : unsigned long flags)
326 : {
327 : if (!valid_mmap_phys_addr_range(pgoff, len))
328 : return (unsigned long) -EINVAL;
329 : return pgoff << PAGE_SHIFT;
330 : }
331 :
332 : /* permit direct mmap, for read, write or exec */
333 : static unsigned memory_mmap_capabilities(struct file *file)
334 : {
335 : return NOMMU_MAP_DIRECT |
336 : NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
337 : }
338 :
339 : static unsigned zero_mmap_capabilities(struct file *file)
340 : {
341 : return NOMMU_MAP_COPY;
342 : }
343 :
344 : /* can't do an in-place private mapping if there's no MMU */
345 : static inline int private_mapping_ok(struct vm_area_struct *vma)
346 : {
347 : return vma->vm_flags & VM_MAYSHARE;
348 : }
349 : #else
350 :
351 : static inline int private_mapping_ok(struct vm_area_struct *vma)
352 : {
353 : return 1;
354 : }
355 : #endif
356 :
357 : static const struct vm_operations_struct mmap_mem_ops = {
358 : #ifdef CONFIG_HAVE_IOREMAP_PROT
359 : .access = generic_access_phys
360 : #endif
361 : };
362 :
363 : static int mmap_mem(struct file *file, struct vm_area_struct *vma)
364 : {
365 : size_t size = vma->vm_end - vma->vm_start;
366 : phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
367 :
368 : /* Does it even fit in phys_addr_t? */
369 : if (offset >> PAGE_SHIFT != vma->vm_pgoff)
370 : return -EINVAL;
371 :
372 : /* It's illegal to wrap around the end of the physical address space. */
373 : if (offset + (phys_addr_t)size - 1 < offset)
374 : return -EINVAL;
375 :
376 : if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
377 : return -EINVAL;
378 :
379 : if (!private_mapping_ok(vma))
380 : return -ENOSYS;
381 :
382 : if (!range_is_allowed(vma->vm_pgoff, size))
383 : return -EPERM;
384 :
385 : if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
386 : &vma->vm_page_prot))
387 : return -EINVAL;
388 :
389 : vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
390 : size,
391 : vma->vm_page_prot);
392 :
393 : vma->vm_ops = &mmap_mem_ops;
394 :
395 : /* Remap-pfn-range will mark the range VM_IO */
396 : if (remap_pfn_range(vma,
397 : vma->vm_start,
398 : vma->vm_pgoff,
399 : size,
400 : vma->vm_page_prot)) {
401 : return -EAGAIN;
402 : }
403 : return 0;
404 : }
405 :
406 : static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
407 : {
408 : unsigned long pfn;
409 :
410 : /* Turn a kernel-virtual address into a physical page frame */
411 : pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
412 :
413 : /*
414 : * RED-PEN: on some architectures there is more mapped memory than
415 : * available in mem_map which pfn_valid checks for. Perhaps should add a
416 : * new macro here.
417 : *
418 : * RED-PEN: vmalloc is not supported right now.
419 : */
420 : if (!pfn_valid(pfn))
421 : return -EIO;
422 :
423 : vma->vm_pgoff = pfn;
424 : return mmap_mem(file, vma);
425 : }
426 :
427 : /*
428 : * This function reads the *virtual* memory as seen by the kernel.
429 : */
430 : static ssize_t read_kmem(struct file *file, char __user *buf,
431 : size_t count, loff_t *ppos)
432 : {
433 : unsigned long p = *ppos;
434 : ssize_t low_count, read, sz;
435 : char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
436 : int err = 0;
437 :
438 : read = 0;
439 : if (p < (unsigned long) high_memory) {
440 : low_count = count;
441 : if (count > (unsigned long)high_memory - p)
442 : low_count = (unsigned long)high_memory - p;
443 :
444 : #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
445 : /* we don't have page 0 mapped on sparc and m68k.. */
446 : if (p < PAGE_SIZE && low_count > 0) {
447 : sz = size_inside_page(p, low_count);
448 : if (clear_user(buf, sz))
449 : return -EFAULT;
450 : buf += sz;
451 : p += sz;
452 : read += sz;
453 : low_count -= sz;
454 : count -= sz;
455 : }
456 : #endif
457 : while (low_count > 0) {
458 : sz = size_inside_page(p, low_count);
459 :
460 : /*
461 : * On ia64 if a page has been mapped somewhere as
462 : * uncached, then it must also be accessed uncached
463 : * by the kernel or data corruption may occur
464 : */
465 : kbuf = xlate_dev_kmem_ptr((void *)p);
466 : if (!virt_addr_valid(kbuf))
467 : return -ENXIO;
468 :
469 : if (copy_to_user(buf, kbuf, sz))
470 : return -EFAULT;
471 : buf += sz;
472 : p += sz;
473 : read += sz;
474 : low_count -= sz;
475 : count -= sz;
476 : if (should_stop_iteration()) {
477 : count = 0;
478 : break;
479 : }
480 : }
481 : }
482 :
483 : if (count > 0) {
484 : kbuf = (char *)__get_free_page(GFP_KERNEL);
485 : if (!kbuf)
486 : return -ENOMEM;
487 : while (count > 0) {
488 : sz = size_inside_page(p, count);
489 : if (!is_vmalloc_or_module_addr((void *)p)) {
490 : err = -ENXIO;
491 : break;
492 : }
493 : sz = vread(kbuf, (char *)p, sz);
494 : if (!sz)
495 : break;
496 : if (copy_to_user(buf, kbuf, sz)) {
497 : err = -EFAULT;
498 : break;
499 : }
500 : count -= sz;
501 : buf += sz;
502 : read += sz;
503 : p += sz;
504 : if (should_stop_iteration())
505 : break;
506 : }
507 : free_page((unsigned long)kbuf);
508 : }
509 : *ppos = p;
510 : return read ? read : err;
511 : }
512 :
513 :
514 : static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
515 : size_t count, loff_t *ppos)
516 : {
517 : ssize_t written, sz;
518 : unsigned long copied;
519 :
520 : written = 0;
521 : #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
522 : /* we don't have page 0 mapped on sparc and m68k.. */
523 : if (p < PAGE_SIZE) {
524 : sz = size_inside_page(p, count);
525 : /* Hmm. Do something? */
526 : buf += sz;
527 : p += sz;
528 : count -= sz;
529 : written += sz;
530 : }
531 : #endif
532 :
533 : while (count > 0) {
534 : void *ptr;
535 :
536 : sz = size_inside_page(p, count);
537 :
538 : /*
539 : * On ia64 if a page has been mapped somewhere as uncached, then
540 : * it must also be accessed uncached by the kernel or data
541 : * corruption may occur.
542 : */
543 : ptr = xlate_dev_kmem_ptr((void *)p);
544 : if (!virt_addr_valid(ptr))
545 : return -ENXIO;
546 :
547 : copied = copy_from_user(ptr, buf, sz);
548 : if (copied) {
549 : written += sz - copied;
550 : if (written)
551 : break;
552 : return -EFAULT;
553 : }
554 : buf += sz;
555 : p += sz;
556 : count -= sz;
557 : written += sz;
558 : if (should_stop_iteration())
559 : break;
560 : }
561 :
562 : *ppos += written;
563 : return written;
564 : }
565 :
566 : /*
567 : * This function writes to the *virtual* memory as seen by the kernel.
568 : */
569 : static ssize_t write_kmem(struct file *file, const char __user *buf,
570 : size_t count, loff_t *ppos)
571 : {
572 : unsigned long p = *ppos;
573 : ssize_t wrote = 0;
574 : ssize_t virtr = 0;
575 : char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
576 : int err = 0;
577 :
578 : if (p < (unsigned long) high_memory) {
579 : unsigned long to_write = min_t(unsigned long, count,
580 : (unsigned long)high_memory - p);
581 : wrote = do_write_kmem(p, buf, to_write, ppos);
582 : if (wrote != to_write)
583 : return wrote;
584 : p += wrote;
585 : buf += wrote;
586 : count -= wrote;
587 : }
588 :
589 : if (count > 0) {
590 : kbuf = (char *)__get_free_page(GFP_KERNEL);
591 : if (!kbuf)
592 : return wrote ? wrote : -ENOMEM;
593 : while (count > 0) {
594 : unsigned long sz = size_inside_page(p, count);
595 : unsigned long n;
596 :
597 : if (!is_vmalloc_or_module_addr((void *)p)) {
598 : err = -ENXIO;
599 : break;
600 : }
601 : n = copy_from_user(kbuf, buf, sz);
602 : if (n) {
603 : err = -EFAULT;
604 : break;
605 : }
606 : vwrite(kbuf, (char *)p, sz);
607 : count -= sz;
608 : buf += sz;
609 : virtr += sz;
610 : p += sz;
611 : if (should_stop_iteration())
612 : break;
613 : }
614 : free_page((unsigned long)kbuf);
615 : }
616 :
617 : *ppos = p;
618 : return virtr + wrote ? : err;
619 : }
620 :
621 : static ssize_t read_port(struct file *file, char __user *buf,
622 : size_t count, loff_t *ppos)
623 : {
624 : unsigned long i = *ppos;
625 : char __user *tmp = buf;
626 :
627 : if (!access_ok(buf, count))
628 : return -EFAULT;
629 : while (count-- > 0 && i < 65536) {
630 : if (__put_user(inb(i), tmp) < 0)
631 : return -EFAULT;
632 : i++;
633 : tmp++;
634 : }
635 : *ppos = i;
636 : return tmp-buf;
637 : }
638 :
639 : static ssize_t write_port(struct file *file, const char __user *buf,
640 : size_t count, loff_t *ppos)
641 : {
642 : unsigned long i = *ppos;
643 : const char __user *tmp = buf;
644 :
645 : if (!access_ok(buf, count))
646 : return -EFAULT;
647 : while (count-- > 0 && i < 65536) {
648 : char c;
649 :
650 : if (__get_user(c, tmp)) {
651 : if (tmp > buf)
652 : break;
653 : return -EFAULT;
654 : }
655 : outb(c, i);
656 : i++;
657 : tmp++;
658 : }
659 : *ppos = i;
660 : return tmp-buf;
661 : }
662 :
663 1 : static ssize_t read_null(struct file *file, char __user *buf,
664 : size_t count, loff_t *ppos)
665 : {
666 1 : return 0;
667 : }
668 :
669 17 : static ssize_t write_null(struct file *file, const char __user *buf,
670 : size_t count, loff_t *ppos)
671 : {
672 17 : return count;
673 : }
674 :
675 0 : static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
676 : {
677 0 : return 0;
678 : }
679 :
680 0 : static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
681 : {
682 0 : size_t count = iov_iter_count(from);
683 0 : iov_iter_advance(from, count);
684 0 : return count;
685 : }
686 :
687 0 : static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
688 : struct splice_desc *sd)
689 : {
690 0 : return sd->len;
691 : }
692 :
693 0 : static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
694 : loff_t *ppos, size_t len, unsigned int flags)
695 : {
696 0 : return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
697 : }
698 :
699 0 : static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
700 : {
701 0 : size_t written = 0;
702 :
703 0 : while (iov_iter_count(iter)) {
704 0 : size_t chunk = iov_iter_count(iter), n;
705 :
706 0 : if (chunk > PAGE_SIZE)
707 : chunk = PAGE_SIZE; /* Just for latency reasons */
708 0 : n = iov_iter_zero(chunk, iter);
709 0 : if (!n && iov_iter_count(iter))
710 0 : return written ? written : -EFAULT;
711 0 : written += n;
712 0 : if (signal_pending(current))
713 0 : return written ? written : -ERESTARTSYS;
714 0 : cond_resched();
715 : }
716 0 : return written;
717 : }
718 :
719 0 : static ssize_t read_zero(struct file *file, char __user *buf,
720 : size_t count, loff_t *ppos)
721 : {
722 0 : size_t cleared = 0;
723 :
724 0 : while (count) {
725 0 : size_t chunk = min_t(size_t, count, PAGE_SIZE);
726 0 : size_t left;
727 :
728 0 : left = clear_user(buf + cleared, chunk);
729 0 : if (unlikely(left)) {
730 0 : cleared += (chunk - left);
731 0 : if (!cleared)
732 : return -EFAULT;
733 : break;
734 : }
735 0 : cleared += chunk;
736 0 : count -= chunk;
737 :
738 0 : if (signal_pending(current))
739 : break;
740 0 : cond_resched();
741 : }
742 :
743 0 : return cleared;
744 : }
745 :
746 0 : static int mmap_zero(struct file *file, struct vm_area_struct *vma)
747 : {
748 : #ifndef CONFIG_MMU
749 : return -ENOSYS;
750 : #endif
751 0 : if (vma->vm_flags & VM_SHARED)
752 0 : return shmem_zero_setup(vma);
753 0 : vma_set_anonymous(vma);
754 0 : return 0;
755 : }
756 :
757 0 : static unsigned long get_unmapped_area_zero(struct file *file,
758 : unsigned long addr, unsigned long len,
759 : unsigned long pgoff, unsigned long flags)
760 : {
761 : #ifdef CONFIG_MMU
762 0 : if (flags & MAP_SHARED) {
763 : /*
764 : * mmap_zero() will call shmem_zero_setup() to create a file,
765 : * so use shmem's get_unmapped_area in case it can be huge;
766 : * and pass NULL for file as in mmap.c's get_unmapped_area(),
767 : * so as not to confuse shmem with our handle on "/dev/zero".
768 : */
769 0 : return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
770 : }
771 :
772 : /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
773 0 : return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
774 : #else
775 : return -ENOSYS;
776 : #endif
777 : }
778 :
779 0 : static ssize_t write_full(struct file *file, const char __user *buf,
780 : size_t count, loff_t *ppos)
781 : {
782 0 : return -ENOSPC;
783 : }
784 :
785 : /*
786 : * Special lseek() function for /dev/null and /dev/zero. Most notably, you
787 : * can fopen() both devices with "a" now. This was previously impossible.
788 : * -- SRB.
789 : */
790 15 : static loff_t null_lseek(struct file *file, loff_t offset, int orig)
791 : {
792 15 : return file->f_pos = 0;
793 : }
794 :
795 : /*
796 : * The memory devices use the full 32/64 bits of the offset, and so we cannot
797 : * check against negative addresses: they are ok. The return value is weird,
798 : * though, in that case (0).
799 : *
800 : * also note that seeking relative to the "end of file" isn't supported:
801 : * it has no meaning, so it returns -EINVAL.
802 : */
803 : static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
804 : {
805 : loff_t ret;
806 :
807 : inode_lock(file_inode(file));
808 : switch (orig) {
809 : case SEEK_CUR:
810 : offset += file->f_pos;
811 : fallthrough;
812 : case SEEK_SET:
813 : /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
814 : if ((unsigned long long)offset >= -MAX_ERRNO) {
815 : ret = -EOVERFLOW;
816 : break;
817 : }
818 : file->f_pos = offset;
819 : ret = file->f_pos;
820 : force_successful_syscall_return();
821 : break;
822 : default:
823 : ret = -EINVAL;
824 : }
825 : inode_unlock(file_inode(file));
826 : return ret;
827 : }
828 :
829 : static int open_port(struct inode *inode, struct file *filp)
830 : {
831 : int rc;
832 :
833 : if (!capable(CAP_SYS_RAWIO))
834 : return -EPERM;
835 :
836 : rc = security_locked_down(LOCKDOWN_DEV_MEM);
837 : if (rc)
838 : return rc;
839 :
840 : if (iminor(inode) != DEVMEM_MINOR)
841 : return 0;
842 :
843 : /*
844 : * Use a unified address space to have a single point to manage
845 : * revocations when drivers want to take over a /dev/mem mapped
846 : * range.
847 : */
848 : filp->f_mapping = iomem_get_mapping();
849 :
850 : return 0;
851 : }
852 :
853 : #define zero_lseek null_lseek
854 : #define full_lseek null_lseek
855 : #define write_zero write_null
856 : #define write_iter_zero write_iter_null
857 : #define open_mem open_port
858 : #define open_kmem open_mem
859 :
860 : static const struct file_operations __maybe_unused mem_fops = {
861 : .llseek = memory_lseek,
862 : .read = read_mem,
863 : .write = write_mem,
864 : .mmap = mmap_mem,
865 : .open = open_mem,
866 : #ifndef CONFIG_MMU
867 : .get_unmapped_area = get_unmapped_area_mem,
868 : .mmap_capabilities = memory_mmap_capabilities,
869 : #endif
870 : };
871 :
872 : static const struct file_operations __maybe_unused kmem_fops = {
873 : .llseek = memory_lseek,
874 : .read = read_kmem,
875 : .write = write_kmem,
876 : .mmap = mmap_kmem,
877 : .open = open_kmem,
878 : #ifndef CONFIG_MMU
879 : .get_unmapped_area = get_unmapped_area_mem,
880 : .mmap_capabilities = memory_mmap_capabilities,
881 : #endif
882 : };
883 :
884 : static const struct file_operations null_fops = {
885 : .llseek = null_lseek,
886 : .read = read_null,
887 : .write = write_null,
888 : .read_iter = read_iter_null,
889 : .write_iter = write_iter_null,
890 : .splice_write = splice_write_null,
891 : };
892 :
893 : static const struct file_operations __maybe_unused port_fops = {
894 : .llseek = memory_lseek,
895 : .read = read_port,
896 : .write = write_port,
897 : .open = open_port,
898 : };
899 :
900 : static const struct file_operations zero_fops = {
901 : .llseek = zero_lseek,
902 : .write = write_zero,
903 : .read_iter = read_iter_zero,
904 : .read = read_zero,
905 : .write_iter = write_iter_zero,
906 : .mmap = mmap_zero,
907 : .get_unmapped_area = get_unmapped_area_zero,
908 : #ifndef CONFIG_MMU
909 : .mmap_capabilities = zero_mmap_capabilities,
910 : #endif
911 : };
912 :
913 : static const struct file_operations full_fops = {
914 : .llseek = full_lseek,
915 : .read_iter = read_iter_zero,
916 : .write = write_full,
917 : };
918 :
919 : static const struct memdev {
920 : const char *name;
921 : umode_t mode;
922 : const struct file_operations *fops;
923 : fmode_t fmode;
924 : } devlist[] = {
925 : #ifdef CONFIG_DEVMEM
926 : [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
927 : #endif
928 : #ifdef CONFIG_DEVKMEM
929 : [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
930 : #endif
931 : [3] = { "null", 0666, &null_fops, 0 },
932 : #ifdef CONFIG_DEVPORT
933 : [4] = { "port", 0, &port_fops, 0 },
934 : #endif
935 : [5] = { "zero", 0666, &zero_fops, 0 },
936 : [7] = { "full", 0666, &full_fops, 0 },
937 : [8] = { "random", 0666, &random_fops, 0 },
938 : [9] = { "urandom", 0666, &urandom_fops, 0 },
939 : #ifdef CONFIG_PRINTK
940 : [11] = { "kmsg", 0644, &kmsg_fops, 0 },
941 : #endif
942 : };
943 :
944 216 : static int memory_open(struct inode *inode, struct file *filp)
945 : {
946 216 : int minor;
947 216 : const struct memdev *dev;
948 :
949 216 : minor = iminor(inode);
950 216 : if (minor >= ARRAY_SIZE(devlist))
951 : return -ENXIO;
952 :
953 216 : dev = &devlist[minor];
954 216 : if (!dev->fops)
955 : return -ENXIO;
956 :
957 216 : filp->f_op = dev->fops;
958 216 : filp->f_mode |= dev->fmode;
959 :
960 216 : if (dev->fops->open)
961 18 : return dev->fops->open(inode, filp);
962 :
963 : return 0;
964 : }
965 :
966 : static const struct file_operations memory_fops = {
967 : .open = memory_open,
968 : .llseek = noop_llseek,
969 : };
970 :
971 30 : static char *mem_devnode(struct device *dev, umode_t *mode)
972 : {
973 30 : if (mode && devlist[MINOR(dev->devt)].mode)
974 30 : *mode = devlist[MINOR(dev->devt)].mode;
975 30 : return NULL;
976 : }
977 :
978 : static struct class *mem_class;
979 :
980 1 : static int __init chr_dev_init(void)
981 : {
982 1 : int minor;
983 :
984 1 : if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
985 0 : printk("unable to get major %d for memory devs\n", MEM_MAJOR);
986 :
987 1 : mem_class = class_create(THIS_MODULE, "mem");
988 1 : if (IS_ERR(mem_class))
989 0 : return PTR_ERR(mem_class);
990 :
991 1 : mem_class->devnode = mem_devnode;
992 12 : for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
993 11 : if (!devlist[minor].name)
994 5 : continue;
995 :
996 : /*
997 : * Create /dev/port?
998 : */
999 6 : if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
1000 : continue;
1001 :
1002 6 : device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
1003 : NULL, devlist[minor].name);
1004 : }
1005 :
1006 1 : return tty_init();
1007 : }
1008 :
1009 : fs_initcall(chr_dev_init);
|