LCOV - code coverage report
Current view: top level - drivers/char - random.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 469 772 60.8 %
Date: 2021-04-22 12:43:58 Functions: 41 62 66.1 %

          Line data    Source code
       1             : /*
       2             :  * random.c -- A strong random number generator
       3             :  *
       4             :  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
       5             :  * Rights Reserved.
       6             :  *
       7             :  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
       8             :  *
       9             :  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
      10             :  * rights reserved.
      11             :  *
      12             :  * Redistribution and use in source and binary forms, with or without
      13             :  * modification, are permitted provided that the following conditions
      14             :  * are met:
      15             :  * 1. Redistributions of source code must retain the above copyright
      16             :  *    notice, and the entire permission notice in its entirety,
      17             :  *    including the disclaimer of warranties.
      18             :  * 2. Redistributions in binary form must reproduce the above copyright
      19             :  *    notice, this list of conditions and the following disclaimer in the
      20             :  *    documentation and/or other materials provided with the distribution.
      21             :  * 3. The name of the author may not be used to endorse or promote
      22             :  *    products derived from this software without specific prior
      23             :  *    written permission.
      24             :  *
      25             :  * ALTERNATIVELY, this product may be distributed under the terms of
      26             :  * the GNU General Public License, in which case the provisions of the GPL are
      27             :  * required INSTEAD OF the above restrictions.  (This clause is
      28             :  * necessary due to a potential bad interaction between the GPL and
      29             :  * the restrictions contained in a BSD-style copyright.)
      30             :  *
      31             :  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
      32             :  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
      33             :  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
      34             :  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
      35             :  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      36             :  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
      37             :  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
      38             :  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
      39             :  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      40             :  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
      41             :  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
      42             :  * DAMAGE.
      43             :  */
      44             : 
      45             : /*
      46             :  * (now, with legal B.S. out of the way.....)
      47             :  *
      48             :  * This routine gathers environmental noise from device drivers, etc.,
      49             :  * and returns good random numbers, suitable for cryptographic use.
      50             :  * Besides the obvious cryptographic uses, these numbers are also good
      51             :  * for seeding TCP sequence numbers, and other places where it is
      52             :  * desirable to have numbers which are not only random, but hard to
      53             :  * predict by an attacker.
      54             :  *
      55             :  * Theory of operation
      56             :  * ===================
      57             :  *
      58             :  * Computers are very predictable devices.  Hence it is extremely hard
      59             :  * to produce truly random numbers on a computer --- as opposed to
      60             :  * pseudo-random numbers, which can easily generated by using a
      61             :  * algorithm.  Unfortunately, it is very easy for attackers to guess
      62             :  * the sequence of pseudo-random number generators, and for some
      63             :  * applications this is not acceptable.  So instead, we must try to
      64             :  * gather "environmental noise" from the computer's environment, which
      65             :  * must be hard for outside attackers to observe, and use that to
      66             :  * generate random numbers.  In a Unix environment, this is best done
      67             :  * from inside the kernel.
      68             :  *
      69             :  * Sources of randomness from the environment include inter-keyboard
      70             :  * timings, inter-interrupt timings from some interrupts, and other
      71             :  * events which are both (a) non-deterministic and (b) hard for an
      72             :  * outside observer to measure.  Randomness from these sources are
      73             :  * added to an "entropy pool", which is mixed using a CRC-like function.
      74             :  * This is not cryptographically strong, but it is adequate assuming
      75             :  * the randomness is not chosen maliciously, and it is fast enough that
      76             :  * the overhead of doing it on every interrupt is very reasonable.
      77             :  * As random bytes are mixed into the entropy pool, the routines keep
      78             :  * an *estimate* of how many bits of randomness have been stored into
      79             :  * the random number generator's internal state.
      80             :  *
      81             :  * When random bytes are desired, they are obtained by taking the SHA
      82             :  * hash of the contents of the "entropy pool".  The SHA hash avoids
      83             :  * exposing the internal state of the entropy pool.  It is believed to
      84             :  * be computationally infeasible to derive any useful information
      85             :  * about the input of SHA from its output.  Even if it is possible to
      86             :  * analyze SHA in some clever way, as long as the amount of data
      87             :  * returned from the generator is less than the inherent entropy in
      88             :  * the pool, the output data is totally unpredictable.  For this
      89             :  * reason, the routine decreases its internal estimate of how many
      90             :  * bits of "true randomness" are contained in the entropy pool as it
      91             :  * outputs random numbers.
      92             :  *
      93             :  * If this estimate goes to zero, the routine can still generate
      94             :  * random numbers; however, an attacker may (at least in theory) be
      95             :  * able to infer the future output of the generator from prior
      96             :  * outputs.  This requires successful cryptanalysis of SHA, which is
      97             :  * not believed to be feasible, but there is a remote possibility.
      98             :  * Nonetheless, these numbers should be useful for the vast majority
      99             :  * of purposes.
     100             :  *
     101             :  * Exported interfaces ---- output
     102             :  * ===============================
     103             :  *
     104             :  * There are four exported interfaces; two for use within the kernel,
     105             :  * and two or use from userspace.
     106             :  *
     107             :  * Exported interfaces ---- userspace output
     108             :  * -----------------------------------------
     109             :  *
     110             :  * The userspace interfaces are two character devices /dev/random and
     111             :  * /dev/urandom.  /dev/random is suitable for use when very high
     112             :  * quality randomness is desired (for example, for key generation or
     113             :  * one-time pads), as it will only return a maximum of the number of
     114             :  * bits of randomness (as estimated by the random number generator)
     115             :  * contained in the entropy pool.
     116             :  *
     117             :  * The /dev/urandom device does not have this limit, and will return
     118             :  * as many bytes as are requested.  As more and more random bytes are
     119             :  * requested without giving time for the entropy pool to recharge,
     120             :  * this will result in random numbers that are merely cryptographically
     121             :  * strong.  For many applications, however, this is acceptable.
     122             :  *
     123             :  * Exported interfaces ---- kernel output
     124             :  * --------------------------------------
     125             :  *
     126             :  * The primary kernel interface is
     127             :  *
     128             :  *      void get_random_bytes(void *buf, int nbytes);
     129             :  *
     130             :  * This interface will return the requested number of random bytes,
     131             :  * and place it in the requested buffer.  This is equivalent to a
     132             :  * read from /dev/urandom.
     133             :  *
     134             :  * For less critical applications, there are the functions:
     135             :  *
     136             :  *      u32 get_random_u32()
     137             :  *      u64 get_random_u64()
     138             :  *      unsigned int get_random_int()
     139             :  *      unsigned long get_random_long()
     140             :  *
     141             :  * These are produced by a cryptographic RNG seeded from get_random_bytes,
     142             :  * and so do not deplete the entropy pool as much.  These are recommended
     143             :  * for most in-kernel operations *if the result is going to be stored in
     144             :  * the kernel*.
     145             :  *
     146             :  * Specifically, the get_random_int() family do not attempt to do
     147             :  * "anti-backtracking".  If you capture the state of the kernel (e.g.
     148             :  * by snapshotting the VM), you can figure out previous get_random_int()
     149             :  * return values.  But if the value is stored in the kernel anyway,
     150             :  * this is not a problem.
     151             :  *
     152             :  * It *is* safe to expose get_random_int() output to attackers (e.g. as
     153             :  * network cookies); given outputs 1..n, it's not feasible to predict
     154             :  * outputs 0 or n+1.  The only concern is an attacker who breaks into
     155             :  * the kernel later; the get_random_int() engine is not reseeded as
     156             :  * often as the get_random_bytes() one.
     157             :  *
     158             :  * get_random_bytes() is needed for keys that need to stay secret after
     159             :  * they are erased from the kernel.  For example, any key that will
     160             :  * be wrapped and stored encrypted.  And session encryption keys: we'd
     161             :  * like to know that after the session is closed and the keys erased,
     162             :  * the plaintext is unrecoverable to someone who recorded the ciphertext.
     163             :  *
     164             :  * But for network ports/cookies, stack canaries, PRNG seeds, address
     165             :  * space layout randomization, session *authentication* keys, or other
     166             :  * applications where the sensitive data is stored in the kernel in
     167             :  * plaintext for as long as it's sensitive, the get_random_int() family
     168             :  * is just fine.
     169             :  *
     170             :  * Consider ASLR.  We want to keep the address space secret from an
     171             :  * outside attacker while the process is running, but once the address
     172             :  * space is torn down, it's of no use to an attacker any more.  And it's
     173             :  * stored in kernel data structures as long as it's alive, so worrying
     174             :  * about an attacker's ability to extrapolate it from the get_random_int()
     175             :  * CRNG is silly.
     176             :  *
     177             :  * Even some cryptographic keys are safe to generate with get_random_int().
     178             :  * In particular, keys for SipHash are generally fine.  Here, knowledge
     179             :  * of the key authorizes you to do something to a kernel object (inject
     180             :  * packets to a network connection, or flood a hash table), and the
     181             :  * key is stored with the object being protected.  Once it goes away,
     182             :  * we no longer care if anyone knows the key.
     183             :  *
     184             :  * prandom_u32()
     185             :  * -------------
     186             :  *
     187             :  * For even weaker applications, see the pseudorandom generator
     188             :  * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
     189             :  * numbers aren't security-critical at all, these are *far* cheaper.
     190             :  * Useful for self-tests, random error simulation, randomized backoffs,
     191             :  * and any other application where you trust that nobody is trying to
     192             :  * maliciously mess with you by guessing the "random" numbers.
     193             :  *
     194             :  * Exported interfaces ---- input
     195             :  * ==============================
     196             :  *
     197             :  * The current exported interfaces for gathering environmental noise
     198             :  * from the devices are:
     199             :  *
     200             :  *      void add_device_randomness(const void *buf, unsigned int size);
     201             :  *      void add_input_randomness(unsigned int type, unsigned int code,
     202             :  *                                unsigned int value);
     203             :  *      void add_interrupt_randomness(int irq, int irq_flags);
     204             :  *      void add_disk_randomness(struct gendisk *disk);
     205             :  *
     206             :  * add_device_randomness() is for adding data to the random pool that
     207             :  * is likely to differ between two devices (or possibly even per boot).
     208             :  * This would be things like MAC addresses or serial numbers, or the
     209             :  * read-out of the RTC. This does *not* add any actual entropy to the
     210             :  * pool, but it initializes the pool to different values for devices
     211             :  * that might otherwise be identical and have very little entropy
     212             :  * available to them (particularly common in the embedded world).
     213             :  *
     214             :  * add_input_randomness() uses the input layer interrupt timing, as well as
     215             :  * the event type information from the hardware.
     216             :  *
     217             :  * add_interrupt_randomness() uses the interrupt timing as random
     218             :  * inputs to the entropy pool. Using the cycle counters and the irq source
     219             :  * as inputs, it feeds the randomness roughly once a second.
     220             :  *
     221             :  * add_disk_randomness() uses what amounts to the seek time of block
     222             :  * layer request events, on a per-disk_devt basis, as input to the
     223             :  * entropy pool. Note that high-speed solid state drives with very low
     224             :  * seek times do not make for good sources of entropy, as their seek
     225             :  * times are usually fairly consistent.
     226             :  *
     227             :  * All of these routines try to estimate how many bits of randomness a
     228             :  * particular randomness source.  They do this by keeping track of the
     229             :  * first and second order deltas of the event timings.
     230             :  *
     231             :  * Ensuring unpredictability at system startup
     232             :  * ============================================
     233             :  *
     234             :  * When any operating system starts up, it will go through a sequence
     235             :  * of actions that are fairly predictable by an adversary, especially
     236             :  * if the start-up does not involve interaction with a human operator.
     237             :  * This reduces the actual number of bits of unpredictability in the
     238             :  * entropy pool below the value in entropy_count.  In order to
     239             :  * counteract this effect, it helps to carry information in the
     240             :  * entropy pool across shut-downs and start-ups.  To do this, put the
     241             :  * following lines an appropriate script which is run during the boot
     242             :  * sequence:
     243             :  *
     244             :  *      echo "Initializing random number generator..."
     245             :  *      random_seed=/var/run/random-seed
     246             :  *      # Carry a random seed from start-up to start-up
     247             :  *      # Load and then save the whole entropy pool
     248             :  *      if [ -f $random_seed ]; then
     249             :  *              cat $random_seed >/dev/urandom
     250             :  *      else
     251             :  *              touch $random_seed
     252             :  *      fi
     253             :  *      chmod 600 $random_seed
     254             :  *      dd if=/dev/urandom of=$random_seed count=1 bs=512
     255             :  *
     256             :  * and the following lines in an appropriate script which is run as
     257             :  * the system is shutdown:
     258             :  *
     259             :  *      # Carry a random seed from shut-down to start-up
     260             :  *      # Save the whole entropy pool
     261             :  *      echo "Saving random seed..."
     262             :  *      random_seed=/var/run/random-seed
     263             :  *      touch $random_seed
     264             :  *      chmod 600 $random_seed
     265             :  *      dd if=/dev/urandom of=$random_seed count=1 bs=512
     266             :  *
     267             :  * For example, on most modern systems using the System V init
     268             :  * scripts, such code fragments would be found in
     269             :  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
     270             :  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
     271             :  *
     272             :  * Effectively, these commands cause the contents of the entropy pool
     273             :  * to be saved at shut-down time and reloaded into the entropy pool at
     274             :  * start-up.  (The 'dd' in the addition to the bootup script is to
     275             :  * make sure that /etc/random-seed is different for every start-up,
     276             :  * even if the system crashes without executing rc.0.)  Even with
     277             :  * complete knowledge of the start-up activities, predicting the state
     278             :  * of the entropy pool requires knowledge of the previous history of
     279             :  * the system.
     280             :  *
     281             :  * Configuring the /dev/random driver under Linux
     282             :  * ==============================================
     283             :  *
     284             :  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
     285             :  * the /dev/mem major number (#1).  So if your system does not have
     286             :  * /dev/random and /dev/urandom created already, they can be created
     287             :  * by using the commands:
     288             :  *
     289             :  *      mknod /dev/random c 1 8
     290             :  *      mknod /dev/urandom c 1 9
     291             :  *
     292             :  * Acknowledgements:
     293             :  * =================
     294             :  *
     295             :  * Ideas for constructing this random number generator were derived
     296             :  * from Pretty Good Privacy's random number generator, and from private
     297             :  * discussions with Phil Karn.  Colin Plumb provided a faster random
     298             :  * number generator, which speed up the mixing function of the entropy
     299             :  * pool, taken from PGPfone.  Dale Worley has also contributed many
     300             :  * useful ideas and suggestions to improve this driver.
     301             :  *
     302             :  * Any flaws in the design are solely my responsibility, and should
     303             :  * not be attributed to the Phil, Colin, or any of authors of PGP.
     304             :  *
     305             :  * Further background information on this topic may be obtained from
     306             :  * RFC 1750, "Randomness Recommendations for Security", by Donald
     307             :  * Eastlake, Steve Crocker, and Jeff Schiller.
     308             :  */
     309             : 
     310             : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     311             : 
     312             : #include <linux/utsname.h>
     313             : #include <linux/module.h>
     314             : #include <linux/kernel.h>
     315             : #include <linux/major.h>
     316             : #include <linux/string.h>
     317             : #include <linux/fcntl.h>
     318             : #include <linux/slab.h>
     319             : #include <linux/random.h>
     320             : #include <linux/poll.h>
     321             : #include <linux/init.h>
     322             : #include <linux/fs.h>
     323             : #include <linux/genhd.h>
     324             : #include <linux/interrupt.h>
     325             : #include <linux/mm.h>
     326             : #include <linux/nodemask.h>
     327             : #include <linux/spinlock.h>
     328             : #include <linux/kthread.h>
     329             : #include <linux/percpu.h>
     330             : #include <linux/fips.h>
     331             : #include <linux/ptrace.h>
     332             : #include <linux/workqueue.h>
     333             : #include <linux/irq.h>
     334             : #include <linux/ratelimit.h>
     335             : #include <linux/syscalls.h>
     336             : #include <linux/completion.h>
     337             : #include <linux/uuid.h>
     338             : #include <crypto/chacha.h>
     339             : #include <crypto/sha1.h>
     340             : 
     341             : #include <asm/processor.h>
     342             : #include <linux/uaccess.h>
     343             : #include <asm/irq.h>
     344             : #include <asm/irq_regs.h>
     345             : #include <asm/io.h>
     346             : 
     347             : #define CREATE_TRACE_POINTS
     348             : #include <trace/events/random.h>
     349             : 
     350             : /* #define ADD_INTERRUPT_BENCH */
     351             : 
     352             : /*
     353             :  * Configuration information
     354             :  */
     355             : #define INPUT_POOL_SHIFT        12
     356             : #define INPUT_POOL_WORDS        (1 << (INPUT_POOL_SHIFT-5))
     357             : #define OUTPUT_POOL_SHIFT       10
     358             : #define OUTPUT_POOL_WORDS       (1 << (OUTPUT_POOL_SHIFT-5))
     359             : #define EXTRACT_SIZE            10
     360             : 
     361             : 
     362             : #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
     363             : 
     364             : /*
     365             :  * To allow fractional bits to be tracked, the entropy_count field is
     366             :  * denominated in units of 1/8th bits.
     367             :  *
     368             :  * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
     369             :  * credit_entropy_bits() needs to be 64 bits wide.
     370             :  */
     371             : #define ENTROPY_SHIFT 3
     372             : #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
     373             : 
     374             : /*
     375             :  * If the entropy count falls under this number of bits, then we
     376             :  * should wake up processes which are selecting or polling on write
     377             :  * access to /dev/random.
     378             :  */
     379             : static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
     380             : 
     381             : /*
     382             :  * Originally, we used a primitive polynomial of degree .poolwords
     383             :  * over GF(2).  The taps for various sizes are defined below.  They
     384             :  * were chosen to be evenly spaced except for the last tap, which is 1
     385             :  * to get the twisting happening as fast as possible.
     386             :  *
     387             :  * For the purposes of better mixing, we use the CRC-32 polynomial as
     388             :  * well to make a (modified) twisted Generalized Feedback Shift
     389             :  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
     390             :  * generators.  ACM Transactions on Modeling and Computer Simulation
     391             :  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
     392             :  * GFSR generators II.  ACM Transactions on Modeling and Computer
     393             :  * Simulation 4:254-266)
     394             :  *
     395             :  * Thanks to Colin Plumb for suggesting this.
     396             :  *
     397             :  * The mixing operation is much less sensitive than the output hash,
     398             :  * where we use SHA-1.  All that we want of mixing operation is that
     399             :  * it be a good non-cryptographic hash; i.e. it not produce collisions
     400             :  * when fed "random" data of the sort we expect to see.  As long as
     401             :  * the pool state differs for different inputs, we have preserved the
     402             :  * input entropy and done a good job.  The fact that an intelligent
     403             :  * attacker can construct inputs that will produce controlled
     404             :  * alterations to the pool's state is not important because we don't
     405             :  * consider such inputs to contribute any randomness.  The only
     406             :  * property we need with respect to them is that the attacker can't
     407             :  * increase his/her knowledge of the pool's state.  Since all
     408             :  * additions are reversible (knowing the final state and the input,
     409             :  * you can reconstruct the initial state), if an attacker has any
     410             :  * uncertainty about the initial state, he/she can only shuffle that
     411             :  * uncertainty about, but never cause any collisions (which would
     412             :  * decrease the uncertainty).
     413             :  *
     414             :  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
     415             :  * Videau in their paper, "The Linux Pseudorandom Number Generator
     416             :  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
     417             :  * paper, they point out that we are not using a true Twisted GFSR,
     418             :  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
     419             :  * is, with only three taps, instead of the six that we are using).
     420             :  * As a result, the resulting polynomial is neither primitive nor
     421             :  * irreducible, and hence does not have a maximal period over
     422             :  * GF(2**32).  They suggest a slight change to the generator
     423             :  * polynomial which improves the resulting TGFSR polynomial to be
     424             :  * irreducible, which we have made here.
     425             :  */
     426             : static const struct poolinfo {
     427             :         int poolbitshift, poolwords, poolbytes, poolfracbits;
     428             : #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
     429             :         int tap1, tap2, tap3, tap4, tap5;
     430             : } poolinfo_table[] = {
     431             :         /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
     432             :         /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
     433             :         { S(128),       104,    76,     51,     25,     1 },
     434             : };
     435             : 
     436             : /*
     437             :  * Static global variables
     438             :  */
     439             : static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
     440             : static struct fasync_struct *fasync;
     441             : 
     442             : static DEFINE_SPINLOCK(random_ready_list_lock);
     443             : static LIST_HEAD(random_ready_list);
     444             : 
     445             : struct crng_state {
     446             :         __u32           state[16];
     447             :         unsigned long   init_time;
     448             :         spinlock_t      lock;
     449             : };
     450             : 
     451             : static struct crng_state primary_crng = {
     452             :         .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
     453             : };
     454             : 
     455             : /*
     456             :  * crng_init =  0 --> Uninitialized
     457             :  *              1 --> Initialized
     458             :  *              2 --> Initialized from input_pool
     459             :  *
     460             :  * crng_init is protected by primary_crng->lock, and only increases
     461             :  * its value (from 0->1->2).
     462             :  */
     463             : static int crng_init = 0;
     464             : #define crng_ready() (likely(crng_init > 1))
     465             : static int crng_init_cnt = 0;
     466             : static unsigned long crng_global_init_time = 0;
     467             : #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
     468             : static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
     469             : static void _crng_backtrack_protect(struct crng_state *crng,
     470             :                                     __u8 tmp[CHACHA_BLOCK_SIZE], int used);
     471             : static void process_random_ready_list(void);
     472             : static void _get_random_bytes(void *buf, int nbytes);
     473             : 
     474             : static struct ratelimit_state unseeded_warning =
     475             :         RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
     476             : static struct ratelimit_state urandom_warning =
     477             :         RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
     478             : 
     479             : static int ratelimit_disable __read_mostly;
     480             : 
     481             : module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
     482             : MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
     483             : 
     484             : /**********************************************************************
     485             :  *
     486             :  * OS independent entropy store.   Here are the functions which handle
     487             :  * storing entropy in an entropy pool.
     488             :  *
     489             :  **********************************************************************/
     490             : 
     491             : struct entropy_store;
     492             : struct entropy_store {
     493             :         /* read-only data: */
     494             :         const struct poolinfo *poolinfo;
     495             :         __u32 *pool;
     496             :         const char *name;
     497             : 
     498             :         /* read-write data: */
     499             :         spinlock_t lock;
     500             :         unsigned short add_ptr;
     501             :         unsigned short input_rotate;
     502             :         int entropy_count;
     503             :         unsigned int initialized:1;
     504             :         unsigned int last_data_init:1;
     505             :         __u8 last_data[EXTRACT_SIZE];
     506             : };
     507             : 
     508             : static ssize_t extract_entropy(struct entropy_store *r, void *buf,
     509             :                                size_t nbytes, int min, int rsvd);
     510             : static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
     511             :                                 size_t nbytes, int fips);
     512             : 
     513             : static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
     514             : static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
     515             : 
     516             : static struct entropy_store input_pool = {
     517             :         .poolinfo = &poolinfo_table[0],
     518             :         .name = "input",
     519             :         .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
     520             :         .pool = input_pool_data
     521             : };
     522             : 
     523             : static __u32 const twist_table[8] = {
     524             :         0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
     525             :         0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
     526             : 
     527             : /*
     528             :  * This function adds bytes into the entropy "pool".  It does not
     529             :  * update the entropy estimate.  The caller should call
     530             :  * credit_entropy_bits if this is appropriate.
     531             :  *
     532             :  * The pool is stirred with a primitive polynomial of the appropriate
     533             :  * degree, and then twisted.  We twist by three bits at a time because
     534             :  * it's cheap to do so and helps slightly in the expected case where
     535             :  * the entropy is concentrated in the low-order bits.
     536             :  */
     537        3865 : static void _mix_pool_bytes(struct entropy_store *r, const void *in,
     538             :                             int nbytes)
     539             : {
     540        3865 :         unsigned long i, tap1, tap2, tap3, tap4, tap5;
     541        3865 :         int input_rotate;
     542        3865 :         int wordmask = r->poolinfo->poolwords - 1;
     543        3865 :         const char *bytes = in;
     544        3865 :         __u32 w;
     545             : 
     546        3865 :         tap1 = r->poolinfo->tap1;
     547        3865 :         tap2 = r->poolinfo->tap2;
     548        3865 :         tap3 = r->poolinfo->tap3;
     549        3865 :         tap4 = r->poolinfo->tap4;
     550        3865 :         tap5 = r->poolinfo->tap5;
     551             : 
     552        3865 :         input_rotate = r->input_rotate;
     553        3865 :         i = r->add_ptr;
     554             : 
     555             :         /* mix one byte at a time to simplify size handling and churn faster */
     556       36586 :         while (nbytes--) {
     557       32721 :                 w = rol32(*bytes++, input_rotate);
     558       32721 :                 i = (i - 1) & wordmask;
     559             : 
     560             :                 /* XOR in the various taps */
     561       32721 :                 w ^= r->pool[i];
     562       32721 :                 w ^= r->pool[(i + tap1) & wordmask];
     563       32721 :                 w ^= r->pool[(i + tap2) & wordmask];
     564       32721 :                 w ^= r->pool[(i + tap3) & wordmask];
     565       32721 :                 w ^= r->pool[(i + tap4) & wordmask];
     566       32721 :                 w ^= r->pool[(i + tap5) & wordmask];
     567             : 
     568             :                 /* Mix the result back in with a twist */
     569       32721 :                 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
     570             : 
     571             :                 /*
     572             :                  * Normally, we add 7 bits of rotation to the pool.
     573             :                  * At the beginning of the pool, add an extra 7 bits
     574             :                  * rotation, so that successive passes spread the
     575             :                  * input bits across the pool evenly.
     576             :                  */
     577       32976 :                 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
     578             :         }
     579             : 
     580        3865 :         r->input_rotate = input_rotate;
     581        3865 :         r->add_ptr = i;
     582        3865 : }
     583             : 
     584         106 : static void __mix_pool_bytes(struct entropy_store *r, const void *in,
     585             :                              int nbytes)
     586             : {
     587         106 :         trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
     588         106 :         _mix_pool_bytes(r, in, nbytes);
     589         106 : }
     590             : 
     591          75 : static void mix_pool_bytes(struct entropy_store *r, const void *in,
     592             :                            int nbytes)
     593             : {
     594          75 :         unsigned long flags;
     595             : 
     596          75 :         trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
     597          75 :         spin_lock_irqsave(&r->lock, flags);
     598          75 :         _mix_pool_bytes(r, in, nbytes);
     599          75 :         spin_unlock_irqrestore(&r->lock, flags);
     600          75 : }
     601             : 
     602             : struct fast_pool {
     603             :         __u32           pool[4];
     604             :         unsigned long   last;
     605             :         unsigned short  reg_idx;
     606             :         unsigned char   count;
     607             : };
     608             : 
     609             : /*
     610             :  * This is a fast mixing routine used by the interrupt randomness
     611             :  * collector.  It's hardcoded for an 128 bit pool and assumes that any
     612             :  * locks that might be needed are taken by the caller.
     613             :  */
     614        3660 : static void fast_mix(struct fast_pool *f)
     615             : {
     616        3660 :         __u32 a = f->pool[0],        b = f->pool[1];
     617        3660 :         __u32 c = f->pool[2],        d = f->pool[3];
     618             : 
     619        3660 :         a += b;                 c += d;
     620        3660 :         b = rol32(b, 6);        d = rol32(d, 27);
     621        3660 :         d ^= a;                 b ^= c;
     622             : 
     623        3660 :         a += b;                 c += d;
     624        3660 :         b = rol32(b, 16);       d = rol32(d, 14);
     625        3660 :         d ^= a;                 b ^= c;
     626             : 
     627        3660 :         a += b;                 c += d;
     628        3660 :         b = rol32(b, 6);        d = rol32(d, 27);
     629        3660 :         d ^= a;                 b ^= c;
     630             : 
     631        3660 :         a += b;                 c += d;
     632        3660 :         b = rol32(b, 16);       d = rol32(d, 14);
     633        3660 :         d ^= a;                 b ^= c;
     634             : 
     635        3660 :         f->pool[0] = a;  f->pool[1] = b;
     636        3660 :         f->pool[2] = c;  f->pool[3] = d;
     637        3660 :         f->count++;
     638        3660 : }
     639             : 
     640           0 : static void process_random_ready_list(void)
     641             : {
     642           0 :         unsigned long flags;
     643           0 :         struct random_ready_callback *rdy, *tmp;
     644             : 
     645           0 :         spin_lock_irqsave(&random_ready_list_lock, flags);
     646           0 :         list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
     647           0 :                 struct module *owner = rdy->owner;
     648             : 
     649           0 :                 list_del_init(&rdy->list);
     650           0 :                 rdy->func(rdy);
     651           0 :                 module_put(owner);
     652             :         }
     653           0 :         spin_unlock_irqrestore(&random_ready_list_lock, flags);
     654           0 : }
     655             : 
     656             : /*
     657             :  * Credit (or debit) the entropy store with n bits of entropy.
     658             :  * Use credit_entropy_bits_safe() if the value comes from userspace
     659             :  * or otherwise should be checked for extreme values.
     660             :  */
     661         101 : static void credit_entropy_bits(struct entropy_store *r, int nbits)
     662             : {
     663         101 :         int entropy_count, orig, has_initialized = 0;
     664         101 :         const int pool_size = r->poolinfo->poolfracbits;
     665         101 :         int nfrac = nbits << ENTROPY_SHIFT;
     666             : 
     667         101 :         if (!nbits)
     668             :                 return;
     669             : 
     670         101 : retry:
     671         101 :         entropy_count = orig = READ_ONCE(r->entropy_count);
     672         101 :         if (nfrac < 0) {
     673             :                 /* Debit */
     674           0 :                 entropy_count += nfrac;
     675             :         } else {
     676             :                 /*
     677             :                  * Credit: we have to account for the possibility of
     678             :                  * overwriting already present entropy.  Even in the
     679             :                  * ideal case of pure Shannon entropy, new contributions
     680             :                  * approach the full value asymptotically:
     681             :                  *
     682             :                  * entropy <- entropy + (pool_size - entropy) *
     683             :                  *      (1 - exp(-add_entropy/pool_size))
     684             :                  *
     685             :                  * For add_entropy <= pool_size/2 then
     686             :                  * (1 - exp(-add_entropy/pool_size)) >=
     687             :                  *    (add_entropy/pool_size)*0.7869...
     688             :                  * so we can approximate the exponential with
     689             :                  * 3/4*add_entropy/pool_size and still be on the
     690             :                  * safe side by adding at most pool_size/2 at a time.
     691             :                  *
     692             :                  * The use of pool_size-2 in the while statement is to
     693             :                  * prevent rounding artifacts from making the loop
     694             :                  * arbitrarily long; this limits the loop to log2(pool_size)*2
     695             :                  * turns no matter how large nbits is.
     696             :                  */
     697         101 :                 int pnfrac = nfrac;
     698         101 :                 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
     699             :                 /* The +2 corresponds to the /4 in the denominator */
     700             : 
     701         101 :                 do {
     702         101 :                         unsigned int anfrac = min(pnfrac, pool_size/2);
     703         101 :                         unsigned int add =
     704         101 :                                 ((pool_size - entropy_count)*anfrac*3) >> s;
     705             : 
     706         101 :                         entropy_count += add;
     707         101 :                         pnfrac -= anfrac;
     708         101 :                 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
     709             :         }
     710             : 
     711         101 :         if (WARN_ON(entropy_count < 0)) {
     712           0 :                 pr_warn("negative entropy/overflow: pool %s count %d\n",
     713             :                         r->name, entropy_count);
     714           0 :                 entropy_count = 0;
     715         101 :         } else if (entropy_count > pool_size)
     716             :                 entropy_count = pool_size;
     717         101 :         if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
     718           0 :                 goto retry;
     719             : 
     720         101 :         if (has_initialized) {
     721             :                 r->initialized = 1;
     722             :                 kill_fasync(&fasync, SIGIO, POLL_IN);
     723             :         }
     724             : 
     725         101 :         trace_credit_entropy_bits(r->name, nbits,
     726         101 :                                   entropy_count >> ENTROPY_SHIFT, _RET_IP_);
     727             : 
     728         101 :         if (r == &input_pool) {
     729         101 :                 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
     730             : 
     731         101 :                 if (crng_init < 2) {
     732           0 :                         if (entropy_bits < 128)
     733             :                                 return;
     734           0 :                         crng_reseed(&primary_crng, r);
     735           0 :                         entropy_bits = ENTROPY_BITS(r);
     736             :                 }
     737             :         }
     738             : }
     739             : 
     740           0 : static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
     741             : {
     742           0 :         const int nbits_max = r->poolinfo->poolwords * 32;
     743             : 
     744           0 :         if (nbits < 0)
     745             :                 return -EINVAL;
     746             : 
     747             :         /* Cap the value to avoid overflows */
     748           0 :         nbits = min(nbits,  nbits_max);
     749             : 
     750           0 :         credit_entropy_bits(r, nbits);
     751           0 :         return 0;
     752             : }
     753             : 
     754             : /*********************************************************************
     755             :  *
     756             :  * CRNG using CHACHA20
     757             :  *
     758             :  *********************************************************************/
     759             : 
     760             : #define CRNG_RESEED_INTERVAL (300*HZ)
     761             : 
     762             : static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
     763             : 
     764             : #ifdef CONFIG_NUMA
     765             : /*
     766             :  * Hack to deal with crazy userspace progams when they are all trying
     767             :  * to access /dev/urandom in parallel.  The programs are almost
     768             :  * certainly doing something terribly wrong, but we'll work around
     769             :  * their brain damage.
     770             :  */
     771             : static struct crng_state **crng_node_pool __read_mostly;
     772             : #endif
     773             : 
     774             : static void invalidate_batched_entropy(void);
     775             : static void numa_crng_init(void);
     776             : 
     777             : static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
     778           0 : static int __init parse_trust_cpu(char *arg)
     779             : {
     780           0 :         return kstrtobool(arg, &trust_cpu);
     781             : }
     782             : early_param("random.trust_cpu", parse_trust_cpu);
     783             : 
     784           1 : static bool crng_init_try_arch(struct crng_state *crng)
     785             : {
     786           1 :         int             i;
     787           1 :         bool            arch_init = true;
     788           1 :         unsigned long   rv;
     789             : 
     790          13 :         for (i = 4; i < 16; i++) {
     791          24 :                 if (!arch_get_random_seed_long(&rv) &&
     792          12 :                     !arch_get_random_long(&rv)) {
     793           0 :                         rv = random_get_entropy();
     794           0 :                         arch_init = false;
     795             :                 }
     796          12 :                 crng->state[i] ^= rv;
     797             :         }
     798             : 
     799           1 :         return arch_init;
     800             : }
     801             : 
     802           1 : static bool __init crng_init_try_arch_early(struct crng_state *crng)
     803             : {
     804           1 :         int             i;
     805           1 :         bool            arch_init = true;
     806           1 :         unsigned long   rv;
     807             : 
     808          13 :         for (i = 4; i < 16; i++) {
     809          24 :                 if (!arch_get_random_seed_long_early(&rv) &&
     810          12 :                     !arch_get_random_long_early(&rv)) {
     811           0 :                         rv = random_get_entropy();
     812           0 :                         arch_init = false;
     813             :                 }
     814          12 :                 crng->state[i] ^= rv;
     815             :         }
     816             : 
     817           1 :         return arch_init;
     818             : }
     819             : 
     820           1 : static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
     821             : {
     822           1 :         memcpy(&crng->state[0], "expand 32-byte k", 16);
     823           1 :         _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
     824           1 :         crng_init_try_arch(crng);
     825           1 :         crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
     826           1 : }
     827             : 
     828           1 : static void __init crng_initialize_primary(struct crng_state *crng)
     829             : {
     830           1 :         memcpy(&crng->state[0], "expand 32-byte k", 16);
     831           1 :         _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
     832           1 :         if (crng_init_try_arch_early(crng) && trust_cpu) {
     833           1 :                 invalidate_batched_entropy();
     834           1 :                 numa_crng_init();
     835           1 :                 crng_init = 2;
     836           1 :                 pr_notice("crng done (trusting CPU's manufacturer)\n");
     837             :         }
     838           1 :         crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
     839           1 : }
     840             : 
     841             : #ifdef CONFIG_NUMA
     842           1 : static void do_numa_crng_init(struct work_struct *work)
     843             : {
     844           1 :         int i;
     845           1 :         struct crng_state *crng;
     846           1 :         struct crng_state **pool;
     847             : 
     848           1 :         pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
     849           2 :         for_each_online_node(i) {
     850           1 :                 crng = kmalloc_node(sizeof(struct crng_state),
     851             :                                     GFP_KERNEL | __GFP_NOFAIL, i);
     852           1 :                 spin_lock_init(&crng->lock);
     853           1 :                 crng_initialize_secondary(crng);
     854           1 :                 pool[i] = crng;
     855             :         }
     856           1 :         mb();
     857           1 :         if (cmpxchg(&crng_node_pool, NULL, pool)) {
     858           0 :                 for_each_node(i)
     859           0 :                         kfree(pool[i]);
     860           0 :                 kfree(pool);
     861             :         }
     862           1 : }
     863             : 
     864             : static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
     865             : 
     866           1 : static void numa_crng_init(void)
     867             : {
     868           1 :         schedule_work(&numa_crng_init_work);
     869             : }
     870             : #else
     871             : static void numa_crng_init(void) {}
     872             : #endif
     873             : 
     874             : /*
     875             :  * crng_fast_load() can be called by code in the interrupt service
     876             :  * path.  So we can't afford to dilly-dally.
     877             :  */
     878           0 : static int crng_fast_load(const char *cp, size_t len)
     879             : {
     880           0 :         unsigned long flags;
     881           0 :         char *p;
     882             : 
     883           0 :         if (!spin_trylock_irqsave(&primary_crng.lock, flags))
     884           0 :                 return 0;
     885           0 :         if (crng_init != 0) {
     886           0 :                 spin_unlock_irqrestore(&primary_crng.lock, flags);
     887           0 :                 return 0;
     888             :         }
     889           0 :         p = (unsigned char *) &primary_crng.state[4];
     890           0 :         while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
     891           0 :                 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
     892           0 :                 cp++; crng_init_cnt++; len--;
     893             :         }
     894           0 :         spin_unlock_irqrestore(&primary_crng.lock, flags);
     895           0 :         if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
     896           0 :                 invalidate_batched_entropy();
     897           0 :                 crng_init = 1;
     898           0 :                 pr_notice("fast init done\n");
     899             :         }
     900             :         return 1;
     901             : }
     902             : 
     903             : /*
     904             :  * crng_slow_load() is called by add_device_randomness, which has two
     905             :  * attributes.  (1) We can't trust the buffer passed to it is
     906             :  * guaranteed to be unpredictable (so it might not have any entropy at
     907             :  * all), and (2) it doesn't have the performance constraints of
     908             :  * crng_fast_load().
     909             :  *
     910             :  * So we do something more comprehensive which is guaranteed to touch
     911             :  * all of the primary_crng's state, and which uses a LFSR with a
     912             :  * period of 255 as part of the mixing algorithm.  Finally, we do
     913             :  * *not* advance crng_init_cnt since buffer we may get may be something
     914             :  * like a fixed DMI table (for example), which might very well be
     915             :  * unique to the machine, but is otherwise unvarying.
     916             :  */
     917           0 : static int crng_slow_load(const char *cp, size_t len)
     918             : {
     919           0 :         unsigned long           flags;
     920           0 :         static unsigned char    lfsr = 1;
     921           0 :         unsigned char           tmp;
     922           0 :         unsigned                i, max = CHACHA_KEY_SIZE;
     923           0 :         const char *            src_buf = cp;
     924           0 :         char *                  dest_buf = (char *) &primary_crng.state[4];
     925             : 
     926           0 :         if (!spin_trylock_irqsave(&primary_crng.lock, flags))
     927           0 :                 return 0;
     928           0 :         if (crng_init != 0) {
     929           0 :                 spin_unlock_irqrestore(&primary_crng.lock, flags);
     930           0 :                 return 0;
     931             :         }
     932           0 :         if (len > max)
     933             :                 max = len;
     934             : 
     935           0 :         for (i = 0; i < max ; i++) {
     936           0 :                 tmp = lfsr;
     937           0 :                 lfsr >>= 1;
     938           0 :                 if (tmp & 1)
     939           0 :                         lfsr ^= 0xE1;
     940           0 :                 tmp = dest_buf[i % CHACHA_KEY_SIZE];
     941           0 :                 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
     942           0 :                 lfsr += (tmp << 3) | (tmp >> 5);
     943             :         }
     944           0 :         spin_unlock_irqrestore(&primary_crng.lock, flags);
     945           0 :         return 1;
     946             : }
     947             : 
     948           4 : static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
     949             : {
     950           4 :         unsigned long   flags;
     951           4 :         int             i, num;
     952           4 :         union {
     953             :                 __u8    block[CHACHA_BLOCK_SIZE];
     954             :                 __u32   key[8];
     955             :         } buf;
     956             : 
     957           4 :         if (r) {
     958           3 :                 num = extract_entropy(r, &buf, 32, 16, 0);
     959           3 :                 if (num == 0)
     960           3 :                         return;
     961             :         } else {
     962           1 :                 _extract_crng(&primary_crng, buf.block);
     963           1 :                 _crng_backtrack_protect(&primary_crng, buf.block,
     964             :                                         CHACHA_KEY_SIZE);
     965             :         }
     966           1 :         spin_lock_irqsave(&crng->lock, flags);
     967          10 :         for (i = 0; i < 8; i++) {
     968           8 :                 unsigned long   rv;
     969          16 :                 if (!arch_get_random_seed_long(&rv) &&
     970           8 :                     !arch_get_random_long(&rv))
     971           0 :                         rv = random_get_entropy();
     972           8 :                 crng->state[i+4] ^= buf.key[i] ^ rv;
     973             :         }
     974           1 :         memzero_explicit(&buf, sizeof(buf));
     975           1 :         crng->init_time = jiffies;
     976           1 :         spin_unlock_irqrestore(&crng->lock, flags);
     977           1 :         if (crng == &primary_crng && crng_init < 2) {
     978           0 :                 invalidate_batched_entropy();
     979           0 :                 numa_crng_init();
     980           0 :                 crng_init = 2;
     981           0 :                 process_random_ready_list();
     982           0 :                 wake_up_interruptible(&crng_init_wait);
     983           0 :                 kill_fasync(&fasync, SIGIO, POLL_IN);
     984           0 :                 pr_notice("crng init done\n");
     985           0 :                 if (unseeded_warning.missed) {
     986           0 :                         pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
     987             :                                   unseeded_warning.missed);
     988           0 :                         unseeded_warning.missed = 0;
     989             :                 }
     990           0 :                 if (urandom_warning.missed) {
     991           0 :                         pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
     992             :                                   urandom_warning.missed);
     993           0 :                         urandom_warning.missed = 0;
     994             :                 }
     995             :         }
     996             : }
     997             : 
     998        2849 : static void _extract_crng(struct crng_state *crng,
     999             :                           __u8 out[CHACHA_BLOCK_SIZE])
    1000             : {
    1001        2849 :         unsigned long v, flags;
    1002             : 
    1003        2849 :         if (crng_ready() &&
    1004        2849 :             (time_after(crng_global_init_time, crng->init_time) ||
    1005        2845 :              time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
    1006           5 :                 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
    1007        2849 :         spin_lock_irqsave(&crng->lock, flags);
    1008        2849 :         if (arch_get_random_long(&v))
    1009        2849 :                 crng->state[14] ^= v;
    1010        2849 :         chacha20_block(&crng->state[0], out);
    1011        2849 :         if (crng->state[12] == 0)
    1012           0 :                 crng->state[13]++;
    1013        2849 :         spin_unlock_irqrestore(&crng->lock, flags);
    1014        2849 : }
    1015             : 
    1016        2848 : static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
    1017             : {
    1018        2848 :         struct crng_state *crng = NULL;
    1019             : 
    1020             : #ifdef CONFIG_NUMA
    1021        2848 :         if (crng_node_pool)
    1022        2846 :                 crng = crng_node_pool[numa_node_id()];
    1023        2846 :         if (crng == NULL)
    1024             : #endif
    1025             :                 crng = &primary_crng;
    1026        2848 :         _extract_crng(crng, out);
    1027        2848 : }
    1028             : 
    1029             : /*
    1030             :  * Use the leftover bytes from the CRNG block output (if there is
    1031             :  * enough) to mutate the CRNG key to provide backtracking protection.
    1032             :  */
    1033        1576 : static void _crng_backtrack_protect(struct crng_state *crng,
    1034             :                                     __u8 tmp[CHACHA_BLOCK_SIZE], int used)
    1035             : {
    1036        1576 :         unsigned long   flags;
    1037        1576 :         __u32           *s, *d;
    1038        1576 :         int             i;
    1039             : 
    1040        1576 :         used = round_up(used, sizeof(__u32));
    1041        1576 :         if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
    1042           2 :                 extract_crng(tmp);
    1043           2 :                 used = 0;
    1044             :         }
    1045        1576 :         spin_lock_irqsave(&crng->lock, flags);
    1046        1576 :         s = (__u32 *) &tmp[used];
    1047        1576 :         d = &crng->state[4];
    1048       14184 :         for (i=0; i < 8; i++)
    1049       12608 :                 *d++ ^= *s++;
    1050        1576 :         spin_unlock_irqrestore(&crng->lock, flags);
    1051        1576 : }
    1052             : 
    1053        1575 : static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
    1054             : {
    1055        1575 :         struct crng_state *crng = NULL;
    1056             : 
    1057             : #ifdef CONFIG_NUMA
    1058        1575 :         if (crng_node_pool)
    1059        1574 :                 crng = crng_node_pool[numa_node_id()];
    1060        1574 :         if (crng == NULL)
    1061             : #endif
    1062             :                 crng = &primary_crng;
    1063        1575 :         _crng_backtrack_protect(crng, tmp, used);
    1064        1575 : }
    1065             : 
    1066          20 : static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
    1067             : {
    1068          20 :         ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
    1069          20 :         __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
    1070          20 :         int large_request = (nbytes > 256);
    1071             : 
    1072          47 :         while (nbytes) {
    1073          35 :                 if (large_request && need_resched()) {
    1074           0 :                         if (signal_pending(current)) {
    1075           0 :                                 if (ret == 0)
    1076           0 :                                         ret = -ERESTARTSYS;
    1077             :                                 break;
    1078             :                         }
    1079           0 :                         schedule();
    1080             :                 }
    1081             : 
    1082          27 :                 extract_crng(tmp);
    1083          27 :                 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
    1084          54 :                 if (copy_to_user(buf, tmp, i)) {
    1085             :                         ret = -EFAULT;
    1086             :                         break;
    1087             :                 }
    1088             : 
    1089          27 :                 nbytes -= i;
    1090          27 :                 buf += i;
    1091          27 :                 ret += i;
    1092             :         }
    1093          20 :         crng_backtrack_protect(tmp, i);
    1094             : 
    1095             :         /* Wipe data just written to memory */
    1096          20 :         memzero_explicit(tmp, sizeof(tmp));
    1097             : 
    1098          20 :         return ret;
    1099             : }
    1100             : 
    1101             : 
    1102             : /*********************************************************************
    1103             :  *
    1104             :  * Entropy input management
    1105             :  *
    1106             :  *********************************************************************/
    1107             : 
    1108             : /* There is one of these per entropy source */
    1109             : struct timer_rand_state {
    1110             :         cycles_t last_time;
    1111             :         long last_delta, last_delta2;
    1112             : };
    1113             : 
    1114             : #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
    1115             : 
    1116             : /*
    1117             :  * Add device- or boot-specific data to the input pool to help
    1118             :  * initialize it.
    1119             :  *
    1120             :  * None of this adds any entropy; it is meant to avoid the problem of
    1121             :  * the entropy pool having similar initial state across largely
    1122             :  * identical devices.
    1123             :  */
    1124        1842 : void add_device_randomness(const void *buf, unsigned int size)
    1125             : {
    1126        1842 :         unsigned long time = random_get_entropy() ^ jiffies;
    1127        1842 :         unsigned long flags;
    1128             : 
    1129        1842 :         if (!crng_ready() && size)
    1130           0 :                 crng_slow_load(buf, size);
    1131             : 
    1132        1842 :         trace_add_device_randomness(size, _RET_IP_);
    1133        1842 :         spin_lock_irqsave(&input_pool.lock, flags);
    1134        1842 :         _mix_pool_bytes(&input_pool, buf, size);
    1135        1842 :         _mix_pool_bytes(&input_pool, &time, sizeof(time));
    1136        1842 :         spin_unlock_irqrestore(&input_pool.lock, flags);
    1137        1842 : }
    1138             : EXPORT_SYMBOL(add_device_randomness);
    1139             : 
    1140             : static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
    1141             : 
    1142             : /*
    1143             :  * This function adds entropy to the entropy "pool" by using timing
    1144             :  * delays.  It uses the timer_rand_state structure to make an estimate
    1145             :  * of how many bits of entropy this call has added to the pool.
    1146             :  *
    1147             :  * The number "num" is also added to the pool - it should somehow describe
    1148             :  * the type of event which just happened.  This is currently 0-255 for
    1149             :  * keyboard scan codes, and 256 upwards for interrupts.
    1150             :  *
    1151             :  */
    1152           0 : static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
    1153             : {
    1154           0 :         struct entropy_store    *r;
    1155           0 :         struct {
    1156             :                 long jiffies;
    1157             :                 unsigned cycles;
    1158             :                 unsigned num;
    1159             :         } sample;
    1160           0 :         long delta, delta2, delta3;
    1161             : 
    1162           0 :         sample.jiffies = jiffies;
    1163           0 :         sample.cycles = random_get_entropy();
    1164           0 :         sample.num = num;
    1165           0 :         r = &input_pool;
    1166           0 :         mix_pool_bytes(r, &sample, sizeof(sample));
    1167             : 
    1168             :         /*
    1169             :          * Calculate number of bits of randomness we probably added.
    1170             :          * We take into account the first, second and third-order deltas
    1171             :          * in order to make our estimate.
    1172             :          */
    1173           0 :         delta = sample.jiffies - READ_ONCE(state->last_time);
    1174           0 :         WRITE_ONCE(state->last_time, sample.jiffies);
    1175             : 
    1176           0 :         delta2 = delta - READ_ONCE(state->last_delta);
    1177           0 :         WRITE_ONCE(state->last_delta, delta);
    1178             : 
    1179           0 :         delta3 = delta2 - READ_ONCE(state->last_delta2);
    1180           0 :         WRITE_ONCE(state->last_delta2, delta2);
    1181             : 
    1182           0 :         if (delta < 0)
    1183             :                 delta = -delta;
    1184           0 :         if (delta2 < 0)
    1185           0 :                 delta2 = -delta2;
    1186           0 :         if (delta3 < 0)
    1187           0 :                 delta3 = -delta3;
    1188           0 :         if (delta > delta2)
    1189             :                 delta = delta2;
    1190           0 :         if (delta > delta3)
    1191             :                 delta = delta3;
    1192             : 
    1193             :         /*
    1194             :          * delta is now minimum absolute delta.
    1195             :          * Round down by 1 bit on general principles,
    1196             :          * and limit entropy estimate to 12 bits.
    1197             :          */
    1198           0 :         credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
    1199           0 : }
    1200             : 
    1201           0 : void add_input_randomness(unsigned int type, unsigned int code,
    1202             :                                  unsigned int value)
    1203             : {
    1204           0 :         static unsigned char last_value;
    1205             : 
    1206             :         /* ignore autorepeat and the like */
    1207           0 :         if (value == last_value)
    1208             :                 return;
    1209             : 
    1210           0 :         last_value = value;
    1211           0 :         add_timer_randomness(&input_timer_state,
    1212           0 :                              (type << 4) ^ code ^ (code >> 4) ^ value);
    1213           0 :         trace_add_input_randomness(ENTROPY_BITS(&input_pool));
    1214             : }
    1215             : EXPORT_SYMBOL_GPL(add_input_randomness);
    1216             : 
    1217             : static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
    1218             : 
    1219             : #ifdef ADD_INTERRUPT_BENCH
    1220             : static unsigned long avg_cycles, avg_deviation;
    1221             : 
    1222             : #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
    1223             : #define FIXED_1_2 (1 << (AVG_SHIFT-1))
    1224             : 
    1225             : static void add_interrupt_bench(cycles_t start)
    1226             : {
    1227             :         long delta = random_get_entropy() - start;
    1228             : 
    1229             :         /* Use a weighted moving average */
    1230             :         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
    1231             :         avg_cycles += delta;
    1232             :         /* And average deviation */
    1233             :         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
    1234             :         avg_deviation += delta;
    1235             : }
    1236             : #else
    1237             : #define add_interrupt_bench(x)
    1238             : #endif
    1239             : 
    1240           0 : static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
    1241             : {
    1242           0 :         __u32 *ptr = (__u32 *) regs;
    1243           0 :         unsigned int idx;
    1244             : 
    1245           0 :         if (regs == NULL)
    1246             :                 return 0;
    1247           0 :         idx = READ_ONCE(f->reg_idx);
    1248           0 :         if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
    1249           0 :                 idx = 0;
    1250           0 :         ptr += idx++;
    1251           0 :         WRITE_ONCE(f->reg_idx, idx);
    1252           0 :         return *ptr;
    1253             : }
    1254             : 
    1255        3657 : void add_interrupt_randomness(int irq, int irq_flags)
    1256             : {
    1257        3657 :         struct entropy_store    *r;
    1258        3657 :         struct fast_pool        *fast_pool = this_cpu_ptr(&irq_randomness);
    1259        3657 :         struct pt_regs          *regs = get_irq_regs();
    1260        3657 :         unsigned long           now = jiffies;
    1261        3657 :         cycles_t                cycles = random_get_entropy();
    1262        3657 :         __u32                   c_high, j_high;
    1263        3657 :         __u64                   ip;
    1264             : 
    1265        3657 :         if (cycles == 0)
    1266           0 :                 cycles = get_reg(fast_pool, regs);
    1267        3657 :         c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
    1268        3657 :         j_high = (sizeof(now) > 4) ? now >> 32 : 0;
    1269        3657 :         fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
    1270        3657 :         fast_pool->pool[1] ^= now ^ c_high;
    1271        3657 :         ip = regs ? instruction_pointer(regs) : _RET_IP_;
    1272        3657 :         fast_pool->pool[2] ^= ip;
    1273        3657 :         fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
    1274             :                 get_reg(fast_pool, regs);
    1275             : 
    1276        3657 :         fast_mix(fast_pool);
    1277        3657 :         add_interrupt_bench(cycles);
    1278             : 
    1279        3657 :         if (unlikely(crng_init == 0)) {
    1280           0 :                 if ((fast_pool->count >= 64) &&
    1281           0 :                     crng_fast_load((char *) fast_pool->pool,
    1282             :                                    sizeof(fast_pool->pool))) {
    1283           0 :                         fast_pool->count = 0;
    1284           0 :                         fast_pool->last = now;
    1285             :                 }
    1286           0 :                 return;
    1287             :         }
    1288             : 
    1289        3657 :         if ((fast_pool->count < 64) &&
    1290        3613 :             !time_after(now, fast_pool->last + HZ))
    1291             :                 return;
    1292             : 
    1293         101 :         r = &input_pool;
    1294         101 :         if (!spin_trylock(&r->lock))
    1295             :                 return;
    1296             : 
    1297         101 :         fast_pool->last = now;
    1298         101 :         __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
    1299         101 :         spin_unlock(&r->lock);
    1300             : 
    1301         101 :         fast_pool->count = 0;
    1302             : 
    1303             :         /* award one bit for the contents of the fast pool */
    1304         101 :         credit_entropy_bits(r, 1);
    1305             : }
    1306             : EXPORT_SYMBOL_GPL(add_interrupt_randomness);
    1307             : 
    1308             : #ifdef CONFIG_BLOCK
    1309           0 : void add_disk_randomness(struct gendisk *disk)
    1310             : {
    1311           0 :         if (!disk || !disk->random)
    1312             :                 return;
    1313             :         /* first major is 1, so we get >= 0x200 here */
    1314           0 :         add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
    1315           0 :         trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
    1316             : }
    1317             : EXPORT_SYMBOL_GPL(add_disk_randomness);
    1318             : #endif
    1319             : 
    1320             : /*********************************************************************
    1321             :  *
    1322             :  * Entropy extraction routines
    1323             :  *
    1324             :  *********************************************************************/
    1325             : 
    1326             : /*
    1327             :  * This function decides how many bytes to actually take from the
    1328             :  * given pool, and also debits the entropy count accordingly.
    1329             :  */
    1330           3 : static size_t account(struct entropy_store *r, size_t nbytes, int min,
    1331             :                       int reserved)
    1332             : {
    1333           3 :         int entropy_count, orig, have_bytes;
    1334           3 :         size_t ibytes, nfrac;
    1335             : 
    1336           3 :         BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
    1337             : 
    1338             :         /* Can we pull enough? */
    1339           3 : retry:
    1340           3 :         entropy_count = orig = READ_ONCE(r->entropy_count);
    1341           3 :         ibytes = nbytes;
    1342             :         /* never pull more than available */
    1343           3 :         have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
    1344             : 
    1345           3 :         if ((have_bytes -= reserved) < 0)
    1346             :                 have_bytes = 0;
    1347           3 :         ibytes = min_t(size_t, ibytes, have_bytes);
    1348           3 :         if (ibytes < min)
    1349           3 :                 ibytes = 0;
    1350             : 
    1351           3 :         if (WARN_ON(entropy_count < 0)) {
    1352           0 :                 pr_warn("negative entropy count: pool %s count %d\n",
    1353             :                         r->name, entropy_count);
    1354           0 :                 entropy_count = 0;
    1355             :         }
    1356           3 :         nfrac = ibytes << (ENTROPY_SHIFT + 3);
    1357           3 :         if ((size_t) entropy_count > nfrac)
    1358           0 :                 entropy_count -= nfrac;
    1359             :         else
    1360             :                 entropy_count = 0;
    1361             : 
    1362           3 :         if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
    1363           0 :                 goto retry;
    1364             : 
    1365           3 :         trace_debit_entropy(r->name, 8 * ibytes);
    1366           3 :         if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
    1367           0 :                 wake_up_interruptible(&random_write_wait);
    1368           0 :                 kill_fasync(&fasync, SIGIO, POLL_OUT);
    1369             :         }
    1370             : 
    1371           3 :         return ibytes;
    1372             : }
    1373             : 
    1374             : /*
    1375             :  * This function does the actual extraction for extract_entropy and
    1376             :  * extract_entropy_user.
    1377             :  *
    1378             :  * Note: we assume that .poolwords is a multiple of 16 words.
    1379             :  */
    1380           5 : static void extract_buf(struct entropy_store *r, __u8 *out)
    1381             : {
    1382           5 :         int i;
    1383           5 :         union {
    1384             :                 __u32 w[5];
    1385             :                 unsigned long l[LONGS(20)];
    1386             :         } hash;
    1387           5 :         __u32 workspace[SHA1_WORKSPACE_WORDS];
    1388           5 :         unsigned long flags;
    1389             : 
    1390             :         /*
    1391             :          * If we have an architectural hardware random number
    1392             :          * generator, use it for SHA's initial vector
    1393             :          */
    1394           5 :         sha1_init(hash.w);
    1395          25 :         for (i = 0; i < LONGS(20); i++) {
    1396          15 :                 unsigned long v;
    1397          15 :                 if (!arch_get_random_long(&v))
    1398             :                         break;
    1399          15 :                 hash.l[i] = v;
    1400             :         }
    1401             : 
    1402             :         /* Generate a hash across the pool, 16 words (512 bits) at a time */
    1403           5 :         spin_lock_irqsave(&r->lock, flags);
    1404          50 :         for (i = 0; i < r->poolinfo->poolwords; i += 16)
    1405          40 :                 sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
    1406             : 
    1407             :         /*
    1408             :          * We mix the hash back into the pool to prevent backtracking
    1409             :          * attacks (where the attacker knows the state of the pool
    1410             :          * plus the current outputs, and attempts to find previous
    1411             :          * ouputs), unless the hash function can be inverted. By
    1412             :          * mixing at least a SHA1 worth of hash data back, we make
    1413             :          * brute-forcing the feedback as hard as brute-forcing the
    1414             :          * hash.
    1415             :          */
    1416           5 :         __mix_pool_bytes(r, hash.w, sizeof(hash.w));
    1417           5 :         spin_unlock_irqrestore(&r->lock, flags);
    1418             : 
    1419           5 :         memzero_explicit(workspace, sizeof(workspace));
    1420             : 
    1421             :         /*
    1422             :          * In case the hash function has some recognizable output
    1423             :          * pattern, we fold it in half. Thus, we always feed back
    1424             :          * twice as much data as we output.
    1425             :          */
    1426           5 :         hash.w[0] ^= hash.w[3];
    1427           5 :         hash.w[1] ^= hash.w[4];
    1428           5 :         hash.w[2] ^= rol32(hash.w[2], 16);
    1429             : 
    1430           5 :         memcpy(out, &hash, EXTRACT_SIZE);
    1431           5 :         memzero_explicit(&hash, sizeof(hash));
    1432           5 : }
    1433             : 
    1434           4 : static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
    1435             :                                 size_t nbytes, int fips)
    1436             : {
    1437           4 :         ssize_t ret = 0, i;
    1438           4 :         __u8 tmp[EXTRACT_SIZE];
    1439           4 :         unsigned long flags;
    1440             : 
    1441           9 :         while (nbytes) {
    1442           5 :                 extract_buf(r, tmp);
    1443             : 
    1444           5 :                 if (fips) {
    1445           0 :                         spin_lock_irqsave(&r->lock, flags);
    1446           0 :                         if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
    1447           0 :                                 panic("Hardware RNG duplicated output!\n");
    1448           0 :                         memcpy(r->last_data, tmp, EXTRACT_SIZE);
    1449           0 :                         spin_unlock_irqrestore(&r->lock, flags);
    1450             :                 }
    1451           5 :                 i = min_t(int, nbytes, EXTRACT_SIZE);
    1452           5 :                 memcpy(buf, tmp, i);
    1453           5 :                 nbytes -= i;
    1454           5 :                 buf += i;
    1455           5 :                 ret += i;
    1456             :         }
    1457             : 
    1458             :         /* Wipe data just returned from memory */
    1459           4 :         memzero_explicit(tmp, sizeof(tmp));
    1460             : 
    1461           4 :         return ret;
    1462             : }
    1463             : 
    1464             : /*
    1465             :  * This function extracts randomness from the "entropy pool", and
    1466             :  * returns it in a buffer.
    1467             :  *
    1468             :  * The min parameter specifies the minimum amount we can pull before
    1469             :  * failing to avoid races that defeat catastrophic reseeding while the
    1470             :  * reserved parameter indicates how much entropy we must leave in the
    1471             :  * pool after each pull to avoid starving other readers.
    1472             :  */
    1473           3 : static ssize_t extract_entropy(struct entropy_store *r, void *buf,
    1474             :                                  size_t nbytes, int min, int reserved)
    1475             : {
    1476           3 :         __u8 tmp[EXTRACT_SIZE];
    1477           3 :         unsigned long flags;
    1478             : 
    1479             :         /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
    1480           3 :         if (fips_enabled) {
    1481             :                 spin_lock_irqsave(&r->lock, flags);
    1482             :                 if (!r->last_data_init) {
    1483             :                         r->last_data_init = 1;
    1484             :                         spin_unlock_irqrestore(&r->lock, flags);
    1485             :                         trace_extract_entropy(r->name, EXTRACT_SIZE,
    1486             :                                               ENTROPY_BITS(r), _RET_IP_);
    1487             :                         extract_buf(r, tmp);
    1488             :                         spin_lock_irqsave(&r->lock, flags);
    1489             :                         memcpy(r->last_data, tmp, EXTRACT_SIZE);
    1490             :                 }
    1491             :                 spin_unlock_irqrestore(&r->lock, flags);
    1492             :         }
    1493             : 
    1494           3 :         trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
    1495           3 :         nbytes = account(r, nbytes, min, reserved);
    1496             : 
    1497           3 :         return _extract_entropy(r, buf, nbytes, fips_enabled);
    1498             : }
    1499             : 
    1500             : #define warn_unseeded_randomness(previous) \
    1501             :         _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
    1502             : 
    1503       13986 : static void _warn_unseeded_randomness(const char *func_name, void *caller,
    1504             :                                       void **previous)
    1505             : {
    1506             : #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
    1507             :         const bool print_once = false;
    1508             : #else
    1509       13986 :         static bool print_once __read_mostly;
    1510             : #endif
    1511             : 
    1512       13986 :         if (print_once ||
    1513       13986 :             crng_ready() ||
    1514           0 :             (previous && (caller == READ_ONCE(*previous))))
    1515             :                 return;
    1516           0 :         WRITE_ONCE(*previous, caller);
    1517             : #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
    1518           0 :         print_once = true;
    1519             : #endif
    1520           0 :         if (__ratelimit(&unseeded_warning))
    1521           0 :                 printk_deferred(KERN_NOTICE "random: %s called from %pS "
    1522             :                                 "with crng_init=%d\n", func_name, caller,
    1523             :                                 crng_init);
    1524             : }
    1525             : 
    1526             : /*
    1527             :  * This function is the exported kernel interface.  It returns some
    1528             :  * number of good random numbers, suitable for key generation, seeding
    1529             :  * TCP sequence numbers, etc.  It does not rely on the hardware random
    1530             :  * number generator.  For random bytes direct from the hardware RNG
    1531             :  * (when available), use get_random_bytes_arch(). In order to ensure
    1532             :  * that the randomness provided by this function is okay, the function
    1533             :  * wait_for_random_bytes() should be called and return 0 at least once
    1534             :  * at any point prior.
    1535             :  */
    1536        1555 : static void _get_random_bytes(void *buf, int nbytes)
    1537             : {
    1538        1555 :         __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
    1539             : 
    1540        1555 :         trace_get_random_bytes(nbytes, _RET_IP_);
    1541             : 
    1542        1555 :         while (nbytes >= CHACHA_BLOCK_SIZE) {
    1543           0 :                 extract_crng(buf);
    1544           0 :                 buf += CHACHA_BLOCK_SIZE;
    1545           0 :                 nbytes -= CHACHA_BLOCK_SIZE;
    1546             :         }
    1547             : 
    1548        1555 :         if (nbytes > 0) {
    1549        1555 :                 extract_crng(tmp);
    1550        1555 :                 memcpy(buf, tmp, nbytes);
    1551        1555 :                 crng_backtrack_protect(tmp, nbytes);
    1552             :         } else
    1553           0 :                 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
    1554        1555 :         memzero_explicit(tmp, sizeof(tmp));
    1555        1555 : }
    1556             : 
    1557        1554 : void get_random_bytes(void *buf, int nbytes)
    1558             : {
    1559        1554 :         static void *previous;
    1560             : 
    1561        1554 :         warn_unseeded_randomness(&previous);
    1562        1554 :         _get_random_bytes(buf, nbytes);
    1563        1554 : }
    1564             : EXPORT_SYMBOL(get_random_bytes);
    1565             : 
    1566             : 
    1567             : /*
    1568             :  * Each time the timer fires, we expect that we got an unpredictable
    1569             :  * jump in the cycle counter. Even if the timer is running on another
    1570             :  * CPU, the timer activity will be touching the stack of the CPU that is
    1571             :  * generating entropy..
    1572             :  *
    1573             :  * Note that we don't re-arm the timer in the timer itself - we are
    1574             :  * happy to be scheduled away, since that just makes the load more
    1575             :  * complex, but we do not want the timer to keep ticking unless the
    1576             :  * entropy loop is running.
    1577             :  *
    1578             :  * So the re-arming always happens in the entropy loop itself.
    1579             :  */
    1580           0 : static void entropy_timer(struct timer_list *t)
    1581             : {
    1582           0 :         credit_entropy_bits(&input_pool, 1);
    1583           0 : }
    1584             : 
    1585             : /*
    1586             :  * If we have an actual cycle counter, see if we can
    1587             :  * generate enough entropy with timing noise
    1588             :  */
    1589           0 : static void try_to_generate_entropy(void)
    1590             : {
    1591           0 :         struct {
    1592             :                 unsigned long now;
    1593             :                 struct timer_list timer;
    1594             :         } stack;
    1595             : 
    1596           0 :         stack.now = random_get_entropy();
    1597             : 
    1598             :         /* Slow counter - or none. Don't even bother */
    1599           0 :         if (stack.now == random_get_entropy())
    1600           0 :                 return;
    1601             : 
    1602           0 :         timer_setup_on_stack(&stack.timer, entropy_timer, 0);
    1603           0 :         while (!crng_ready()) {
    1604           0 :                 if (!timer_pending(&stack.timer))
    1605           0 :                         mod_timer(&stack.timer, jiffies+1);
    1606           0 :                 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
    1607           0 :                 schedule();
    1608           0 :                 stack.now = random_get_entropy();
    1609             :         }
    1610             : 
    1611           0 :         del_timer_sync(&stack.timer);
    1612           0 :         destroy_timer_on_stack(&stack.timer);
    1613           0 :         mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
    1614             : }
    1615             : 
    1616             : /*
    1617             :  * Wait for the urandom pool to be seeded and thus guaranteed to supply
    1618             :  * cryptographically secure random numbers. This applies to: the /dev/urandom
    1619             :  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
    1620             :  * family of functions. Using any of these functions without first calling
    1621             :  * this function forfeits the guarantee of security.
    1622             :  *
    1623             :  * Returns: 0 if the urandom pool has been seeded.
    1624             :  *          -ERESTARTSYS if the function was interrupted by a signal.
    1625             :  */
    1626           0 : int wait_for_random_bytes(void)
    1627             : {
    1628           0 :         if (likely(crng_ready()))
    1629             :                 return 0;
    1630             : 
    1631           0 :         do {
    1632           0 :                 int ret;
    1633           0 :                 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
    1634           0 :                 if (ret)
    1635           0 :                         return ret > 0 ? 0 : ret;
    1636             : 
    1637           0 :                 try_to_generate_entropy();
    1638           0 :         } while (!crng_ready());
    1639             : 
    1640             :         return 0;
    1641             : }
    1642             : EXPORT_SYMBOL(wait_for_random_bytes);
    1643             : 
    1644             : /*
    1645             :  * Returns whether or not the urandom pool has been seeded and thus guaranteed
    1646             :  * to supply cryptographically secure random numbers. This applies to: the
    1647             :  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
    1648             :  * ,u64,int,long} family of functions.
    1649             :  *
    1650             :  * Returns: true if the urandom pool has been seeded.
    1651             :  *          false if the urandom pool has not been seeded.
    1652             :  */
    1653           0 : bool rng_is_initialized(void)
    1654             : {
    1655           0 :         return crng_ready();
    1656             : }
    1657             : EXPORT_SYMBOL(rng_is_initialized);
    1658             : 
    1659             : /*
    1660             :  * Add a callback function that will be invoked when the nonblocking
    1661             :  * pool is initialised.
    1662             :  *
    1663             :  * returns: 0 if callback is successfully added
    1664             :  *          -EALREADY if pool is already initialised (callback not called)
    1665             :  *          -ENOENT if module for callback is not alive
    1666             :  */
    1667           1 : int add_random_ready_callback(struct random_ready_callback *rdy)
    1668             : {
    1669           1 :         struct module *owner;
    1670           1 :         unsigned long flags;
    1671           1 :         int err = -EALREADY;
    1672             : 
    1673           1 :         if (crng_ready())
    1674             :                 return err;
    1675             : 
    1676           0 :         owner = rdy->owner;
    1677           0 :         if (!try_module_get(owner))
    1678             :                 return -ENOENT;
    1679             : 
    1680           0 :         spin_lock_irqsave(&random_ready_list_lock, flags);
    1681           0 :         if (crng_ready())
    1682           0 :                 goto out;
    1683             : 
    1684           0 :         owner = NULL;
    1685             : 
    1686           0 :         list_add(&rdy->list, &random_ready_list);
    1687           0 :         err = 0;
    1688             : 
    1689           0 : out:
    1690           0 :         spin_unlock_irqrestore(&random_ready_list_lock, flags);
    1691             : 
    1692           0 :         module_put(owner);
    1693             : 
    1694           0 :         return err;
    1695             : }
    1696             : EXPORT_SYMBOL(add_random_ready_callback);
    1697             : 
    1698             : /*
    1699             :  * Delete a previously registered readiness callback function.
    1700             :  */
    1701           0 : void del_random_ready_callback(struct random_ready_callback *rdy)
    1702             : {
    1703           0 :         unsigned long flags;
    1704           0 :         struct module *owner = NULL;
    1705             : 
    1706           0 :         spin_lock_irqsave(&random_ready_list_lock, flags);
    1707           0 :         if (!list_empty(&rdy->list)) {
    1708           0 :                 list_del_init(&rdy->list);
    1709           0 :                 owner = rdy->owner;
    1710             :         }
    1711           0 :         spin_unlock_irqrestore(&random_ready_list_lock, flags);
    1712             : 
    1713           0 :         module_put(owner);
    1714           0 : }
    1715             : EXPORT_SYMBOL(del_random_ready_callback);
    1716             : 
    1717             : /*
    1718             :  * This function will use the architecture-specific hardware random
    1719             :  * number generator if it is available.  The arch-specific hw RNG will
    1720             :  * almost certainly be faster than what we can do in software, but it
    1721             :  * is impossible to verify that it is implemented securely (as
    1722             :  * opposed, to, say, the AES encryption of a sequence number using a
    1723             :  * key known by the NSA).  So it's useful if we need the speed, but
    1724             :  * only if we're willing to trust the hardware manufacturer not to
    1725             :  * have put in a back door.
    1726             :  *
    1727             :  * Return number of bytes filled in.
    1728             :  */
    1729           1 : int __must_check get_random_bytes_arch(void *buf, int nbytes)
    1730             : {
    1731           1 :         int left = nbytes;
    1732           1 :         char *p = buf;
    1733             : 
    1734           1 :         trace_get_random_bytes_arch(left, _RET_IP_);
    1735           3 :         while (left) {
    1736           2 :                 unsigned long v;
    1737           2 :                 int chunk = min_t(int, left, sizeof(unsigned long));
    1738             : 
    1739           2 :                 if (!arch_get_random_long(&v))
    1740             :                         break;
    1741             : 
    1742           2 :                 memcpy(p, &v, chunk);
    1743           2 :                 p += chunk;
    1744           2 :                 left -= chunk;
    1745             :         }
    1746             : 
    1747           1 :         return nbytes - left;
    1748             : }
    1749             : EXPORT_SYMBOL(get_random_bytes_arch);
    1750             : 
    1751             : /*
    1752             :  * init_std_data - initialize pool with system data
    1753             :  *
    1754             :  * @r: pool to initialize
    1755             :  *
    1756             :  * This function clears the pool's entropy count and mixes some system
    1757             :  * data into the pool to prepare it for use. The pool is not cleared
    1758             :  * as that can only decrease the entropy in the pool.
    1759             :  */
    1760           1 : static void __init init_std_data(struct entropy_store *r)
    1761             : {
    1762           1 :         int i;
    1763           1 :         ktime_t now = ktime_get_real();
    1764           1 :         unsigned long rv;
    1765             : 
    1766           1 :         mix_pool_bytes(r, &now, sizeof(now));
    1767          65 :         for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
    1768         128 :                 if (!arch_get_random_seed_long(&rv) &&
    1769          64 :                     !arch_get_random_long(&rv))
    1770           0 :                         rv = random_get_entropy();
    1771          64 :                 mix_pool_bytes(r, &rv, sizeof(rv));
    1772             :         }
    1773           1 :         mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
    1774           1 : }
    1775             : 
    1776             : /*
    1777             :  * Note that setup_arch() may call add_device_randomness()
    1778             :  * long before we get here. This allows seeding of the pools
    1779             :  * with some platform dependent data very early in the boot
    1780             :  * process. But it limits our options here. We must use
    1781             :  * statically allocated structures that already have all
    1782             :  * initializations complete at compile time. We should also
    1783             :  * take care not to overwrite the precious per platform data
    1784             :  * we were given.
    1785             :  */
    1786           1 : int __init rand_initialize(void)
    1787             : {
    1788           1 :         init_std_data(&input_pool);
    1789           1 :         crng_initialize_primary(&primary_crng);
    1790           1 :         crng_global_init_time = jiffies;
    1791           1 :         if (ratelimit_disable) {
    1792           0 :                 urandom_warning.interval = 0;
    1793           0 :                 unseeded_warning.interval = 0;
    1794             :         }
    1795           1 :         return 0;
    1796             : }
    1797             : 
    1798             : #ifdef CONFIG_BLOCK
    1799           9 : void rand_initialize_disk(struct gendisk *disk)
    1800             : {
    1801           9 :         struct timer_rand_state *state;
    1802             : 
    1803             :         /*
    1804             :          * If kzalloc returns null, we just won't use that entropy
    1805             :          * source.
    1806             :          */
    1807           9 :         state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
    1808           9 :         if (state) {
    1809           9 :                 state->last_time = INITIAL_JIFFIES;
    1810           9 :                 disk->random = state;
    1811             :         }
    1812           9 : }
    1813             : #endif
    1814             : 
    1815             : static ssize_t
    1816          20 : urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
    1817             :                     loff_t *ppos)
    1818             : {
    1819          20 :         int ret;
    1820             : 
    1821          20 :         nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
    1822          20 :         ret = extract_crng_user(buf, nbytes);
    1823          20 :         trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
    1824          20 :         return ret;
    1825             : }
    1826             : 
    1827             : static ssize_t
    1828           7 : urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
    1829             : {
    1830           7 :         unsigned long flags;
    1831           7 :         static int maxwarn = 10;
    1832             : 
    1833           7 :         if (!crng_ready() && maxwarn > 0) {
    1834           0 :                 maxwarn--;
    1835           0 :                 if (__ratelimit(&urandom_warning))
    1836           0 :                         pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
    1837             :                                   current->comm, nbytes);
    1838           0 :                 spin_lock_irqsave(&primary_crng.lock, flags);
    1839           0 :                 crng_init_cnt = 0;
    1840           0 :                 spin_unlock_irqrestore(&primary_crng.lock, flags);
    1841             :         }
    1842             : 
    1843           7 :         return urandom_read_nowarn(file, buf, nbytes, ppos);
    1844             : }
    1845             : 
    1846             : static ssize_t
    1847           0 : random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
    1848             : {
    1849           0 :         int ret;
    1850             : 
    1851           0 :         ret = wait_for_random_bytes();
    1852           0 :         if (ret != 0)
    1853           0 :                 return ret;
    1854           0 :         return urandom_read_nowarn(file, buf, nbytes, ppos);
    1855             : }
    1856             : 
    1857             : static __poll_t
    1858           0 : random_poll(struct file *file, poll_table * wait)
    1859             : {
    1860           0 :         __poll_t mask;
    1861             : 
    1862           0 :         poll_wait(file, &crng_init_wait, wait);
    1863           0 :         poll_wait(file, &random_write_wait, wait);
    1864           0 :         mask = 0;
    1865           0 :         if (crng_ready())
    1866           0 :                 mask |= EPOLLIN | EPOLLRDNORM;
    1867           0 :         if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
    1868           0 :                 mask |= EPOLLOUT | EPOLLWRNORM;
    1869           0 :         return mask;
    1870             : }
    1871             : 
    1872             : static int
    1873           2 : write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
    1874             : {
    1875           2 :         size_t bytes;
    1876           2 :         __u32 t, buf[16];
    1877           2 :         const char __user *p = buffer;
    1878             : 
    1879          11 :         while (count > 0) {
    1880           9 :                 int b, i = 0;
    1881             : 
    1882           9 :                 bytes = min(count, sizeof(buf));
    1883           9 :                 if (copy_from_user(&buf, p, bytes))
    1884             :                         return -EFAULT;
    1885             : 
    1886         141 :                 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
    1887         132 :                         if (!arch_get_random_int(&t))
    1888             :                                 break;
    1889         132 :                         buf[i] ^= t;
    1890             :                 }
    1891             : 
    1892           9 :                 count -= bytes;
    1893           9 :                 p += bytes;
    1894             : 
    1895           9 :                 mix_pool_bytes(r, buf, bytes);
    1896           9 :                 cond_resched();
    1897             :         }
    1898             : 
    1899             :         return 0;
    1900             : }
    1901             : 
    1902           2 : static ssize_t random_write(struct file *file, const char __user *buffer,
    1903             :                             size_t count, loff_t *ppos)
    1904             : {
    1905           2 :         size_t ret;
    1906             : 
    1907           2 :         ret = write_pool(&input_pool, buffer, count);
    1908           2 :         if (ret)
    1909           0 :                 return ret;
    1910             : 
    1911           2 :         return (ssize_t)count;
    1912             : }
    1913             : 
    1914           0 : static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
    1915             : {
    1916           0 :         int size, ent_count;
    1917           0 :         int __user *p = (int __user *)arg;
    1918           0 :         int retval;
    1919             : 
    1920           0 :         switch (cmd) {
    1921           0 :         case RNDGETENTCNT:
    1922             :                 /* inherently racy, no point locking */
    1923           0 :                 ent_count = ENTROPY_BITS(&input_pool);
    1924           0 :                 if (put_user(ent_count, p))
    1925           0 :                         return -EFAULT;
    1926             :                 return 0;
    1927           0 :         case RNDADDTOENTCNT:
    1928           0 :                 if (!capable(CAP_SYS_ADMIN))
    1929             :                         return -EPERM;
    1930           0 :                 if (get_user(ent_count, p))
    1931             :                         return -EFAULT;
    1932           0 :                 return credit_entropy_bits_safe(&input_pool, ent_count);
    1933           0 :         case RNDADDENTROPY:
    1934           0 :                 if (!capable(CAP_SYS_ADMIN))
    1935             :                         return -EPERM;
    1936           0 :                 if (get_user(ent_count, p++))
    1937             :                         return -EFAULT;
    1938           0 :                 if (ent_count < 0)
    1939             :                         return -EINVAL;
    1940           0 :                 if (get_user(size, p++))
    1941             :                         return -EFAULT;
    1942           0 :                 retval = write_pool(&input_pool, (const char __user *)p,
    1943             :                                     size);
    1944           0 :                 if (retval < 0)
    1945           0 :                         return retval;
    1946           0 :                 return credit_entropy_bits_safe(&input_pool, ent_count);
    1947           0 :         case RNDZAPENTCNT:
    1948             :         case RNDCLEARPOOL:
    1949             :                 /*
    1950             :                  * Clear the entropy pool counters. We no longer clear
    1951             :                  * the entropy pool, as that's silly.
    1952             :                  */
    1953           0 :                 if (!capable(CAP_SYS_ADMIN))
    1954             :                         return -EPERM;
    1955           0 :                 input_pool.entropy_count = 0;
    1956           0 :                 return 0;
    1957           0 :         case RNDRESEEDCRNG:
    1958           0 :                 if (!capable(CAP_SYS_ADMIN))
    1959             :                         return -EPERM;
    1960           0 :                 if (crng_init < 2)
    1961             :                         return -ENODATA;
    1962           0 :                 crng_reseed(&primary_crng, &input_pool);
    1963           0 :                 crng_global_init_time = jiffies - 1;
    1964           0 :                 return 0;
    1965             :         default:
    1966             :                 return -EINVAL;
    1967             :         }
    1968             : }
    1969             : 
    1970           0 : static int random_fasync(int fd, struct file *filp, int on)
    1971             : {
    1972           0 :         return fasync_helper(fd, filp, on, &fasync);
    1973             : }
    1974             : 
    1975             : const struct file_operations random_fops = {
    1976             :         .read  = random_read,
    1977             :         .write = random_write,
    1978             :         .poll  = random_poll,
    1979             :         .unlocked_ioctl = random_ioctl,
    1980             :         .compat_ioctl = compat_ptr_ioctl,
    1981             :         .fasync = random_fasync,
    1982             :         .llseek = noop_llseek,
    1983             : };
    1984             : 
    1985             : const struct file_operations urandom_fops = {
    1986             :         .read  = urandom_read,
    1987             :         .write = random_write,
    1988             :         .unlocked_ioctl = random_ioctl,
    1989             :         .compat_ioctl = compat_ptr_ioctl,
    1990             :         .fasync = random_fasync,
    1991             :         .llseek = noop_llseek,
    1992             : };
    1993             : 
    1994          26 : SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
    1995             :                 unsigned int, flags)
    1996             : {
    1997          13 :         int ret;
    1998             : 
    1999          13 :         if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
    2000             :                 return -EINVAL;
    2001             : 
    2002             :         /*
    2003             :          * Requesting insecure and blocking randomness at the same time makes
    2004             :          * no sense.
    2005             :          */
    2006          13 :         if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
    2007             :                 return -EINVAL;
    2008             : 
    2009          13 :         if (count > INT_MAX)
    2010             :                 count = INT_MAX;
    2011             : 
    2012          13 :         if (!(flags & GRND_INSECURE) && !crng_ready()) {
    2013           0 :                 if (flags & GRND_NONBLOCK)
    2014             :                         return -EAGAIN;
    2015           0 :                 ret = wait_for_random_bytes();
    2016           0 :                 if (unlikely(ret))
    2017           0 :                         return ret;
    2018             :         }
    2019          13 :         return urandom_read_nowarn(NULL, buf, count, NULL);
    2020             : }
    2021             : 
    2022             : /********************************************************************
    2023             :  *
    2024             :  * Sysctl interface
    2025             :  *
    2026             :  ********************************************************************/
    2027             : 
    2028             : #ifdef CONFIG_SYSCTL
    2029             : 
    2030             : #include <linux/sysctl.h>
    2031             : 
    2032             : static int min_write_thresh;
    2033             : static int max_write_thresh = INPUT_POOL_WORDS * 32;
    2034             : static int random_min_urandom_seed = 60;
    2035             : static char sysctl_bootid[16];
    2036             : 
    2037             : /*
    2038             :  * This function is used to return both the bootid UUID, and random
    2039             :  * UUID.  The difference is in whether table->data is NULL; if it is,
    2040             :  * then a new UUID is generated and returned to the user.
    2041             :  *
    2042             :  * If the user accesses this via the proc interface, the UUID will be
    2043             :  * returned as an ASCII string in the standard UUID format; if via the
    2044             :  * sysctl system call, as 16 bytes of binary data.
    2045             :  */
    2046          16 : static int proc_do_uuid(struct ctl_table *table, int write,
    2047             :                         void *buffer, size_t *lenp, loff_t *ppos)
    2048             : {
    2049          16 :         struct ctl_table fake_table;
    2050          16 :         unsigned char buf[64], tmp_uuid[16], *uuid;
    2051             : 
    2052          16 :         uuid = table->data;
    2053          16 :         if (!uuid) {
    2054           0 :                 uuid = tmp_uuid;
    2055           0 :                 generate_random_uuid(uuid);
    2056             :         } else {
    2057          16 :                 static DEFINE_SPINLOCK(bootid_spinlock);
    2058             : 
    2059          16 :                 spin_lock(&bootid_spinlock);
    2060          16 :                 if (!uuid[8])
    2061           1 :                         generate_random_uuid(uuid);
    2062          16 :                 spin_unlock(&bootid_spinlock);
    2063             :         }
    2064             : 
    2065          16 :         sprintf(buf, "%pU", uuid);
    2066             : 
    2067          16 :         fake_table.data = buf;
    2068          16 :         fake_table.maxlen = sizeof(buf);
    2069             : 
    2070          16 :         return proc_dostring(&fake_table, write, buffer, lenp, ppos);
    2071             : }
    2072             : 
    2073             : /*
    2074             :  * Return entropy available scaled to integral bits
    2075             :  */
    2076           0 : static int proc_do_entropy(struct ctl_table *table, int write,
    2077             :                            void *buffer, size_t *lenp, loff_t *ppos)
    2078             : {
    2079           0 :         struct ctl_table fake_table;
    2080           0 :         int entropy_count;
    2081             : 
    2082           0 :         entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
    2083             : 
    2084           0 :         fake_table.data = &entropy_count;
    2085           0 :         fake_table.maxlen = sizeof(entropy_count);
    2086             : 
    2087           0 :         return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
    2088             : }
    2089             : 
    2090             : static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
    2091             : extern struct ctl_table random_table[];
    2092             : struct ctl_table random_table[] = {
    2093             :         {
    2094             :                 .procname       = "poolsize",
    2095             :                 .data           = &sysctl_poolsize,
    2096             :                 .maxlen         = sizeof(int),
    2097             :                 .mode           = 0444,
    2098             :                 .proc_handler   = proc_dointvec,
    2099             :         },
    2100             :         {
    2101             :                 .procname       = "entropy_avail",
    2102             :                 .maxlen         = sizeof(int),
    2103             :                 .mode           = 0444,
    2104             :                 .proc_handler   = proc_do_entropy,
    2105             :                 .data           = &input_pool.entropy_count,
    2106             :         },
    2107             :         {
    2108             :                 .procname       = "write_wakeup_threshold",
    2109             :                 .data           = &random_write_wakeup_bits,
    2110             :                 .maxlen         = sizeof(int),
    2111             :                 .mode           = 0644,
    2112             :                 .proc_handler   = proc_dointvec_minmax,
    2113             :                 .extra1         = &min_write_thresh,
    2114             :                 .extra2         = &max_write_thresh,
    2115             :         },
    2116             :         {
    2117             :                 .procname       = "urandom_min_reseed_secs",
    2118             :                 .data           = &random_min_urandom_seed,
    2119             :                 .maxlen         = sizeof(int),
    2120             :                 .mode           = 0644,
    2121             :                 .proc_handler   = proc_dointvec,
    2122             :         },
    2123             :         {
    2124             :                 .procname       = "boot_id",
    2125             :                 .data           = &sysctl_bootid,
    2126             :                 .maxlen         = 16,
    2127             :                 .mode           = 0444,
    2128             :                 .proc_handler   = proc_do_uuid,
    2129             :         },
    2130             :         {
    2131             :                 .procname       = "uuid",
    2132             :                 .maxlen         = 16,
    2133             :                 .mode           = 0444,
    2134             :                 .proc_handler   = proc_do_uuid,
    2135             :         },
    2136             : #ifdef ADD_INTERRUPT_BENCH
    2137             :         {
    2138             :                 .procname       = "add_interrupt_avg_cycles",
    2139             :                 .data           = &avg_cycles,
    2140             :                 .maxlen         = sizeof(avg_cycles),
    2141             :                 .mode           = 0444,
    2142             :                 .proc_handler   = proc_doulongvec_minmax,
    2143             :         },
    2144             :         {
    2145             :                 .procname       = "add_interrupt_avg_deviation",
    2146             :                 .data           = &avg_deviation,
    2147             :                 .maxlen         = sizeof(avg_deviation),
    2148             :                 .mode           = 0444,
    2149             :                 .proc_handler   = proc_doulongvec_minmax,
    2150             :         },
    2151             : #endif
    2152             :         { }
    2153             : };
    2154             : #endif  /* CONFIG_SYSCTL */
    2155             : 
    2156             : struct batched_entropy {
    2157             :         union {
    2158             :                 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
    2159             :                 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
    2160             :         };
    2161             :         unsigned int position;
    2162             :         spinlock_t batch_lock;
    2163             : };
    2164             : 
    2165             : /*
    2166             :  * Get a random word for internal kernel use only. The quality of the random
    2167             :  * number is good as /dev/urandom, but there is no backtrack protection, with
    2168             :  * the goal of being quite fast and not depleting entropy. In order to ensure
    2169             :  * that the randomness provided by this function is okay, the function
    2170             :  * wait_for_random_bytes() should be called and return 0 at least once at any
    2171             :  * point prior.
    2172             :  */
    2173             : static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
    2174             :         .batch_lock     = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
    2175             : };
    2176             : 
    2177        7749 : u64 get_random_u64(void)
    2178             : {
    2179        7749 :         u64 ret;
    2180        7749 :         unsigned long flags;
    2181        7749 :         struct batched_entropy *batch;
    2182        7749 :         static void *previous;
    2183             : 
    2184        7749 :         warn_unseeded_randomness(&previous);
    2185             : 
    2186        7749 :         batch = raw_cpu_ptr(&batched_entropy_u64);
    2187        7749 :         spin_lock_irqsave(&batch->batch_lock, flags);
    2188        7749 :         if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
    2189         970 :                 extract_crng((u8 *)batch->entropy_u64);
    2190         970 :                 batch->position = 0;
    2191             :         }
    2192        7749 :         ret = batch->entropy_u64[batch->position++];
    2193        7749 :         spin_unlock_irqrestore(&batch->batch_lock, flags);
    2194        7749 :         return ret;
    2195             : }
    2196             : EXPORT_SYMBOL(get_random_u64);
    2197             : 
    2198             : static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
    2199             :         .batch_lock     = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
    2200             : };
    2201        4683 : u32 get_random_u32(void)
    2202             : {
    2203        4683 :         u32 ret;
    2204        4683 :         unsigned long flags;
    2205        4683 :         struct batched_entropy *batch;
    2206        4683 :         static void *previous;
    2207             : 
    2208        4683 :         warn_unseeded_randomness(&previous);
    2209             : 
    2210        4683 :         batch = raw_cpu_ptr(&batched_entropy_u32);
    2211        4683 :         spin_lock_irqsave(&batch->batch_lock, flags);
    2212        4683 :         if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
    2213         294 :                 extract_crng((u8 *)batch->entropy_u32);
    2214         294 :                 batch->position = 0;
    2215             :         }
    2216        4683 :         ret = batch->entropy_u32[batch->position++];
    2217        4683 :         spin_unlock_irqrestore(&batch->batch_lock, flags);
    2218        4683 :         return ret;
    2219             : }
    2220             : EXPORT_SYMBOL(get_random_u32);
    2221             : 
    2222             : /* It's important to invalidate all potential batched entropy that might
    2223             :  * be stored before the crng is initialized, which we can do lazily by
    2224             :  * simply resetting the counter to zero so that it's re-extracted on the
    2225             :  * next usage. */
    2226           1 : static void invalidate_batched_entropy(void)
    2227             : {
    2228           1 :         int cpu;
    2229           1 :         unsigned long flags;
    2230             : 
    2231           6 :         for_each_possible_cpu (cpu) {
    2232           4 :                 struct batched_entropy *batched_entropy;
    2233             : 
    2234           4 :                 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
    2235           4 :                 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
    2236           4 :                 batched_entropy->position = 0;
    2237           4 :                 spin_unlock(&batched_entropy->batch_lock);
    2238             : 
    2239           4 :                 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
    2240           4 :                 spin_lock(&batched_entropy->batch_lock);
    2241           4 :                 batched_entropy->position = 0;
    2242           9 :                 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
    2243             :         }
    2244           1 : }
    2245             : 
    2246             : /**
    2247             :  * randomize_page - Generate a random, page aligned address
    2248             :  * @start:      The smallest acceptable address the caller will take.
    2249             :  * @range:      The size of the area, starting at @start, within which the
    2250             :  *              random address must fall.
    2251             :  *
    2252             :  * If @start + @range would overflow, @range is capped.
    2253             :  *
    2254             :  * NOTE: Historical use of randomize_range, which this replaces, presumed that
    2255             :  * @start was already page aligned.  We now align it regardless.
    2256             :  *
    2257             :  * Return: A page aligned address within [start, start + range).  On error,
    2258             :  * @start is returned.
    2259             :  */
    2260             : unsigned long
    2261        1547 : randomize_page(unsigned long start, unsigned long range)
    2262             : {
    2263        1547 :         if (!PAGE_ALIGNED(start)) {
    2264           0 :                 range -= PAGE_ALIGN(start) - start;
    2265           0 :                 start = PAGE_ALIGN(start);
    2266             :         }
    2267             : 
    2268        1547 :         if (start > ULONG_MAX - range)
    2269           0 :                 range = ULONG_MAX - start;
    2270             : 
    2271        1547 :         range >>= PAGE_SHIFT;
    2272             : 
    2273        1547 :         if (range == 0)
    2274             :                 return start;
    2275             : 
    2276        1547 :         return start + (get_random_long() % range << PAGE_SHIFT);
    2277             : }
    2278             : 
    2279             : /* Interface for in-kernel drivers of true hardware RNGs.
    2280             :  * Those devices may produce endless random bits and will be throttled
    2281             :  * when our pool is full.
    2282             :  */
    2283           0 : void add_hwgenerator_randomness(const char *buffer, size_t count,
    2284             :                                 size_t entropy)
    2285             : {
    2286           0 :         struct entropy_store *poolp = &input_pool;
    2287             : 
    2288           0 :         if (unlikely(crng_init == 0)) {
    2289           0 :                 crng_fast_load(buffer, count);
    2290           0 :                 return;
    2291             :         }
    2292             : 
    2293             :         /* Suspend writing if we're above the trickle threshold.
    2294             :          * We'll be woken up again once below random_write_wakeup_thresh,
    2295             :          * or when the calling thread is about to terminate.
    2296             :          */
    2297           0 :         wait_event_interruptible(random_write_wait, kthread_should_stop() ||
    2298             :                         ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
    2299           0 :         mix_pool_bytes(poolp, buffer, count);
    2300           0 :         credit_entropy_bits(poolp, entropy);
    2301             : }
    2302             : EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
    2303             : 
    2304             : /* Handle random seed passed by bootloader.
    2305             :  * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
    2306             :  * it would be regarded as device data.
    2307             :  * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
    2308             :  */
    2309           0 : void add_bootloader_randomness(const void *buf, unsigned int size)
    2310             : {
    2311           0 :         if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
    2312             :                 add_hwgenerator_randomness(buf, size, size * 8);
    2313             :         else
    2314           0 :                 add_device_randomness(buf, size);
    2315           0 : }
    2316             : EXPORT_SYMBOL_GPL(add_bootloader_randomness);

Generated by: LCOV version 1.14