LCOV - code coverage report
Current view: top level - drivers/input - input.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 38 1055 3.6 %
Date: 2021-04-22 12:43:58 Functions: 5 101 5.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * The input core
       4             :  *
       5             :  * Copyright (c) 1999-2002 Vojtech Pavlik
       6             :  */
       7             : 
       8             : 
       9             : #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
      10             : 
      11             : #include <linux/init.h>
      12             : #include <linux/types.h>
      13             : #include <linux/idr.h>
      14             : #include <linux/input/mt.h>
      15             : #include <linux/module.h>
      16             : #include <linux/slab.h>
      17             : #include <linux/random.h>
      18             : #include <linux/major.h>
      19             : #include <linux/proc_fs.h>
      20             : #include <linux/sched.h>
      21             : #include <linux/seq_file.h>
      22             : #include <linux/poll.h>
      23             : #include <linux/device.h>
      24             : #include <linux/mutex.h>
      25             : #include <linux/rcupdate.h>
      26             : #include "input-compat.h"
      27             : #include "input-poller.h"
      28             : 
      29             : MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
      30             : MODULE_DESCRIPTION("Input core");
      31             : MODULE_LICENSE("GPL");
      32             : 
      33             : #define INPUT_MAX_CHAR_DEVICES          1024
      34             : #define INPUT_FIRST_DYNAMIC_DEV         256
      35             : static DEFINE_IDA(input_ida);
      36             : 
      37             : static LIST_HEAD(input_dev_list);
      38             : static LIST_HEAD(input_handler_list);
      39             : 
      40             : /*
      41             :  * input_mutex protects access to both input_dev_list and input_handler_list.
      42             :  * This also causes input_[un]register_device and input_[un]register_handler
      43             :  * be mutually exclusive which simplifies locking in drivers implementing
      44             :  * input handlers.
      45             :  */
      46             : static DEFINE_MUTEX(input_mutex);
      47             : 
      48             : static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
      49             : 
      50           0 : static inline int is_event_supported(unsigned int code,
      51             :                                      unsigned long *bm, unsigned int max)
      52             : {
      53           0 :         return code <= max && test_bit(code, bm);
      54             : }
      55             : 
      56           0 : static int input_defuzz_abs_event(int value, int old_val, int fuzz)
      57             : {
      58           0 :         if (fuzz) {
      59           0 :                 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
      60             :                         return old_val;
      61             : 
      62           0 :                 if (value > old_val - fuzz && value < old_val + fuzz)
      63           0 :                         return (old_val * 3 + value) / 4;
      64             : 
      65           0 :                 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
      66           0 :                         return (old_val + value) / 2;
      67             :         }
      68             : 
      69             :         return value;
      70             : }
      71             : 
      72           0 : static void input_start_autorepeat(struct input_dev *dev, int code)
      73             : {
      74           0 :         if (test_bit(EV_REP, dev->evbit) &&
      75           0 :             dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
      76           0 :             dev->timer.function) {
      77           0 :                 dev->repeat_key = code;
      78           0 :                 mod_timer(&dev->timer,
      79           0 :                           jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
      80             :         }
      81           0 : }
      82             : 
      83           0 : static void input_stop_autorepeat(struct input_dev *dev)
      84             : {
      85           0 :         del_timer(&dev->timer);
      86           0 : }
      87             : 
      88             : /*
      89             :  * Pass event first through all filters and then, if event has not been
      90             :  * filtered out, through all open handles. This function is called with
      91             :  * dev->event_lock held and interrupts disabled.
      92             :  */
      93           0 : static unsigned int input_to_handler(struct input_handle *handle,
      94             :                         struct input_value *vals, unsigned int count)
      95             : {
      96           0 :         struct input_handler *handler = handle->handler;
      97           0 :         struct input_value *end = vals;
      98           0 :         struct input_value *v;
      99             : 
     100           0 :         if (handler->filter) {
     101           0 :                 for (v = vals; v != vals + count; v++) {
     102           0 :                         if (handler->filter(handle, v->type, v->code, v->value))
     103           0 :                                 continue;
     104           0 :                         if (end != v)
     105           0 :                                 *end = *v;
     106           0 :                         end++;
     107             :                 }
     108           0 :                 count = end - vals;
     109             :         }
     110             : 
     111           0 :         if (!count)
     112             :                 return 0;
     113             : 
     114           0 :         if (handler->events)
     115           0 :                 handler->events(handle, vals, count);
     116           0 :         else if (handler->event)
     117           0 :                 for (v = vals; v != vals + count; v++)
     118           0 :                         handler->event(handle, v->type, v->code, v->value);
     119             : 
     120             :         return count;
     121             : }
     122             : 
     123             : /*
     124             :  * Pass values first through all filters and then, if event has not been
     125             :  * filtered out, through all open handles. This function is called with
     126             :  * dev->event_lock held and interrupts disabled.
     127             :  */
     128           0 : static void input_pass_values(struct input_dev *dev,
     129             :                               struct input_value *vals, unsigned int count)
     130             : {
     131           0 :         struct input_handle *handle;
     132           0 :         struct input_value *v;
     133             : 
     134           0 :         if (!count)
     135             :                 return;
     136             : 
     137           0 :         rcu_read_lock();
     138             : 
     139           0 :         handle = rcu_dereference(dev->grab);
     140           0 :         if (handle) {
     141           0 :                 count = input_to_handler(handle, vals, count);
     142             :         } else {
     143           0 :                 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
     144           0 :                         if (handle->open) {
     145           0 :                                 count = input_to_handler(handle, vals, count);
     146           0 :                                 if (!count)
     147             :                                         break;
     148             :                         }
     149             :         }
     150             : 
     151           0 :         rcu_read_unlock();
     152             : 
     153             :         /* trigger auto repeat for key events */
     154           0 :         if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
     155           0 :                 for (v = vals; v != vals + count; v++) {
     156           0 :                         if (v->type == EV_KEY && v->value != 2) {
     157           0 :                                 if (v->value)
     158           0 :                                         input_start_autorepeat(dev, v->code);
     159             :                                 else
     160           0 :                                         input_stop_autorepeat(dev);
     161             :                         }
     162             :                 }
     163             :         }
     164             : }
     165             : 
     166           0 : static void input_pass_event(struct input_dev *dev,
     167             :                              unsigned int type, unsigned int code, int value)
     168             : {
     169           0 :         struct input_value vals[] = { { type, code, value } };
     170             : 
     171           0 :         input_pass_values(dev, vals, ARRAY_SIZE(vals));
     172           0 : }
     173             : 
     174             : /*
     175             :  * Generate software autorepeat event. Note that we take
     176             :  * dev->event_lock here to avoid racing with input_event
     177             :  * which may cause keys get "stuck".
     178             :  */
     179           0 : static void input_repeat_key(struct timer_list *t)
     180             : {
     181           0 :         struct input_dev *dev = from_timer(dev, t, timer);
     182           0 :         unsigned long flags;
     183             : 
     184           0 :         spin_lock_irqsave(&dev->event_lock, flags);
     185             : 
     186           0 :         if (test_bit(dev->repeat_key, dev->key) &&
     187           0 :             is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
     188           0 :                 struct input_value vals[] =  {
     189           0 :                         { EV_KEY, dev->repeat_key, 2 },
     190             :                         input_value_sync
     191             :                 };
     192             : 
     193           0 :                 input_set_timestamp(dev, ktime_get());
     194           0 :                 input_pass_values(dev, vals, ARRAY_SIZE(vals));
     195             : 
     196           0 :                 if (dev->rep[REP_PERIOD])
     197           0 :                         mod_timer(&dev->timer, jiffies +
     198           0 :                                         msecs_to_jiffies(dev->rep[REP_PERIOD]));
     199             :         }
     200             : 
     201           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
     202           0 : }
     203             : 
     204             : #define INPUT_IGNORE_EVENT      0
     205             : #define INPUT_PASS_TO_HANDLERS  1
     206             : #define INPUT_PASS_TO_DEVICE    2
     207             : #define INPUT_SLOT              4
     208             : #define INPUT_FLUSH             8
     209             : #define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
     210             : 
     211           0 : static int input_handle_abs_event(struct input_dev *dev,
     212             :                                   unsigned int code, int *pval)
     213             : {
     214           0 :         struct input_mt *mt = dev->mt;
     215           0 :         bool is_mt_event;
     216           0 :         int *pold;
     217             : 
     218           0 :         if (code == ABS_MT_SLOT) {
     219             :                 /*
     220             :                  * "Stage" the event; we'll flush it later, when we
     221             :                  * get actual touch data.
     222             :                  */
     223           0 :                 if (mt && *pval >= 0 && *pval < mt->num_slots)
     224           0 :                         mt->slot = *pval;
     225             : 
     226           0 :                 return INPUT_IGNORE_EVENT;
     227             :         }
     228             : 
     229           0 :         is_mt_event = input_is_mt_value(code);
     230             : 
     231           0 :         if (!is_mt_event) {
     232           0 :                 pold = &dev->absinfo[code].value;
     233           0 :         } else if (mt) {
     234           0 :                 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
     235             :         } else {
     236             :                 /*
     237             :                  * Bypass filtering for multi-touch events when
     238             :                  * not employing slots.
     239             :                  */
     240             :                 pold = NULL;
     241             :         }
     242             : 
     243           0 :         if (pold) {
     244           0 :                 *pval = input_defuzz_abs_event(*pval, *pold,
     245           0 :                                                 dev->absinfo[code].fuzz);
     246           0 :                 if (*pold == *pval)
     247             :                         return INPUT_IGNORE_EVENT;
     248             : 
     249           0 :                 *pold = *pval;
     250             :         }
     251             : 
     252             :         /* Flush pending "slot" event */
     253           0 :         if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
     254           0 :                 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
     255           0 :                 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
     256             :         }
     257             : 
     258             :         return INPUT_PASS_TO_HANDLERS;
     259             : }
     260             : 
     261           0 : static int input_get_disposition(struct input_dev *dev,
     262             :                           unsigned int type, unsigned int code, int *pval)
     263             : {
     264           0 :         int disposition = INPUT_IGNORE_EVENT;
     265           0 :         int value = *pval;
     266             : 
     267           0 :         switch (type) {
     268             : 
     269           0 :         case EV_SYN:
     270           0 :                 switch (code) {
     271             :                 case SYN_CONFIG:
     272             :                         disposition = INPUT_PASS_TO_ALL;
     273             :                         break;
     274             : 
     275             :                 case SYN_REPORT:
     276             :                         disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
     277             :                         break;
     278             :                 case SYN_MT_REPORT:
     279             :                         disposition = INPUT_PASS_TO_HANDLERS;
     280             :                         break;
     281             :                 }
     282             :                 break;
     283             : 
     284           0 :         case EV_KEY:
     285           0 :                 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
     286             : 
     287             :                         /* auto-repeat bypasses state updates */
     288           0 :                         if (value == 2) {
     289             :                                 disposition = INPUT_PASS_TO_HANDLERS;
     290             :                                 break;
     291             :                         }
     292             : 
     293           0 :                         if (!!test_bit(code, dev->key) != !!value) {
     294             : 
     295           0 :                                 __change_bit(code, dev->key);
     296           0 :                                 disposition = INPUT_PASS_TO_HANDLERS;
     297             :                         }
     298             :                 }
     299             :                 break;
     300             : 
     301           0 :         case EV_SW:
     302           0 :                 if (is_event_supported(code, dev->swbit, SW_MAX) &&
     303           0 :                     !!test_bit(code, dev->sw) != !!value) {
     304             : 
     305           0 :                         __change_bit(code, dev->sw);
     306           0 :                         disposition = INPUT_PASS_TO_HANDLERS;
     307             :                 }
     308             :                 break;
     309             : 
     310           0 :         case EV_ABS:
     311           0 :                 if (is_event_supported(code, dev->absbit, ABS_MAX))
     312           0 :                         disposition = input_handle_abs_event(dev, code, &value);
     313             : 
     314             :                 break;
     315             : 
     316           0 :         case EV_REL:
     317           0 :                 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
     318           0 :                         disposition = INPUT_PASS_TO_HANDLERS;
     319             : 
     320             :                 break;
     321             : 
     322           0 :         case EV_MSC:
     323           0 :                 if (is_event_supported(code, dev->mscbit, MSC_MAX))
     324             :                         disposition = INPUT_PASS_TO_ALL;
     325             : 
     326             :                 break;
     327             : 
     328           0 :         case EV_LED:
     329           0 :                 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
     330           0 :                     !!test_bit(code, dev->led) != !!value) {
     331             : 
     332           0 :                         __change_bit(code, dev->led);
     333           0 :                         disposition = INPUT_PASS_TO_ALL;
     334             :                 }
     335             :                 break;
     336             : 
     337           0 :         case EV_SND:
     338           0 :                 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
     339             : 
     340           0 :                         if (!!test_bit(code, dev->snd) != !!value)
     341           0 :                                 __change_bit(code, dev->snd);
     342             :                         disposition = INPUT_PASS_TO_ALL;
     343             :                 }
     344             :                 break;
     345             : 
     346           0 :         case EV_REP:
     347           0 :                 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
     348           0 :                         dev->rep[code] = value;
     349           0 :                         disposition = INPUT_PASS_TO_ALL;
     350             :                 }
     351             :                 break;
     352             : 
     353           0 :         case EV_FF:
     354           0 :                 if (value >= 0)
     355           0 :                         disposition = INPUT_PASS_TO_ALL;
     356             :                 break;
     357             : 
     358           0 :         case EV_PWR:
     359           0 :                 disposition = INPUT_PASS_TO_ALL;
     360           0 :                 break;
     361             :         }
     362             : 
     363           0 :         *pval = value;
     364           0 :         return disposition;
     365             : }
     366             : 
     367           0 : static void input_handle_event(struct input_dev *dev,
     368             :                                unsigned int type, unsigned int code, int value)
     369             : {
     370           0 :         int disposition;
     371             : 
     372             :         /* filter-out events from inhibited devices */
     373           0 :         if (dev->inhibited)
     374             :                 return;
     375             : 
     376           0 :         disposition = input_get_disposition(dev, type, code, &value);
     377           0 :         if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
     378           0 :                 add_input_randomness(type, code, value);
     379             : 
     380           0 :         if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
     381           0 :                 dev->event(dev, type, code, value);
     382             : 
     383           0 :         if (!dev->vals)
     384             :                 return;
     385             : 
     386           0 :         if (disposition & INPUT_PASS_TO_HANDLERS) {
     387           0 :                 struct input_value *v;
     388             : 
     389           0 :                 if (disposition & INPUT_SLOT) {
     390           0 :                         v = &dev->vals[dev->num_vals++];
     391           0 :                         v->type = EV_ABS;
     392           0 :                         v->code = ABS_MT_SLOT;
     393           0 :                         v->value = dev->mt->slot;
     394             :                 }
     395             : 
     396           0 :                 v = &dev->vals[dev->num_vals++];
     397           0 :                 v->type = type;
     398           0 :                 v->code = code;
     399           0 :                 v->value = value;
     400             :         }
     401             : 
     402           0 :         if (disposition & INPUT_FLUSH) {
     403           0 :                 if (dev->num_vals >= 2)
     404           0 :                         input_pass_values(dev, dev->vals, dev->num_vals);
     405           0 :                 dev->num_vals = 0;
     406             :                 /*
     407             :                  * Reset the timestamp on flush so we won't end up
     408             :                  * with a stale one. Note we only need to reset the
     409             :                  * monolithic one as we use its presence when deciding
     410             :                  * whether to generate a synthetic timestamp.
     411             :                  */
     412           0 :                 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
     413           0 :         } else if (dev->num_vals >= dev->max_vals - 2) {
     414           0 :                 dev->vals[dev->num_vals++] = input_value_sync;
     415           0 :                 input_pass_values(dev, dev->vals, dev->num_vals);
     416           0 :                 dev->num_vals = 0;
     417             :         }
     418             : 
     419             : }
     420             : 
     421             : /**
     422             :  * input_event() - report new input event
     423             :  * @dev: device that generated the event
     424             :  * @type: type of the event
     425             :  * @code: event code
     426             :  * @value: value of the event
     427             :  *
     428             :  * This function should be used by drivers implementing various input
     429             :  * devices to report input events. See also input_inject_event().
     430             :  *
     431             :  * NOTE: input_event() may be safely used right after input device was
     432             :  * allocated with input_allocate_device(), even before it is registered
     433             :  * with input_register_device(), but the event will not reach any of the
     434             :  * input handlers. Such early invocation of input_event() may be used
     435             :  * to 'seed' initial state of a switch or initial position of absolute
     436             :  * axis, etc.
     437             :  */
     438           0 : void input_event(struct input_dev *dev,
     439             :                  unsigned int type, unsigned int code, int value)
     440             : {
     441           0 :         unsigned long flags;
     442             : 
     443           0 :         if (is_event_supported(type, dev->evbit, EV_MAX)) {
     444             : 
     445           0 :                 spin_lock_irqsave(&dev->event_lock, flags);
     446           0 :                 input_handle_event(dev, type, code, value);
     447           0 :                 spin_unlock_irqrestore(&dev->event_lock, flags);
     448             :         }
     449           0 : }
     450             : EXPORT_SYMBOL(input_event);
     451             : 
     452             : /**
     453             :  * input_inject_event() - send input event from input handler
     454             :  * @handle: input handle to send event through
     455             :  * @type: type of the event
     456             :  * @code: event code
     457             :  * @value: value of the event
     458             :  *
     459             :  * Similar to input_event() but will ignore event if device is
     460             :  * "grabbed" and handle injecting event is not the one that owns
     461             :  * the device.
     462             :  */
     463           0 : void input_inject_event(struct input_handle *handle,
     464             :                         unsigned int type, unsigned int code, int value)
     465             : {
     466           0 :         struct input_dev *dev = handle->dev;
     467           0 :         struct input_handle *grab;
     468           0 :         unsigned long flags;
     469             : 
     470           0 :         if (is_event_supported(type, dev->evbit, EV_MAX)) {
     471           0 :                 spin_lock_irqsave(&dev->event_lock, flags);
     472             : 
     473           0 :                 rcu_read_lock();
     474           0 :                 grab = rcu_dereference(dev->grab);
     475           0 :                 if (!grab || grab == handle)
     476           0 :                         input_handle_event(dev, type, code, value);
     477           0 :                 rcu_read_unlock();
     478             : 
     479           0 :                 spin_unlock_irqrestore(&dev->event_lock, flags);
     480             :         }
     481           0 : }
     482             : EXPORT_SYMBOL(input_inject_event);
     483             : 
     484             : /**
     485             :  * input_alloc_absinfo - allocates array of input_absinfo structs
     486             :  * @dev: the input device emitting absolute events
     487             :  *
     488             :  * If the absinfo struct the caller asked for is already allocated, this
     489             :  * functions will not do anything.
     490             :  */
     491           0 : void input_alloc_absinfo(struct input_dev *dev)
     492             : {
     493           0 :         if (dev->absinfo)
     494             :                 return;
     495             : 
     496           0 :         dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
     497           0 :         if (!dev->absinfo) {
     498           0 :                 dev_err(dev->dev.parent ?: &dev->dev,
     499             :                         "%s: unable to allocate memory\n", __func__);
     500             :                 /*
     501             :                  * We will handle this allocation failure in
     502             :                  * input_register_device() when we refuse to register input
     503             :                  * device with ABS bits but without absinfo.
     504             :                  */
     505             :         }
     506             : }
     507             : EXPORT_SYMBOL(input_alloc_absinfo);
     508             : 
     509           0 : void input_set_abs_params(struct input_dev *dev, unsigned int axis,
     510             :                           int min, int max, int fuzz, int flat)
     511             : {
     512           0 :         struct input_absinfo *absinfo;
     513             : 
     514           0 :         input_alloc_absinfo(dev);
     515           0 :         if (!dev->absinfo)
     516             :                 return;
     517             : 
     518           0 :         absinfo = &dev->absinfo[axis];
     519           0 :         absinfo->minimum = min;
     520           0 :         absinfo->maximum = max;
     521           0 :         absinfo->fuzz = fuzz;
     522           0 :         absinfo->flat = flat;
     523             : 
     524           0 :         __set_bit(EV_ABS, dev->evbit);
     525           0 :         __set_bit(axis, dev->absbit);
     526             : }
     527             : EXPORT_SYMBOL(input_set_abs_params);
     528             : 
     529             : 
     530             : /**
     531             :  * input_grab_device - grabs device for exclusive use
     532             :  * @handle: input handle that wants to own the device
     533             :  *
     534             :  * When a device is grabbed by an input handle all events generated by
     535             :  * the device are delivered only to this handle. Also events injected
     536             :  * by other input handles are ignored while device is grabbed.
     537             :  */
     538           0 : int input_grab_device(struct input_handle *handle)
     539             : {
     540           0 :         struct input_dev *dev = handle->dev;
     541           0 :         int retval;
     542             : 
     543           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     544           0 :         if (retval)
     545             :                 return retval;
     546             : 
     547           0 :         if (dev->grab) {
     548           0 :                 retval = -EBUSY;
     549           0 :                 goto out;
     550             :         }
     551             : 
     552           0 :         rcu_assign_pointer(dev->grab, handle);
     553             : 
     554           0 :  out:
     555           0 :         mutex_unlock(&dev->mutex);
     556           0 :         return retval;
     557             : }
     558             : EXPORT_SYMBOL(input_grab_device);
     559             : 
     560           0 : static void __input_release_device(struct input_handle *handle)
     561             : {
     562           0 :         struct input_dev *dev = handle->dev;
     563           0 :         struct input_handle *grabber;
     564             : 
     565           0 :         grabber = rcu_dereference_protected(dev->grab,
     566             :                                             lockdep_is_held(&dev->mutex));
     567           0 :         if (grabber == handle) {
     568           0 :                 rcu_assign_pointer(dev->grab, NULL);
     569             :                 /* Make sure input_pass_event() notices that grab is gone */
     570           0 :                 synchronize_rcu();
     571             : 
     572           0 :                 list_for_each_entry(handle, &dev->h_list, d_node)
     573           0 :                         if (handle->open && handle->handler->start)
     574           0 :                                 handle->handler->start(handle);
     575             :         }
     576           0 : }
     577             : 
     578             : /**
     579             :  * input_release_device - release previously grabbed device
     580             :  * @handle: input handle that owns the device
     581             :  *
     582             :  * Releases previously grabbed device so that other input handles can
     583             :  * start receiving input events. Upon release all handlers attached
     584             :  * to the device have their start() method called so they have a change
     585             :  * to synchronize device state with the rest of the system.
     586             :  */
     587           0 : void input_release_device(struct input_handle *handle)
     588             : {
     589           0 :         struct input_dev *dev = handle->dev;
     590             : 
     591           0 :         mutex_lock(&dev->mutex);
     592           0 :         __input_release_device(handle);
     593           0 :         mutex_unlock(&dev->mutex);
     594           0 : }
     595             : EXPORT_SYMBOL(input_release_device);
     596             : 
     597             : /**
     598             :  * input_open_device - open input device
     599             :  * @handle: handle through which device is being accessed
     600             :  *
     601             :  * This function should be called by input handlers when they
     602             :  * want to start receive events from given input device.
     603             :  */
     604           0 : int input_open_device(struct input_handle *handle)
     605             : {
     606           0 :         struct input_dev *dev = handle->dev;
     607           0 :         int retval;
     608             : 
     609           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     610           0 :         if (retval)
     611             :                 return retval;
     612             : 
     613           0 :         if (dev->going_away) {
     614           0 :                 retval = -ENODEV;
     615           0 :                 goto out;
     616             :         }
     617             : 
     618           0 :         handle->open++;
     619             : 
     620           0 :         if (dev->users++ || dev->inhibited) {
     621             :                 /*
     622             :                  * Device is already opened and/or inhibited,
     623             :                  * so we can exit immediately and report success.
     624             :                  */
     625           0 :                 goto out;
     626             :         }
     627             : 
     628           0 :         if (dev->open) {
     629           0 :                 retval = dev->open(dev);
     630           0 :                 if (retval) {
     631           0 :                         dev->users--;
     632           0 :                         handle->open--;
     633             :                         /*
     634             :                          * Make sure we are not delivering any more events
     635             :                          * through this handle
     636             :                          */
     637           0 :                         synchronize_rcu();
     638           0 :                         goto out;
     639             :                 }
     640             :         }
     641             : 
     642           0 :         if (dev->poller)
     643           0 :                 input_dev_poller_start(dev->poller);
     644             : 
     645           0 :  out:
     646           0 :         mutex_unlock(&dev->mutex);
     647           0 :         return retval;
     648             : }
     649             : EXPORT_SYMBOL(input_open_device);
     650             : 
     651           0 : int input_flush_device(struct input_handle *handle, struct file *file)
     652             : {
     653           0 :         struct input_dev *dev = handle->dev;
     654           0 :         int retval;
     655             : 
     656           0 :         retval = mutex_lock_interruptible(&dev->mutex);
     657           0 :         if (retval)
     658             :                 return retval;
     659             : 
     660           0 :         if (dev->flush)
     661           0 :                 retval = dev->flush(dev, file);
     662             : 
     663           0 :         mutex_unlock(&dev->mutex);
     664           0 :         return retval;
     665             : }
     666             : EXPORT_SYMBOL(input_flush_device);
     667             : 
     668             : /**
     669             :  * input_close_device - close input device
     670             :  * @handle: handle through which device is being accessed
     671             :  *
     672             :  * This function should be called by input handlers when they
     673             :  * want to stop receive events from given input device.
     674             :  */
     675           0 : void input_close_device(struct input_handle *handle)
     676             : {
     677           0 :         struct input_dev *dev = handle->dev;
     678             : 
     679           0 :         mutex_lock(&dev->mutex);
     680             : 
     681           0 :         __input_release_device(handle);
     682             : 
     683           0 :         if (!dev->inhibited && !--dev->users) {
     684           0 :                 if (dev->poller)
     685           0 :                         input_dev_poller_stop(dev->poller);
     686           0 :                 if (dev->close)
     687           0 :                         dev->close(dev);
     688             :         }
     689             : 
     690           0 :         if (!--handle->open) {
     691             :                 /*
     692             :                  * synchronize_rcu() makes sure that input_pass_event()
     693             :                  * completed and that no more input events are delivered
     694             :                  * through this handle
     695             :                  */
     696           0 :                 synchronize_rcu();
     697             :         }
     698             : 
     699           0 :         mutex_unlock(&dev->mutex);
     700           0 : }
     701             : EXPORT_SYMBOL(input_close_device);
     702             : 
     703             : /*
     704             :  * Simulate keyup events for all keys that are marked as pressed.
     705             :  * The function must be called with dev->event_lock held.
     706             :  */
     707           0 : static void input_dev_release_keys(struct input_dev *dev)
     708             : {
     709           0 :         bool need_sync = false;
     710           0 :         int code;
     711             : 
     712           0 :         if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
     713           0 :                 for_each_set_bit(code, dev->key, KEY_CNT) {
     714           0 :                         input_pass_event(dev, EV_KEY, code, 0);
     715           0 :                         need_sync = true;
     716             :                 }
     717             : 
     718           0 :                 if (need_sync)
     719           0 :                         input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
     720             : 
     721           0 :                 memset(dev->key, 0, sizeof(dev->key));
     722             :         }
     723           0 : }
     724             : 
     725             : /*
     726             :  * Prepare device for unregistering
     727             :  */
     728           0 : static void input_disconnect_device(struct input_dev *dev)
     729             : {
     730           0 :         struct input_handle *handle;
     731             : 
     732             :         /*
     733             :          * Mark device as going away. Note that we take dev->mutex here
     734             :          * not to protect access to dev->going_away but rather to ensure
     735             :          * that there are no threads in the middle of input_open_device()
     736             :          */
     737           0 :         mutex_lock(&dev->mutex);
     738           0 :         dev->going_away = true;
     739           0 :         mutex_unlock(&dev->mutex);
     740             : 
     741           0 :         spin_lock_irq(&dev->event_lock);
     742             : 
     743             :         /*
     744             :          * Simulate keyup events for all pressed keys so that handlers
     745             :          * are not left with "stuck" keys. The driver may continue
     746             :          * generate events even after we done here but they will not
     747             :          * reach any handlers.
     748             :          */
     749           0 :         input_dev_release_keys(dev);
     750             : 
     751           0 :         list_for_each_entry(handle, &dev->h_list, d_node)
     752           0 :                 handle->open = 0;
     753             : 
     754           0 :         spin_unlock_irq(&dev->event_lock);
     755           0 : }
     756             : 
     757             : /**
     758             :  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
     759             :  * @ke: keymap entry containing scancode to be converted.
     760             :  * @scancode: pointer to the location where converted scancode should
     761             :  *      be stored.
     762             :  *
     763             :  * This function is used to convert scancode stored in &struct keymap_entry
     764             :  * into scalar form understood by legacy keymap handling methods. These
     765             :  * methods expect scancodes to be represented as 'unsigned int'.
     766             :  */
     767           0 : int input_scancode_to_scalar(const struct input_keymap_entry *ke,
     768             :                              unsigned int *scancode)
     769             : {
     770           0 :         switch (ke->len) {
     771           0 :         case 1:
     772           0 :                 *scancode = *((u8 *)ke->scancode);
     773           0 :                 break;
     774             : 
     775           0 :         case 2:
     776           0 :                 *scancode = *((u16 *)ke->scancode);
     777           0 :                 break;
     778             : 
     779           0 :         case 4:
     780           0 :                 *scancode = *((u32 *)ke->scancode);
     781           0 :                 break;
     782             : 
     783             :         default:
     784             :                 return -EINVAL;
     785             :         }
     786             : 
     787             :         return 0;
     788             : }
     789             : EXPORT_SYMBOL(input_scancode_to_scalar);
     790             : 
     791             : /*
     792             :  * Those routines handle the default case where no [gs]etkeycode() is
     793             :  * defined. In this case, an array indexed by the scancode is used.
     794             :  */
     795             : 
     796           0 : static unsigned int input_fetch_keycode(struct input_dev *dev,
     797             :                                         unsigned int index)
     798             : {
     799           0 :         switch (dev->keycodesize) {
     800           0 :         case 1:
     801           0 :                 return ((u8 *)dev->keycode)[index];
     802             : 
     803           0 :         case 2:
     804           0 :                 return ((u16 *)dev->keycode)[index];
     805             : 
     806           0 :         default:
     807           0 :                 return ((u32 *)dev->keycode)[index];
     808             :         }
     809             : }
     810             : 
     811           0 : static int input_default_getkeycode(struct input_dev *dev,
     812             :                                     struct input_keymap_entry *ke)
     813             : {
     814           0 :         unsigned int index;
     815           0 :         int error;
     816             : 
     817           0 :         if (!dev->keycodesize)
     818             :                 return -EINVAL;
     819             : 
     820           0 :         if (ke->flags & INPUT_KEYMAP_BY_INDEX)
     821           0 :                 index = ke->index;
     822             :         else {
     823           0 :                 error = input_scancode_to_scalar(ke, &index);
     824           0 :                 if (error)
     825             :                         return error;
     826             :         }
     827             : 
     828           0 :         if (index >= dev->keycodemax)
     829             :                 return -EINVAL;
     830             : 
     831           0 :         ke->keycode = input_fetch_keycode(dev, index);
     832           0 :         ke->index = index;
     833           0 :         ke->len = sizeof(index);
     834           0 :         memcpy(ke->scancode, &index, sizeof(index));
     835             : 
     836           0 :         return 0;
     837             : }
     838             : 
     839           0 : static int input_default_setkeycode(struct input_dev *dev,
     840             :                                     const struct input_keymap_entry *ke,
     841             :                                     unsigned int *old_keycode)
     842             : {
     843           0 :         unsigned int index;
     844           0 :         int error;
     845           0 :         int i;
     846             : 
     847           0 :         if (!dev->keycodesize)
     848             :                 return -EINVAL;
     849             : 
     850           0 :         if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
     851           0 :                 index = ke->index;
     852             :         } else {
     853           0 :                 error = input_scancode_to_scalar(ke, &index);
     854           0 :                 if (error)
     855             :                         return error;
     856             :         }
     857             : 
     858           0 :         if (index >= dev->keycodemax)
     859             :                 return -EINVAL;
     860             : 
     861           0 :         if (dev->keycodesize < sizeof(ke->keycode) &&
     862           0 :                         (ke->keycode >> (dev->keycodesize * 8)))
     863             :                 return -EINVAL;
     864             : 
     865           0 :         switch (dev->keycodesize) {
     866           0 :                 case 1: {
     867           0 :                         u8 *k = (u8 *)dev->keycode;
     868           0 :                         *old_keycode = k[index];
     869           0 :                         k[index] = ke->keycode;
     870           0 :                         break;
     871             :                 }
     872           0 :                 case 2: {
     873           0 :                         u16 *k = (u16 *)dev->keycode;
     874           0 :                         *old_keycode = k[index];
     875           0 :                         k[index] = ke->keycode;
     876           0 :                         break;
     877             :                 }
     878           0 :                 default: {
     879           0 :                         u32 *k = (u32 *)dev->keycode;
     880           0 :                         *old_keycode = k[index];
     881           0 :                         k[index] = ke->keycode;
     882           0 :                         break;
     883             :                 }
     884             :         }
     885             : 
     886           0 :         if (*old_keycode <= KEY_MAX) {
     887           0 :                 __clear_bit(*old_keycode, dev->keybit);
     888           0 :                 for (i = 0; i < dev->keycodemax; i++) {
     889           0 :                         if (input_fetch_keycode(dev, i) == *old_keycode) {
     890           0 :                                 __set_bit(*old_keycode, dev->keybit);
     891             :                                 /* Setting the bit twice is useless, so break */
     892           0 :                                 break;
     893             :                         }
     894             :                 }
     895             :         }
     896             : 
     897           0 :         __set_bit(ke->keycode, dev->keybit);
     898           0 :         return 0;
     899             : }
     900             : 
     901             : /**
     902             :  * input_get_keycode - retrieve keycode currently mapped to a given scancode
     903             :  * @dev: input device which keymap is being queried
     904             :  * @ke: keymap entry
     905             :  *
     906             :  * This function should be called by anyone interested in retrieving current
     907             :  * keymap. Presently evdev handlers use it.
     908             :  */
     909           0 : int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
     910             : {
     911           0 :         unsigned long flags;
     912           0 :         int retval;
     913             : 
     914           0 :         spin_lock_irqsave(&dev->event_lock, flags);
     915           0 :         retval = dev->getkeycode(dev, ke);
     916           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
     917             : 
     918           0 :         return retval;
     919             : }
     920             : EXPORT_SYMBOL(input_get_keycode);
     921             : 
     922             : /**
     923             :  * input_set_keycode - attribute a keycode to a given scancode
     924             :  * @dev: input device which keymap is being updated
     925             :  * @ke: new keymap entry
     926             :  *
     927             :  * This function should be called by anyone needing to update current
     928             :  * keymap. Presently keyboard and evdev handlers use it.
     929             :  */
     930           0 : int input_set_keycode(struct input_dev *dev,
     931             :                       const struct input_keymap_entry *ke)
     932             : {
     933           0 :         unsigned long flags;
     934           0 :         unsigned int old_keycode;
     935           0 :         int retval;
     936             : 
     937           0 :         if (ke->keycode > KEY_MAX)
     938             :                 return -EINVAL;
     939             : 
     940           0 :         spin_lock_irqsave(&dev->event_lock, flags);
     941             : 
     942           0 :         retval = dev->setkeycode(dev, ke, &old_keycode);
     943           0 :         if (retval)
     944           0 :                 goto out;
     945             : 
     946             :         /* Make sure KEY_RESERVED did not get enabled. */
     947           0 :         __clear_bit(KEY_RESERVED, dev->keybit);
     948             : 
     949             :         /*
     950             :          * Simulate keyup event if keycode is not present
     951             :          * in the keymap anymore
     952             :          */
     953           0 :         if (old_keycode > KEY_MAX) {
     954           0 :                 dev_warn(dev->dev.parent ?: &dev->dev,
     955             :                          "%s: got too big old keycode %#x\n",
     956             :                          __func__, old_keycode);
     957           0 :         } else if (test_bit(EV_KEY, dev->evbit) &&
     958           0 :                    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
     959           0 :                    __test_and_clear_bit(old_keycode, dev->key)) {
     960           0 :                 struct input_value vals[] =  {
     961             :                         { EV_KEY, old_keycode, 0 },
     962             :                         input_value_sync
     963             :                 };
     964             : 
     965           0 :                 input_pass_values(dev, vals, ARRAY_SIZE(vals));
     966             :         }
     967             : 
     968           0 :  out:
     969           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
     970             : 
     971           0 :         return retval;
     972             : }
     973             : EXPORT_SYMBOL(input_set_keycode);
     974             : 
     975           0 : bool input_match_device_id(const struct input_dev *dev,
     976             :                            const struct input_device_id *id)
     977             : {
     978           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
     979           0 :                 if (id->bustype != dev->id.bustype)
     980             :                         return false;
     981             : 
     982           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
     983           0 :                 if (id->vendor != dev->id.vendor)
     984             :                         return false;
     985             : 
     986           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
     987           0 :                 if (id->product != dev->id.product)
     988             :                         return false;
     989             : 
     990           0 :         if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
     991           0 :                 if (id->version != dev->id.version)
     992             :                         return false;
     993             : 
     994           0 :         if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
     995           0 :             !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
     996           0 :             !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
     997           0 :             !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
     998           0 :             !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
     999           0 :             !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
    1000           0 :             !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
    1001           0 :             !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
    1002           0 :             !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
    1003           0 :             !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
    1004           0 :                 return false;
    1005             :         }
    1006             : 
    1007             :         return true;
    1008             : }
    1009             : EXPORT_SYMBOL(input_match_device_id);
    1010             : 
    1011           0 : static const struct input_device_id *input_match_device(struct input_handler *handler,
    1012             :                                                         struct input_dev *dev)
    1013             : {
    1014           0 :         const struct input_device_id *id;
    1015             : 
    1016           0 :         for (id = handler->id_table; id->flags || id->driver_info; id++) {
    1017           0 :                 if (input_match_device_id(dev, id) &&
    1018           0 :                     (!handler->match || handler->match(handler, dev))) {
    1019           0 :                         return id;
    1020             :                 }
    1021             :         }
    1022             : 
    1023             :         return NULL;
    1024             : }
    1025             : 
    1026           0 : static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
    1027             : {
    1028           0 :         const struct input_device_id *id;
    1029           0 :         int error;
    1030             : 
    1031           0 :         id = input_match_device(handler, dev);
    1032           0 :         if (!id)
    1033             :                 return -ENODEV;
    1034             : 
    1035           0 :         error = handler->connect(handler, dev, id);
    1036           0 :         if (error && error != -ENODEV)
    1037           0 :                 pr_err("failed to attach handler %s to device %s, error: %d\n",
    1038             :                        handler->name, kobject_name(&dev->dev.kobj), error);
    1039             : 
    1040             :         return error;
    1041             : }
    1042             : 
    1043             : #ifdef CONFIG_COMPAT
    1044             : 
    1045           0 : static int input_bits_to_string(char *buf, int buf_size,
    1046             :                                 unsigned long bits, bool skip_empty)
    1047             : {
    1048           0 :         int len = 0;
    1049             : 
    1050           0 :         if (in_compat_syscall()) {
    1051           0 :                 u32 dword = bits >> 32;
    1052           0 :                 if (dword || !skip_empty)
    1053           0 :                         len += snprintf(buf, buf_size, "%x ", dword);
    1054             : 
    1055           0 :                 dword = bits & 0xffffffffUL;
    1056           0 :                 if (dword || !skip_empty || len)
    1057           0 :                         len += snprintf(buf + len, max(buf_size - len, 0),
    1058             :                                         "%x", dword);
    1059             :         } else {
    1060           0 :                 if (bits || !skip_empty)
    1061           0 :                         len += snprintf(buf, buf_size, "%lx", bits);
    1062             :         }
    1063             : 
    1064           0 :         return len;
    1065             : }
    1066             : 
    1067             : #else /* !CONFIG_COMPAT */
    1068             : 
    1069             : static int input_bits_to_string(char *buf, int buf_size,
    1070             :                                 unsigned long bits, bool skip_empty)
    1071             : {
    1072             :         return bits || !skip_empty ?
    1073             :                 snprintf(buf, buf_size, "%lx", bits) : 0;
    1074             : }
    1075             : 
    1076             : #endif
    1077             : 
    1078             : #ifdef CONFIG_PROC_FS
    1079             : 
    1080             : static struct proc_dir_entry *proc_bus_input_dir;
    1081             : static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
    1082             : static int input_devices_state;
    1083             : 
    1084           2 : static inline void input_wakeup_procfs_readers(void)
    1085             : {
    1086           2 :         input_devices_state++;
    1087           2 :         wake_up(&input_devices_poll_wait);
    1088           2 : }
    1089             : 
    1090           0 : static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
    1091             : {
    1092           0 :         poll_wait(file, &input_devices_poll_wait, wait);
    1093           0 :         if (file->f_version != input_devices_state) {
    1094           0 :                 file->f_version = input_devices_state;
    1095           0 :                 return EPOLLIN | EPOLLRDNORM;
    1096             :         }
    1097             : 
    1098             :         return 0;
    1099             : }
    1100             : 
    1101             : union input_seq_state {
    1102             :         struct {
    1103             :                 unsigned short pos;
    1104             :                 bool mutex_acquired;
    1105             :         };
    1106             :         void *p;
    1107             : };
    1108             : 
    1109           0 : static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
    1110             : {
    1111           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1112           0 :         int error;
    1113             : 
    1114             :         /* We need to fit into seq->private pointer */
    1115           0 :         BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
    1116             : 
    1117           0 :         error = mutex_lock_interruptible(&input_mutex);
    1118           0 :         if (error) {
    1119           0 :                 state->mutex_acquired = false;
    1120           0 :                 return ERR_PTR(error);
    1121             :         }
    1122             : 
    1123           0 :         state->mutex_acquired = true;
    1124             : 
    1125           0 :         return seq_list_start(&input_dev_list, *pos);
    1126             : }
    1127             : 
    1128           0 : static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
    1129             : {
    1130           0 :         return seq_list_next(v, &input_dev_list, pos);
    1131             : }
    1132             : 
    1133           0 : static void input_seq_stop(struct seq_file *seq, void *v)
    1134             : {
    1135           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1136             : 
    1137           0 :         if (state->mutex_acquired)
    1138           0 :                 mutex_unlock(&input_mutex);
    1139           0 : }
    1140             : 
    1141           0 : static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
    1142             :                                    unsigned long *bitmap, int max)
    1143             : {
    1144           0 :         int i;
    1145           0 :         bool skip_empty = true;
    1146           0 :         char buf[18];
    1147             : 
    1148           0 :         seq_printf(seq, "B: %s=", name);
    1149             : 
    1150           0 :         for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
    1151           0 :                 if (input_bits_to_string(buf, sizeof(buf),
    1152           0 :                                          bitmap[i], skip_empty)) {
    1153           0 :                         skip_empty = false;
    1154           0 :                         seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
    1155             :                 }
    1156             :         }
    1157             : 
    1158             :         /*
    1159             :          * If no output was produced print a single 0.
    1160             :          */
    1161           0 :         if (skip_empty)
    1162           0 :                 seq_putc(seq, '0');
    1163             : 
    1164           0 :         seq_putc(seq, '\n');
    1165           0 : }
    1166             : 
    1167           0 : static int input_devices_seq_show(struct seq_file *seq, void *v)
    1168             : {
    1169           0 :         struct input_dev *dev = container_of(v, struct input_dev, node);
    1170           0 :         const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    1171           0 :         struct input_handle *handle;
    1172             : 
    1173           0 :         seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
    1174           0 :                    dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
    1175             : 
    1176           0 :         seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
    1177           0 :         seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
    1178           0 :         seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
    1179           0 :         seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
    1180           0 :         seq_puts(seq, "H: Handlers=");
    1181             : 
    1182           0 :         list_for_each_entry(handle, &dev->h_list, d_node)
    1183           0 :                 seq_printf(seq, "%s ", handle->name);
    1184           0 :         seq_putc(seq, '\n');
    1185             : 
    1186           0 :         input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
    1187             : 
    1188           0 :         input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
    1189           0 :         if (test_bit(EV_KEY, dev->evbit))
    1190           0 :                 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
    1191           0 :         if (test_bit(EV_REL, dev->evbit))
    1192           0 :                 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
    1193           0 :         if (test_bit(EV_ABS, dev->evbit))
    1194           0 :                 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
    1195           0 :         if (test_bit(EV_MSC, dev->evbit))
    1196           0 :                 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
    1197           0 :         if (test_bit(EV_LED, dev->evbit))
    1198           0 :                 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
    1199           0 :         if (test_bit(EV_SND, dev->evbit))
    1200           0 :                 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
    1201           0 :         if (test_bit(EV_FF, dev->evbit))
    1202           0 :                 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
    1203           0 :         if (test_bit(EV_SW, dev->evbit))
    1204           0 :                 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
    1205             : 
    1206           0 :         seq_putc(seq, '\n');
    1207             : 
    1208           0 :         kfree(path);
    1209           0 :         return 0;
    1210             : }
    1211             : 
    1212             : static const struct seq_operations input_devices_seq_ops = {
    1213             :         .start  = input_devices_seq_start,
    1214             :         .next   = input_devices_seq_next,
    1215             :         .stop   = input_seq_stop,
    1216             :         .show   = input_devices_seq_show,
    1217             : };
    1218             : 
    1219           0 : static int input_proc_devices_open(struct inode *inode, struct file *file)
    1220             : {
    1221           0 :         return seq_open(file, &input_devices_seq_ops);
    1222             : }
    1223             : 
    1224             : static const struct proc_ops input_devices_proc_ops = {
    1225             :         .proc_open      = input_proc_devices_open,
    1226             :         .proc_poll      = input_proc_devices_poll,
    1227             :         .proc_read      = seq_read,
    1228             :         .proc_lseek     = seq_lseek,
    1229             :         .proc_release   = seq_release,
    1230             : };
    1231             : 
    1232           0 : static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
    1233             : {
    1234           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1235           0 :         int error;
    1236             : 
    1237             :         /* We need to fit into seq->private pointer */
    1238           0 :         BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
    1239             : 
    1240           0 :         error = mutex_lock_interruptible(&input_mutex);
    1241           0 :         if (error) {
    1242           0 :                 state->mutex_acquired = false;
    1243           0 :                 return ERR_PTR(error);
    1244             :         }
    1245             : 
    1246           0 :         state->mutex_acquired = true;
    1247           0 :         state->pos = *pos;
    1248             : 
    1249           0 :         return seq_list_start(&input_handler_list, *pos);
    1250             : }
    1251             : 
    1252           0 : static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
    1253             : {
    1254           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1255             : 
    1256           0 :         state->pos = *pos + 1;
    1257           0 :         return seq_list_next(v, &input_handler_list, pos);
    1258             : }
    1259             : 
    1260           0 : static int input_handlers_seq_show(struct seq_file *seq, void *v)
    1261             : {
    1262           0 :         struct input_handler *handler = container_of(v, struct input_handler, node);
    1263           0 :         union input_seq_state *state = (union input_seq_state *)&seq->private;
    1264             : 
    1265           0 :         seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
    1266           0 :         if (handler->filter)
    1267           0 :                 seq_puts(seq, " (filter)");
    1268           0 :         if (handler->legacy_minors)
    1269           0 :                 seq_printf(seq, " Minor=%d", handler->minor);
    1270           0 :         seq_putc(seq, '\n');
    1271             : 
    1272           0 :         return 0;
    1273             : }
    1274             : 
    1275             : static const struct seq_operations input_handlers_seq_ops = {
    1276             :         .start  = input_handlers_seq_start,
    1277             :         .next   = input_handlers_seq_next,
    1278             :         .stop   = input_seq_stop,
    1279             :         .show   = input_handlers_seq_show,
    1280             : };
    1281             : 
    1282           0 : static int input_proc_handlers_open(struct inode *inode, struct file *file)
    1283             : {
    1284           0 :         return seq_open(file, &input_handlers_seq_ops);
    1285             : }
    1286             : 
    1287             : static const struct proc_ops input_handlers_proc_ops = {
    1288             :         .proc_open      = input_proc_handlers_open,
    1289             :         .proc_read      = seq_read,
    1290             :         .proc_lseek     = seq_lseek,
    1291             :         .proc_release   = seq_release,
    1292             : };
    1293             : 
    1294           1 : static int __init input_proc_init(void)
    1295             : {
    1296           1 :         struct proc_dir_entry *entry;
    1297             : 
    1298           1 :         proc_bus_input_dir = proc_mkdir("bus/input", NULL);
    1299           1 :         if (!proc_bus_input_dir)
    1300             :                 return -ENOMEM;
    1301             : 
    1302           1 :         entry = proc_create("devices", 0, proc_bus_input_dir,
    1303             :                             &input_devices_proc_ops);
    1304           1 :         if (!entry)
    1305           0 :                 goto fail1;
    1306             : 
    1307           1 :         entry = proc_create("handlers", 0, proc_bus_input_dir,
    1308             :                             &input_handlers_proc_ops);
    1309           1 :         if (!entry)
    1310           0 :                 goto fail2;
    1311             : 
    1312             :         return 0;
    1313             : 
    1314           0 :  fail2: remove_proc_entry("devices", proc_bus_input_dir);
    1315           0 :  fail1: remove_proc_entry("bus/input", NULL);
    1316           0 :         return -ENOMEM;
    1317             : }
    1318             : 
    1319           0 : static void input_proc_exit(void)
    1320             : {
    1321           0 :         remove_proc_entry("devices", proc_bus_input_dir);
    1322           0 :         remove_proc_entry("handlers", proc_bus_input_dir);
    1323           0 :         remove_proc_entry("bus/input", NULL);
    1324           0 : }
    1325             : 
    1326             : #else /* !CONFIG_PROC_FS */
    1327             : static inline void input_wakeup_procfs_readers(void) { }
    1328             : static inline int input_proc_init(void) { return 0; }
    1329             : static inline void input_proc_exit(void) { }
    1330             : #endif
    1331             : 
    1332             : #define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
    1333             : static ssize_t input_dev_show_##name(struct device *dev,                \
    1334             :                                      struct device_attribute *attr,     \
    1335             :                                      char *buf)                         \
    1336             : {                                                                       \
    1337             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1338             :                                                                         \
    1339             :         return scnprintf(buf, PAGE_SIZE, "%s\n",                      \
    1340             :                          input_dev->name ? input_dev->name : "");       \
    1341             : }                                                                       \
    1342             : static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
    1343             : 
    1344           0 : INPUT_DEV_STRING_ATTR_SHOW(name);
    1345           0 : INPUT_DEV_STRING_ATTR_SHOW(phys);
    1346           0 : INPUT_DEV_STRING_ATTR_SHOW(uniq);
    1347             : 
    1348           0 : static int input_print_modalias_bits(char *buf, int size,
    1349             :                                      char name, unsigned long *bm,
    1350             :                                      unsigned int min_bit, unsigned int max_bit)
    1351             : {
    1352           0 :         int len = 0, i;
    1353             : 
    1354           0 :         len += snprintf(buf, max(size, 0), "%c", name);
    1355           0 :         for (i = min_bit; i < max_bit; i++)
    1356           0 :                 if (bm[BIT_WORD(i)] & BIT_MASK(i))
    1357           0 :                         len += snprintf(buf + len, max(size - len, 0), "%X,", i);
    1358           0 :         return len;
    1359             : }
    1360             : 
    1361           0 : static int input_print_modalias(char *buf, int size, struct input_dev *id,
    1362             :                                 int add_cr)
    1363             : {
    1364           0 :         int len;
    1365             : 
    1366           0 :         len = snprintf(buf, max(size, 0),
    1367             :                        "input:b%04Xv%04Xp%04Xe%04X-",
    1368           0 :                        id->id.bustype, id->id.vendor,
    1369           0 :                        id->id.product, id->id.version);
    1370             : 
    1371           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1372           0 :                                 'e', id->evbit, 0, EV_MAX);
    1373           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1374           0 :                                 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
    1375           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1376           0 :                                 'r', id->relbit, 0, REL_MAX);
    1377           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1378           0 :                                 'a', id->absbit, 0, ABS_MAX);
    1379           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1380           0 :                                 'm', id->mscbit, 0, MSC_MAX);
    1381           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1382           0 :                                 'l', id->ledbit, 0, LED_MAX);
    1383           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1384           0 :                                 's', id->sndbit, 0, SND_MAX);
    1385           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1386           0 :                                 'f', id->ffbit, 0, FF_MAX);
    1387           0 :         len += input_print_modalias_bits(buf + len, size - len,
    1388           0 :                                 'w', id->swbit, 0, SW_MAX);
    1389             : 
    1390           0 :         if (add_cr)
    1391           0 :                 len += snprintf(buf + len, max(size - len, 0), "\n");
    1392             : 
    1393           0 :         return len;
    1394             : }
    1395             : 
    1396           0 : static ssize_t input_dev_show_modalias(struct device *dev,
    1397             :                                        struct device_attribute *attr,
    1398             :                                        char *buf)
    1399             : {
    1400           0 :         struct input_dev *id = to_input_dev(dev);
    1401           0 :         ssize_t len;
    1402             : 
    1403           0 :         len = input_print_modalias(buf, PAGE_SIZE, id, 1);
    1404             : 
    1405           0 :         return min_t(int, len, PAGE_SIZE);
    1406             : }
    1407             : static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
    1408             : 
    1409             : static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
    1410             :                               int max, int add_cr);
    1411             : 
    1412           0 : static ssize_t input_dev_show_properties(struct device *dev,
    1413             :                                          struct device_attribute *attr,
    1414             :                                          char *buf)
    1415             : {
    1416           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1417           0 :         int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
    1418             :                                      INPUT_PROP_MAX, true);
    1419           0 :         return min_t(int, len, PAGE_SIZE);
    1420             : }
    1421             : static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
    1422             : 
    1423             : static int input_inhibit_device(struct input_dev *dev);
    1424             : static int input_uninhibit_device(struct input_dev *dev);
    1425             : 
    1426           0 : static ssize_t inhibited_show(struct device *dev,
    1427             :                               struct device_attribute *attr,
    1428             :                               char *buf)
    1429             : {
    1430           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1431             : 
    1432           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
    1433             : }
    1434             : 
    1435           0 : static ssize_t inhibited_store(struct device *dev,
    1436             :                                struct device_attribute *attr, const char *buf,
    1437             :                                size_t len)
    1438             : {
    1439           0 :         struct input_dev *input_dev = to_input_dev(dev);
    1440           0 :         ssize_t rv;
    1441           0 :         bool inhibited;
    1442             : 
    1443           0 :         if (strtobool(buf, &inhibited))
    1444             :                 return -EINVAL;
    1445             : 
    1446           0 :         if (inhibited)
    1447           0 :                 rv = input_inhibit_device(input_dev);
    1448             :         else
    1449           0 :                 rv = input_uninhibit_device(input_dev);
    1450             : 
    1451           0 :         if (rv != 0)
    1452             :                 return rv;
    1453             : 
    1454           0 :         return len;
    1455             : }
    1456             : 
    1457             : static DEVICE_ATTR_RW(inhibited);
    1458             : 
    1459             : static struct attribute *input_dev_attrs[] = {
    1460             :         &dev_attr_name.attr,
    1461             :         &dev_attr_phys.attr,
    1462             :         &dev_attr_uniq.attr,
    1463             :         &dev_attr_modalias.attr,
    1464             :         &dev_attr_properties.attr,
    1465             :         &dev_attr_inhibited.attr,
    1466             :         NULL
    1467             : };
    1468             : 
    1469             : static const struct attribute_group input_dev_attr_group = {
    1470             :         .attrs  = input_dev_attrs,
    1471             : };
    1472             : 
    1473             : #define INPUT_DEV_ID_ATTR(name)                                         \
    1474             : static ssize_t input_dev_show_id_##name(struct device *dev,             \
    1475             :                                         struct device_attribute *attr,  \
    1476             :                                         char *buf)                      \
    1477             : {                                                                       \
    1478             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1479             :         return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);    \
    1480             : }                                                                       \
    1481             : static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
    1482             : 
    1483           0 : INPUT_DEV_ID_ATTR(bustype);
    1484           0 : INPUT_DEV_ID_ATTR(vendor);
    1485           0 : INPUT_DEV_ID_ATTR(product);
    1486           0 : INPUT_DEV_ID_ATTR(version);
    1487             : 
    1488             : static struct attribute *input_dev_id_attrs[] = {
    1489             :         &dev_attr_bustype.attr,
    1490             :         &dev_attr_vendor.attr,
    1491             :         &dev_attr_product.attr,
    1492             :         &dev_attr_version.attr,
    1493             :         NULL
    1494             : };
    1495             : 
    1496             : static const struct attribute_group input_dev_id_attr_group = {
    1497             :         .name   = "id",
    1498             :         .attrs  = input_dev_id_attrs,
    1499             : };
    1500             : 
    1501           0 : static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
    1502             :                               int max, int add_cr)
    1503             : {
    1504           0 :         int i;
    1505           0 :         int len = 0;
    1506           0 :         bool skip_empty = true;
    1507             : 
    1508           0 :         for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
    1509           0 :                 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
    1510           0 :                                             bitmap[i], skip_empty);
    1511           0 :                 if (len) {
    1512           0 :                         skip_empty = false;
    1513           0 :                         if (i > 0)
    1514           0 :                                 len += snprintf(buf + len, max(buf_size - len, 0), " ");
    1515             :                 }
    1516             :         }
    1517             : 
    1518             :         /*
    1519             :          * If no output was produced print a single 0.
    1520             :          */
    1521           0 :         if (len == 0)
    1522           0 :                 len = snprintf(buf, buf_size, "%d", 0);
    1523             : 
    1524           0 :         if (add_cr)
    1525           0 :                 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
    1526             : 
    1527           0 :         return len;
    1528             : }
    1529             : 
    1530             : #define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
    1531             : static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
    1532             :                                        struct device_attribute *attr,   \
    1533             :                                        char *buf)                       \
    1534             : {                                                                       \
    1535             :         struct input_dev *input_dev = to_input_dev(dev);                \
    1536             :         int len = input_print_bitmap(buf, PAGE_SIZE,                    \
    1537             :                                      input_dev->bm##bit, ev##_MAX,   \
    1538             :                                      true);                             \
    1539             :         return min_t(int, len, PAGE_SIZE);                              \
    1540             : }                                                                       \
    1541             : static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
    1542             : 
    1543           0 : INPUT_DEV_CAP_ATTR(EV, ev);
    1544           0 : INPUT_DEV_CAP_ATTR(KEY, key);
    1545           0 : INPUT_DEV_CAP_ATTR(REL, rel);
    1546           0 : INPUT_DEV_CAP_ATTR(ABS, abs);
    1547           0 : INPUT_DEV_CAP_ATTR(MSC, msc);
    1548           0 : INPUT_DEV_CAP_ATTR(LED, led);
    1549           0 : INPUT_DEV_CAP_ATTR(SND, snd);
    1550           0 : INPUT_DEV_CAP_ATTR(FF, ff);
    1551           0 : INPUT_DEV_CAP_ATTR(SW, sw);
    1552             : 
    1553             : static struct attribute *input_dev_caps_attrs[] = {
    1554             :         &dev_attr_ev.attr,
    1555             :         &dev_attr_key.attr,
    1556             :         &dev_attr_rel.attr,
    1557             :         &dev_attr_abs.attr,
    1558             :         &dev_attr_msc.attr,
    1559             :         &dev_attr_led.attr,
    1560             :         &dev_attr_snd.attr,
    1561             :         &dev_attr_ff.attr,
    1562             :         &dev_attr_sw.attr,
    1563             :         NULL
    1564             : };
    1565             : 
    1566             : static const struct attribute_group input_dev_caps_attr_group = {
    1567             :         .name   = "capabilities",
    1568             :         .attrs  = input_dev_caps_attrs,
    1569             : };
    1570             : 
    1571             : static const struct attribute_group *input_dev_attr_groups[] = {
    1572             :         &input_dev_attr_group,
    1573             :         &input_dev_id_attr_group,
    1574             :         &input_dev_caps_attr_group,
    1575             :         &input_poller_attribute_group,
    1576             :         NULL
    1577             : };
    1578             : 
    1579           0 : static void input_dev_release(struct device *device)
    1580             : {
    1581           0 :         struct input_dev *dev = to_input_dev(device);
    1582             : 
    1583           0 :         input_ff_destroy(dev);
    1584           0 :         input_mt_destroy_slots(dev);
    1585           0 :         kfree(dev->poller);
    1586           0 :         kfree(dev->absinfo);
    1587           0 :         kfree(dev->vals);
    1588           0 :         kfree(dev);
    1589             : 
    1590           0 :         module_put(THIS_MODULE);
    1591           0 : }
    1592             : 
    1593             : /*
    1594             :  * Input uevent interface - loading event handlers based on
    1595             :  * device bitfields.
    1596             :  */
    1597           0 : static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
    1598             :                                    const char *name, unsigned long *bitmap, int max)
    1599             : {
    1600           0 :         int len;
    1601             : 
    1602           0 :         if (add_uevent_var(env, "%s", name))
    1603             :                 return -ENOMEM;
    1604             : 
    1605           0 :         len = input_print_bitmap(&env->buf[env->buflen - 1],
    1606           0 :                                  sizeof(env->buf) - env->buflen,
    1607             :                                  bitmap, max, false);
    1608           0 :         if (len >= (sizeof(env->buf) - env->buflen))
    1609             :                 return -ENOMEM;
    1610             : 
    1611           0 :         env->buflen += len;
    1612           0 :         return 0;
    1613             : }
    1614             : 
    1615           0 : static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
    1616             :                                          struct input_dev *dev)
    1617             : {
    1618           0 :         int len;
    1619             : 
    1620           0 :         if (add_uevent_var(env, "MODALIAS="))
    1621             :                 return -ENOMEM;
    1622             : 
    1623           0 :         len = input_print_modalias(&env->buf[env->buflen - 1],
    1624           0 :                                    sizeof(env->buf) - env->buflen,
    1625             :                                    dev, 0);
    1626           0 :         if (len >= (sizeof(env->buf) - env->buflen))
    1627             :                 return -ENOMEM;
    1628             : 
    1629           0 :         env->buflen += len;
    1630           0 :         return 0;
    1631             : }
    1632             : 
    1633             : #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
    1634             :         do {                                                            \
    1635             :                 int err = add_uevent_var(env, fmt, val);                \
    1636             :                 if (err)                                                \
    1637             :                         return err;                                     \
    1638             :         } while (0)
    1639             : 
    1640             : #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
    1641             :         do {                                                            \
    1642             :                 int err = input_add_uevent_bm_var(env, name, bm, max);  \
    1643             :                 if (err)                                                \
    1644             :                         return err;                                     \
    1645             :         } while (0)
    1646             : 
    1647             : #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
    1648             :         do {                                                            \
    1649             :                 int err = input_add_uevent_modalias_var(env, dev);      \
    1650             :                 if (err)                                                \
    1651             :                         return err;                                     \
    1652             :         } while (0)
    1653             : 
    1654           0 : static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
    1655             : {
    1656           0 :         struct input_dev *dev = to_input_dev(device);
    1657             : 
    1658           0 :         INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
    1659             :                                 dev->id.bustype, dev->id.vendor,
    1660             :                                 dev->id.product, dev->id.version);
    1661           0 :         if (dev->name)
    1662           0 :                 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
    1663           0 :         if (dev->phys)
    1664           0 :                 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
    1665           0 :         if (dev->uniq)
    1666           0 :                 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
    1667             : 
    1668           0 :         INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
    1669             : 
    1670           0 :         INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
    1671           0 :         if (test_bit(EV_KEY, dev->evbit))
    1672           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
    1673           0 :         if (test_bit(EV_REL, dev->evbit))
    1674           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
    1675           0 :         if (test_bit(EV_ABS, dev->evbit))
    1676           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
    1677           0 :         if (test_bit(EV_MSC, dev->evbit))
    1678           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
    1679           0 :         if (test_bit(EV_LED, dev->evbit))
    1680           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
    1681           0 :         if (test_bit(EV_SND, dev->evbit))
    1682           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
    1683           0 :         if (test_bit(EV_FF, dev->evbit))
    1684           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
    1685           0 :         if (test_bit(EV_SW, dev->evbit))
    1686           0 :                 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
    1687             : 
    1688           0 :         INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
    1689             : 
    1690             :         return 0;
    1691             : }
    1692             : 
    1693             : #define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
    1694             :         do {                                                            \
    1695             :                 int i;                                                  \
    1696             :                 bool active;                                            \
    1697             :                                                                         \
    1698             :                 if (!test_bit(EV_##type, dev->evbit))                        \
    1699             :                         break;                                          \
    1700             :                                                                         \
    1701             :                 for_each_set_bit(i, dev->bits##bit, type##_CNT) {    \
    1702             :                         active = test_bit(i, dev->bits);             \
    1703             :                         if (!active && !on)                             \
    1704             :                                 continue;                               \
    1705             :                                                                         \
    1706             :                         dev->event(dev, EV_##type, i, on ? active : 0);      \
    1707             :                 }                                                       \
    1708             :         } while (0)
    1709             : 
    1710           0 : static void input_dev_toggle(struct input_dev *dev, bool activate)
    1711             : {
    1712           0 :         if (!dev->event)
    1713             :                 return;
    1714             : 
    1715           0 :         INPUT_DO_TOGGLE(dev, LED, led, activate);
    1716           0 :         INPUT_DO_TOGGLE(dev, SND, snd, activate);
    1717             : 
    1718           0 :         if (activate && test_bit(EV_REP, dev->evbit)) {
    1719           0 :                 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
    1720           0 :                 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
    1721             :         }
    1722             : }
    1723             : 
    1724             : /**
    1725             :  * input_reset_device() - reset/restore the state of input device
    1726             :  * @dev: input device whose state needs to be reset
    1727             :  *
    1728             :  * This function tries to reset the state of an opened input device and
    1729             :  * bring internal state and state if the hardware in sync with each other.
    1730             :  * We mark all keys as released, restore LED state, repeat rate, etc.
    1731             :  */
    1732           0 : void input_reset_device(struct input_dev *dev)
    1733             : {
    1734           0 :         unsigned long flags;
    1735             : 
    1736           0 :         mutex_lock(&dev->mutex);
    1737           0 :         spin_lock_irqsave(&dev->event_lock, flags);
    1738             : 
    1739           0 :         input_dev_toggle(dev, true);
    1740           0 :         input_dev_release_keys(dev);
    1741             : 
    1742           0 :         spin_unlock_irqrestore(&dev->event_lock, flags);
    1743           0 :         mutex_unlock(&dev->mutex);
    1744           0 : }
    1745             : EXPORT_SYMBOL(input_reset_device);
    1746             : 
    1747           0 : static int input_inhibit_device(struct input_dev *dev)
    1748             : {
    1749           0 :         int ret = 0;
    1750             : 
    1751           0 :         mutex_lock(&dev->mutex);
    1752             : 
    1753           0 :         if (dev->inhibited)
    1754           0 :                 goto out;
    1755             : 
    1756           0 :         if (dev->users) {
    1757           0 :                 if (dev->close)
    1758           0 :                         dev->close(dev);
    1759           0 :                 if (dev->poller)
    1760           0 :                         input_dev_poller_stop(dev->poller);
    1761             :         }
    1762             : 
    1763           0 :         spin_lock_irq(&dev->event_lock);
    1764           0 :         input_dev_release_keys(dev);
    1765           0 :         input_dev_toggle(dev, false);
    1766           0 :         spin_unlock_irq(&dev->event_lock);
    1767             : 
    1768           0 :         dev->inhibited = true;
    1769             : 
    1770           0 : out:
    1771           0 :         mutex_unlock(&dev->mutex);
    1772           0 :         return ret;
    1773             : }
    1774             : 
    1775           0 : static int input_uninhibit_device(struct input_dev *dev)
    1776             : {
    1777           0 :         int ret = 0;
    1778             : 
    1779           0 :         mutex_lock(&dev->mutex);
    1780             : 
    1781           0 :         if (!dev->inhibited)
    1782           0 :                 goto out;
    1783             : 
    1784           0 :         if (dev->users) {
    1785           0 :                 if (dev->open) {
    1786           0 :                         ret = dev->open(dev);
    1787           0 :                         if (ret)
    1788           0 :                                 goto out;
    1789             :                 }
    1790           0 :                 if (dev->poller)
    1791           0 :                         input_dev_poller_start(dev->poller);
    1792             :         }
    1793             : 
    1794           0 :         dev->inhibited = false;
    1795           0 :         spin_lock_irq(&dev->event_lock);
    1796           0 :         input_dev_toggle(dev, true);
    1797           0 :         spin_unlock_irq(&dev->event_lock);
    1798             : 
    1799           0 : out:
    1800           0 :         mutex_unlock(&dev->mutex);
    1801           0 :         return ret;
    1802             : }
    1803             : 
    1804             : #ifdef CONFIG_PM_SLEEP
    1805             : static int input_dev_suspend(struct device *dev)
    1806             : {
    1807             :         struct input_dev *input_dev = to_input_dev(dev);
    1808             : 
    1809             :         spin_lock_irq(&input_dev->event_lock);
    1810             : 
    1811             :         /*
    1812             :          * Keys that are pressed now are unlikely to be
    1813             :          * still pressed when we resume.
    1814             :          */
    1815             :         input_dev_release_keys(input_dev);
    1816             : 
    1817             :         /* Turn off LEDs and sounds, if any are active. */
    1818             :         input_dev_toggle(input_dev, false);
    1819             : 
    1820             :         spin_unlock_irq(&input_dev->event_lock);
    1821             : 
    1822             :         return 0;
    1823             : }
    1824             : 
    1825             : static int input_dev_resume(struct device *dev)
    1826             : {
    1827             :         struct input_dev *input_dev = to_input_dev(dev);
    1828             : 
    1829             :         spin_lock_irq(&input_dev->event_lock);
    1830             : 
    1831             :         /* Restore state of LEDs and sounds, if any were active. */
    1832             :         input_dev_toggle(input_dev, true);
    1833             : 
    1834             :         spin_unlock_irq(&input_dev->event_lock);
    1835             : 
    1836             :         return 0;
    1837             : }
    1838             : 
    1839             : static int input_dev_freeze(struct device *dev)
    1840             : {
    1841             :         struct input_dev *input_dev = to_input_dev(dev);
    1842             : 
    1843             :         spin_lock_irq(&input_dev->event_lock);
    1844             : 
    1845             :         /*
    1846             :          * Keys that are pressed now are unlikely to be
    1847             :          * still pressed when we resume.
    1848             :          */
    1849             :         input_dev_release_keys(input_dev);
    1850             : 
    1851             :         spin_unlock_irq(&input_dev->event_lock);
    1852             : 
    1853             :         return 0;
    1854             : }
    1855             : 
    1856             : static int input_dev_poweroff(struct device *dev)
    1857             : {
    1858             :         struct input_dev *input_dev = to_input_dev(dev);
    1859             : 
    1860             :         spin_lock_irq(&input_dev->event_lock);
    1861             : 
    1862             :         /* Turn off LEDs and sounds, if any are active. */
    1863             :         input_dev_toggle(input_dev, false);
    1864             : 
    1865             :         spin_unlock_irq(&input_dev->event_lock);
    1866             : 
    1867             :         return 0;
    1868             : }
    1869             : 
    1870             : static const struct dev_pm_ops input_dev_pm_ops = {
    1871             :         .suspend        = input_dev_suspend,
    1872             :         .resume         = input_dev_resume,
    1873             :         .freeze         = input_dev_freeze,
    1874             :         .poweroff       = input_dev_poweroff,
    1875             :         .restore        = input_dev_resume,
    1876             : };
    1877             : #endif /* CONFIG_PM */
    1878             : 
    1879             : static const struct device_type input_dev_type = {
    1880             :         .groups         = input_dev_attr_groups,
    1881             :         .release        = input_dev_release,
    1882             :         .uevent         = input_dev_uevent,
    1883             : #ifdef CONFIG_PM_SLEEP
    1884             :         .pm             = &input_dev_pm_ops,
    1885             : #endif
    1886             : };
    1887             : 
    1888           0 : static char *input_devnode(struct device *dev, umode_t *mode)
    1889             : {
    1890           0 :         return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
    1891             : }
    1892             : 
    1893             : struct class input_class = {
    1894             :         .name           = "input",
    1895             :         .devnode        = input_devnode,
    1896             : };
    1897             : EXPORT_SYMBOL_GPL(input_class);
    1898             : 
    1899             : /**
    1900             :  * input_allocate_device - allocate memory for new input device
    1901             :  *
    1902             :  * Returns prepared struct input_dev or %NULL.
    1903             :  *
    1904             :  * NOTE: Use input_free_device() to free devices that have not been
    1905             :  * registered; input_unregister_device() should be used for already
    1906             :  * registered devices.
    1907             :  */
    1908           0 : struct input_dev *input_allocate_device(void)
    1909             : {
    1910           0 :         static atomic_t input_no = ATOMIC_INIT(-1);
    1911           0 :         struct input_dev *dev;
    1912             : 
    1913           0 :         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    1914           0 :         if (dev) {
    1915           0 :                 dev->dev.type = &input_dev_type;
    1916           0 :                 dev->dev.class = &input_class;
    1917           0 :                 device_initialize(&dev->dev);
    1918           0 :                 mutex_init(&dev->mutex);
    1919           0 :                 spin_lock_init(&dev->event_lock);
    1920           0 :                 timer_setup(&dev->timer, NULL, 0);
    1921           0 :                 INIT_LIST_HEAD(&dev->h_list);
    1922           0 :                 INIT_LIST_HEAD(&dev->node);
    1923             : 
    1924           0 :                 dev_set_name(&dev->dev, "input%lu",
    1925           0 :                              (unsigned long)atomic_inc_return(&input_no));
    1926             : 
    1927           0 :                 __module_get(THIS_MODULE);
    1928             :         }
    1929             : 
    1930           0 :         return dev;
    1931             : }
    1932             : EXPORT_SYMBOL(input_allocate_device);
    1933             : 
    1934             : struct input_devres {
    1935             :         struct input_dev *input;
    1936             : };
    1937             : 
    1938           0 : static int devm_input_device_match(struct device *dev, void *res, void *data)
    1939             : {
    1940           0 :         struct input_devres *devres = res;
    1941             : 
    1942           0 :         return devres->input == data;
    1943             : }
    1944             : 
    1945           0 : static void devm_input_device_release(struct device *dev, void *res)
    1946             : {
    1947           0 :         struct input_devres *devres = res;
    1948           0 :         struct input_dev *input = devres->input;
    1949             : 
    1950           0 :         dev_dbg(dev, "%s: dropping reference to %s\n",
    1951             :                 __func__, dev_name(&input->dev));
    1952           0 :         input_put_device(input);
    1953           0 : }
    1954             : 
    1955             : /**
    1956             :  * devm_input_allocate_device - allocate managed input device
    1957             :  * @dev: device owning the input device being created
    1958             :  *
    1959             :  * Returns prepared struct input_dev or %NULL.
    1960             :  *
    1961             :  * Managed input devices do not need to be explicitly unregistered or
    1962             :  * freed as it will be done automatically when owner device unbinds from
    1963             :  * its driver (or binding fails). Once managed input device is allocated,
    1964             :  * it is ready to be set up and registered in the same fashion as regular
    1965             :  * input device. There are no special devm_input_device_[un]register()
    1966             :  * variants, regular ones work with both managed and unmanaged devices,
    1967             :  * should you need them. In most cases however, managed input device need
    1968             :  * not be explicitly unregistered or freed.
    1969             :  *
    1970             :  * NOTE: the owner device is set up as parent of input device and users
    1971             :  * should not override it.
    1972             :  */
    1973           0 : struct input_dev *devm_input_allocate_device(struct device *dev)
    1974             : {
    1975           0 :         struct input_dev *input;
    1976           0 :         struct input_devres *devres;
    1977             : 
    1978           0 :         devres = devres_alloc(devm_input_device_release,
    1979             :                               sizeof(*devres), GFP_KERNEL);
    1980           0 :         if (!devres)
    1981             :                 return NULL;
    1982             : 
    1983           0 :         input = input_allocate_device();
    1984           0 :         if (!input) {
    1985           0 :                 devres_free(devres);
    1986           0 :                 return NULL;
    1987             :         }
    1988             : 
    1989           0 :         input->dev.parent = dev;
    1990           0 :         input->devres_managed = true;
    1991             : 
    1992           0 :         devres->input = input;
    1993           0 :         devres_add(dev, devres);
    1994             : 
    1995           0 :         return input;
    1996             : }
    1997             : EXPORT_SYMBOL(devm_input_allocate_device);
    1998             : 
    1999             : /**
    2000             :  * input_free_device - free memory occupied by input_dev structure
    2001             :  * @dev: input device to free
    2002             :  *
    2003             :  * This function should only be used if input_register_device()
    2004             :  * was not called yet or if it failed. Once device was registered
    2005             :  * use input_unregister_device() and memory will be freed once last
    2006             :  * reference to the device is dropped.
    2007             :  *
    2008             :  * Device should be allocated by input_allocate_device().
    2009             :  *
    2010             :  * NOTE: If there are references to the input device then memory
    2011             :  * will not be freed until last reference is dropped.
    2012             :  */
    2013           0 : void input_free_device(struct input_dev *dev)
    2014             : {
    2015           0 :         if (dev) {
    2016           0 :                 if (dev->devres_managed)
    2017           0 :                         WARN_ON(devres_destroy(dev->dev.parent,
    2018             :                                                 devm_input_device_release,
    2019             :                                                 devm_input_device_match,
    2020             :                                                 dev));
    2021           0 :                 input_put_device(dev);
    2022             :         }
    2023           0 : }
    2024             : EXPORT_SYMBOL(input_free_device);
    2025             : 
    2026             : /**
    2027             :  * input_set_timestamp - set timestamp for input events
    2028             :  * @dev: input device to set timestamp for
    2029             :  * @timestamp: the time at which the event has occurred
    2030             :  *   in CLOCK_MONOTONIC
    2031             :  *
    2032             :  * This function is intended to provide to the input system a more
    2033             :  * accurate time of when an event actually occurred. The driver should
    2034             :  * call this function as soon as a timestamp is acquired ensuring
    2035             :  * clock conversions in input_set_timestamp are done correctly.
    2036             :  *
    2037             :  * The system entering suspend state between timestamp acquisition and
    2038             :  * calling input_set_timestamp can result in inaccurate conversions.
    2039             :  */
    2040           0 : void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
    2041             : {
    2042           0 :         dev->timestamp[INPUT_CLK_MONO] = timestamp;
    2043           0 :         dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
    2044           0 :         dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
    2045             :                                                            TK_OFFS_BOOT);
    2046           0 : }
    2047             : EXPORT_SYMBOL(input_set_timestamp);
    2048             : 
    2049             : /**
    2050             :  * input_get_timestamp - get timestamp for input events
    2051             :  * @dev: input device to get timestamp from
    2052             :  *
    2053             :  * A valid timestamp is a timestamp of non-zero value.
    2054             :  */
    2055           0 : ktime_t *input_get_timestamp(struct input_dev *dev)
    2056             : {
    2057           0 :         const ktime_t invalid_timestamp = ktime_set(0, 0);
    2058             : 
    2059           0 :         if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
    2060           0 :                 input_set_timestamp(dev, ktime_get());
    2061             : 
    2062           0 :         return dev->timestamp;
    2063             : }
    2064             : EXPORT_SYMBOL(input_get_timestamp);
    2065             : 
    2066             : /**
    2067             :  * input_set_capability - mark device as capable of a certain event
    2068             :  * @dev: device that is capable of emitting or accepting event
    2069             :  * @type: type of the event (EV_KEY, EV_REL, etc...)
    2070             :  * @code: event code
    2071             :  *
    2072             :  * In addition to setting up corresponding bit in appropriate capability
    2073             :  * bitmap the function also adjusts dev->evbit.
    2074             :  */
    2075           0 : void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
    2076             : {
    2077           0 :         switch (type) {
    2078           0 :         case EV_KEY:
    2079           0 :                 __set_bit(code, dev->keybit);
    2080           0 :                 break;
    2081             : 
    2082           0 :         case EV_REL:
    2083           0 :                 __set_bit(code, dev->relbit);
    2084           0 :                 break;
    2085             : 
    2086           0 :         case EV_ABS:
    2087           0 :                 input_alloc_absinfo(dev);
    2088           0 :                 if (!dev->absinfo)
    2089             :                         return;
    2090             : 
    2091           0 :                 __set_bit(code, dev->absbit);
    2092           0 :                 break;
    2093             : 
    2094           0 :         case EV_MSC:
    2095           0 :                 __set_bit(code, dev->mscbit);
    2096           0 :                 break;
    2097             : 
    2098           0 :         case EV_SW:
    2099           0 :                 __set_bit(code, dev->swbit);
    2100           0 :                 break;
    2101             : 
    2102           0 :         case EV_LED:
    2103           0 :                 __set_bit(code, dev->ledbit);
    2104           0 :                 break;
    2105             : 
    2106           0 :         case EV_SND:
    2107           0 :                 __set_bit(code, dev->sndbit);
    2108           0 :                 break;
    2109             : 
    2110           0 :         case EV_FF:
    2111           0 :                 __set_bit(code, dev->ffbit);
    2112           0 :                 break;
    2113             : 
    2114             :         case EV_PWR:
    2115             :                 /* do nothing */
    2116             :                 break;
    2117             : 
    2118           0 :         default:
    2119           0 :                 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
    2120           0 :                 dump_stack();
    2121           0 :                 return;
    2122             :         }
    2123             : 
    2124           0 :         __set_bit(type, dev->evbit);
    2125             : }
    2126             : EXPORT_SYMBOL(input_set_capability);
    2127             : 
    2128           0 : static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
    2129             : {
    2130           0 :         int mt_slots;
    2131           0 :         int i;
    2132           0 :         unsigned int events;
    2133             : 
    2134           0 :         if (dev->mt) {
    2135           0 :                 mt_slots = dev->mt->num_slots;
    2136           0 :         } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
    2137           0 :                 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
    2138           0 :                            dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
    2139           0 :                 mt_slots = clamp(mt_slots, 2, 32);
    2140           0 :         } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
    2141             :                 mt_slots = 2;
    2142             :         } else {
    2143           0 :                 mt_slots = 0;
    2144             :         }
    2145             : 
    2146           0 :         events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
    2147             : 
    2148           0 :         if (test_bit(EV_ABS, dev->evbit))
    2149           0 :                 for_each_set_bit(i, dev->absbit, ABS_CNT)
    2150           0 :                         events += input_is_mt_axis(i) ? mt_slots : 1;
    2151             : 
    2152           0 :         if (test_bit(EV_REL, dev->evbit))
    2153           0 :                 events += bitmap_weight(dev->relbit, REL_CNT);
    2154             : 
    2155             :         /* Make room for KEY and MSC events */
    2156           0 :         events += 7;
    2157             : 
    2158           0 :         return events;
    2159             : }
    2160             : 
    2161             : #define INPUT_CLEANSE_BITMASK(dev, type, bits)                          \
    2162             :         do {                                                            \
    2163             :                 if (!test_bit(EV_##type, dev->evbit))                        \
    2164             :                         memset(dev->bits##bit, 0,                    \
    2165             :                                 sizeof(dev->bits##bit));             \
    2166             :         } while (0)
    2167             : 
    2168           0 : static void input_cleanse_bitmasks(struct input_dev *dev)
    2169             : {
    2170           0 :         INPUT_CLEANSE_BITMASK(dev, KEY, key);
    2171           0 :         INPUT_CLEANSE_BITMASK(dev, REL, rel);
    2172           0 :         INPUT_CLEANSE_BITMASK(dev, ABS, abs);
    2173           0 :         INPUT_CLEANSE_BITMASK(dev, MSC, msc);
    2174           0 :         INPUT_CLEANSE_BITMASK(dev, LED, led);
    2175           0 :         INPUT_CLEANSE_BITMASK(dev, SND, snd);
    2176           0 :         INPUT_CLEANSE_BITMASK(dev, FF, ff);
    2177           0 :         INPUT_CLEANSE_BITMASK(dev, SW, sw);
    2178           0 : }
    2179             : 
    2180           0 : static void __input_unregister_device(struct input_dev *dev)
    2181             : {
    2182           0 :         struct input_handle *handle, *next;
    2183             : 
    2184           0 :         input_disconnect_device(dev);
    2185             : 
    2186           0 :         mutex_lock(&input_mutex);
    2187             : 
    2188           0 :         list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
    2189           0 :                 handle->handler->disconnect(handle);
    2190           0 :         WARN_ON(!list_empty(&dev->h_list));
    2191             : 
    2192           0 :         del_timer_sync(&dev->timer);
    2193           0 :         list_del_init(&dev->node);
    2194             : 
    2195           0 :         input_wakeup_procfs_readers();
    2196             : 
    2197           0 :         mutex_unlock(&input_mutex);
    2198             : 
    2199           0 :         device_del(&dev->dev);
    2200           0 : }
    2201             : 
    2202           0 : static void devm_input_device_unregister(struct device *dev, void *res)
    2203             : {
    2204           0 :         struct input_devres *devres = res;
    2205           0 :         struct input_dev *input = devres->input;
    2206             : 
    2207           0 :         dev_dbg(dev, "%s: unregistering device %s\n",
    2208             :                 __func__, dev_name(&input->dev));
    2209           0 :         __input_unregister_device(input);
    2210           0 : }
    2211             : 
    2212             : /**
    2213             :  * input_enable_softrepeat - enable software autorepeat
    2214             :  * @dev: input device
    2215             :  * @delay: repeat delay
    2216             :  * @period: repeat period
    2217             :  *
    2218             :  * Enable software autorepeat on the input device.
    2219             :  */
    2220           0 : void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
    2221             : {
    2222           0 :         dev->timer.function = input_repeat_key;
    2223           0 :         dev->rep[REP_DELAY] = delay;
    2224           0 :         dev->rep[REP_PERIOD] = period;
    2225           0 : }
    2226             : EXPORT_SYMBOL(input_enable_softrepeat);
    2227             : 
    2228           0 : bool input_device_enabled(struct input_dev *dev)
    2229             : {
    2230           0 :         lockdep_assert_held(&dev->mutex);
    2231             : 
    2232           0 :         return !dev->inhibited && dev->users > 0;
    2233             : }
    2234             : EXPORT_SYMBOL_GPL(input_device_enabled);
    2235             : 
    2236             : /**
    2237             :  * input_register_device - register device with input core
    2238             :  * @dev: device to be registered
    2239             :  *
    2240             :  * This function registers device with input core. The device must be
    2241             :  * allocated with input_allocate_device() and all it's capabilities
    2242             :  * set up before registering.
    2243             :  * If function fails the device must be freed with input_free_device().
    2244             :  * Once device has been successfully registered it can be unregistered
    2245             :  * with input_unregister_device(); input_free_device() should not be
    2246             :  * called in this case.
    2247             :  *
    2248             :  * Note that this function is also used to register managed input devices
    2249             :  * (ones allocated with devm_input_allocate_device()). Such managed input
    2250             :  * devices need not be explicitly unregistered or freed, their tear down
    2251             :  * is controlled by the devres infrastructure. It is also worth noting
    2252             :  * that tear down of managed input devices is internally a 2-step process:
    2253             :  * registered managed input device is first unregistered, but stays in
    2254             :  * memory and can still handle input_event() calls (although events will
    2255             :  * not be delivered anywhere). The freeing of managed input device will
    2256             :  * happen later, when devres stack is unwound to the point where device
    2257             :  * allocation was made.
    2258             :  */
    2259           0 : int input_register_device(struct input_dev *dev)
    2260             : {
    2261           0 :         struct input_devres *devres = NULL;
    2262           0 :         struct input_handler *handler;
    2263           0 :         unsigned int packet_size;
    2264           0 :         const char *path;
    2265           0 :         int error;
    2266             : 
    2267           0 :         if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
    2268           0 :                 dev_err(&dev->dev,
    2269             :                         "Absolute device without dev->absinfo, refusing to register\n");
    2270           0 :                 return -EINVAL;
    2271             :         }
    2272             : 
    2273           0 :         if (dev->devres_managed) {
    2274           0 :                 devres = devres_alloc(devm_input_device_unregister,
    2275             :                                       sizeof(*devres), GFP_KERNEL);
    2276           0 :                 if (!devres)
    2277             :                         return -ENOMEM;
    2278             : 
    2279           0 :                 devres->input = dev;
    2280             :         }
    2281             : 
    2282             :         /* Every input device generates EV_SYN/SYN_REPORT events. */
    2283           0 :         __set_bit(EV_SYN, dev->evbit);
    2284             : 
    2285             :         /* KEY_RESERVED is not supposed to be transmitted to userspace. */
    2286           0 :         __clear_bit(KEY_RESERVED, dev->keybit);
    2287             : 
    2288             :         /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
    2289           0 :         input_cleanse_bitmasks(dev);
    2290             : 
    2291           0 :         packet_size = input_estimate_events_per_packet(dev);
    2292           0 :         if (dev->hint_events_per_packet < packet_size)
    2293           0 :                 dev->hint_events_per_packet = packet_size;
    2294             : 
    2295           0 :         dev->max_vals = dev->hint_events_per_packet + 2;
    2296           0 :         dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
    2297           0 :         if (!dev->vals) {
    2298           0 :                 error = -ENOMEM;
    2299           0 :                 goto err_devres_free;
    2300             :         }
    2301             : 
    2302             :         /*
    2303             :          * If delay and period are pre-set by the driver, then autorepeating
    2304             :          * is handled by the driver itself and we don't do it in input.c.
    2305             :          */
    2306           0 :         if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
    2307           0 :                 input_enable_softrepeat(dev, 250, 33);
    2308             : 
    2309           0 :         if (!dev->getkeycode)
    2310           0 :                 dev->getkeycode = input_default_getkeycode;
    2311             : 
    2312           0 :         if (!dev->setkeycode)
    2313           0 :                 dev->setkeycode = input_default_setkeycode;
    2314             : 
    2315           0 :         if (dev->poller)
    2316           0 :                 input_dev_poller_finalize(dev->poller);
    2317             : 
    2318           0 :         error = device_add(&dev->dev);
    2319           0 :         if (error)
    2320           0 :                 goto err_free_vals;
    2321             : 
    2322           0 :         path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    2323           0 :         pr_info("%s as %s\n",
    2324             :                 dev->name ? dev->name : "Unspecified device",
    2325             :                 path ? path : "N/A");
    2326           0 :         kfree(path);
    2327             : 
    2328           0 :         error = mutex_lock_interruptible(&input_mutex);
    2329           0 :         if (error)
    2330           0 :                 goto err_device_del;
    2331             : 
    2332           0 :         list_add_tail(&dev->node, &input_dev_list);
    2333             : 
    2334           0 :         list_for_each_entry(handler, &input_handler_list, node)
    2335           0 :                 input_attach_handler(dev, handler);
    2336             : 
    2337           0 :         input_wakeup_procfs_readers();
    2338             : 
    2339           0 :         mutex_unlock(&input_mutex);
    2340             : 
    2341           0 :         if (dev->devres_managed) {
    2342           0 :                 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
    2343             :                         __func__, dev_name(&dev->dev));
    2344           0 :                 devres_add(dev->dev.parent, devres);
    2345             :         }
    2346             :         return 0;
    2347             : 
    2348           0 : err_device_del:
    2349           0 :         device_del(&dev->dev);
    2350           0 : err_free_vals:
    2351           0 :         kfree(dev->vals);
    2352           0 :         dev->vals = NULL;
    2353           0 : err_devres_free:
    2354           0 :         devres_free(devres);
    2355           0 :         return error;
    2356             : }
    2357             : EXPORT_SYMBOL(input_register_device);
    2358             : 
    2359             : /**
    2360             :  * input_unregister_device - unregister previously registered device
    2361             :  * @dev: device to be unregistered
    2362             :  *
    2363             :  * This function unregisters an input device. Once device is unregistered
    2364             :  * the caller should not try to access it as it may get freed at any moment.
    2365             :  */
    2366           0 : void input_unregister_device(struct input_dev *dev)
    2367             : {
    2368           0 :         if (dev->devres_managed) {
    2369           0 :                 WARN_ON(devres_destroy(dev->dev.parent,
    2370             :                                         devm_input_device_unregister,
    2371             :                                         devm_input_device_match,
    2372             :                                         dev));
    2373           0 :                 __input_unregister_device(dev);
    2374             :                 /*
    2375             :                  * We do not do input_put_device() here because it will be done
    2376             :                  * when 2nd devres fires up.
    2377             :                  */
    2378             :         } else {
    2379           0 :                 __input_unregister_device(dev);
    2380           0 :                 input_put_device(dev);
    2381             :         }
    2382           0 : }
    2383             : EXPORT_SYMBOL(input_unregister_device);
    2384             : 
    2385             : /**
    2386             :  * input_register_handler - register a new input handler
    2387             :  * @handler: handler to be registered
    2388             :  *
    2389             :  * This function registers a new input handler (interface) for input
    2390             :  * devices in the system and attaches it to all input devices that
    2391             :  * are compatible with the handler.
    2392             :  */
    2393           2 : int input_register_handler(struct input_handler *handler)
    2394             : {
    2395           2 :         struct input_dev *dev;
    2396           2 :         int error;
    2397             : 
    2398           2 :         error = mutex_lock_interruptible(&input_mutex);
    2399           2 :         if (error)
    2400             :                 return error;
    2401             : 
    2402           2 :         INIT_LIST_HEAD(&handler->h_list);
    2403             : 
    2404           2 :         list_add_tail(&handler->node, &input_handler_list);
    2405             : 
    2406           2 :         list_for_each_entry(dev, &input_dev_list, node)
    2407           0 :                 input_attach_handler(dev, handler);
    2408             : 
    2409           2 :         input_wakeup_procfs_readers();
    2410             : 
    2411           2 :         mutex_unlock(&input_mutex);
    2412           2 :         return 0;
    2413             : }
    2414             : EXPORT_SYMBOL(input_register_handler);
    2415             : 
    2416             : /**
    2417             :  * input_unregister_handler - unregisters an input handler
    2418             :  * @handler: handler to be unregistered
    2419             :  *
    2420             :  * This function disconnects a handler from its input devices and
    2421             :  * removes it from lists of known handlers.
    2422             :  */
    2423           0 : void input_unregister_handler(struct input_handler *handler)
    2424             : {
    2425           0 :         struct input_handle *handle, *next;
    2426             : 
    2427           0 :         mutex_lock(&input_mutex);
    2428             : 
    2429           0 :         list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
    2430           0 :                 handler->disconnect(handle);
    2431           0 :         WARN_ON(!list_empty(&handler->h_list));
    2432             : 
    2433           0 :         list_del_init(&handler->node);
    2434             : 
    2435           0 :         input_wakeup_procfs_readers();
    2436             : 
    2437           0 :         mutex_unlock(&input_mutex);
    2438           0 : }
    2439             : EXPORT_SYMBOL(input_unregister_handler);
    2440             : 
    2441             : /**
    2442             :  * input_handler_for_each_handle - handle iterator
    2443             :  * @handler: input handler to iterate
    2444             :  * @data: data for the callback
    2445             :  * @fn: function to be called for each handle
    2446             :  *
    2447             :  * Iterate over @bus's list of devices, and call @fn for each, passing
    2448             :  * it @data and stop when @fn returns a non-zero value. The function is
    2449             :  * using RCU to traverse the list and therefore may be using in atomic
    2450             :  * contexts. The @fn callback is invoked from RCU critical section and
    2451             :  * thus must not sleep.
    2452             :  */
    2453           1 : int input_handler_for_each_handle(struct input_handler *handler, void *data,
    2454             :                                   int (*fn)(struct input_handle *, void *))
    2455             : {
    2456           1 :         struct input_handle *handle;
    2457           1 :         int retval = 0;
    2458             : 
    2459           1 :         rcu_read_lock();
    2460             : 
    2461           1 :         list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
    2462           0 :                 retval = fn(handle, data);
    2463           0 :                 if (retval)
    2464             :                         break;
    2465             :         }
    2466             : 
    2467           1 :         rcu_read_unlock();
    2468             : 
    2469           1 :         return retval;
    2470             : }
    2471             : EXPORT_SYMBOL(input_handler_for_each_handle);
    2472             : 
    2473             : /**
    2474             :  * input_register_handle - register a new input handle
    2475             :  * @handle: handle to register
    2476             :  *
    2477             :  * This function puts a new input handle onto device's
    2478             :  * and handler's lists so that events can flow through
    2479             :  * it once it is opened using input_open_device().
    2480             :  *
    2481             :  * This function is supposed to be called from handler's
    2482             :  * connect() method.
    2483             :  */
    2484           0 : int input_register_handle(struct input_handle *handle)
    2485             : {
    2486           0 :         struct input_handler *handler = handle->handler;
    2487           0 :         struct input_dev *dev = handle->dev;
    2488           0 :         int error;
    2489             : 
    2490             :         /*
    2491             :          * We take dev->mutex here to prevent race with
    2492             :          * input_release_device().
    2493             :          */
    2494           0 :         error = mutex_lock_interruptible(&dev->mutex);
    2495           0 :         if (error)
    2496             :                 return error;
    2497             : 
    2498             :         /*
    2499             :          * Filters go to the head of the list, normal handlers
    2500             :          * to the tail.
    2501             :          */
    2502           0 :         if (handler->filter)
    2503           0 :                 list_add_rcu(&handle->d_node, &dev->h_list);
    2504             :         else
    2505           0 :                 list_add_tail_rcu(&handle->d_node, &dev->h_list);
    2506             : 
    2507           0 :         mutex_unlock(&dev->mutex);
    2508             : 
    2509             :         /*
    2510             :          * Since we are supposed to be called from ->connect()
    2511             :          * which is mutually exclusive with ->disconnect()
    2512             :          * we can't be racing with input_unregister_handle()
    2513             :          * and so separate lock is not needed here.
    2514             :          */
    2515           0 :         list_add_tail_rcu(&handle->h_node, &handler->h_list);
    2516             : 
    2517           0 :         if (handler->start)
    2518           0 :                 handler->start(handle);
    2519             : 
    2520             :         return 0;
    2521             : }
    2522             : EXPORT_SYMBOL(input_register_handle);
    2523             : 
    2524             : /**
    2525             :  * input_unregister_handle - unregister an input handle
    2526             :  * @handle: handle to unregister
    2527             :  *
    2528             :  * This function removes input handle from device's
    2529             :  * and handler's lists.
    2530             :  *
    2531             :  * This function is supposed to be called from handler's
    2532             :  * disconnect() method.
    2533             :  */
    2534           0 : void input_unregister_handle(struct input_handle *handle)
    2535             : {
    2536           0 :         struct input_dev *dev = handle->dev;
    2537             : 
    2538           0 :         list_del_rcu(&handle->h_node);
    2539             : 
    2540             :         /*
    2541             :          * Take dev->mutex to prevent race with input_release_device().
    2542             :          */
    2543           0 :         mutex_lock(&dev->mutex);
    2544           0 :         list_del_rcu(&handle->d_node);
    2545           0 :         mutex_unlock(&dev->mutex);
    2546             : 
    2547           0 :         synchronize_rcu();
    2548           0 : }
    2549             : EXPORT_SYMBOL(input_unregister_handle);
    2550             : 
    2551             : /**
    2552             :  * input_get_new_minor - allocates a new input minor number
    2553             :  * @legacy_base: beginning or the legacy range to be searched
    2554             :  * @legacy_num: size of legacy range
    2555             :  * @allow_dynamic: whether we can also take ID from the dynamic range
    2556             :  *
    2557             :  * This function allocates a new device minor for from input major namespace.
    2558             :  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
    2559             :  * parameters and whether ID can be allocated from dynamic range if there are
    2560             :  * no free IDs in legacy range.
    2561             :  */
    2562           0 : int input_get_new_minor(int legacy_base, unsigned int legacy_num,
    2563             :                         bool allow_dynamic)
    2564             : {
    2565             :         /*
    2566             :          * This function should be called from input handler's ->connect()
    2567             :          * methods, which are serialized with input_mutex, so no additional
    2568             :          * locking is needed here.
    2569             :          */
    2570           0 :         if (legacy_base >= 0) {
    2571           0 :                 int minor = ida_simple_get(&input_ida,
    2572             :                                            legacy_base,
    2573             :                                            legacy_base + legacy_num,
    2574             :                                            GFP_KERNEL);
    2575           0 :                 if (minor >= 0 || !allow_dynamic)
    2576             :                         return minor;
    2577             :         }
    2578             : 
    2579           0 :         return ida_simple_get(&input_ida,
    2580             :                               INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
    2581             :                               GFP_KERNEL);
    2582             : }
    2583             : EXPORT_SYMBOL(input_get_new_minor);
    2584             : 
    2585             : /**
    2586             :  * input_free_minor - release previously allocated minor
    2587             :  * @minor: minor to be released
    2588             :  *
    2589             :  * This function releases previously allocated input minor so that it can be
    2590             :  * reused later.
    2591             :  */
    2592           0 : void input_free_minor(unsigned int minor)
    2593             : {
    2594           0 :         ida_simple_remove(&input_ida, minor);
    2595           0 : }
    2596             : EXPORT_SYMBOL(input_free_minor);
    2597             : 
    2598           1 : static int __init input_init(void)
    2599             : {
    2600           1 :         int err;
    2601             : 
    2602           1 :         err = class_register(&input_class);
    2603           1 :         if (err) {
    2604           0 :                 pr_err("unable to register input_dev class\n");
    2605           0 :                 return err;
    2606             :         }
    2607             : 
    2608           1 :         err = input_proc_init();
    2609           1 :         if (err)
    2610           0 :                 goto fail1;
    2611             : 
    2612           1 :         err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
    2613             :                                      INPUT_MAX_CHAR_DEVICES, "input");
    2614           1 :         if (err) {
    2615           0 :                 pr_err("unable to register char major %d", INPUT_MAJOR);
    2616           0 :                 goto fail2;
    2617             :         }
    2618             : 
    2619             :         return 0;
    2620             : 
    2621           0 :  fail2: input_proc_exit();
    2622           0 :  fail1: class_unregister(&input_class);
    2623           0 :         return err;
    2624             : }
    2625             : 
    2626           0 : static void __exit input_exit(void)
    2627             : {
    2628           0 :         input_proc_exit();
    2629           0 :         unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
    2630             :                                  INPUT_MAX_CHAR_DEVICES);
    2631           0 :         class_unregister(&input_class);
    2632           0 : }
    2633             : 
    2634             : subsys_initcall(input_init);
    2635             : module_exit(input_exit);

Generated by: LCOV version 1.14