Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * RTC subsystem, base class
4 : *
5 : * Copyright (C) 2005 Tower Technologies
6 : * Author: Alessandro Zummo <a.zummo@towertech.it>
7 : *
8 : * class skeleton from drivers/hwmon/hwmon.c
9 : */
10 :
11 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 :
13 : #include <linux/module.h>
14 : #include <linux/of.h>
15 : #include <linux/rtc.h>
16 : #include <linux/kdev_t.h>
17 : #include <linux/idr.h>
18 : #include <linux/slab.h>
19 : #include <linux/workqueue.h>
20 :
21 : #include "rtc-core.h"
22 :
23 : static DEFINE_IDA(rtc_ida);
24 : struct class *rtc_class;
25 :
26 1 : static void rtc_device_release(struct device *dev)
27 : {
28 1 : struct rtc_device *rtc = to_rtc_device(dev);
29 :
30 1 : ida_simple_remove(&rtc_ida, rtc->id);
31 1 : mutex_destroy(&rtc->ops_lock);
32 1 : kfree(rtc);
33 1 : }
34 :
35 : #ifdef CONFIG_RTC_HCTOSYS_DEVICE
36 : /* Result of the last RTC to system clock attempt. */
37 : int rtc_hctosys_ret = -ENODEV;
38 :
39 : /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
40 : * whether it stores the most close value or the value with partial
41 : * seconds truncated. However, it is important that we use it to store
42 : * the truncated value. This is because otherwise it is necessary,
43 : * in an rtc sync function, to read both xtime.tv_sec and
44 : * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
45 : * of >32bits is not possible. So storing the most close value would
46 : * slow down the sync API. So here we have the truncated value and
47 : * the best guess is to add 0.5s.
48 : */
49 :
50 0 : static void rtc_hctosys(struct rtc_device *rtc)
51 : {
52 0 : int err;
53 0 : struct rtc_time tm;
54 0 : struct timespec64 tv64 = {
55 : .tv_nsec = NSEC_PER_SEC >> 1,
56 : };
57 :
58 0 : err = rtc_read_time(rtc, &tm);
59 0 : if (err) {
60 0 : dev_err(rtc->dev.parent,
61 : "hctosys: unable to read the hardware clock\n");
62 0 : goto err_read;
63 : }
64 :
65 0 : tv64.tv_sec = rtc_tm_to_time64(&tm);
66 :
67 : #if BITS_PER_LONG == 32
68 : if (tv64.tv_sec > INT_MAX) {
69 : err = -ERANGE;
70 : goto err_read;
71 : }
72 : #endif
73 :
74 0 : err = do_settimeofday64(&tv64);
75 :
76 0 : dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
77 : &tm, (long long)tv64.tv_sec);
78 :
79 0 : err_read:
80 0 : rtc_hctosys_ret = err;
81 0 : }
82 : #endif
83 :
84 : #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
85 : /*
86 : * On suspend(), measure the delta between one RTC and the
87 : * system's wall clock; restore it on resume().
88 : */
89 :
90 : static struct timespec64 old_rtc, old_system, old_delta;
91 :
92 : static int rtc_suspend(struct device *dev)
93 : {
94 : struct rtc_device *rtc = to_rtc_device(dev);
95 : struct rtc_time tm;
96 : struct timespec64 delta, delta_delta;
97 : int err;
98 :
99 : if (timekeeping_rtc_skipsuspend())
100 : return 0;
101 :
102 : if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
103 : return 0;
104 :
105 : /* snapshot the current RTC and system time at suspend*/
106 : err = rtc_read_time(rtc, &tm);
107 : if (err < 0) {
108 : pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
109 : return 0;
110 : }
111 :
112 : ktime_get_real_ts64(&old_system);
113 : old_rtc.tv_sec = rtc_tm_to_time64(&tm);
114 :
115 : /*
116 : * To avoid drift caused by repeated suspend/resumes,
117 : * which each can add ~1 second drift error,
118 : * try to compensate so the difference in system time
119 : * and rtc time stays close to constant.
120 : */
121 : delta = timespec64_sub(old_system, old_rtc);
122 : delta_delta = timespec64_sub(delta, old_delta);
123 : if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
124 : /*
125 : * if delta_delta is too large, assume time correction
126 : * has occurred and set old_delta to the current delta.
127 : */
128 : old_delta = delta;
129 : } else {
130 : /* Otherwise try to adjust old_system to compensate */
131 : old_system = timespec64_sub(old_system, delta_delta);
132 : }
133 :
134 : return 0;
135 : }
136 :
137 : static int rtc_resume(struct device *dev)
138 : {
139 : struct rtc_device *rtc = to_rtc_device(dev);
140 : struct rtc_time tm;
141 : struct timespec64 new_system, new_rtc;
142 : struct timespec64 sleep_time;
143 : int err;
144 :
145 : if (timekeeping_rtc_skipresume())
146 : return 0;
147 :
148 : rtc_hctosys_ret = -ENODEV;
149 : if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
150 : return 0;
151 :
152 : /* snapshot the current rtc and system time at resume */
153 : ktime_get_real_ts64(&new_system);
154 : err = rtc_read_time(rtc, &tm);
155 : if (err < 0) {
156 : pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
157 : return 0;
158 : }
159 :
160 : new_rtc.tv_sec = rtc_tm_to_time64(&tm);
161 : new_rtc.tv_nsec = 0;
162 :
163 : if (new_rtc.tv_sec < old_rtc.tv_sec) {
164 : pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
165 : return 0;
166 : }
167 :
168 : /* calculate the RTC time delta (sleep time)*/
169 : sleep_time = timespec64_sub(new_rtc, old_rtc);
170 :
171 : /*
172 : * Since these RTC suspend/resume handlers are not called
173 : * at the very end of suspend or the start of resume,
174 : * some run-time may pass on either sides of the sleep time
175 : * so subtract kernel run-time between rtc_suspend to rtc_resume
176 : * to keep things accurate.
177 : */
178 : sleep_time = timespec64_sub(sleep_time,
179 : timespec64_sub(new_system, old_system));
180 :
181 : if (sleep_time.tv_sec >= 0)
182 : timekeeping_inject_sleeptime64(&sleep_time);
183 : rtc_hctosys_ret = 0;
184 : return 0;
185 : }
186 :
187 : static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
188 : #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
189 : #else
190 : #define RTC_CLASS_DEV_PM_OPS NULL
191 : #endif
192 :
193 : /* Ensure the caller will set the id before releasing the device */
194 1 : static struct rtc_device *rtc_allocate_device(void)
195 : {
196 1 : struct rtc_device *rtc;
197 :
198 1 : rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
199 1 : if (!rtc)
200 : return NULL;
201 :
202 1 : device_initialize(&rtc->dev);
203 :
204 : /*
205 : * Drivers can revise this default after allocating the device.
206 : * The default is what most RTCs do: Increment seconds exactly one
207 : * second after the write happened. This adds a default transport
208 : * time of 5ms which is at least halfways close to reality.
209 : */
210 1 : rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
211 :
212 1 : rtc->irq_freq = 1;
213 1 : rtc->max_user_freq = 64;
214 1 : rtc->dev.class = rtc_class;
215 1 : rtc->dev.groups = rtc_get_dev_attribute_groups();
216 1 : rtc->dev.release = rtc_device_release;
217 :
218 1 : mutex_init(&rtc->ops_lock);
219 1 : spin_lock_init(&rtc->irq_lock);
220 1 : init_waitqueue_head(&rtc->irq_queue);
221 :
222 : /* Init timerqueue */
223 1 : timerqueue_init_head(&rtc->timerqueue);
224 1 : INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
225 : /* Init aie timer */
226 1 : rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
227 : /* Init uie timer */
228 1 : rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
229 : /* Init pie timer */
230 1 : hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
231 1 : rtc->pie_timer.function = rtc_pie_update_irq;
232 1 : rtc->pie_enabled = 0;
233 :
234 1 : set_bit(RTC_FEATURE_ALARM, rtc->features);
235 :
236 1 : return rtc;
237 : }
238 :
239 1 : static int rtc_device_get_id(struct device *dev)
240 : {
241 1 : int of_id = -1, id = -1;
242 :
243 1 : if (dev->of_node)
244 1 : of_id = of_alias_get_id(dev->of_node, "rtc");
245 : else if (dev->parent && dev->parent->of_node)
246 : of_id = of_alias_get_id(dev->parent->of_node, "rtc");
247 :
248 1 : if (of_id >= 0) {
249 : id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
250 : if (id < 0)
251 : dev_warn(dev, "/aliases ID %d not available\n", of_id);
252 : }
253 :
254 1 : if (id < 0)
255 1 : id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
256 :
257 1 : return id;
258 : }
259 :
260 0 : static void rtc_device_get_offset(struct rtc_device *rtc)
261 : {
262 0 : time64_t range_secs;
263 0 : u32 start_year;
264 0 : int ret;
265 :
266 : /*
267 : * If RTC driver did not implement the range of RTC hardware device,
268 : * then we can not expand the RTC range by adding or subtracting one
269 : * offset.
270 : */
271 0 : if (rtc->range_min == rtc->range_max)
272 0 : return;
273 :
274 0 : ret = device_property_read_u32(rtc->dev.parent, "start-year",
275 : &start_year);
276 0 : if (!ret) {
277 0 : rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
278 0 : rtc->set_start_time = true;
279 : }
280 :
281 : /*
282 : * If user did not implement the start time for RTC driver, then no
283 : * need to expand the RTC range.
284 : */
285 0 : if (!rtc->set_start_time)
286 : return;
287 :
288 0 : range_secs = rtc->range_max - rtc->range_min + 1;
289 :
290 : /*
291 : * If the start_secs is larger than the maximum seconds (rtc->range_max)
292 : * supported by RTC hardware or the maximum seconds of new expanded
293 : * range (start_secs + rtc->range_max - rtc->range_min) is less than
294 : * rtc->range_min, which means the minimum seconds (rtc->range_min) of
295 : * RTC hardware will be mapped to start_secs by adding one offset, so
296 : * the offset seconds calculation formula should be:
297 : * rtc->offset_secs = rtc->start_secs - rtc->range_min;
298 : *
299 : * If the start_secs is larger than the minimum seconds (rtc->range_min)
300 : * supported by RTC hardware, then there is one region is overlapped
301 : * between the original RTC hardware range and the new expanded range,
302 : * and this overlapped region do not need to be mapped into the new
303 : * expanded range due to it is valid for RTC device. So the minimum
304 : * seconds of RTC hardware (rtc->range_min) should be mapped to
305 : * rtc->range_max + 1, then the offset seconds formula should be:
306 : * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
307 : *
308 : * If the start_secs is less than the minimum seconds (rtc->range_min),
309 : * which is similar to case 2. So the start_secs should be mapped to
310 : * start_secs + rtc->range_max - rtc->range_min + 1, then the
311 : * offset seconds formula should be:
312 : * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
313 : *
314 : * Otherwise the offset seconds should be 0.
315 : */
316 0 : if (rtc->start_secs > rtc->range_max ||
317 0 : rtc->start_secs + range_secs - 1 < rtc->range_min)
318 0 : rtc->offset_secs = rtc->start_secs - rtc->range_min;
319 0 : else if (rtc->start_secs > rtc->range_min)
320 0 : rtc->offset_secs = range_secs;
321 0 : else if (rtc->start_secs < rtc->range_min)
322 0 : rtc->offset_secs = -range_secs;
323 : else
324 0 : rtc->offset_secs = 0;
325 : }
326 :
327 0 : static void devm_rtc_unregister_device(void *data)
328 : {
329 0 : struct rtc_device *rtc = data;
330 :
331 0 : mutex_lock(&rtc->ops_lock);
332 : /*
333 : * Remove innards of this RTC, then disable it, before
334 : * letting any rtc_class_open() users access it again
335 : */
336 0 : rtc_proc_del_device(rtc);
337 0 : cdev_device_del(&rtc->char_dev, &rtc->dev);
338 0 : rtc->ops = NULL;
339 0 : mutex_unlock(&rtc->ops_lock);
340 0 : }
341 :
342 1 : static void devm_rtc_release_device(void *res)
343 : {
344 1 : struct rtc_device *rtc = res;
345 :
346 1 : put_device(&rtc->dev);
347 1 : }
348 :
349 1 : struct rtc_device *devm_rtc_allocate_device(struct device *dev)
350 : {
351 1 : struct rtc_device *rtc;
352 1 : int id, err;
353 :
354 1 : id = rtc_device_get_id(dev);
355 1 : if (id < 0)
356 0 : return ERR_PTR(id);
357 :
358 1 : rtc = rtc_allocate_device();
359 1 : if (!rtc) {
360 0 : ida_simple_remove(&rtc_ida, id);
361 0 : return ERR_PTR(-ENOMEM);
362 : }
363 :
364 1 : rtc->id = id;
365 1 : rtc->dev.parent = dev;
366 1 : dev_set_name(&rtc->dev, "rtc%d", id);
367 :
368 1 : err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
369 1 : if (err)
370 0 : return ERR_PTR(err);
371 :
372 : return rtc;
373 : }
374 : EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
375 :
376 0 : int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
377 : {
378 0 : struct rtc_wkalrm alrm;
379 0 : int err;
380 :
381 0 : if (!rtc->ops) {
382 : dev_dbg(&rtc->dev, "no ops set\n");
383 : return -EINVAL;
384 : }
385 :
386 0 : if (!rtc->ops->set_alarm)
387 0 : clear_bit(RTC_FEATURE_ALARM, rtc->features);
388 :
389 0 : rtc->owner = owner;
390 0 : rtc_device_get_offset(rtc);
391 :
392 : /* Check to see if there is an ALARM already set in hw */
393 0 : err = __rtc_read_alarm(rtc, &alrm);
394 0 : if (!err && !rtc_valid_tm(&alrm.time))
395 0 : rtc_initialize_alarm(rtc, &alrm);
396 :
397 0 : rtc_dev_prepare(rtc);
398 :
399 0 : err = cdev_device_add(&rtc->char_dev, &rtc->dev);
400 0 : if (err)
401 0 : dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
402 : MAJOR(rtc->dev.devt), rtc->id);
403 : else
404 : dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
405 : MAJOR(rtc->dev.devt), rtc->id);
406 :
407 0 : rtc_proc_add_device(rtc);
408 :
409 0 : dev_info(rtc->dev.parent, "registered as %s\n",
410 : dev_name(&rtc->dev));
411 :
412 : #ifdef CONFIG_RTC_HCTOSYS_DEVICE
413 0 : if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
414 0 : rtc_hctosys(rtc);
415 : #endif
416 :
417 0 : return devm_add_action_or_reset(rtc->dev.parent,
418 : devm_rtc_unregister_device, rtc);
419 : }
420 : EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
421 :
422 : /**
423 : * devm_rtc_device_register - resource managed rtc_device_register()
424 : * @dev: the device to register
425 : * @name: the name of the device (unused)
426 : * @ops: the rtc operations structure
427 : * @owner: the module owner
428 : *
429 : * @return a struct rtc on success, or an ERR_PTR on error
430 : *
431 : * Managed rtc_device_register(). The rtc_device returned from this function
432 : * are automatically freed on driver detach.
433 : * This function is deprecated, use devm_rtc_allocate_device and
434 : * rtc_register_device instead
435 : */
436 0 : struct rtc_device *devm_rtc_device_register(struct device *dev,
437 : const char *name,
438 : const struct rtc_class_ops *ops,
439 : struct module *owner)
440 : {
441 0 : struct rtc_device *rtc;
442 0 : int err;
443 :
444 0 : rtc = devm_rtc_allocate_device(dev);
445 0 : if (IS_ERR(rtc))
446 : return rtc;
447 :
448 0 : rtc->ops = ops;
449 :
450 0 : err = __devm_rtc_register_device(owner, rtc);
451 0 : if (err)
452 0 : return ERR_PTR(err);
453 :
454 : return rtc;
455 : }
456 : EXPORT_SYMBOL_GPL(devm_rtc_device_register);
457 :
458 1 : static int __init rtc_init(void)
459 : {
460 1 : rtc_class = class_create(THIS_MODULE, "rtc");
461 1 : if (IS_ERR(rtc_class)) {
462 0 : pr_err("couldn't create class\n");
463 0 : return PTR_ERR(rtc_class);
464 : }
465 1 : rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
466 1 : rtc_dev_init();
467 1 : return 0;
468 : }
469 : subsys_initcall(rtc_init);
|