Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Written for linux by Johan Myreen as a translation from
4 : * the assembly version by Linus (with diacriticals added)
5 : *
6 : * Some additional features added by Christoph Niemann (ChN), March 1993
7 : *
8 : * Loadable keymaps by Risto Kankkunen, May 1993
9 : *
10 : * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 : * Added decr/incr_console, dynamic keymaps, Unicode support,
12 : * dynamic function/string keys, led setting, Sept 1994
13 : * `Sticky' modifier keys, 951006.
14 : *
15 : * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 : *
17 : * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 : * Merge with the m68k keyboard driver and split-off of the PC low-level
19 : * parts by Geert Uytterhoeven, May 1997
20 : *
21 : * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 : * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 : * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 : */
25 :
26 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 :
28 : #include <linux/consolemap.h>
29 : #include <linux/init.h>
30 : #include <linux/input.h>
31 : #include <linux/jiffies.h>
32 : #include <linux/kbd_diacr.h>
33 : #include <linux/kbd_kern.h>
34 : #include <linux/leds.h>
35 : #include <linux/mm.h>
36 : #include <linux/module.h>
37 : #include <linux/nospec.h>
38 : #include <linux/notifier.h>
39 : #include <linux/reboot.h>
40 : #include <linux/sched/debug.h>
41 : #include <linux/sched/signal.h>
42 : #include <linux/slab.h>
43 : #include <linux/spinlock.h>
44 : #include <linux/string.h>
45 : #include <linux/tty_flip.h>
46 : #include <linux/tty.h>
47 : #include <linux/uaccess.h>
48 : #include <linux/vt_kern.h>
49 :
50 : #include <asm/irq_regs.h>
51 :
52 : /*
53 : * Exported functions/variables
54 : */
55 :
56 : #define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57 :
58 : #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59 : #include <asm/kbdleds.h>
60 : #else
61 : static inline int kbd_defleds(void)
62 : {
63 : return 0;
64 : }
65 : #endif
66 :
67 : #define KBD_DEFLOCK 0
68 :
69 : /*
70 : * Handler Tables.
71 : */
72 :
73 : #define K_HANDLERS\
74 : k_self, k_fn, k_spec, k_pad,\
75 : k_dead, k_cons, k_cur, k_shift,\
76 : k_meta, k_ascii, k_lock, k_lowercase,\
77 : k_slock, k_dead2, k_brl, k_ignore
78 :
79 : typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 : char up_flag);
81 : static k_handler_fn K_HANDLERS;
82 : static k_handler_fn *k_handler[16] = { K_HANDLERS };
83 :
84 : #define FN_HANDLERS\
85 : fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 : fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 : fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 : fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 : fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90 :
91 : typedef void (fn_handler_fn)(struct vc_data *vc);
92 : static fn_handler_fn FN_HANDLERS;
93 : static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94 :
95 : /*
96 : * Variables exported for vt_ioctl.c
97 : */
98 :
99 : struct vt_spawn_console vt_spawn_con = {
100 : .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 : .pid = NULL,
102 : .sig = 0,
103 : };
104 :
105 :
106 : /*
107 : * Internal Data.
108 : */
109 :
110 : static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111 : static struct kbd_struct *kbd = kbd_table;
112 :
113 : /* maximum values each key_handler can handle */
114 : static const unsigned char max_vals[] = {
115 : [ KT_LATIN ] = 255,
116 : [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 : [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 : [ KT_PAD ] = NR_PAD - 1,
119 : [ KT_DEAD ] = NR_DEAD - 1,
120 : [ KT_CONS ] = 255,
121 : [ KT_CUR ] = 3,
122 : [ KT_SHIFT ] = NR_SHIFT - 1,
123 : [ KT_META ] = 255,
124 : [ KT_ASCII ] = NR_ASCII - 1,
125 : [ KT_LOCK ] = NR_LOCK - 1,
126 : [ KT_LETTER ] = 255,
127 : [ KT_SLOCK ] = NR_LOCK - 1,
128 : [ KT_DEAD2 ] = 255,
129 : [ KT_BRL ] = NR_BRL - 1,
130 : };
131 :
132 : static const int NR_TYPES = ARRAY_SIZE(max_vals);
133 :
134 : static void kbd_bh(struct tasklet_struct *unused);
135 : static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136 :
137 : static struct input_handler kbd_handler;
138 : static DEFINE_SPINLOCK(kbd_event_lock);
139 : static DEFINE_SPINLOCK(led_lock);
140 : static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141 : static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142 : static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143 : static bool dead_key_next;
144 :
145 : /* Handles a number being assembled on the number pad */
146 : static bool npadch_active;
147 : static unsigned int npadch_value;
148 :
149 : static unsigned int diacr;
150 : static bool rep; /* flag telling character repeat */
151 :
152 : static int shift_state = 0;
153 :
154 : static unsigned int ledstate = -1U; /* undefined */
155 : static unsigned char ledioctl;
156 :
157 : /*
158 : * Notifier list for console keyboard events
159 : */
160 : static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
161 :
162 0 : int register_keyboard_notifier(struct notifier_block *nb)
163 : {
164 0 : return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
165 : }
166 : EXPORT_SYMBOL_GPL(register_keyboard_notifier);
167 :
168 0 : int unregister_keyboard_notifier(struct notifier_block *nb)
169 : {
170 0 : return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
171 : }
172 : EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
173 :
174 : /*
175 : * Translation of scancodes to keycodes. We set them on only the first
176 : * keyboard in the list that accepts the scancode and keycode.
177 : * Explanation for not choosing the first attached keyboard anymore:
178 : * USB keyboards for example have two event devices: one for all "normal"
179 : * keys and one for extra function keys (like "volume up", "make coffee",
180 : * etc.). So this means that scancodes for the extra function keys won't
181 : * be valid for the first event device, but will be for the second.
182 : */
183 :
184 : struct getset_keycode_data {
185 : struct input_keymap_entry ke;
186 : int error;
187 : };
188 :
189 0 : static int getkeycode_helper(struct input_handle *handle, void *data)
190 : {
191 0 : struct getset_keycode_data *d = data;
192 :
193 0 : d->error = input_get_keycode(handle->dev, &d->ke);
194 :
195 0 : return d->error == 0; /* stop as soon as we successfully get one */
196 : }
197 :
198 0 : static int getkeycode(unsigned int scancode)
199 : {
200 0 : struct getset_keycode_data d = {
201 : .ke = {
202 : .flags = 0,
203 : .len = sizeof(scancode),
204 : .keycode = 0,
205 : },
206 : .error = -ENODEV,
207 : };
208 :
209 0 : memcpy(d.ke.scancode, &scancode, sizeof(scancode));
210 :
211 0 : input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
212 :
213 0 : return d.error ?: d.ke.keycode;
214 : }
215 :
216 0 : static int setkeycode_helper(struct input_handle *handle, void *data)
217 : {
218 0 : struct getset_keycode_data *d = data;
219 :
220 0 : d->error = input_set_keycode(handle->dev, &d->ke);
221 :
222 0 : return d->error == 0; /* stop as soon as we successfully set one */
223 : }
224 :
225 0 : static int setkeycode(unsigned int scancode, unsigned int keycode)
226 : {
227 0 : struct getset_keycode_data d = {
228 : .ke = {
229 : .flags = 0,
230 : .len = sizeof(scancode),
231 : .keycode = keycode,
232 : },
233 : .error = -ENODEV,
234 : };
235 :
236 0 : memcpy(d.ke.scancode, &scancode, sizeof(scancode));
237 :
238 0 : input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
239 :
240 0 : return d.error;
241 : }
242 :
243 : /*
244 : * Making beeps and bells. Note that we prefer beeps to bells, but when
245 : * shutting the sound off we do both.
246 : */
247 :
248 0 : static int kd_sound_helper(struct input_handle *handle, void *data)
249 : {
250 0 : unsigned int *hz = data;
251 0 : struct input_dev *dev = handle->dev;
252 :
253 0 : if (test_bit(EV_SND, dev->evbit)) {
254 0 : if (test_bit(SND_TONE, dev->sndbit)) {
255 0 : input_inject_event(handle, EV_SND, SND_TONE, *hz);
256 0 : if (*hz)
257 : return 0;
258 : }
259 0 : if (test_bit(SND_BELL, dev->sndbit))
260 0 : input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
261 : }
262 :
263 : return 0;
264 : }
265 :
266 0 : static void kd_nosound(struct timer_list *unused)
267 : {
268 0 : static unsigned int zero;
269 :
270 0 : input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
271 0 : }
272 :
273 : static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
274 :
275 0 : void kd_mksound(unsigned int hz, unsigned int ticks)
276 : {
277 0 : del_timer_sync(&kd_mksound_timer);
278 :
279 0 : input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
280 :
281 0 : if (hz && ticks)
282 0 : mod_timer(&kd_mksound_timer, jiffies + ticks);
283 0 : }
284 : EXPORT_SYMBOL(kd_mksound);
285 :
286 : /*
287 : * Setting the keyboard rate.
288 : */
289 :
290 0 : static int kbd_rate_helper(struct input_handle *handle, void *data)
291 : {
292 0 : struct input_dev *dev = handle->dev;
293 0 : struct kbd_repeat *rpt = data;
294 :
295 0 : if (test_bit(EV_REP, dev->evbit)) {
296 :
297 0 : if (rpt[0].delay > 0)
298 0 : input_inject_event(handle,
299 : EV_REP, REP_DELAY, rpt[0].delay);
300 0 : if (rpt[0].period > 0)
301 0 : input_inject_event(handle,
302 : EV_REP, REP_PERIOD, rpt[0].period);
303 :
304 0 : rpt[1].delay = dev->rep[REP_DELAY];
305 0 : rpt[1].period = dev->rep[REP_PERIOD];
306 : }
307 :
308 0 : return 0;
309 : }
310 :
311 0 : int kbd_rate(struct kbd_repeat *rpt)
312 : {
313 0 : struct kbd_repeat data[2] = { *rpt };
314 :
315 0 : input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
316 0 : *rpt = data[1]; /* Copy currently used settings */
317 :
318 0 : return 0;
319 : }
320 :
321 : /*
322 : * Helper Functions.
323 : */
324 0 : static void put_queue(struct vc_data *vc, int ch)
325 : {
326 0 : tty_insert_flip_char(&vc->port, ch, 0);
327 0 : tty_schedule_flip(&vc->port);
328 0 : }
329 :
330 0 : static void puts_queue(struct vc_data *vc, const char *cp)
331 : {
332 0 : tty_insert_flip_string(&vc->port, cp, strlen(cp));
333 0 : tty_schedule_flip(&vc->port);
334 0 : }
335 :
336 0 : static void applkey(struct vc_data *vc, int key, char mode)
337 : {
338 0 : static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
339 :
340 0 : buf[1] = (mode ? 'O' : '[');
341 0 : buf[2] = key;
342 0 : puts_queue(vc, buf);
343 0 : }
344 :
345 : /*
346 : * Many other routines do put_queue, but I think either
347 : * they produce ASCII, or they produce some user-assigned
348 : * string, and in both cases we might assume that it is
349 : * in utf-8 already.
350 : */
351 0 : static void to_utf8(struct vc_data *vc, uint c)
352 : {
353 0 : if (c < 0x80)
354 : /* 0******* */
355 0 : put_queue(vc, c);
356 0 : else if (c < 0x800) {
357 : /* 110***** 10****** */
358 0 : put_queue(vc, 0xc0 | (c >> 6));
359 0 : put_queue(vc, 0x80 | (c & 0x3f));
360 0 : } else if (c < 0x10000) {
361 0 : if (c >= 0xD800 && c < 0xE000)
362 : return;
363 0 : if (c == 0xFFFF)
364 : return;
365 : /* 1110**** 10****** 10****** */
366 0 : put_queue(vc, 0xe0 | (c >> 12));
367 0 : put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
368 0 : put_queue(vc, 0x80 | (c & 0x3f));
369 0 : } else if (c < 0x110000) {
370 : /* 11110*** 10****** 10****** 10****** */
371 0 : put_queue(vc, 0xf0 | (c >> 18));
372 0 : put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
373 0 : put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
374 0 : put_queue(vc, 0x80 | (c & 0x3f));
375 : }
376 : }
377 :
378 : /* FIXME: review locking for vt.c callers */
379 0 : static void set_leds(void)
380 : {
381 0 : tasklet_schedule(&keyboard_tasklet);
382 : }
383 :
384 : /*
385 : * Called after returning from RAW mode or when changing consoles - recompute
386 : * shift_down[] and shift_state from key_down[] maybe called when keymap is
387 : * undefined, so that shiftkey release is seen. The caller must hold the
388 : * kbd_event_lock.
389 : */
390 :
391 12 : static void do_compute_shiftstate(void)
392 : {
393 12 : unsigned int k, sym, val;
394 :
395 12 : shift_state = 0;
396 12 : memset(shift_down, 0, sizeof(shift_down));
397 :
398 12 : for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
399 0 : sym = U(key_maps[0][k]);
400 0 : if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
401 0 : continue;
402 :
403 0 : val = KVAL(sym);
404 0 : if (val == KVAL(K_CAPSSHIFT))
405 0 : val = KVAL(K_SHIFT);
406 :
407 0 : shift_down[val]++;
408 0 : shift_state |= BIT(val);
409 : }
410 12 : }
411 :
412 : /* We still have to export this method to vt.c */
413 0 : void vt_set_leds_compute_shiftstate(void)
414 : {
415 0 : unsigned long flags;
416 :
417 0 : set_leds();
418 :
419 0 : spin_lock_irqsave(&kbd_event_lock, flags);
420 0 : do_compute_shiftstate();
421 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
422 0 : }
423 :
424 : /*
425 : * We have a combining character DIACR here, followed by the character CH.
426 : * If the combination occurs in the table, return the corresponding value.
427 : * Otherwise, if CH is a space or equals DIACR, return DIACR.
428 : * Otherwise, conclude that DIACR was not combining after all,
429 : * queue it and return CH.
430 : */
431 0 : static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
432 : {
433 0 : unsigned int d = diacr;
434 0 : unsigned int i;
435 :
436 0 : diacr = 0;
437 :
438 0 : if ((d & ~0xff) == BRL_UC_ROW) {
439 0 : if ((ch & ~0xff) == BRL_UC_ROW)
440 0 : return d | ch;
441 : } else {
442 0 : for (i = 0; i < accent_table_size; i++)
443 0 : if (accent_table[i].diacr == d && accent_table[i].base == ch)
444 0 : return accent_table[i].result;
445 : }
446 :
447 0 : if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
448 : return d;
449 :
450 0 : if (kbd->kbdmode == VC_UNICODE)
451 0 : to_utf8(vc, d);
452 : else {
453 0 : int c = conv_uni_to_8bit(d);
454 0 : if (c != -1)
455 0 : put_queue(vc, c);
456 : }
457 :
458 : return ch;
459 : }
460 :
461 : /*
462 : * Special function handlers
463 : */
464 0 : static void fn_enter(struct vc_data *vc)
465 : {
466 0 : if (diacr) {
467 0 : if (kbd->kbdmode == VC_UNICODE)
468 0 : to_utf8(vc, diacr);
469 : else {
470 0 : int c = conv_uni_to_8bit(diacr);
471 0 : if (c != -1)
472 0 : put_queue(vc, c);
473 : }
474 0 : diacr = 0;
475 : }
476 :
477 0 : put_queue(vc, '\r');
478 0 : if (vc_kbd_mode(kbd, VC_CRLF))
479 0 : put_queue(vc, '\n');
480 0 : }
481 :
482 0 : static void fn_caps_toggle(struct vc_data *vc)
483 : {
484 0 : if (rep)
485 : return;
486 :
487 0 : chg_vc_kbd_led(kbd, VC_CAPSLOCK);
488 : }
489 :
490 0 : static void fn_caps_on(struct vc_data *vc)
491 : {
492 0 : if (rep)
493 : return;
494 :
495 0 : set_vc_kbd_led(kbd, VC_CAPSLOCK);
496 : }
497 :
498 0 : static void fn_show_ptregs(struct vc_data *vc)
499 : {
500 0 : struct pt_regs *regs = get_irq_regs();
501 :
502 0 : if (regs)
503 0 : show_regs(regs);
504 0 : }
505 :
506 0 : static void fn_hold(struct vc_data *vc)
507 : {
508 0 : struct tty_struct *tty = vc->port.tty;
509 :
510 0 : if (rep || !tty)
511 : return;
512 :
513 : /*
514 : * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
515 : * these routines are also activated by ^S/^Q.
516 : * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
517 : */
518 0 : if (tty->stopped)
519 0 : start_tty(tty);
520 : else
521 0 : stop_tty(tty);
522 : }
523 :
524 0 : static void fn_num(struct vc_data *vc)
525 : {
526 0 : if (vc_kbd_mode(kbd, VC_APPLIC))
527 0 : applkey(vc, 'P', 1);
528 : else
529 0 : fn_bare_num(vc);
530 0 : }
531 :
532 : /*
533 : * Bind this to Shift-NumLock if you work in application keypad mode
534 : * but want to be able to change the NumLock flag.
535 : * Bind this to NumLock if you prefer that the NumLock key always
536 : * changes the NumLock flag.
537 : */
538 0 : static void fn_bare_num(struct vc_data *vc)
539 : {
540 0 : if (!rep)
541 0 : chg_vc_kbd_led(kbd, VC_NUMLOCK);
542 0 : }
543 :
544 0 : static void fn_lastcons(struct vc_data *vc)
545 : {
546 : /* switch to the last used console, ChN */
547 0 : set_console(last_console);
548 0 : }
549 :
550 0 : static void fn_dec_console(struct vc_data *vc)
551 : {
552 0 : int i, cur = fg_console;
553 :
554 : /* Currently switching? Queue this next switch relative to that. */
555 0 : if (want_console != -1)
556 0 : cur = want_console;
557 :
558 0 : for (i = cur - 1; i != cur; i--) {
559 0 : if (i == -1)
560 0 : i = MAX_NR_CONSOLES - 1;
561 0 : if (vc_cons_allocated(i))
562 : break;
563 : }
564 0 : set_console(i);
565 0 : }
566 :
567 0 : static void fn_inc_console(struct vc_data *vc)
568 : {
569 0 : int i, cur = fg_console;
570 :
571 : /* Currently switching? Queue this next switch relative to that. */
572 0 : if (want_console != -1)
573 0 : cur = want_console;
574 :
575 0 : for (i = cur+1; i != cur; i++) {
576 0 : if (i == MAX_NR_CONSOLES)
577 0 : i = 0;
578 0 : if (vc_cons_allocated(i))
579 : break;
580 : }
581 0 : set_console(i);
582 0 : }
583 :
584 0 : static void fn_send_intr(struct vc_data *vc)
585 : {
586 0 : tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
587 0 : tty_schedule_flip(&vc->port);
588 0 : }
589 :
590 0 : static void fn_scroll_forw(struct vc_data *vc)
591 : {
592 0 : scrollfront(vc, 0);
593 0 : }
594 :
595 0 : static void fn_scroll_back(struct vc_data *vc)
596 : {
597 0 : scrollback(vc);
598 0 : }
599 :
600 0 : static void fn_show_mem(struct vc_data *vc)
601 : {
602 0 : show_mem(0, NULL);
603 0 : }
604 :
605 0 : static void fn_show_state(struct vc_data *vc)
606 : {
607 0 : show_state();
608 0 : }
609 :
610 0 : static void fn_boot_it(struct vc_data *vc)
611 : {
612 0 : ctrl_alt_del();
613 0 : }
614 :
615 0 : static void fn_compose(struct vc_data *vc)
616 : {
617 0 : dead_key_next = true;
618 0 : }
619 :
620 0 : static void fn_spawn_con(struct vc_data *vc)
621 : {
622 0 : spin_lock(&vt_spawn_con.lock);
623 0 : if (vt_spawn_con.pid)
624 0 : if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
625 0 : put_pid(vt_spawn_con.pid);
626 0 : vt_spawn_con.pid = NULL;
627 : }
628 0 : spin_unlock(&vt_spawn_con.lock);
629 0 : }
630 :
631 0 : static void fn_SAK(struct vc_data *vc)
632 : {
633 0 : struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
634 0 : schedule_work(SAK_work);
635 0 : }
636 :
637 0 : static void fn_null(struct vc_data *vc)
638 : {
639 0 : do_compute_shiftstate();
640 0 : }
641 :
642 : /*
643 : * Special key handlers
644 : */
645 0 : static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
646 : {
647 0 : }
648 :
649 0 : static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
650 : {
651 0 : if (up_flag)
652 : return;
653 0 : if (value >= ARRAY_SIZE(fn_handler))
654 : return;
655 0 : if ((kbd->kbdmode == VC_RAW ||
656 0 : kbd->kbdmode == VC_MEDIUMRAW ||
657 0 : kbd->kbdmode == VC_OFF) &&
658 : value != KVAL(K_SAK))
659 : return; /* SAK is allowed even in raw mode */
660 0 : fn_handler[value](vc);
661 : }
662 :
663 0 : static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
664 : {
665 0 : pr_err("k_lowercase was called - impossible\n");
666 0 : }
667 :
668 0 : static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
669 : {
670 0 : if (up_flag)
671 : return; /* no action, if this is a key release */
672 :
673 0 : if (diacr)
674 0 : value = handle_diacr(vc, value);
675 :
676 0 : if (dead_key_next) {
677 0 : dead_key_next = false;
678 0 : diacr = value;
679 0 : return;
680 : }
681 0 : if (kbd->kbdmode == VC_UNICODE)
682 0 : to_utf8(vc, value);
683 : else {
684 0 : int c = conv_uni_to_8bit(value);
685 0 : if (c != -1)
686 0 : put_queue(vc, c);
687 : }
688 : }
689 :
690 : /*
691 : * Handle dead key. Note that we now may have several
692 : * dead keys modifying the same character. Very useful
693 : * for Vietnamese.
694 : */
695 0 : static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
696 : {
697 0 : if (up_flag)
698 : return;
699 :
700 0 : diacr = (diacr ? handle_diacr(vc, value) : value);
701 : }
702 :
703 0 : static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
704 : {
705 0 : k_unicode(vc, conv_8bit_to_uni(value), up_flag);
706 0 : }
707 :
708 0 : static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
709 : {
710 0 : k_deadunicode(vc, value, up_flag);
711 0 : }
712 :
713 : /*
714 : * Obsolete - for backwards compatibility only
715 : */
716 0 : static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
717 : {
718 0 : static const unsigned char ret_diacr[NR_DEAD] = {
719 : '`', /* dead_grave */
720 : '\'', /* dead_acute */
721 : '^', /* dead_circumflex */
722 : '~', /* dead_tilda */
723 : '"', /* dead_diaeresis */
724 : ',', /* dead_cedilla */
725 : '_', /* dead_macron */
726 : 'U', /* dead_breve */
727 : '.', /* dead_abovedot */
728 : '*', /* dead_abovering */
729 : '=', /* dead_doubleacute */
730 : 'c', /* dead_caron */
731 : 'k', /* dead_ogonek */
732 : 'i', /* dead_iota */
733 : '#', /* dead_voiced_sound */
734 : 'o', /* dead_semivoiced_sound */
735 : '!', /* dead_belowdot */
736 : '?', /* dead_hook */
737 : '+', /* dead_horn */
738 : '-', /* dead_stroke */
739 : ')', /* dead_abovecomma */
740 : '(', /* dead_abovereversedcomma */
741 : ':', /* dead_doublegrave */
742 : 'n', /* dead_invertedbreve */
743 : ';', /* dead_belowcomma */
744 : '$', /* dead_currency */
745 : '@', /* dead_greek */
746 : };
747 :
748 0 : k_deadunicode(vc, ret_diacr[value], up_flag);
749 0 : }
750 :
751 0 : static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
752 : {
753 0 : if (up_flag)
754 : return;
755 :
756 0 : set_console(value);
757 : }
758 :
759 0 : static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
760 : {
761 0 : if (up_flag)
762 : return;
763 :
764 0 : if ((unsigned)value < ARRAY_SIZE(func_table)) {
765 0 : unsigned long flags;
766 :
767 0 : spin_lock_irqsave(&func_buf_lock, flags);
768 0 : if (func_table[value])
769 0 : puts_queue(vc, func_table[value]);
770 0 : spin_unlock_irqrestore(&func_buf_lock, flags);
771 :
772 : } else
773 : pr_err("k_fn called with value=%d\n", value);
774 : }
775 :
776 0 : static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
777 : {
778 0 : static const char cur_chars[] = "BDCA";
779 :
780 0 : if (up_flag)
781 : return;
782 :
783 0 : applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
784 : }
785 :
786 0 : static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
787 : {
788 0 : static const char pad_chars[] = "0123456789+-*/\015,.?()#";
789 0 : static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
790 :
791 0 : if (up_flag)
792 : return; /* no action, if this is a key release */
793 :
794 : /* kludge... shift forces cursor/number keys */
795 0 : if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
796 0 : applkey(vc, app_map[value], 1);
797 0 : return;
798 : }
799 :
800 0 : if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
801 :
802 0 : switch (value) {
803 0 : case KVAL(K_PCOMMA):
804 : case KVAL(K_PDOT):
805 0 : k_fn(vc, KVAL(K_REMOVE), 0);
806 0 : return;
807 0 : case KVAL(K_P0):
808 0 : k_fn(vc, KVAL(K_INSERT), 0);
809 0 : return;
810 0 : case KVAL(K_P1):
811 0 : k_fn(vc, KVAL(K_SELECT), 0);
812 0 : return;
813 0 : case KVAL(K_P2):
814 0 : k_cur(vc, KVAL(K_DOWN), 0);
815 0 : return;
816 0 : case KVAL(K_P3):
817 0 : k_fn(vc, KVAL(K_PGDN), 0);
818 0 : return;
819 0 : case KVAL(K_P4):
820 0 : k_cur(vc, KVAL(K_LEFT), 0);
821 0 : return;
822 0 : case KVAL(K_P6):
823 0 : k_cur(vc, KVAL(K_RIGHT), 0);
824 0 : return;
825 0 : case KVAL(K_P7):
826 0 : k_fn(vc, KVAL(K_FIND), 0);
827 0 : return;
828 0 : case KVAL(K_P8):
829 0 : k_cur(vc, KVAL(K_UP), 0);
830 0 : return;
831 0 : case KVAL(K_P9):
832 0 : k_fn(vc, KVAL(K_PGUP), 0);
833 0 : return;
834 0 : case KVAL(K_P5):
835 0 : applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
836 0 : return;
837 : }
838 : }
839 :
840 0 : put_queue(vc, pad_chars[value]);
841 0 : if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
842 0 : put_queue(vc, '\n');
843 : }
844 :
845 0 : static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
846 : {
847 0 : int old_state = shift_state;
848 :
849 0 : if (rep)
850 : return;
851 : /*
852 : * Mimic typewriter:
853 : * a CapsShift key acts like Shift but undoes CapsLock
854 : */
855 0 : if (value == KVAL(K_CAPSSHIFT)) {
856 0 : value = KVAL(K_SHIFT);
857 0 : if (!up_flag)
858 0 : clr_vc_kbd_led(kbd, VC_CAPSLOCK);
859 : }
860 :
861 0 : if (up_flag) {
862 : /*
863 : * handle the case that two shift or control
864 : * keys are depressed simultaneously
865 : */
866 0 : if (shift_down[value])
867 0 : shift_down[value]--;
868 : } else
869 0 : shift_down[value]++;
870 :
871 0 : if (shift_down[value])
872 0 : shift_state |= BIT(value);
873 : else
874 0 : shift_state &= ~BIT(value);
875 :
876 : /* kludge */
877 0 : if (up_flag && shift_state != old_state && npadch_active) {
878 0 : if (kbd->kbdmode == VC_UNICODE)
879 0 : to_utf8(vc, npadch_value);
880 : else
881 0 : put_queue(vc, npadch_value & 0xff);
882 0 : npadch_active = false;
883 : }
884 : }
885 :
886 0 : static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
887 : {
888 0 : if (up_flag)
889 : return;
890 :
891 0 : if (vc_kbd_mode(kbd, VC_META)) {
892 0 : put_queue(vc, '\033');
893 0 : put_queue(vc, value);
894 : } else
895 0 : put_queue(vc, value | BIT(7));
896 : }
897 :
898 0 : static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
899 : {
900 0 : unsigned int base;
901 :
902 0 : if (up_flag)
903 : return;
904 :
905 0 : if (value < 10) {
906 : /* decimal input of code, while Alt depressed */
907 : base = 10;
908 : } else {
909 : /* hexadecimal input of code, while AltGr depressed */
910 0 : value -= 10;
911 0 : base = 16;
912 : }
913 :
914 0 : if (!npadch_active) {
915 0 : npadch_value = 0;
916 0 : npadch_active = true;
917 : }
918 :
919 0 : npadch_value = npadch_value * base + value;
920 : }
921 :
922 0 : static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
923 : {
924 0 : if (up_flag || rep)
925 : return;
926 :
927 0 : chg_vc_kbd_lock(kbd, value);
928 : }
929 :
930 0 : static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
931 : {
932 0 : k_shift(vc, value, up_flag);
933 0 : if (up_flag || rep)
934 : return;
935 :
936 0 : chg_vc_kbd_slock(kbd, value);
937 : /* try to make Alt, oops, AltGr and such work */
938 0 : if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
939 0 : kbd->slockstate = 0;
940 0 : chg_vc_kbd_slock(kbd, value);
941 : }
942 : }
943 :
944 : /* by default, 300ms interval for combination release */
945 : static unsigned brl_timeout = 300;
946 : MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
947 : module_param(brl_timeout, uint, 0644);
948 :
949 : static unsigned brl_nbchords = 1;
950 : MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
951 : module_param(brl_nbchords, uint, 0644);
952 :
953 0 : static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
954 : {
955 0 : static unsigned long chords;
956 0 : static unsigned committed;
957 :
958 0 : if (!brl_nbchords)
959 0 : k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
960 : else {
961 0 : committed |= pattern;
962 0 : chords++;
963 0 : if (chords == brl_nbchords) {
964 0 : k_unicode(vc, BRL_UC_ROW | committed, up_flag);
965 0 : chords = 0;
966 0 : committed = 0;
967 : }
968 : }
969 0 : }
970 :
971 0 : static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
972 : {
973 0 : static unsigned pressed, committing;
974 0 : static unsigned long releasestart;
975 :
976 0 : if (kbd->kbdmode != VC_UNICODE) {
977 0 : if (!up_flag)
978 0 : pr_warn("keyboard mode must be unicode for braille patterns\n");
979 0 : return;
980 : }
981 :
982 0 : if (!value) {
983 0 : k_unicode(vc, BRL_UC_ROW, up_flag);
984 0 : return;
985 : }
986 :
987 0 : if (value > 8)
988 : return;
989 :
990 0 : if (!up_flag) {
991 0 : pressed |= BIT(value - 1);
992 0 : if (!brl_timeout)
993 0 : committing = pressed;
994 0 : } else if (brl_timeout) {
995 0 : if (!committing ||
996 0 : time_after(jiffies,
997 : releasestart + msecs_to_jiffies(brl_timeout))) {
998 0 : committing = pressed;
999 0 : releasestart = jiffies;
1000 : }
1001 0 : pressed &= ~BIT(value - 1);
1002 0 : if (!pressed && committing) {
1003 0 : k_brlcommit(vc, committing, 0);
1004 0 : committing = 0;
1005 : }
1006 : } else {
1007 0 : if (committing) {
1008 0 : k_brlcommit(vc, committing, 0);
1009 0 : committing = 0;
1010 : }
1011 0 : pressed &= ~BIT(value - 1);
1012 : }
1013 : }
1014 :
1015 : #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1016 :
1017 : struct kbd_led_trigger {
1018 : struct led_trigger trigger;
1019 : unsigned int mask;
1020 : };
1021 :
1022 : static int kbd_led_trigger_activate(struct led_classdev *cdev)
1023 : {
1024 : struct kbd_led_trigger *trigger =
1025 : container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1026 :
1027 : tasklet_disable(&keyboard_tasklet);
1028 : if (ledstate != -1U)
1029 : led_trigger_event(&trigger->trigger,
1030 : ledstate & trigger->mask ?
1031 : LED_FULL : LED_OFF);
1032 : tasklet_enable(&keyboard_tasklet);
1033 :
1034 : return 0;
1035 : }
1036 :
1037 : #define KBD_LED_TRIGGER(_led_bit, _name) { \
1038 : .trigger = { \
1039 : .name = _name, \
1040 : .activate = kbd_led_trigger_activate, \
1041 : }, \
1042 : .mask = BIT(_led_bit), \
1043 : }
1044 :
1045 : #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1046 : KBD_LED_TRIGGER((_led_bit) + 8, _name)
1047 :
1048 : static struct kbd_led_trigger kbd_led_triggers[] = {
1049 : KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1050 : KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1051 : KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1052 : KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1053 :
1054 : KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1055 : KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1056 : KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1057 : KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1058 : KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1059 : KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1060 : KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1061 : KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1062 : };
1063 :
1064 : static void kbd_propagate_led_state(unsigned int old_state,
1065 : unsigned int new_state)
1066 : {
1067 : struct kbd_led_trigger *trigger;
1068 : unsigned int changed = old_state ^ new_state;
1069 : int i;
1070 :
1071 : for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1072 : trigger = &kbd_led_triggers[i];
1073 :
1074 : if (changed & trigger->mask)
1075 : led_trigger_event(&trigger->trigger,
1076 : new_state & trigger->mask ?
1077 : LED_FULL : LED_OFF);
1078 : }
1079 : }
1080 :
1081 : static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1082 : {
1083 : unsigned int led_state = *(unsigned int *)data;
1084 :
1085 : if (test_bit(EV_LED, handle->dev->evbit))
1086 : kbd_propagate_led_state(~led_state, led_state);
1087 :
1088 : return 0;
1089 : }
1090 :
1091 : static void kbd_init_leds(void)
1092 : {
1093 : int error;
1094 : int i;
1095 :
1096 : for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1097 : error = led_trigger_register(&kbd_led_triggers[i].trigger);
1098 : if (error)
1099 : pr_err("error %d while registering trigger %s\n",
1100 : error, kbd_led_triggers[i].trigger.name);
1101 : }
1102 : }
1103 :
1104 : #else
1105 :
1106 0 : static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1107 : {
1108 0 : unsigned int leds = *(unsigned int *)data;
1109 :
1110 0 : if (test_bit(EV_LED, handle->dev->evbit)) {
1111 0 : input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1112 0 : input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1113 0 : input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1114 0 : input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1115 : }
1116 :
1117 0 : return 0;
1118 : }
1119 :
1120 1 : static void kbd_propagate_led_state(unsigned int old_state,
1121 : unsigned int new_state)
1122 : {
1123 1 : input_handler_for_each_handle(&kbd_handler, &new_state,
1124 : kbd_update_leds_helper);
1125 : }
1126 :
1127 1 : static void kbd_init_leds(void)
1128 : {
1129 1 : }
1130 :
1131 : #endif
1132 :
1133 : /*
1134 : * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1135 : * or (ii) whatever pattern of lights people want to show using KDSETLED,
1136 : * or (iii) specified bits of specified words in kernel memory.
1137 : */
1138 0 : static unsigned char getledstate(void)
1139 : {
1140 0 : return ledstate & 0xff;
1141 : }
1142 :
1143 0 : void setledstate(struct kbd_struct *kb, unsigned int led)
1144 : {
1145 0 : unsigned long flags;
1146 0 : spin_lock_irqsave(&led_lock, flags);
1147 0 : if (!(led & ~7)) {
1148 0 : ledioctl = led;
1149 0 : kb->ledmode = LED_SHOW_IOCTL;
1150 : } else
1151 0 : kb->ledmode = LED_SHOW_FLAGS;
1152 :
1153 0 : set_leds();
1154 0 : spin_unlock_irqrestore(&led_lock, flags);
1155 0 : }
1156 :
1157 1 : static inline unsigned char getleds(void)
1158 : {
1159 1 : struct kbd_struct *kb = kbd_table + fg_console;
1160 :
1161 1 : if (kb->ledmode == LED_SHOW_IOCTL)
1162 0 : return ledioctl;
1163 :
1164 1 : return kb->ledflagstate;
1165 : }
1166 :
1167 : /**
1168 : * vt_get_leds - helper for braille console
1169 : * @console: console to read
1170 : * @flag: flag we want to check
1171 : *
1172 : * Check the status of a keyboard led flag and report it back
1173 : */
1174 0 : int vt_get_leds(int console, int flag)
1175 : {
1176 0 : struct kbd_struct *kb = kbd_table + console;
1177 0 : int ret;
1178 0 : unsigned long flags;
1179 :
1180 0 : spin_lock_irqsave(&led_lock, flags);
1181 0 : ret = vc_kbd_led(kb, flag);
1182 0 : spin_unlock_irqrestore(&led_lock, flags);
1183 :
1184 0 : return ret;
1185 : }
1186 : EXPORT_SYMBOL_GPL(vt_get_leds);
1187 :
1188 : /**
1189 : * vt_set_led_state - set LED state of a console
1190 : * @console: console to set
1191 : * @leds: LED bits
1192 : *
1193 : * Set the LEDs on a console. This is a wrapper for the VT layer
1194 : * so that we can keep kbd knowledge internal
1195 : */
1196 0 : void vt_set_led_state(int console, int leds)
1197 : {
1198 0 : struct kbd_struct *kb = kbd_table + console;
1199 0 : setledstate(kb, leds);
1200 0 : }
1201 :
1202 : /**
1203 : * vt_kbd_con_start - Keyboard side of console start
1204 : * @console: console
1205 : *
1206 : * Handle console start. This is a wrapper for the VT layer
1207 : * so that we can keep kbd knowledge internal
1208 : *
1209 : * FIXME: We eventually need to hold the kbd lock here to protect
1210 : * the LED updating. We can't do it yet because fn_hold calls stop_tty
1211 : * and start_tty under the kbd_event_lock, while normal tty paths
1212 : * don't hold the lock. We probably need to split out an LED lock
1213 : * but not during an -rc release!
1214 : */
1215 0 : void vt_kbd_con_start(int console)
1216 : {
1217 0 : struct kbd_struct *kb = kbd_table + console;
1218 0 : unsigned long flags;
1219 0 : spin_lock_irqsave(&led_lock, flags);
1220 0 : clr_vc_kbd_led(kb, VC_SCROLLOCK);
1221 0 : set_leds();
1222 0 : spin_unlock_irqrestore(&led_lock, flags);
1223 0 : }
1224 :
1225 : /**
1226 : * vt_kbd_con_stop - Keyboard side of console stop
1227 : * @console: console
1228 : *
1229 : * Handle console stop. This is a wrapper for the VT layer
1230 : * so that we can keep kbd knowledge internal
1231 : */
1232 0 : void vt_kbd_con_stop(int console)
1233 : {
1234 0 : struct kbd_struct *kb = kbd_table + console;
1235 0 : unsigned long flags;
1236 0 : spin_lock_irqsave(&led_lock, flags);
1237 0 : set_vc_kbd_led(kb, VC_SCROLLOCK);
1238 0 : set_leds();
1239 0 : spin_unlock_irqrestore(&led_lock, flags);
1240 0 : }
1241 :
1242 : /*
1243 : * This is the tasklet that updates LED state of LEDs using standard
1244 : * keyboard triggers. The reason we use tasklet is that we need to
1245 : * handle the scenario when keyboard handler is not registered yet
1246 : * but we already getting updates from the VT to update led state.
1247 : */
1248 1 : static void kbd_bh(struct tasklet_struct *unused)
1249 : {
1250 1 : unsigned int leds;
1251 1 : unsigned long flags;
1252 :
1253 1 : spin_lock_irqsave(&led_lock, flags);
1254 1 : leds = getleds();
1255 1 : leds |= (unsigned int)kbd->lockstate << 8;
1256 1 : spin_unlock_irqrestore(&led_lock, flags);
1257 :
1258 1 : if (leds != ledstate) {
1259 1 : kbd_propagate_led_state(ledstate, leds);
1260 1 : ledstate = leds;
1261 : }
1262 1 : }
1263 :
1264 : #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1265 : defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1266 : defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1267 : (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1268 :
1269 0 : static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1270 : {
1271 0 : if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1272 0 : return false;
1273 :
1274 0 : return dev->id.bustype == BUS_I8042 &&
1275 0 : dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1276 : }
1277 :
1278 : static const unsigned short x86_keycodes[256] =
1279 : { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1280 : 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1281 : 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1282 : 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1283 : 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1284 : 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1285 : 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1286 : 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1287 : 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1288 : 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1289 : 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1290 : 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1291 : 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1292 : 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1293 : 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1294 :
1295 : #ifdef CONFIG_SPARC
1296 : static int sparc_l1_a_state;
1297 : extern void sun_do_break(void);
1298 : #endif
1299 :
1300 0 : static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1301 : unsigned char up_flag)
1302 : {
1303 0 : int code;
1304 :
1305 0 : switch (keycode) {
1306 :
1307 0 : case KEY_PAUSE:
1308 0 : put_queue(vc, 0xe1);
1309 0 : put_queue(vc, 0x1d | up_flag);
1310 0 : put_queue(vc, 0x45 | up_flag);
1311 0 : break;
1312 :
1313 0 : case KEY_HANGEUL:
1314 0 : if (!up_flag)
1315 0 : put_queue(vc, 0xf2);
1316 : break;
1317 :
1318 0 : case KEY_HANJA:
1319 0 : if (!up_flag)
1320 0 : put_queue(vc, 0xf1);
1321 : break;
1322 :
1323 : case KEY_SYSRQ:
1324 : /*
1325 : * Real AT keyboards (that's what we're trying
1326 : * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1327 : * pressing PrtSc/SysRq alone, but simply 0x54
1328 : * when pressing Alt+PrtSc/SysRq.
1329 : */
1330 0 : if (test_bit(KEY_LEFTALT, key_down) ||
1331 0 : test_bit(KEY_RIGHTALT, key_down)) {
1332 0 : put_queue(vc, 0x54 | up_flag);
1333 : } else {
1334 0 : put_queue(vc, 0xe0);
1335 0 : put_queue(vc, 0x2a | up_flag);
1336 0 : put_queue(vc, 0xe0);
1337 0 : put_queue(vc, 0x37 | up_flag);
1338 : }
1339 : break;
1340 :
1341 0 : default:
1342 0 : if (keycode > 255)
1343 : return -1;
1344 :
1345 0 : code = x86_keycodes[keycode];
1346 0 : if (!code)
1347 : return -1;
1348 :
1349 0 : if (code & 0x100)
1350 0 : put_queue(vc, 0xe0);
1351 0 : put_queue(vc, (code & 0x7f) | up_flag);
1352 :
1353 0 : break;
1354 : }
1355 :
1356 : return 0;
1357 : }
1358 :
1359 : #else
1360 :
1361 : static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1362 : {
1363 : return false;
1364 : }
1365 :
1366 : static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1367 : {
1368 : if (keycode > 127)
1369 : return -1;
1370 :
1371 : put_queue(vc, keycode | up_flag);
1372 : return 0;
1373 : }
1374 : #endif
1375 :
1376 0 : static void kbd_rawcode(unsigned char data)
1377 : {
1378 0 : struct vc_data *vc = vc_cons[fg_console].d;
1379 :
1380 0 : kbd = kbd_table + vc->vc_num;
1381 0 : if (kbd->kbdmode == VC_RAW)
1382 0 : put_queue(vc, data);
1383 0 : }
1384 :
1385 0 : static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1386 : {
1387 0 : struct vc_data *vc = vc_cons[fg_console].d;
1388 0 : unsigned short keysym, *key_map;
1389 0 : unsigned char type;
1390 0 : bool raw_mode;
1391 0 : struct tty_struct *tty;
1392 0 : int shift_final;
1393 0 : struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1394 0 : int rc;
1395 :
1396 0 : tty = vc->port.tty;
1397 :
1398 0 : if (tty && (!tty->driver_data)) {
1399 : /* No driver data? Strange. Okay we fix it then. */
1400 0 : tty->driver_data = vc;
1401 : }
1402 :
1403 0 : kbd = kbd_table + vc->vc_num;
1404 :
1405 : #ifdef CONFIG_SPARC
1406 : if (keycode == KEY_STOP)
1407 : sparc_l1_a_state = down;
1408 : #endif
1409 :
1410 0 : rep = (down == 2);
1411 :
1412 0 : raw_mode = (kbd->kbdmode == VC_RAW);
1413 0 : if (raw_mode && !hw_raw)
1414 0 : if (emulate_raw(vc, keycode, !down << 7))
1415 0 : if (keycode < BTN_MISC && printk_ratelimit())
1416 0 : pr_warn("can't emulate rawmode for keycode %d\n",
1417 : keycode);
1418 :
1419 : #ifdef CONFIG_SPARC
1420 : if (keycode == KEY_A && sparc_l1_a_state) {
1421 : sparc_l1_a_state = false;
1422 : sun_do_break();
1423 : }
1424 : #endif
1425 :
1426 0 : if (kbd->kbdmode == VC_MEDIUMRAW) {
1427 : /*
1428 : * This is extended medium raw mode, with keys above 127
1429 : * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1430 : * the 'up' flag if needed. 0 is reserved, so this shouldn't
1431 : * interfere with anything else. The two bytes after 0 will
1432 : * always have the up flag set not to interfere with older
1433 : * applications. This allows for 16384 different keycodes,
1434 : * which should be enough.
1435 : */
1436 0 : if (keycode < 128) {
1437 0 : put_queue(vc, keycode | (!down << 7));
1438 : } else {
1439 0 : put_queue(vc, !down << 7);
1440 0 : put_queue(vc, (keycode >> 7) | BIT(7));
1441 0 : put_queue(vc, keycode | BIT(7));
1442 : }
1443 : raw_mode = true;
1444 : }
1445 :
1446 0 : assign_bit(keycode, key_down, down);
1447 :
1448 0 : if (rep &&
1449 0 : (!vc_kbd_mode(kbd, VC_REPEAT) ||
1450 0 : (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1451 : /*
1452 : * Don't repeat a key if the input buffers are not empty and the
1453 : * characters get aren't echoed locally. This makes key repeat
1454 : * usable with slow applications and under heavy loads.
1455 : */
1456 0 : return;
1457 : }
1458 :
1459 0 : param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1460 0 : param.ledstate = kbd->ledflagstate;
1461 0 : key_map = key_maps[shift_final];
1462 :
1463 0 : rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1464 : KBD_KEYCODE, ¶m);
1465 0 : if (rc == NOTIFY_STOP || !key_map) {
1466 0 : atomic_notifier_call_chain(&keyboard_notifier_list,
1467 : KBD_UNBOUND_KEYCODE, ¶m);
1468 0 : do_compute_shiftstate();
1469 0 : kbd->slockstate = 0;
1470 0 : return;
1471 : }
1472 :
1473 0 : if (keycode < NR_KEYS)
1474 0 : keysym = key_map[keycode];
1475 0 : else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1476 0 : keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1477 : else
1478 : return;
1479 :
1480 0 : type = KTYP(keysym);
1481 :
1482 0 : if (type < 0xf0) {
1483 0 : param.value = keysym;
1484 0 : rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1485 : KBD_UNICODE, ¶m);
1486 0 : if (rc != NOTIFY_STOP)
1487 0 : if (down && !raw_mode)
1488 0 : k_unicode(vc, keysym, !down);
1489 0 : return;
1490 : }
1491 :
1492 0 : type -= 0xf0;
1493 :
1494 0 : if (type == KT_LETTER) {
1495 0 : type = KT_LATIN;
1496 0 : if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1497 0 : key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1498 0 : if (key_map)
1499 0 : keysym = key_map[keycode];
1500 : }
1501 : }
1502 :
1503 0 : param.value = keysym;
1504 0 : rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1505 : KBD_KEYSYM, ¶m);
1506 0 : if (rc == NOTIFY_STOP)
1507 : return;
1508 :
1509 0 : if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1510 : return;
1511 :
1512 0 : (*k_handler[type])(vc, keysym & 0xff, !down);
1513 :
1514 0 : param.ledstate = kbd->ledflagstate;
1515 0 : atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1516 :
1517 0 : if (type != KT_SLOCK)
1518 0 : kbd->slockstate = 0;
1519 : }
1520 :
1521 0 : static void kbd_event(struct input_handle *handle, unsigned int event_type,
1522 : unsigned int event_code, int value)
1523 : {
1524 : /* We are called with interrupts disabled, just take the lock */
1525 0 : spin_lock(&kbd_event_lock);
1526 :
1527 0 : if (event_type == EV_MSC && event_code == MSC_RAW &&
1528 0 : kbd_is_hw_raw(handle->dev))
1529 0 : kbd_rawcode(value);
1530 0 : if (event_type == EV_KEY && event_code <= KEY_MAX)
1531 0 : kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1532 :
1533 0 : spin_unlock(&kbd_event_lock);
1534 :
1535 0 : tasklet_schedule(&keyboard_tasklet);
1536 0 : do_poke_blanked_console = 1;
1537 0 : schedule_console_callback();
1538 0 : }
1539 :
1540 0 : static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1541 : {
1542 0 : if (test_bit(EV_SND, dev->evbit))
1543 : return true;
1544 :
1545 0 : if (test_bit(EV_KEY, dev->evbit)) {
1546 0 : if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1547 : BTN_MISC)
1548 : return true;
1549 0 : if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1550 : KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1551 0 : return true;
1552 : }
1553 :
1554 : return false;
1555 : }
1556 :
1557 : /*
1558 : * When a keyboard (or other input device) is found, the kbd_connect
1559 : * function is called. The function then looks at the device, and if it
1560 : * likes it, it can open it and get events from it. In this (kbd_connect)
1561 : * function, we should decide which VT to bind that keyboard to initially.
1562 : */
1563 0 : static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1564 : const struct input_device_id *id)
1565 : {
1566 0 : struct input_handle *handle;
1567 0 : int error;
1568 :
1569 0 : handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1570 0 : if (!handle)
1571 : return -ENOMEM;
1572 :
1573 0 : handle->dev = dev;
1574 0 : handle->handler = handler;
1575 0 : handle->name = "kbd";
1576 :
1577 0 : error = input_register_handle(handle);
1578 0 : if (error)
1579 0 : goto err_free_handle;
1580 :
1581 0 : error = input_open_device(handle);
1582 0 : if (error)
1583 0 : goto err_unregister_handle;
1584 :
1585 : return 0;
1586 :
1587 0 : err_unregister_handle:
1588 0 : input_unregister_handle(handle);
1589 0 : err_free_handle:
1590 0 : kfree(handle);
1591 0 : return error;
1592 : }
1593 :
1594 0 : static void kbd_disconnect(struct input_handle *handle)
1595 : {
1596 0 : input_close_device(handle);
1597 0 : input_unregister_handle(handle);
1598 0 : kfree(handle);
1599 0 : }
1600 :
1601 : /*
1602 : * Start keyboard handler on the new keyboard by refreshing LED state to
1603 : * match the rest of the system.
1604 : */
1605 0 : static void kbd_start(struct input_handle *handle)
1606 : {
1607 0 : tasklet_disable(&keyboard_tasklet);
1608 :
1609 0 : if (ledstate != -1U)
1610 0 : kbd_update_leds_helper(handle, &ledstate);
1611 :
1612 0 : tasklet_enable(&keyboard_tasklet);
1613 0 : }
1614 :
1615 : static const struct input_device_id kbd_ids[] = {
1616 : {
1617 : .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1618 : .evbit = { BIT_MASK(EV_KEY) },
1619 : },
1620 :
1621 : {
1622 : .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1623 : .evbit = { BIT_MASK(EV_SND) },
1624 : },
1625 :
1626 : { }, /* Terminating entry */
1627 : };
1628 :
1629 : MODULE_DEVICE_TABLE(input, kbd_ids);
1630 :
1631 : static struct input_handler kbd_handler = {
1632 : .event = kbd_event,
1633 : .match = kbd_match,
1634 : .connect = kbd_connect,
1635 : .disconnect = kbd_disconnect,
1636 : .start = kbd_start,
1637 : .name = "kbd",
1638 : .id_table = kbd_ids,
1639 : };
1640 :
1641 1 : int __init kbd_init(void)
1642 : {
1643 1 : int i;
1644 1 : int error;
1645 :
1646 64 : for (i = 0; i < MAX_NR_CONSOLES; i++) {
1647 63 : kbd_table[i].ledflagstate = kbd_defleds();
1648 63 : kbd_table[i].default_ledflagstate = kbd_defleds();
1649 63 : kbd_table[i].ledmode = LED_SHOW_FLAGS;
1650 63 : kbd_table[i].lockstate = KBD_DEFLOCK;
1651 63 : kbd_table[i].slockstate = 0;
1652 63 : kbd_table[i].modeflags = KBD_DEFMODE;
1653 63 : kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1654 : }
1655 :
1656 1 : kbd_init_leds();
1657 :
1658 1 : error = input_register_handler(&kbd_handler);
1659 1 : if (error)
1660 : return error;
1661 :
1662 1 : tasklet_enable(&keyboard_tasklet);
1663 1 : tasklet_schedule(&keyboard_tasklet);
1664 :
1665 1 : return 0;
1666 : }
1667 :
1668 : /* Ioctl support code */
1669 :
1670 : /**
1671 : * vt_do_diacrit - diacritical table updates
1672 : * @cmd: ioctl request
1673 : * @udp: pointer to user data for ioctl
1674 : * @perm: permissions check computed by caller
1675 : *
1676 : * Update the diacritical tables atomically and safely. Lock them
1677 : * against simultaneous keypresses
1678 : */
1679 0 : int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1680 : {
1681 0 : unsigned long flags;
1682 0 : int asize;
1683 0 : int ret = 0;
1684 :
1685 0 : switch (cmd) {
1686 0 : case KDGKBDIACR:
1687 : {
1688 0 : struct kbdiacrs __user *a = udp;
1689 0 : struct kbdiacr *dia;
1690 0 : int i;
1691 :
1692 0 : dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1693 : GFP_KERNEL);
1694 0 : if (!dia)
1695 : return -ENOMEM;
1696 :
1697 : /* Lock the diacriticals table, make a copy and then
1698 : copy it after we unlock */
1699 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1700 :
1701 0 : asize = accent_table_size;
1702 0 : for (i = 0; i < asize; i++) {
1703 0 : dia[i].diacr = conv_uni_to_8bit(
1704 : accent_table[i].diacr);
1705 0 : dia[i].base = conv_uni_to_8bit(
1706 : accent_table[i].base);
1707 0 : dia[i].result = conv_uni_to_8bit(
1708 : accent_table[i].result);
1709 : }
1710 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1711 :
1712 0 : if (put_user(asize, &a->kb_cnt))
1713 : ret = -EFAULT;
1714 0 : else if (copy_to_user(a->kbdiacr, dia,
1715 : asize * sizeof(struct kbdiacr)))
1716 0 : ret = -EFAULT;
1717 0 : kfree(dia);
1718 0 : return ret;
1719 : }
1720 0 : case KDGKBDIACRUC:
1721 : {
1722 0 : struct kbdiacrsuc __user *a = udp;
1723 0 : void *buf;
1724 :
1725 0 : buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1726 : GFP_KERNEL);
1727 0 : if (buf == NULL)
1728 : return -ENOMEM;
1729 :
1730 : /* Lock the diacriticals table, make a copy and then
1731 : copy it after we unlock */
1732 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1733 :
1734 0 : asize = accent_table_size;
1735 0 : memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1736 :
1737 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1738 :
1739 0 : if (put_user(asize, &a->kb_cnt))
1740 : ret = -EFAULT;
1741 0 : else if (copy_to_user(a->kbdiacruc, buf,
1742 : asize*sizeof(struct kbdiacruc)))
1743 0 : ret = -EFAULT;
1744 0 : kfree(buf);
1745 0 : return ret;
1746 : }
1747 :
1748 0 : case KDSKBDIACR:
1749 : {
1750 0 : struct kbdiacrs __user *a = udp;
1751 0 : struct kbdiacr *dia = NULL;
1752 0 : unsigned int ct;
1753 0 : int i;
1754 :
1755 0 : if (!perm)
1756 : return -EPERM;
1757 0 : if (get_user(ct, &a->kb_cnt))
1758 : return -EFAULT;
1759 0 : if (ct >= MAX_DIACR)
1760 : return -EINVAL;
1761 :
1762 0 : if (ct) {
1763 :
1764 0 : dia = memdup_user(a->kbdiacr,
1765 : sizeof(struct kbdiacr) * ct);
1766 0 : if (IS_ERR(dia))
1767 0 : return PTR_ERR(dia);
1768 :
1769 : }
1770 :
1771 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1772 0 : accent_table_size = ct;
1773 0 : for (i = 0; i < ct; i++) {
1774 0 : accent_table[i].diacr =
1775 0 : conv_8bit_to_uni(dia[i].diacr);
1776 0 : accent_table[i].base =
1777 0 : conv_8bit_to_uni(dia[i].base);
1778 0 : accent_table[i].result =
1779 0 : conv_8bit_to_uni(dia[i].result);
1780 : }
1781 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1782 0 : kfree(dia);
1783 0 : return 0;
1784 : }
1785 :
1786 0 : case KDSKBDIACRUC:
1787 : {
1788 0 : struct kbdiacrsuc __user *a = udp;
1789 0 : unsigned int ct;
1790 0 : void *buf = NULL;
1791 :
1792 0 : if (!perm)
1793 : return -EPERM;
1794 :
1795 0 : if (get_user(ct, &a->kb_cnt))
1796 : return -EFAULT;
1797 :
1798 0 : if (ct >= MAX_DIACR)
1799 : return -EINVAL;
1800 :
1801 0 : if (ct) {
1802 0 : buf = memdup_user(a->kbdiacruc,
1803 : ct * sizeof(struct kbdiacruc));
1804 0 : if (IS_ERR(buf))
1805 0 : return PTR_ERR(buf);
1806 : }
1807 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1808 0 : if (ct)
1809 0 : memcpy(accent_table, buf,
1810 : ct * sizeof(struct kbdiacruc));
1811 0 : accent_table_size = ct;
1812 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1813 0 : kfree(buf);
1814 0 : return 0;
1815 : }
1816 : }
1817 : return ret;
1818 : }
1819 :
1820 : /**
1821 : * vt_do_kdskbmode - set keyboard mode ioctl
1822 : * @console: the console to use
1823 : * @arg: the requested mode
1824 : *
1825 : * Update the keyboard mode bits while holding the correct locks.
1826 : * Return 0 for success or an error code.
1827 : */
1828 9 : int vt_do_kdskbmode(int console, unsigned int arg)
1829 : {
1830 9 : struct kbd_struct *kb = kbd_table + console;
1831 9 : int ret = 0;
1832 9 : unsigned long flags;
1833 :
1834 9 : spin_lock_irqsave(&kbd_event_lock, flags);
1835 9 : switch(arg) {
1836 0 : case K_RAW:
1837 0 : kb->kbdmode = VC_RAW;
1838 0 : break;
1839 0 : case K_MEDIUMRAW:
1840 0 : kb->kbdmode = VC_MEDIUMRAW;
1841 0 : break;
1842 0 : case K_XLATE:
1843 0 : kb->kbdmode = VC_XLATE;
1844 0 : do_compute_shiftstate();
1845 0 : break;
1846 9 : case K_UNICODE:
1847 9 : kb->kbdmode = VC_UNICODE;
1848 9 : do_compute_shiftstate();
1849 9 : break;
1850 0 : case K_OFF:
1851 0 : kb->kbdmode = VC_OFF;
1852 0 : break;
1853 : default:
1854 : ret = -EINVAL;
1855 : }
1856 9 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1857 9 : return ret;
1858 : }
1859 :
1860 : /**
1861 : * vt_do_kdskbmeta - set keyboard meta state
1862 : * @console: the console to use
1863 : * @arg: the requested meta state
1864 : *
1865 : * Update the keyboard meta bits while holding the correct locks.
1866 : * Return 0 for success or an error code.
1867 : */
1868 0 : int vt_do_kdskbmeta(int console, unsigned int arg)
1869 : {
1870 0 : struct kbd_struct *kb = kbd_table + console;
1871 0 : int ret = 0;
1872 0 : unsigned long flags;
1873 :
1874 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1875 0 : switch(arg) {
1876 : case K_METABIT:
1877 0 : clr_vc_kbd_mode(kb, VC_META);
1878 : break;
1879 : case K_ESCPREFIX:
1880 0 : set_vc_kbd_mode(kb, VC_META);
1881 : break;
1882 : default:
1883 : ret = -EINVAL;
1884 : }
1885 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1886 0 : return ret;
1887 : }
1888 :
1889 0 : int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1890 : int perm)
1891 : {
1892 0 : struct kbkeycode tmp;
1893 0 : int kc = 0;
1894 :
1895 0 : if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1896 : return -EFAULT;
1897 0 : switch (cmd) {
1898 0 : case KDGETKEYCODE:
1899 0 : kc = getkeycode(tmp.scancode);
1900 0 : if (kc >= 0)
1901 0 : kc = put_user(kc, &user_kbkc->keycode);
1902 : break;
1903 0 : case KDSETKEYCODE:
1904 0 : if (!perm)
1905 : return -EPERM;
1906 0 : kc = setkeycode(tmp.scancode, tmp.keycode);
1907 0 : break;
1908 : }
1909 : return kc;
1910 : }
1911 :
1912 0 : static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1913 : unsigned char map)
1914 : {
1915 0 : unsigned short *key_map, val;
1916 0 : unsigned long flags;
1917 :
1918 : /* Ensure another thread doesn't free it under us */
1919 0 : spin_lock_irqsave(&kbd_event_lock, flags);
1920 0 : key_map = key_maps[map];
1921 0 : if (key_map) {
1922 0 : val = U(key_map[idx]);
1923 0 : if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1924 0 : val = K_HOLE;
1925 : } else
1926 0 : val = idx ? K_HOLE : K_NOSUCHMAP;
1927 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1928 :
1929 0 : return val;
1930 : }
1931 :
1932 13952 : static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1933 : unsigned char map, unsigned short val)
1934 : {
1935 13952 : unsigned long flags;
1936 13952 : unsigned short *key_map, *new_map, oldval;
1937 :
1938 13952 : if (!idx && val == K_NOSUCHMAP) {
1939 128 : spin_lock_irqsave(&kbd_event_lock, flags);
1940 : /* deallocate map */
1941 128 : key_map = key_maps[map];
1942 128 : if (map && key_map) {
1943 0 : key_maps[map] = NULL;
1944 0 : if (key_map[0] == U(K_ALLOCATED)) {
1945 0 : kfree(key_map);
1946 0 : keymap_count--;
1947 : }
1948 : }
1949 128 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1950 :
1951 128 : return 0;
1952 : }
1953 :
1954 13824 : if (KTYP(val) < NR_TYPES) {
1955 13808 : if (KVAL(val) > max_vals[KTYP(val)])
1956 : return -EINVAL;
1957 16 : } else if (kbdmode != VC_UNICODE)
1958 : return -EINVAL;
1959 :
1960 : /* ++Geert: non-PC keyboards may generate keycode zero */
1961 : #if !defined(__mc68000__) && !defined(__powerpc__)
1962 : /* assignment to entry 0 only tests validity of args */
1963 13824 : if (!idx)
1964 : return 0;
1965 : #endif
1966 :
1967 13824 : new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1968 13824 : if (!new_map)
1969 : return -ENOMEM;
1970 :
1971 13824 : spin_lock_irqsave(&kbd_event_lock, flags);
1972 13824 : key_map = key_maps[map];
1973 13824 : if (key_map == NULL) {
1974 121 : int j;
1975 :
1976 121 : if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1977 0 : !capable(CAP_SYS_RESOURCE)) {
1978 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 0 : kfree(new_map);
1980 0 : return -EPERM;
1981 : }
1982 121 : key_maps[map] = new_map;
1983 121 : key_map = new_map;
1984 121 : key_map[0] = U(K_ALLOCATED);
1985 30976 : for (j = 1; j < NR_KEYS; j++)
1986 30855 : key_map[j] = U(K_HOLE);
1987 121 : keymap_count++;
1988 : } else
1989 13703 : kfree(new_map);
1990 :
1991 13824 : oldval = U(key_map[idx]);
1992 13824 : if (val == oldval)
1993 503 : goto out;
1994 :
1995 : /* Attention Key */
1996 13321 : if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
1997 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
1998 0 : return -EPERM;
1999 : }
2000 :
2001 13321 : key_map[idx] = U(val);
2002 13321 : if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2003 3 : do_compute_shiftstate();
2004 13318 : out:
2005 13824 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2006 :
2007 13824 : return 0;
2008 : }
2009 :
2010 13952 : int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2011 : int console)
2012 : {
2013 13952 : struct kbd_struct *kb = kbd_table + console;
2014 13952 : struct kbentry kbe;
2015 :
2016 13952 : if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2017 : return -EFAULT;
2018 :
2019 13952 : switch (cmd) {
2020 0 : case KDGKBENT:
2021 0 : return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2022 : kbe.kb_table),
2023 : &user_kbe->kb_value);
2024 13952 : case KDSKBENT:
2025 13952 : if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2026 0 : return -EPERM;
2027 13952 : return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2028 13952 : kbe.kb_value);
2029 : }
2030 : return 0;
2031 : }
2032 :
2033 26 : static char *vt_kdskbsent(char *kbs, unsigned char cur)
2034 : {
2035 26 : static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2036 26 : char *cur_f = func_table[cur];
2037 :
2038 26 : if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2039 26 : strcpy(cur_f, kbs);
2040 26 : return kbs;
2041 : }
2042 :
2043 0 : func_table[cur] = kbs;
2044 :
2045 0 : return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2046 : }
2047 :
2048 26 : int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2049 : {
2050 26 : unsigned char kb_func;
2051 26 : unsigned long flags;
2052 26 : char *kbs;
2053 26 : int ret;
2054 :
2055 26 : if (get_user(kb_func, &user_kdgkb->kb_func))
2056 : return -EFAULT;
2057 :
2058 26 : kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2059 :
2060 26 : switch (cmd) {
2061 : case KDGKBSENT: {
2062 : /* size should have been a struct member */
2063 0 : ssize_t len = sizeof(user_kdgkb->kb_string);
2064 :
2065 0 : kbs = kmalloc(len, GFP_KERNEL);
2066 0 : if (!kbs)
2067 : return -ENOMEM;
2068 :
2069 0 : spin_lock_irqsave(&func_buf_lock, flags);
2070 0 : len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2071 0 : spin_unlock_irqrestore(&func_buf_lock, flags);
2072 :
2073 0 : ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2074 0 : -EFAULT : 0;
2075 :
2076 : break;
2077 : }
2078 26 : case KDSKBSENT:
2079 26 : if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2080 0 : return -EPERM;
2081 :
2082 26 : kbs = strndup_user(user_kdgkb->kb_string,
2083 : sizeof(user_kdgkb->kb_string));
2084 26 : if (IS_ERR(kbs))
2085 0 : return PTR_ERR(kbs);
2086 :
2087 26 : spin_lock_irqsave(&func_buf_lock, flags);
2088 26 : kbs = vt_kdskbsent(kbs, kb_func);
2089 26 : spin_unlock_irqrestore(&func_buf_lock, flags);
2090 :
2091 26 : ret = 0;
2092 26 : break;
2093 : }
2094 :
2095 26 : kfree(kbs);
2096 :
2097 26 : return ret;
2098 : }
2099 :
2100 1 : int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2101 : {
2102 1 : struct kbd_struct *kb = kbd_table + console;
2103 1 : unsigned long flags;
2104 1 : unsigned char ucval;
2105 :
2106 1 : switch(cmd) {
2107 : /* the ioctls below read/set the flags usually shown in the leds */
2108 : /* don't use them - they will go away without warning */
2109 1 : case KDGKBLED:
2110 1 : spin_lock_irqsave(&kbd_event_lock, flags);
2111 1 : ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2112 1 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2113 1 : return put_user(ucval, (char __user *)arg);
2114 :
2115 0 : case KDSKBLED:
2116 0 : if (!perm)
2117 : return -EPERM;
2118 0 : if (arg & ~0x77)
2119 : return -EINVAL;
2120 0 : spin_lock_irqsave(&led_lock, flags);
2121 0 : kb->ledflagstate = (arg & 7);
2122 0 : kb->default_ledflagstate = ((arg >> 4) & 7);
2123 0 : set_leds();
2124 0 : spin_unlock_irqrestore(&led_lock, flags);
2125 0 : return 0;
2126 :
2127 : /* the ioctls below only set the lights, not the functions */
2128 : /* for those, see KDGKBLED and KDSKBLED above */
2129 : case KDGETLED:
2130 0 : ucval = getledstate();
2131 0 : return put_user(ucval, (char __user *)arg);
2132 :
2133 0 : case KDSETLED:
2134 0 : if (!perm)
2135 : return -EPERM;
2136 0 : setledstate(kb, arg);
2137 0 : return 0;
2138 : }
2139 : return -ENOIOCTLCMD;
2140 : }
2141 :
2142 2 : int vt_do_kdgkbmode(int console)
2143 : {
2144 2 : struct kbd_struct *kb = kbd_table + console;
2145 : /* This is a spot read so needs no locking */
2146 2 : switch (kb->kbdmode) {
2147 : case VC_RAW:
2148 : return K_RAW;
2149 : case VC_MEDIUMRAW:
2150 : return K_MEDIUMRAW;
2151 : case VC_UNICODE:
2152 : return K_UNICODE;
2153 : case VC_OFF:
2154 : return K_OFF;
2155 : default:
2156 : return K_XLATE;
2157 : }
2158 : }
2159 :
2160 : /**
2161 : * vt_do_kdgkbmeta - report meta status
2162 : * @console: console to report
2163 : *
2164 : * Report the meta flag status of this console
2165 : */
2166 0 : int vt_do_kdgkbmeta(int console)
2167 : {
2168 0 : struct kbd_struct *kb = kbd_table + console;
2169 : /* Again a spot read so no locking */
2170 0 : return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2171 : }
2172 :
2173 : /**
2174 : * vt_reset_unicode - reset the unicode status
2175 : * @console: console being reset
2176 : *
2177 : * Restore the unicode console state to its default
2178 : */
2179 6 : void vt_reset_unicode(int console)
2180 : {
2181 6 : unsigned long flags;
2182 :
2183 6 : spin_lock_irqsave(&kbd_event_lock, flags);
2184 6 : kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2185 6 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2186 6 : }
2187 :
2188 : /**
2189 : * vt_get_shiftstate - shift bit state
2190 : *
2191 : * Report the shift bits from the keyboard state. We have to export
2192 : * this to support some oddities in the vt layer.
2193 : */
2194 0 : int vt_get_shift_state(void)
2195 : {
2196 : /* Don't lock as this is a transient report */
2197 0 : return shift_state;
2198 : }
2199 :
2200 : /**
2201 : * vt_reset_keyboard - reset keyboard state
2202 : * @console: console to reset
2203 : *
2204 : * Reset the keyboard bits for a console as part of a general console
2205 : * reset event
2206 : */
2207 6 : void vt_reset_keyboard(int console)
2208 : {
2209 6 : struct kbd_struct *kb = kbd_table + console;
2210 6 : unsigned long flags;
2211 :
2212 6 : spin_lock_irqsave(&kbd_event_lock, flags);
2213 6 : set_vc_kbd_mode(kb, VC_REPEAT);
2214 6 : clr_vc_kbd_mode(kb, VC_CKMODE);
2215 6 : clr_vc_kbd_mode(kb, VC_APPLIC);
2216 6 : clr_vc_kbd_mode(kb, VC_CRLF);
2217 6 : kb->lockstate = 0;
2218 6 : kb->slockstate = 0;
2219 6 : spin_lock(&led_lock);
2220 6 : kb->ledmode = LED_SHOW_FLAGS;
2221 6 : kb->ledflagstate = kb->default_ledflagstate;
2222 6 : spin_unlock(&led_lock);
2223 : /* do not do set_leds here because this causes an endless tasklet loop
2224 : when the keyboard hasn't been initialized yet */
2225 6 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2226 6 : }
2227 :
2228 : /**
2229 : * vt_get_kbd_mode_bit - read keyboard status bits
2230 : * @console: console to read from
2231 : * @bit: mode bit to read
2232 : *
2233 : * Report back a vt mode bit. We do this without locking so the
2234 : * caller must be sure that there are no synchronization needs
2235 : */
2236 :
2237 3 : int vt_get_kbd_mode_bit(int console, int bit)
2238 : {
2239 3 : struct kbd_struct *kb = kbd_table + console;
2240 3 : return vc_kbd_mode(kb, bit);
2241 : }
2242 :
2243 : /**
2244 : * vt_set_kbd_mode_bit - read keyboard status bits
2245 : * @console: console to read from
2246 : * @bit: mode bit to read
2247 : *
2248 : * Set a vt mode bit. We do this without locking so the
2249 : * caller must be sure that there are no synchronization needs
2250 : */
2251 :
2252 0 : void vt_set_kbd_mode_bit(int console, int bit)
2253 : {
2254 0 : struct kbd_struct *kb = kbd_table + console;
2255 0 : unsigned long flags;
2256 :
2257 0 : spin_lock_irqsave(&kbd_event_lock, flags);
2258 0 : set_vc_kbd_mode(kb, bit);
2259 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2260 0 : }
2261 :
2262 : /**
2263 : * vt_clr_kbd_mode_bit - read keyboard status bits
2264 : * @console: console to read from
2265 : * @bit: mode bit to read
2266 : *
2267 : * Report back a vt mode bit. We do this without locking so the
2268 : * caller must be sure that there are no synchronization needs
2269 : */
2270 :
2271 0 : void vt_clr_kbd_mode_bit(int console, int bit)
2272 : {
2273 0 : struct kbd_struct *kb = kbd_table + console;
2274 0 : unsigned long flags;
2275 :
2276 0 : spin_lock_irqsave(&kbd_event_lock, flags);
2277 0 : clr_vc_kbd_mode(kb, bit);
2278 0 : spin_unlock_irqrestore(&kbd_event_lock, flags);
2279 0 : }
|