LCOV - code coverage report
Current view: top level - fs - buffer.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 762 1564 48.7 %
Date: 2021-04-22 12:43:58 Functions: 61 100 61.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/fs/buffer.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
       6             :  */
       7             : 
       8             : /*
       9             :  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
      10             :  *
      11             :  * Removed a lot of unnecessary code and simplified things now that
      12             :  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
      13             :  *
      14             :  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
      15             :  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
      16             :  *
      17             :  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
      18             :  *
      19             :  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
      20             :  */
      21             : 
      22             : #include <linux/kernel.h>
      23             : #include <linux/sched/signal.h>
      24             : #include <linux/syscalls.h>
      25             : #include <linux/fs.h>
      26             : #include <linux/iomap.h>
      27             : #include <linux/mm.h>
      28             : #include <linux/percpu.h>
      29             : #include <linux/slab.h>
      30             : #include <linux/capability.h>
      31             : #include <linux/blkdev.h>
      32             : #include <linux/file.h>
      33             : #include <linux/quotaops.h>
      34             : #include <linux/highmem.h>
      35             : #include <linux/export.h>
      36             : #include <linux/backing-dev.h>
      37             : #include <linux/writeback.h>
      38             : #include <linux/hash.h>
      39             : #include <linux/suspend.h>
      40             : #include <linux/buffer_head.h>
      41             : #include <linux/task_io_accounting_ops.h>
      42             : #include <linux/bio.h>
      43             : #include <linux/cpu.h>
      44             : #include <linux/bitops.h>
      45             : #include <linux/mpage.h>
      46             : #include <linux/bit_spinlock.h>
      47             : #include <linux/pagevec.h>
      48             : #include <linux/sched/mm.h>
      49             : #include <trace/events/block.h>
      50             : #include <linux/fscrypt.h>
      51             : 
      52             : #include "internal.h"
      53             : 
      54             : static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
      55             : static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
      56             :                          enum rw_hint hint, struct writeback_control *wbc);
      57             : 
      58             : #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
      59             : 
      60       21088 : inline void touch_buffer(struct buffer_head *bh)
      61             : {
      62       21088 :         trace_block_touch_buffer(bh);
      63       21088 :         mark_page_accessed(bh->b_page);
      64       21087 : }
      65             : EXPORT_SYMBOL(touch_buffer);
      66             : 
      67           0 : void __lock_buffer(struct buffer_head *bh)
      68             : {
      69           0 :         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
      70           0 : }
      71             : EXPORT_SYMBOL(__lock_buffer);
      72             : 
      73        9737 : void unlock_buffer(struct buffer_head *bh)
      74             : {
      75        9737 :         clear_bit_unlock(BH_Lock, &bh->b_state);
      76        9737 :         smp_mb__after_atomic();
      77        9737 :         wake_up_bit(&bh->b_state, BH_Lock);
      78        9737 : }
      79             : EXPORT_SYMBOL(unlock_buffer);
      80             : 
      81             : /*
      82             :  * Returns if the page has dirty or writeback buffers. If all the buffers
      83             :  * are unlocked and clean then the PageDirty information is stale. If
      84             :  * any of the pages are locked, it is assumed they are locked for IO.
      85             :  */
      86           0 : void buffer_check_dirty_writeback(struct page *page,
      87             :                                      bool *dirty, bool *writeback)
      88             : {
      89           0 :         struct buffer_head *head, *bh;
      90           0 :         *dirty = false;
      91           0 :         *writeback = false;
      92             : 
      93           0 :         BUG_ON(!PageLocked(page));
      94             : 
      95           0 :         if (!page_has_buffers(page))
      96             :                 return;
      97             : 
      98           0 :         if (PageWriteback(page))
      99           0 :                 *writeback = true;
     100             : 
     101           0 :         head = page_buffers(page);
     102           0 :         bh = head;
     103           0 :         do {
     104           0 :                 if (buffer_locked(bh))
     105           0 :                         *writeback = true;
     106             : 
     107           0 :                 if (buffer_dirty(bh))
     108           0 :                         *dirty = true;
     109             : 
     110           0 :                 bh = bh->b_this_page;
     111           0 :         } while (bh != head);
     112             : }
     113             : EXPORT_SYMBOL(buffer_check_dirty_writeback);
     114             : 
     115             : /*
     116             :  * Block until a buffer comes unlocked.  This doesn't stop it
     117             :  * from becoming locked again - you have to lock it yourself
     118             :  * if you want to preserve its state.
     119             :  */
     120         795 : void __wait_on_buffer(struct buffer_head * bh)
     121             : {
     122         795 :         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
     123           7 : }
     124             : EXPORT_SYMBOL(__wait_on_buffer);
     125             : 
     126           0 : static void buffer_io_error(struct buffer_head *bh, char *msg)
     127             : {
     128           0 :         if (!test_bit(BH_Quiet, &bh->b_state))
     129           0 :                 printk_ratelimited(KERN_ERR
     130             :                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
     131             :                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
     132           0 : }
     133             : 
     134             : /*
     135             :  * End-of-IO handler helper function which does not touch the bh after
     136             :  * unlocking it.
     137             :  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
     138             :  * a race there is benign: unlock_buffer() only use the bh's address for
     139             :  * hashing after unlocking the buffer, so it doesn't actually touch the bh
     140             :  * itself.
     141             :  */
     142        3890 : static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
     143             : {
     144        3890 :         if (uptodate) {
     145        3890 :                 set_buffer_uptodate(bh);
     146             :         } else {
     147             :                 /* This happens, due to failed read-ahead attempts. */
     148           0 :                 clear_buffer_uptodate(bh);
     149             :         }
     150        3890 :         unlock_buffer(bh);
     151        3890 : }
     152             : 
     153             : /*
     154             :  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
     155             :  * unlock the buffer. This is what ll_rw_block uses too.
     156             :  */
     157        3890 : void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
     158             : {
     159        3890 :         __end_buffer_read_notouch(bh, uptodate);
     160        3890 :         put_bh(bh);
     161        3890 : }
     162             : EXPORT_SYMBOL(end_buffer_read_sync);
     163             : 
     164          12 : void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
     165             : {
     166          12 :         if (uptodate) {
     167          12 :                 set_buffer_uptodate(bh);
     168             :         } else {
     169           0 :                 buffer_io_error(bh, ", lost sync page write");
     170           0 :                 mark_buffer_write_io_error(bh);
     171           0 :                 clear_buffer_uptodate(bh);
     172             :         }
     173          12 :         unlock_buffer(bh);
     174          12 :         put_bh(bh);
     175          12 : }
     176             : EXPORT_SYMBOL(end_buffer_write_sync);
     177             : 
     178             : /*
     179             :  * Various filesystems appear to want __find_get_block to be non-blocking.
     180             :  * But it's the page lock which protects the buffers.  To get around this,
     181             :  * we get exclusion from try_to_free_buffers with the blockdev mapping's
     182             :  * private_lock.
     183             :  *
     184             :  * Hack idea: for the blockdev mapping, private_lock contention
     185             :  * may be quite high.  This code could TryLock the page, and if that
     186             :  * succeeds, there is no need to take private_lock.
     187             :  */
     188             : static struct buffer_head *
     189       20039 : __find_get_block_slow(struct block_device *bdev, sector_t block)
     190             : {
     191       20039 :         struct inode *bd_inode = bdev->bd_inode;
     192       20039 :         struct address_space *bd_mapping = bd_inode->i_mapping;
     193       20039 :         struct buffer_head *ret = NULL;
     194       20039 :         pgoff_t index;
     195       20039 :         struct buffer_head *bh;
     196       20039 :         struct buffer_head *head;
     197       20039 :         struct page *page;
     198       20039 :         int all_mapped = 1;
     199       20039 :         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
     200             : 
     201       20039 :         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
     202       20039 :         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
     203       20039 :         if (!page)
     204        8258 :                 goto out;
     205             : 
     206       11781 :         spin_lock(&bd_mapping->private_lock);
     207       11781 :         if (!page_has_buffers(page))
     208           0 :                 goto out_unlock;
     209       11781 :         head = page_buffers(page);
     210       11781 :         bh = head;
     211       11783 :         do {
     212       11783 :                 if (!buffer_mapped(bh))
     213             :                         all_mapped = 0;
     214       11783 :                 else if (bh->b_blocknr == block) {
     215       11781 :                         ret = bh;
     216       11781 :                         get_bh(bh);
     217       11781 :                         goto out_unlock;
     218             :                 }
     219           2 :                 bh = bh->b_this_page;
     220           2 :         } while (bh != head);
     221             : 
     222             :         /* we might be here because some of the buffers on this page are
     223             :          * not mapped.  This is due to various races between
     224             :          * file io on the block device and getblk.  It gets dealt with
     225             :          * elsewhere, don't buffer_error if we had some unmapped buffers
     226             :          */
     227           0 :         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
     228           0 :         if (all_mapped && __ratelimit(&last_warned)) {
     229           0 :                 printk("__find_get_block_slow() failed. block=%llu, "
     230             :                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
     231             :                        "device %pg blocksize: %d\n",
     232             :                        (unsigned long long)block,
     233           0 :                        (unsigned long long)bh->b_blocknr,
     234             :                        bh->b_state, bh->b_size, bdev,
     235           0 :                        1 << bd_inode->i_blkbits);
     236             :         }
     237           0 : out_unlock:
     238       11781 :         spin_unlock(&bd_mapping->private_lock);
     239       11781 :         put_page(page);
     240       20039 : out:
     241       20039 :         return ret;
     242             : }
     243             : 
     244           1 : static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
     245             : {
     246           1 :         unsigned long flags;
     247           1 :         struct buffer_head *first;
     248           1 :         struct buffer_head *tmp;
     249           1 :         struct page *page;
     250           1 :         int page_uptodate = 1;
     251             : 
     252           1 :         BUG_ON(!buffer_async_read(bh));
     253             : 
     254           1 :         page = bh->b_page;
     255           1 :         if (uptodate) {
     256           1 :                 set_buffer_uptodate(bh);
     257             :         } else {
     258           0 :                 clear_buffer_uptodate(bh);
     259           0 :                 buffer_io_error(bh, ", async page read");
     260           0 :                 SetPageError(page);
     261             :         }
     262             : 
     263             :         /*
     264             :          * Be _very_ careful from here on. Bad things can happen if
     265             :          * two buffer heads end IO at almost the same time and both
     266             :          * decide that the page is now completely done.
     267             :          */
     268           1 :         first = page_buffers(page);
     269           1 :         spin_lock_irqsave(&first->b_uptodate_lock, flags);
     270           1 :         clear_buffer_async_read(bh);
     271           1 :         unlock_buffer(bh);
     272           1 :         tmp = bh;
     273           1 :         do {
     274           1 :                 if (!buffer_uptodate(tmp))
     275           0 :                         page_uptodate = 0;
     276           1 :                 if (buffer_async_read(tmp)) {
     277           0 :                         BUG_ON(!buffer_locked(tmp));
     278           0 :                         goto still_busy;
     279             :                 }
     280           1 :                 tmp = tmp->b_this_page;
     281           1 :         } while (tmp != bh);
     282           1 :         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
     283             : 
     284             :         /*
     285             :          * If none of the buffers had errors and they are all
     286             :          * uptodate then we can set the page uptodate.
     287             :          */
     288           2 :         if (page_uptodate && !PageError(page))
     289           1 :                 SetPageUptodate(page);
     290           1 :         unlock_page(page);
     291           1 :         return;
     292             : 
     293           0 : still_busy:
     294           0 :         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
     295             :         return;
     296             : }
     297             : 
     298             : struct decrypt_bh_ctx {
     299             :         struct work_struct work;
     300             :         struct buffer_head *bh;
     301             : };
     302             : 
     303             : static void decrypt_bh(struct work_struct *work)
     304             : {
     305             :         struct decrypt_bh_ctx *ctx =
     306             :                 container_of(work, struct decrypt_bh_ctx, work);
     307             :         struct buffer_head *bh = ctx->bh;
     308             :         int err;
     309             : 
     310             :         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
     311             :                                                bh_offset(bh));
     312             :         end_buffer_async_read(bh, err == 0);
     313             :         kfree(ctx);
     314             : }
     315             : 
     316             : /*
     317             :  * I/O completion handler for block_read_full_page() - pages
     318             :  * which come unlocked at the end of I/O.
     319             :  */
     320           1 : static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
     321             : {
     322             :         /* Decrypt if needed */
     323           1 :         if (uptodate &&
     324             :             fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
     325             :                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
     326             : 
     327             :                 if (ctx) {
     328             :                         INIT_WORK(&ctx->work, decrypt_bh);
     329             :                         ctx->bh = bh;
     330             :                         fscrypt_enqueue_decrypt_work(&ctx->work);
     331             :                         return;
     332             :                 }
     333             :                 uptodate = 0;
     334             :         }
     335           1 :         end_buffer_async_read(bh, uptodate);
     336             : }
     337             : 
     338             : /*
     339             :  * Completion handler for block_write_full_page() - pages which are unlocked
     340             :  * during I/O, and which have PageWriteback cleared upon I/O completion.
     341             :  */
     342         867 : void end_buffer_async_write(struct buffer_head *bh, int uptodate)
     343             : {
     344         867 :         unsigned long flags;
     345         867 :         struct buffer_head *first;
     346         867 :         struct buffer_head *tmp;
     347         867 :         struct page *page;
     348             : 
     349         867 :         BUG_ON(!buffer_async_write(bh));
     350             : 
     351         867 :         page = bh->b_page;
     352         867 :         if (uptodate) {
     353         867 :                 set_buffer_uptodate(bh);
     354             :         } else {
     355           0 :                 buffer_io_error(bh, ", lost async page write");
     356           0 :                 mark_buffer_write_io_error(bh);
     357           0 :                 clear_buffer_uptodate(bh);
     358           0 :                 SetPageError(page);
     359             :         }
     360             : 
     361         867 :         first = page_buffers(page);
     362         867 :         spin_lock_irqsave(&first->b_uptodate_lock, flags);
     363             : 
     364         867 :         clear_buffer_async_write(bh);
     365         867 :         unlock_buffer(bh);
     366         867 :         tmp = bh->b_this_page;
     367         867 :         while (tmp != bh) {
     368           0 :                 if (buffer_async_write(tmp)) {
     369           0 :                         BUG_ON(!buffer_locked(tmp));
     370           0 :                         goto still_busy;
     371             :                 }
     372           0 :                 tmp = tmp->b_this_page;
     373             :         }
     374         867 :         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
     375         867 :         end_page_writeback(page);
     376         867 :         return;
     377             : 
     378           0 : still_busy:
     379           0 :         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
     380             :         return;
     381             : }
     382             : EXPORT_SYMBOL(end_buffer_async_write);
     383             : 
     384             : /*
     385             :  * If a page's buffers are under async readin (end_buffer_async_read
     386             :  * completion) then there is a possibility that another thread of
     387             :  * control could lock one of the buffers after it has completed
     388             :  * but while some of the other buffers have not completed.  This
     389             :  * locked buffer would confuse end_buffer_async_read() into not unlocking
     390             :  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
     391             :  * that this buffer is not under async I/O.
     392             :  *
     393             :  * The page comes unlocked when it has no locked buffer_async buffers
     394             :  * left.
     395             :  *
     396             :  * PageLocked prevents anyone starting new async I/O reads any of
     397             :  * the buffers.
     398             :  *
     399             :  * PageWriteback is used to prevent simultaneous writeout of the same
     400             :  * page.
     401             :  *
     402             :  * PageLocked prevents anyone from starting writeback of a page which is
     403             :  * under read I/O (PageWriteback is only ever set against a locked page).
     404             :  */
     405           1 : static void mark_buffer_async_read(struct buffer_head *bh)
     406             : {
     407           1 :         bh->b_end_io = end_buffer_async_read_io;
     408           1 :         set_buffer_async_read(bh);
     409           1 : }
     410             : 
     411         867 : static void mark_buffer_async_write_endio(struct buffer_head *bh,
     412             :                                           bh_end_io_t *handler)
     413             : {
     414         867 :         bh->b_end_io = handler;
     415         867 :         set_buffer_async_write(bh);
     416         867 : }
     417             : 
     418           0 : void mark_buffer_async_write(struct buffer_head *bh)
     419             : {
     420           0 :         mark_buffer_async_write_endio(bh, end_buffer_async_write);
     421           0 : }
     422             : EXPORT_SYMBOL(mark_buffer_async_write);
     423             : 
     424             : 
     425             : /*
     426             :  * fs/buffer.c contains helper functions for buffer-backed address space's
     427             :  * fsync functions.  A common requirement for buffer-based filesystems is
     428             :  * that certain data from the backing blockdev needs to be written out for
     429             :  * a successful fsync().  For example, ext2 indirect blocks need to be
     430             :  * written back and waited upon before fsync() returns.
     431             :  *
     432             :  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
     433             :  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
     434             :  * management of a list of dependent buffers at ->i_mapping->private_list.
     435             :  *
     436             :  * Locking is a little subtle: try_to_free_buffers() will remove buffers
     437             :  * from their controlling inode's queue when they are being freed.  But
     438             :  * try_to_free_buffers() will be operating against the *blockdev* mapping
     439             :  * at the time, not against the S_ISREG file which depends on those buffers.
     440             :  * So the locking for private_list is via the private_lock in the address_space
     441             :  * which backs the buffers.  Which is different from the address_space 
     442             :  * against which the buffers are listed.  So for a particular address_space,
     443             :  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
     444             :  * mapping->private_list will always be protected by the backing blockdev's
     445             :  * ->private_lock.
     446             :  *
     447             :  * Which introduces a requirement: all buffers on an address_space's
     448             :  * ->private_list must be from the same address_space: the blockdev's.
     449             :  *
     450             :  * address_spaces which do not place buffers at ->private_list via these
     451             :  * utility functions are free to use private_lock and private_list for
     452             :  * whatever they want.  The only requirement is that list_empty(private_list)
     453             :  * be true at clear_inode() time.
     454             :  *
     455             :  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
     456             :  * filesystems should do that.  invalidate_inode_buffers() should just go
     457             :  * BUG_ON(!list_empty).
     458             :  *
     459             :  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
     460             :  * take an address_space, not an inode.  And it should be called
     461             :  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
     462             :  * queued up.
     463             :  *
     464             :  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
     465             :  * list if it is already on a list.  Because if the buffer is on a list,
     466             :  * it *must* already be on the right one.  If not, the filesystem is being
     467             :  * silly.  This will save a ton of locking.  But first we have to ensure
     468             :  * that buffers are taken *off* the old inode's list when they are freed
     469             :  * (presumably in truncate).  That requires careful auditing of all
     470             :  * filesystems (do it inside bforget()).  It could also be done by bringing
     471             :  * b_inode back.
     472             :  */
     473             : 
     474             : /*
     475             :  * The buffer's backing address_space's private_lock must be held
     476             :  */
     477           0 : static void __remove_assoc_queue(struct buffer_head *bh)
     478             : {
     479           0 :         list_del_init(&bh->b_assoc_buffers);
     480           0 :         WARN_ON(!bh->b_assoc_map);
     481           0 :         bh->b_assoc_map = NULL;
     482           0 : }
     483             : 
     484        5484 : int inode_has_buffers(struct inode *inode)
     485             : {
     486        5484 :         return !list_empty(&inode->i_data.private_list);
     487             : }
     488             : 
     489             : /*
     490             :  * osync is designed to support O_SYNC io.  It waits synchronously for
     491             :  * all already-submitted IO to complete, but does not queue any new
     492             :  * writes to the disk.
     493             :  *
     494             :  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
     495             :  * you dirty the buffers, and then use osync_inode_buffers to wait for
     496             :  * completion.  Any other dirty buffers which are not yet queued for
     497             :  * write will not be flushed to disk by the osync.
     498             :  */
     499           0 : static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
     500             : {
     501           0 :         struct buffer_head *bh;
     502           0 :         struct list_head *p;
     503           0 :         int err = 0;
     504             : 
     505           0 :         spin_lock(lock);
     506           0 : repeat:
     507           0 :         list_for_each_prev(p, list) {
     508           0 :                 bh = BH_ENTRY(p);
     509           0 :                 if (buffer_locked(bh)) {
     510           0 :                         get_bh(bh);
     511           0 :                         spin_unlock(lock);
     512           0 :                         wait_on_buffer(bh);
     513           0 :                         if (!buffer_uptodate(bh))
     514           0 :                                 err = -EIO;
     515           0 :                         brelse(bh);
     516           0 :                         spin_lock(lock);
     517           0 :                         goto repeat;
     518             :                 }
     519             :         }
     520           0 :         spin_unlock(lock);
     521           0 :         return err;
     522             : }
     523             : 
     524           0 : void emergency_thaw_bdev(struct super_block *sb)
     525             : {
     526           0 :         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
     527           0 :                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
     528           0 : }
     529             : 
     530             : /**
     531             :  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
     532             :  * @mapping: the mapping which wants those buffers written
     533             :  *
     534             :  * Starts I/O against the buffers at mapping->private_list, and waits upon
     535             :  * that I/O.
     536             :  *
     537             :  * Basically, this is a convenience function for fsync().
     538             :  * @mapping is a file or directory which needs those buffers to be written for
     539             :  * a successful fsync().
     540             :  */
     541           0 : int sync_mapping_buffers(struct address_space *mapping)
     542             : {
     543           0 :         struct address_space *buffer_mapping = mapping->private_data;
     544             : 
     545           0 :         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
     546             :                 return 0;
     547             : 
     548           0 :         return fsync_buffers_list(&buffer_mapping->private_lock,
     549             :                                         &mapping->private_list);
     550             : }
     551             : EXPORT_SYMBOL(sync_mapping_buffers);
     552             : 
     553             : /*
     554             :  * Called when we've recently written block `bblock', and it is known that
     555             :  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
     556             :  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
     557             :  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
     558             :  */
     559           0 : void write_boundary_block(struct block_device *bdev,
     560             :                         sector_t bblock, unsigned blocksize)
     561             : {
     562           0 :         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
     563           0 :         if (bh) {
     564           0 :                 if (buffer_dirty(bh))
     565           0 :                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
     566           0 :                 put_bh(bh);
     567             :         }
     568           0 : }
     569             : 
     570           0 : void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
     571             : {
     572           0 :         struct address_space *mapping = inode->i_mapping;
     573           0 :         struct address_space *buffer_mapping = bh->b_page->mapping;
     574             : 
     575           0 :         mark_buffer_dirty(bh);
     576           0 :         if (!mapping->private_data) {
     577           0 :                 mapping->private_data = buffer_mapping;
     578             :         } else {
     579           0 :                 BUG_ON(mapping->private_data != buffer_mapping);
     580             :         }
     581           0 :         if (!bh->b_assoc_map) {
     582           0 :                 spin_lock(&buffer_mapping->private_lock);
     583           0 :                 list_move_tail(&bh->b_assoc_buffers,
     584             :                                 &mapping->private_list);
     585           0 :                 bh->b_assoc_map = mapping;
     586           0 :                 spin_unlock(&buffer_mapping->private_lock);
     587             :         }
     588           0 : }
     589             : EXPORT_SYMBOL(mark_buffer_dirty_inode);
     590             : 
     591             : /*
     592             :  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
     593             :  * dirty.
     594             :  *
     595             :  * If warn is true, then emit a warning if the page is not uptodate and has
     596             :  * not been truncated.
     597             :  *
     598             :  * The caller must hold lock_page_memcg().
     599             :  */
     600        2719 : void __set_page_dirty(struct page *page, struct address_space *mapping,
     601             :                              int warn)
     602             : {
     603        2719 :         unsigned long flags;
     604             : 
     605        2719 :         xa_lock_irqsave(&mapping->i_pages, flags);
     606        2719 :         if (page->mapping) { /* Race with truncate? */
     607        2719 :                 WARN_ON_ONCE(warn && !PageUptodate(page));
     608        2719 :                 account_page_dirtied(page, mapping);
     609        2719 :                 __xa_set_mark(&mapping->i_pages, page_index(page),
     610             :                                 PAGECACHE_TAG_DIRTY);
     611             :         }
     612        2719 :         xa_unlock_irqrestore(&mapping->i_pages, flags);
     613        2719 : }
     614             : EXPORT_SYMBOL_GPL(__set_page_dirty);
     615             : 
     616             : /*
     617             :  * Add a page to the dirty page list.
     618             :  *
     619             :  * It is a sad fact of life that this function is called from several places
     620             :  * deeply under spinlocking.  It may not sleep.
     621             :  *
     622             :  * If the page has buffers, the uptodate buffers are set dirty, to preserve
     623             :  * dirty-state coherency between the page and the buffers.  It the page does
     624             :  * not have buffers then when they are later attached they will all be set
     625             :  * dirty.
     626             :  *
     627             :  * The buffers are dirtied before the page is dirtied.  There's a small race
     628             :  * window in which a writepage caller may see the page cleanness but not the
     629             :  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
     630             :  * before the buffers, a concurrent writepage caller could clear the page dirty
     631             :  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
     632             :  * page on the dirty page list.
     633             :  *
     634             :  * We use private_lock to lock against try_to_free_buffers while using the
     635             :  * page's buffer list.  Also use this to protect against clean buffers being
     636             :  * added to the page after it was set dirty.
     637             :  *
     638             :  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
     639             :  * address_space though.
     640             :  */
     641         912 : int __set_page_dirty_buffers(struct page *page)
     642             : {
     643         912 :         int newly_dirty;
     644         912 :         struct address_space *mapping = page_mapping(page);
     645             : 
     646         912 :         if (unlikely(!mapping))
     647           0 :                 return !TestSetPageDirty(page);
     648             : 
     649         912 :         spin_lock(&mapping->private_lock);
     650         912 :         if (page_has_buffers(page)) {
     651         912 :                 struct buffer_head *head = page_buffers(page);
     652         912 :                 struct buffer_head *bh = head;
     653             : 
     654         912 :                 do {
     655         912 :                         set_buffer_dirty(bh);
     656         912 :                         bh = bh->b_this_page;
     657         912 :                 } while (bh != head);
     658             :         }
     659             :         /*
     660             :          * Lock out page's memcg migration to keep PageDirty
     661             :          * synchronized with per-memcg dirty page counters.
     662             :          */
     663         912 :         lock_page_memcg(page);
     664         912 :         newly_dirty = !TestSetPageDirty(page);
     665         912 :         spin_unlock(&mapping->private_lock);
     666             : 
     667         912 :         if (newly_dirty)
     668           0 :                 __set_page_dirty(page, mapping, 1);
     669             : 
     670         912 :         unlock_page_memcg(page);
     671             : 
     672         912 :         if (newly_dirty)
     673           0 :                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
     674             : 
     675             :         return newly_dirty;
     676             : }
     677             : EXPORT_SYMBOL(__set_page_dirty_buffers);
     678             : 
     679             : /*
     680             :  * Write out and wait upon a list of buffers.
     681             :  *
     682             :  * We have conflicting pressures: we want to make sure that all
     683             :  * initially dirty buffers get waited on, but that any subsequently
     684             :  * dirtied buffers don't.  After all, we don't want fsync to last
     685             :  * forever if somebody is actively writing to the file.
     686             :  *
     687             :  * Do this in two main stages: first we copy dirty buffers to a
     688             :  * temporary inode list, queueing the writes as we go.  Then we clean
     689             :  * up, waiting for those writes to complete.
     690             :  * 
     691             :  * During this second stage, any subsequent updates to the file may end
     692             :  * up refiling the buffer on the original inode's dirty list again, so
     693             :  * there is a chance we will end up with a buffer queued for write but
     694             :  * not yet completed on that list.  So, as a final cleanup we go through
     695             :  * the osync code to catch these locked, dirty buffers without requeuing
     696             :  * any newly dirty buffers for write.
     697             :  */
     698           0 : static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
     699             : {
     700           0 :         struct buffer_head *bh;
     701           0 :         struct list_head tmp;
     702           0 :         struct address_space *mapping;
     703           0 :         int err = 0, err2;
     704           0 :         struct blk_plug plug;
     705             : 
     706           0 :         INIT_LIST_HEAD(&tmp);
     707           0 :         blk_start_plug(&plug);
     708             : 
     709           0 :         spin_lock(lock);
     710           0 :         while (!list_empty(list)) {
     711           0 :                 bh = BH_ENTRY(list->next);
     712           0 :                 mapping = bh->b_assoc_map;
     713           0 :                 __remove_assoc_queue(bh);
     714             :                 /* Avoid race with mark_buffer_dirty_inode() which does
     715             :                  * a lockless check and we rely on seeing the dirty bit */
     716           0 :                 smp_mb();
     717           0 :                 if (buffer_dirty(bh) || buffer_locked(bh)) {
     718           0 :                         list_add(&bh->b_assoc_buffers, &tmp);
     719           0 :                         bh->b_assoc_map = mapping;
     720           0 :                         if (buffer_dirty(bh)) {
     721           0 :                                 get_bh(bh);
     722           0 :                                 spin_unlock(lock);
     723             :                                 /*
     724             :                                  * Ensure any pending I/O completes so that
     725             :                                  * write_dirty_buffer() actually writes the
     726             :                                  * current contents - it is a noop if I/O is
     727             :                                  * still in flight on potentially older
     728             :                                  * contents.
     729             :                                  */
     730           0 :                                 write_dirty_buffer(bh, REQ_SYNC);
     731             : 
     732             :                                 /*
     733             :                                  * Kick off IO for the previous mapping. Note
     734             :                                  * that we will not run the very last mapping,
     735             :                                  * wait_on_buffer() will do that for us
     736             :                                  * through sync_buffer().
     737             :                                  */
     738           0 :                                 brelse(bh);
     739           0 :                                 spin_lock(lock);
     740             :                         }
     741             :                 }
     742             :         }
     743             : 
     744           0 :         spin_unlock(lock);
     745           0 :         blk_finish_plug(&plug);
     746           0 :         spin_lock(lock);
     747             : 
     748           0 :         while (!list_empty(&tmp)) {
     749           0 :                 bh = BH_ENTRY(tmp.prev);
     750           0 :                 get_bh(bh);
     751           0 :                 mapping = bh->b_assoc_map;
     752           0 :                 __remove_assoc_queue(bh);
     753             :                 /* Avoid race with mark_buffer_dirty_inode() which does
     754             :                  * a lockless check and we rely on seeing the dirty bit */
     755           0 :                 smp_mb();
     756           0 :                 if (buffer_dirty(bh)) {
     757           0 :                         list_add(&bh->b_assoc_buffers,
     758             :                                  &mapping->private_list);
     759           0 :                         bh->b_assoc_map = mapping;
     760             :                 }
     761           0 :                 spin_unlock(lock);
     762           0 :                 wait_on_buffer(bh);
     763           0 :                 if (!buffer_uptodate(bh))
     764           0 :                         err = -EIO;
     765           0 :                 brelse(bh);
     766           0 :                 spin_lock(lock);
     767             :         }
     768             :         
     769           0 :         spin_unlock(lock);
     770           0 :         err2 = osync_buffers_list(lock, list);
     771           0 :         if (err)
     772             :                 return err;
     773             :         else
     774           0 :                 return err2;
     775             : }
     776             : 
     777             : /*
     778             :  * Invalidate any and all dirty buffers on a given inode.  We are
     779             :  * probably unmounting the fs, but that doesn't mean we have already
     780             :  * done a sync().  Just drop the buffers from the inode list.
     781             :  *
     782             :  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
     783             :  * assumes that all the buffers are against the blockdev.  Not true
     784             :  * for reiserfs.
     785             :  */
     786         193 : void invalidate_inode_buffers(struct inode *inode)
     787             : {
     788         193 :         if (inode_has_buffers(inode)) {
     789           0 :                 struct address_space *mapping = &inode->i_data;
     790           0 :                 struct list_head *list = &mapping->private_list;
     791           0 :                 struct address_space *buffer_mapping = mapping->private_data;
     792             : 
     793           0 :                 spin_lock(&buffer_mapping->private_lock);
     794           0 :                 while (!list_empty(list))
     795           0 :                         __remove_assoc_queue(BH_ENTRY(list->next));
     796           0 :                 spin_unlock(&buffer_mapping->private_lock);
     797             :         }
     798         193 : }
     799             : EXPORT_SYMBOL(invalidate_inode_buffers);
     800             : 
     801             : /*
     802             :  * Remove any clean buffers from the inode's buffer list.  This is called
     803             :  * when we're trying to free the inode itself.  Those buffers can pin it.
     804             :  *
     805             :  * Returns true if all buffers were removed.
     806             :  */
     807           0 : int remove_inode_buffers(struct inode *inode)
     808             : {
     809           0 :         int ret = 1;
     810             : 
     811           0 :         if (inode_has_buffers(inode)) {
     812           0 :                 struct address_space *mapping = &inode->i_data;
     813           0 :                 struct list_head *list = &mapping->private_list;
     814           0 :                 struct address_space *buffer_mapping = mapping->private_data;
     815             : 
     816           0 :                 spin_lock(&buffer_mapping->private_lock);
     817           0 :                 while (!list_empty(list)) {
     818           0 :                         struct buffer_head *bh = BH_ENTRY(list->next);
     819           0 :                         if (buffer_dirty(bh)) {
     820             :                                 ret = 0;
     821             :                                 break;
     822             :                         }
     823           0 :                         __remove_assoc_queue(bh);
     824             :                 }
     825           0 :                 spin_unlock(&buffer_mapping->private_lock);
     826             :         }
     827           0 :         return ret;
     828             : }
     829             : 
     830             : /*
     831             :  * Create the appropriate buffers when given a page for data area and
     832             :  * the size of each buffer.. Use the bh->b_this_page linked list to
     833             :  * follow the buffers created.  Return NULL if unable to create more
     834             :  * buffers.
     835             :  *
     836             :  * The retry flag is used to differentiate async IO (paging, swapping)
     837             :  * which may not fail from ordinary buffer allocations.
     838             :  */
     839        5842 : struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
     840             :                 bool retry)
     841             : {
     842        5842 :         struct buffer_head *bh, *head;
     843        5842 :         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
     844        5842 :         long offset;
     845        5842 :         struct mem_cgroup *memcg, *old_memcg;
     846             : 
     847        5842 :         if (retry)
     848        5842 :                 gfp |= __GFP_NOFAIL;
     849             : 
     850             :         /* The page lock pins the memcg */
     851        5842 :         memcg = page_memcg(page);
     852        5842 :         old_memcg = set_active_memcg(memcg);
     853             : 
     854        5842 :         head = NULL;
     855        5842 :         offset = PAGE_SIZE;
     856       11690 :         while ((offset -= size) >= 0) {
     857        5848 :                 bh = alloc_buffer_head(gfp);
     858        5848 :                 if (!bh)
     859           0 :                         goto no_grow;
     860             : 
     861        5848 :                 bh->b_this_page = head;
     862        5848 :                 bh->b_blocknr = -1;
     863        5848 :                 head = bh;
     864             : 
     865        5848 :                 bh->b_size = size;
     866             : 
     867             :                 /* Link the buffer to its page */
     868        5848 :                 set_bh_page(bh, page, offset);
     869             :         }
     870        5842 : out:
     871        5842 :         set_active_memcg(old_memcg);
     872        5842 :         return head;
     873             : /*
     874             :  * In case anything failed, we just free everything we got.
     875             :  */
     876           0 : no_grow:
     877           0 :         if (head) {
     878           0 :                 do {
     879           0 :                         bh = head;
     880           0 :                         head = head->b_this_page;
     881           0 :                         free_buffer_head(bh);
     882           0 :                 } while (head);
     883             :         }
     884             : 
     885           0 :         goto out;
     886             : }
     887             : EXPORT_SYMBOL_GPL(alloc_page_buffers);
     888             : 
     889             : static inline void
     890        4129 : link_dev_buffers(struct page *page, struct buffer_head *head)
     891             : {
     892        4129 :         struct buffer_head *bh, *tail;
     893             : 
     894        4129 :         bh = head;
     895        4135 :         do {
     896        4135 :                 tail = bh;
     897        4135 :                 bh = bh->b_this_page;
     898        4135 :         } while (bh);
     899        4129 :         tail->b_this_page = head;
     900        4129 :         attach_page_private(page, head);
     901        4129 : }
     902             : 
     903        4129 : static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
     904             : {
     905        4129 :         sector_t retval = ~((sector_t)0);
     906        4129 :         loff_t sz = i_size_read(bdev->bd_inode);
     907             : 
     908        4129 :         if (sz) {
     909        4129 :                 unsigned int sizebits = blksize_bits(size);
     910        4129 :                 retval = (sz >> sizebits);
     911             :         }
     912        4129 :         return retval;
     913             : }
     914             : 
     915             : /*
     916             :  * Initialise the state of a blockdev page's buffers.
     917             :  */ 
     918             : static sector_t
     919        4129 : init_page_buffers(struct page *page, struct block_device *bdev,
     920             :                         sector_t block, int size)
     921             : {
     922        4129 :         struct buffer_head *head = page_buffers(page);
     923        4129 :         struct buffer_head *bh = head;
     924        4129 :         int uptodate = PageUptodate(page);
     925        8258 :         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
     926             : 
     927        4135 :         do {
     928        4135 :                 if (!buffer_mapped(bh)) {
     929        4135 :                         bh->b_end_io = NULL;
     930        4135 :                         bh->b_private = NULL;
     931        4135 :                         bh->b_bdev = bdev;
     932        4135 :                         bh->b_blocknr = block;
     933        4135 :                         if (uptodate)
     934           0 :                                 set_buffer_uptodate(bh);
     935        4135 :                         if (block < end_block)
     936        4135 :                                 set_buffer_mapped(bh);
     937             :                 }
     938        4135 :                 block++;
     939        4135 :                 bh = bh->b_this_page;
     940        4135 :         } while (bh != head);
     941             : 
     942             :         /*
     943             :          * Caller needs to validate requested block against end of device.
     944             :          */
     945        4129 :         return end_block;
     946             : }
     947             : 
     948             : /*
     949             :  * Create the page-cache page that contains the requested block.
     950             :  *
     951             :  * This is used purely for blockdev mappings.
     952             :  */
     953             : static int
     954        4129 : grow_dev_page(struct block_device *bdev, sector_t block,
     955             :               pgoff_t index, int size, int sizebits, gfp_t gfp)
     956             : {
     957        4129 :         struct inode *inode = bdev->bd_inode;
     958        4129 :         struct page *page;
     959        4129 :         struct buffer_head *bh;
     960        4129 :         sector_t end_block;
     961        4129 :         int ret = 0;
     962        4129 :         gfp_t gfp_mask;
     963             : 
     964        4129 :         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
     965             : 
     966             :         /*
     967             :          * XXX: __getblk_slow() can not really deal with failure and
     968             :          * will endlessly loop on improvised global reclaim.  Prefer
     969             :          * looping in the allocator rather than here, at least that
     970             :          * code knows what it's doing.
     971             :          */
     972        4129 :         gfp_mask |= __GFP_NOFAIL;
     973             : 
     974        4129 :         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
     975             : 
     976        8258 :         BUG_ON(!PageLocked(page));
     977             : 
     978        4129 :         if (page_has_buffers(page)) {
     979           0 :                 bh = page_buffers(page);
     980           0 :                 if (bh->b_size == size) {
     981           0 :                         end_block = init_page_buffers(page, bdev,
     982             :                                                 (sector_t)index << sizebits,
     983             :                                                 size);
     984           0 :                         goto done;
     985             :                 }
     986           0 :                 if (!try_to_free_buffers(page))
     987           0 :                         goto failed;
     988             :         }
     989             : 
     990             :         /*
     991             :          * Allocate some buffers for this page
     992             :          */
     993        4129 :         bh = alloc_page_buffers(page, size, true);
     994             : 
     995             :         /*
     996             :          * Link the page to the buffers and initialise them.  Take the
     997             :          * lock to be atomic wrt __find_get_block(), which does not
     998             :          * run under the page lock.
     999             :          */
    1000        4129 :         spin_lock(&inode->i_mapping->private_lock);
    1001        4129 :         link_dev_buffers(page, bh);
    1002        4129 :         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
    1003             :                         size);
    1004        4129 :         spin_unlock(&inode->i_mapping->private_lock);
    1005        4129 : done:
    1006        4129 :         ret = (block < end_block) ? 1 : -ENXIO;
    1007        4129 : failed:
    1008        4129 :         unlock_page(page);
    1009        4129 :         put_page(page);
    1010        4129 :         return ret;
    1011             : }
    1012             : 
    1013             : /*
    1014             :  * Create buffers for the specified block device block's page.  If
    1015             :  * that page was dirty, the buffers are set dirty also.
    1016             :  */
    1017             : static int
    1018        4129 : grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
    1019             : {
    1020        4129 :         pgoff_t index;
    1021        4129 :         int sizebits;
    1022             : 
    1023        4129 :         sizebits = -1;
    1024        4133 :         do {
    1025        4133 :                 sizebits++;
    1026        4133 :         } while ((size << sizebits) < PAGE_SIZE);
    1027             : 
    1028        4129 :         index = block >> sizebits;
    1029             : 
    1030             :         /*
    1031             :          * Check for a block which wants to lie outside our maximum possible
    1032             :          * pagecache index.  (this comparison is done using sector_t types).
    1033             :          */
    1034        4129 :         if (unlikely(index != block >> sizebits)) {
    1035             :                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
    1036             :                         "device %pg\n",
    1037             :                         __func__, (unsigned long long)block,
    1038             :                         bdev);
    1039             :                 return -EIO;
    1040             :         }
    1041             : 
    1042             :         /* Create a page with the proper size buffers.. */
    1043        4129 :         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
    1044             : }
    1045             : 
    1046             : static struct buffer_head *
    1047        4129 : __getblk_slow(struct block_device *bdev, sector_t block,
    1048             :              unsigned size, gfp_t gfp)
    1049             : {
    1050             :         /* Size must be multiple of hard sectorsize */
    1051        8258 :         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
    1052             :                         (size < 512 || size > PAGE_SIZE))) {
    1053           0 :                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
    1054             :                                         size);
    1055           0 :                 printk(KERN_ERR "logical block size: %d\n",
    1056             :                                         bdev_logical_block_size(bdev));
    1057             : 
    1058           0 :                 dump_stack();
    1059           0 :                 return NULL;
    1060             :         }
    1061             : 
    1062        8258 :         for (;;) {
    1063        8258 :                 struct buffer_head *bh;
    1064        8258 :                 int ret;
    1065             : 
    1066        8258 :                 bh = __find_get_block(bdev, block, size);
    1067        8258 :                 if (bh)
    1068        4129 :                         return bh;
    1069             : 
    1070        4129 :                 ret = grow_buffers(bdev, block, size, gfp);
    1071        4129 :                 if (ret < 0)
    1072             :                         return NULL;
    1073             :         }
    1074             : }
    1075             : 
    1076             : /*
    1077             :  * The relationship between dirty buffers and dirty pages:
    1078             :  *
    1079             :  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
    1080             :  * the page is tagged dirty in the page cache.
    1081             :  *
    1082             :  * At all times, the dirtiness of the buffers represents the dirtiness of
    1083             :  * subsections of the page.  If the page has buffers, the page dirty bit is
    1084             :  * merely a hint about the true dirty state.
    1085             :  *
    1086             :  * When a page is set dirty in its entirety, all its buffers are marked dirty
    1087             :  * (if the page has buffers).
    1088             :  *
    1089             :  * When a buffer is marked dirty, its page is dirtied, but the page's other
    1090             :  * buffers are not.
    1091             :  *
    1092             :  * Also.  When blockdev buffers are explicitly read with bread(), they
    1093             :  * individually become uptodate.  But their backing page remains not
    1094             :  * uptodate - even if all of its buffers are uptodate.  A subsequent
    1095             :  * block_read_full_page() against that page will discover all the uptodate
    1096             :  * buffers, will set the page uptodate and will perform no I/O.
    1097             :  */
    1098             : 
    1099             : /**
    1100             :  * mark_buffer_dirty - mark a buffer_head as needing writeout
    1101             :  * @bh: the buffer_head to mark dirty
    1102             :  *
    1103             :  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
    1104             :  * its backing page dirty, then tag the page as dirty in the page cache
    1105             :  * and then attach the address_space's inode to its superblock's dirty
    1106             :  * inode list.
    1107             :  *
    1108             :  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
    1109             :  * i_pages lock and mapping->host->i_lock.
    1110             :  */
    1111        4185 : void mark_buffer_dirty(struct buffer_head *bh)
    1112             : {
    1113        4185 :         WARN_ON_ONCE(!buffer_uptodate(bh));
    1114             : 
    1115        4185 :         trace_block_dirty_buffer(bh);
    1116             : 
    1117             :         /*
    1118             :          * Very *carefully* optimize the it-is-already-dirty case.
    1119             :          *
    1120             :          * Don't let the final "is it dirty" escape to before we
    1121             :          * perhaps modified the buffer.
    1122             :          */
    1123        4185 :         if (buffer_dirty(bh)) {
    1124         621 :                 smp_mb();
    1125         621 :                 if (buffer_dirty(bh))
    1126             :                         return;
    1127             :         }
    1128             : 
    1129        3564 :         if (!test_set_buffer_dirty(bh)) {
    1130        3564 :                 struct page *page = bh->b_page;
    1131        3564 :                 struct address_space *mapping = NULL;
    1132             : 
    1133        3564 :                 lock_page_memcg(page);
    1134        7128 :                 if (!TestSetPageDirty(page)) {
    1135        2719 :                         mapping = page_mapping(page);
    1136        2719 :                         if (mapping)
    1137        2719 :                                 __set_page_dirty(page, mapping, 0);
    1138             :                 }
    1139        2719 :                 unlock_page_memcg(page);
    1140        2719 :                 if (mapping)
    1141        2719 :                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    1142             :         }
    1143             : }
    1144             : EXPORT_SYMBOL(mark_buffer_dirty);
    1145             : 
    1146           0 : void mark_buffer_write_io_error(struct buffer_head *bh)
    1147             : {
    1148           0 :         struct super_block *sb;
    1149             : 
    1150           0 :         set_buffer_write_io_error(bh);
    1151             :         /* FIXME: do we need to set this in both places? */
    1152           0 :         if (bh->b_page && bh->b_page->mapping)
    1153           0 :                 mapping_set_error(bh->b_page->mapping, -EIO);
    1154           0 :         if (bh->b_assoc_map)
    1155           0 :                 mapping_set_error(bh->b_assoc_map, -EIO);
    1156           0 :         rcu_read_lock();
    1157           0 :         sb = READ_ONCE(bh->b_bdev->bd_super);
    1158           0 :         if (sb)
    1159           0 :                 errseq_set(&sb->s_wb_err, -EIO);
    1160           0 :         rcu_read_unlock();
    1161           0 : }
    1162             : EXPORT_SYMBOL(mark_buffer_write_io_error);
    1163             : 
    1164             : /*
    1165             :  * Decrement a buffer_head's reference count.  If all buffers against a page
    1166             :  * have zero reference count, are clean and unlocked, and if the page is clean
    1167             :  * and unlocked then try_to_free_buffers() may strip the buffers from the page
    1168             :  * in preparation for freeing it (sometimes, rarely, buffers are removed from
    1169             :  * a page but it ends up not being freed, and buffers may later be reattached).
    1170             :  */
    1171       50185 : void __brelse(struct buffer_head * buf)
    1172             : {
    1173       50185 :         if (atomic_read(&buf->b_count)) {
    1174       50186 :                 put_bh(buf);
    1175       50186 :                 return;
    1176             :         }
    1177           0 :         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
    1178             : }
    1179             : EXPORT_SYMBOL(__brelse);
    1180             : 
    1181             : /*
    1182             :  * bforget() is like brelse(), except it discards any
    1183             :  * potentially dirty data.
    1184             :  */
    1185           5 : void __bforget(struct buffer_head *bh)
    1186             : {
    1187           5 :         clear_buffer_dirty(bh);
    1188           5 :         if (bh->b_assoc_map) {
    1189           0 :                 struct address_space *buffer_mapping = bh->b_page->mapping;
    1190             : 
    1191           0 :                 spin_lock(&buffer_mapping->private_lock);
    1192           0 :                 list_del_init(&bh->b_assoc_buffers);
    1193           0 :                 bh->b_assoc_map = NULL;
    1194           0 :                 spin_unlock(&buffer_mapping->private_lock);
    1195             :         }
    1196           5 :         __brelse(bh);
    1197           5 : }
    1198             : EXPORT_SYMBOL(__bforget);
    1199             : 
    1200           0 : static struct buffer_head *__bread_slow(struct buffer_head *bh)
    1201             : {
    1202           0 :         lock_buffer(bh);
    1203           0 :         if (buffer_uptodate(bh)) {
    1204           0 :                 unlock_buffer(bh);
    1205           0 :                 return bh;
    1206             :         } else {
    1207           0 :                 get_bh(bh);
    1208           0 :                 bh->b_end_io = end_buffer_read_sync;
    1209           0 :                 submit_bh(REQ_OP_READ, 0, bh);
    1210           0 :                 wait_on_buffer(bh);
    1211           0 :                 if (buffer_uptodate(bh))
    1212             :                         return bh;
    1213             :         }
    1214           0 :         brelse(bh);
    1215             :         return NULL;
    1216             : }
    1217             : 
    1218             : /*
    1219             :  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
    1220             :  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
    1221             :  * refcount elevated by one when they're in an LRU.  A buffer can only appear
    1222             :  * once in a particular CPU's LRU.  A single buffer can be present in multiple
    1223             :  * CPU's LRUs at the same time.
    1224             :  *
    1225             :  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
    1226             :  * sb_find_get_block().
    1227             :  *
    1228             :  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
    1229             :  * a local interrupt disable for that.
    1230             :  */
    1231             : 
    1232             : #define BH_LRU_SIZE     16
    1233             : 
    1234             : struct bh_lru {
    1235             :         struct buffer_head *bhs[BH_LRU_SIZE];
    1236             : };
    1237             : 
    1238             : static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
    1239             : 
    1240             : #ifdef CONFIG_SMP
    1241             : #define bh_lru_lock()   local_irq_disable()
    1242             : #define bh_lru_unlock() local_irq_enable()
    1243             : #else
    1244             : #define bh_lru_lock()   preempt_disable()
    1245             : #define bh_lru_unlock() preempt_enable()
    1246             : #endif
    1247             : 
    1248       52907 : static inline void check_irqs_on(void)
    1249             : {
    1250             : #ifdef irqs_disabled
    1251       52907 :         BUG_ON(irqs_disabled());
    1252             : #endif
    1253       52907 : }
    1254             : 
    1255             : /*
    1256             :  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
    1257             :  * inserted at the front, and the buffer_head at the back if any is evicted.
    1258             :  * Or, if already in the LRU it is moved to the front.
    1259             :  */
    1260       11781 : static void bh_lru_install(struct buffer_head *bh)
    1261             : {
    1262       11781 :         struct buffer_head *evictee = bh;
    1263       11781 :         struct bh_lru *b;
    1264       11781 :         int i;
    1265             : 
    1266       11781 :         check_irqs_on();
    1267       11781 :         bh_lru_lock();
    1268             : 
    1269       11781 :         b = this_cpu_ptr(&bh_lrus);
    1270      200277 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    1271      188496 :                 swap(evictee, b->bhs[i]);
    1272      188496 :                 if (evictee == bh) {
    1273           0 :                         bh_lru_unlock();
    1274           0 :                         return;
    1275             :                 }
    1276             :         }
    1277             : 
    1278       11781 :         get_bh(bh);
    1279       11781 :         bh_lru_unlock();
    1280       11781 :         brelse(evictee);
    1281             : }
    1282             : 
    1283             : /*
    1284             :  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
    1285             :  */
    1286             : static struct buffer_head *
    1287       41126 : lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
    1288             : {
    1289       41126 :         struct buffer_head *ret = NULL;
    1290       41126 :         unsigned int i;
    1291             : 
    1292       41126 :         check_irqs_on();
    1293       41126 :         bh_lru_lock();
    1294      408537 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    1295      388500 :                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
    1296             : 
    1297      388500 :                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
    1298       21088 :                     bh->b_size == size) {
    1299       21088 :                         if (i) {
    1300       60046 :                                 while (i) {
    1301       46788 :                                         __this_cpu_write(bh_lrus.bhs[i],
    1302             :                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
    1303       46788 :                                         i--;
    1304             :                                 }
    1305       21088 :                                 __this_cpu_write(bh_lrus.bhs[0], bh);
    1306             :                         }
    1307       21088 :                         get_bh(bh);
    1308       21088 :                         ret = bh;
    1309       21088 :                         break;
    1310             :                 }
    1311             :         }
    1312       41125 :         bh_lru_unlock();
    1313       41127 :         return ret;
    1314             : }
    1315             : 
    1316             : /*
    1317             :  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
    1318             :  * it in the LRU and mark it as accessed.  If it is not present then return
    1319             :  * NULL
    1320             :  */
    1321             : struct buffer_head *
    1322       41126 : __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
    1323             : {
    1324       41126 :         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
    1325             : 
    1326       41127 :         if (bh == NULL) {
    1327             :                 /* __find_get_block_slow will mark the page accessed */
    1328       20039 :                 bh = __find_get_block_slow(bdev, block);
    1329       20039 :                 if (bh)
    1330       11781 :                         bh_lru_install(bh);
    1331             :         } else
    1332       21088 :                 touch_buffer(bh);
    1333             : 
    1334       41126 :         return bh;
    1335             : }
    1336             : EXPORT_SYMBOL(__find_get_block);
    1337             : 
    1338             : /*
    1339             :  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
    1340             :  * which corresponds to the passed block_device, block and size. The
    1341             :  * returned buffer has its reference count incremented.
    1342             :  *
    1343             :  * __getblk_gfp() will lock up the machine if grow_dev_page's
    1344             :  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
    1345             :  */
    1346             : struct buffer_head *
    1347       31809 : __getblk_gfp(struct block_device *bdev, sector_t block,
    1348             :              unsigned size, gfp_t gfp)
    1349             : {
    1350       31809 :         struct buffer_head *bh = __find_get_block(bdev, block, size);
    1351             : 
    1352       31809 :         might_sleep();
    1353       31809 :         if (bh == NULL)
    1354        4129 :                 bh = __getblk_slow(bdev, block, size, gfp);
    1355       31809 :         return bh;
    1356             : }
    1357             : EXPORT_SYMBOL(__getblk_gfp);
    1358             : 
    1359             : /*
    1360             :  * Do async read-ahead on a buffer..
    1361             :  */
    1362           0 : void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
    1363             : {
    1364           0 :         struct buffer_head *bh = __getblk(bdev, block, size);
    1365           0 :         if (likely(bh)) {
    1366           0 :                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
    1367           0 :                 brelse(bh);
    1368             :         }
    1369           0 : }
    1370             : EXPORT_SYMBOL(__breadahead);
    1371             : 
    1372           0 : void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
    1373             :                       gfp_t gfp)
    1374             : {
    1375           0 :         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
    1376           0 :         if (likely(bh)) {
    1377           0 :                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
    1378           0 :                 brelse(bh);
    1379             :         }
    1380           0 : }
    1381             : EXPORT_SYMBOL(__breadahead_gfp);
    1382             : 
    1383             : /**
    1384             :  *  __bread_gfp() - reads a specified block and returns the bh
    1385             :  *  @bdev: the block_device to read from
    1386             :  *  @block: number of block
    1387             :  *  @size: size (in bytes) to read
    1388             :  *  @gfp: page allocation flag
    1389             :  *
    1390             :  *  Reads a specified block, and returns buffer head that contains it.
    1391             :  *  The page cache can be allocated from non-movable area
    1392             :  *  not to prevent page migration if you set gfp to zero.
    1393             :  *  It returns NULL if the block was unreadable.
    1394             :  */
    1395             : struct buffer_head *
    1396           0 : __bread_gfp(struct block_device *bdev, sector_t block,
    1397             :                    unsigned size, gfp_t gfp)
    1398             : {
    1399           0 :         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
    1400             : 
    1401           0 :         if (likely(bh) && !buffer_uptodate(bh))
    1402           0 :                 bh = __bread_slow(bh);
    1403           0 :         return bh;
    1404             : }
    1405             : EXPORT_SYMBOL(__bread_gfp);
    1406             : 
    1407             : /*
    1408             :  * invalidate_bh_lrus() is called rarely - but not only at unmount.
    1409             :  * This doesn't race because it runs in each cpu either in irq
    1410             :  * or with preempt disabled.
    1411             :  */
    1412           2 : static void invalidate_bh_lru(void *arg)
    1413             : {
    1414           2 :         struct bh_lru *b = &get_cpu_var(bh_lrus);
    1415           2 :         int i;
    1416             : 
    1417          34 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    1418          32 :                 brelse(b->bhs[i]);
    1419          32 :                 b->bhs[i] = NULL;
    1420             :         }
    1421           2 :         put_cpu_var(bh_lrus);
    1422           2 : }
    1423             : 
    1424          12 : static bool has_bh_in_lru(int cpu, void *dummy)
    1425             : {
    1426          12 :         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
    1427          12 :         int i;
    1428             :         
    1429         172 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    1430         162 :                 if (b->bhs[i])
    1431             :                         return true;
    1432             :         }
    1433             : 
    1434             :         return false;
    1435             : }
    1436             : 
    1437           3 : void invalidate_bh_lrus(void)
    1438             : {
    1439           3 :         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
    1440           3 : }
    1441             : EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
    1442             : 
    1443        7659 : void set_bh_page(struct buffer_head *bh,
    1444             :                 struct page *page, unsigned long offset)
    1445             : {
    1446        7659 :         bh->b_page = page;
    1447        7659 :         BUG_ON(offset >= PAGE_SIZE);
    1448        7659 :         if (PageHighMem(page))
    1449             :                 /*
    1450             :                  * This catches illegal uses and preserves the offset:
    1451             :                  */
    1452             :                 bh->b_data = (char *)(0 + offset);
    1453             :         else
    1454        7659 :                 bh->b_data = page_address(page) + offset;
    1455        7659 : }
    1456             : EXPORT_SYMBOL(set_bh_page);
    1457             : 
    1458             : /*
    1459             :  * Called when truncating a buffer on a page completely.
    1460             :  */
    1461             : 
    1462             : /* Bits that are cleared during an invalidate */
    1463             : #define BUFFER_FLAGS_DISCARD \
    1464             :         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
    1465             :          1 << BH_Delay | 1 << BH_Unwritten)
    1466             : 
    1467         505 : static void discard_buffer(struct buffer_head * bh)
    1468             : {
    1469         505 :         unsigned long b_state, b_state_old;
    1470             : 
    1471         505 :         lock_buffer(bh);
    1472         505 :         clear_buffer_dirty(bh);
    1473         505 :         bh->b_bdev = NULL;
    1474         505 :         b_state = bh->b_state;
    1475         505 :         for (;;) {
    1476         505 :                 b_state_old = cmpxchg(&bh->b_state, b_state,
    1477             :                                       (b_state & ~BUFFER_FLAGS_DISCARD));
    1478         505 :                 if (b_state_old == b_state)
    1479             :                         break;
    1480             :                 b_state = b_state_old;
    1481             :         }
    1482         505 :         unlock_buffer(bh);
    1483         505 : }
    1484             : 
    1485             : /**
    1486             :  * block_invalidatepage - invalidate part or all of a buffer-backed page
    1487             :  *
    1488             :  * @page: the page which is affected
    1489             :  * @offset: start of the range to invalidate
    1490             :  * @length: length of the range to invalidate
    1491             :  *
    1492             :  * block_invalidatepage() is called when all or part of the page has become
    1493             :  * invalidated by a truncate operation.
    1494             :  *
    1495             :  * block_invalidatepage() does not have to release all buffers, but it must
    1496             :  * ensure that no dirty buffer is left outside @offset and that no I/O
    1497             :  * is underway against any of the blocks which are outside the truncation
    1498             :  * point.  Because the caller is about to free (and possibly reuse) those
    1499             :  * blocks on-disk.
    1500             :  */
    1501         501 : void block_invalidatepage(struct page *page, unsigned int offset,
    1502             :                           unsigned int length)
    1503             : {
    1504         501 :         struct buffer_head *head, *bh, *next;
    1505         501 :         unsigned int curr_off = 0;
    1506         501 :         unsigned int stop = length + offset;
    1507             : 
    1508        1002 :         BUG_ON(!PageLocked(page));
    1509         501 :         if (!page_has_buffers(page))
    1510           0 :                 goto out;
    1511             : 
    1512             :         /*
    1513             :          * Check for overflow
    1514             :          */
    1515         501 :         BUG_ON(stop > PAGE_SIZE || stop < length);
    1516             : 
    1517         501 :         head = page_buffers(page);
    1518         501 :         bh = head;
    1519         507 :         do {
    1520         507 :                 unsigned int next_off = curr_off + bh->b_size;
    1521         507 :                 next = bh->b_this_page;
    1522             : 
    1523             :                 /*
    1524             :                  * Are we still fully in range ?
    1525             :                  */
    1526         507 :                 if (next_off > stop)
    1527           0 :                         goto out;
    1528             : 
    1529             :                 /*
    1530             :                  * is this block fully invalidated?
    1531             :                  */
    1532         507 :                 if (offset <= curr_off)
    1533         505 :                         discard_buffer(bh);
    1534         507 :                 curr_off = next_off;
    1535         507 :                 bh = next;
    1536         507 :         } while (bh != head);
    1537             : 
    1538             :         /*
    1539             :          * We release buffers only if the entire page is being invalidated.
    1540             :          * The get_block cached value has been unconditionally invalidated,
    1541             :          * so real IO is not possible anymore.
    1542             :          */
    1543         501 :         if (length == PAGE_SIZE)
    1544         499 :                 try_to_release_page(page, 0);
    1545           2 : out:
    1546         501 :         return;
    1547             : }
    1548             : EXPORT_SYMBOL(block_invalidatepage);
    1549             : 
    1550             : 
    1551             : /*
    1552             :  * We attach and possibly dirty the buffers atomically wrt
    1553             :  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
    1554             :  * is already excluded via the page lock.
    1555             :  */
    1556        1713 : void create_empty_buffers(struct page *page,
    1557             :                         unsigned long blocksize, unsigned long b_state)
    1558             : {
    1559        1713 :         struct buffer_head *bh, *head, *tail;
    1560             : 
    1561        1713 :         head = alloc_page_buffers(page, blocksize, true);
    1562        1713 :         bh = head;
    1563        1713 :         do {
    1564        1713 :                 bh->b_state |= b_state;
    1565        1713 :                 tail = bh;
    1566        1713 :                 bh = bh->b_this_page;
    1567        1713 :         } while (bh);
    1568        1713 :         tail->b_this_page = head;
    1569             : 
    1570        1713 :         spin_lock(&page->mapping->private_lock);
    1571        3422 :         if (PageUptodate(page) || PageDirty(page)) {
    1572             :                 bh = head;
    1573           4 :                 do {
    1574           8 :                         if (PageDirty(page))
    1575           0 :                                 set_buffer_dirty(bh);
    1576           4 :                         if (PageUptodate(page))
    1577           4 :                                 set_buffer_uptodate(bh);
    1578           4 :                         bh = bh->b_this_page;
    1579           4 :                 } while (bh != head);
    1580             :         }
    1581        1713 :         attach_page_private(page, head);
    1582        1713 :         spin_unlock(&page->mapping->private_lock);
    1583        1713 : }
    1584             : EXPORT_SYMBOL(create_empty_buffers);
    1585             : 
    1586             : /**
    1587             :  * clean_bdev_aliases: clean a range of buffers in block device
    1588             :  * @bdev: Block device to clean buffers in
    1589             :  * @block: Start of a range of blocks to clean
    1590             :  * @len: Number of blocks to clean
    1591             :  *
    1592             :  * We are taking a range of blocks for data and we don't want writeback of any
    1593             :  * buffer-cache aliases starting from return from this function and until the
    1594             :  * moment when something will explicitly mark the buffer dirty (hopefully that
    1595             :  * will not happen until we will free that block ;-) We don't even need to mark
    1596             :  * it not-uptodate - nobody can expect anything from a newly allocated buffer
    1597             :  * anyway. We used to use unmap_buffer() for such invalidation, but that was
    1598             :  * wrong. We definitely don't want to mark the alias unmapped, for example - it
    1599             :  * would confuse anyone who might pick it with bread() afterwards...
    1600             :  *
    1601             :  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
    1602             :  * writeout I/O going on against recently-freed buffers.  We don't wait on that
    1603             :  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
    1604             :  * need to.  That happens here.
    1605             :  */
    1606        1607 : void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
    1607             : {
    1608        1607 :         struct inode *bd_inode = bdev->bd_inode;
    1609        1607 :         struct address_space *bd_mapping = bd_inode->i_mapping;
    1610        1607 :         struct pagevec pvec;
    1611        1607 :         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
    1612        1607 :         pgoff_t end;
    1613        1607 :         int i, count;
    1614        1607 :         struct buffer_head *bh;
    1615        1607 :         struct buffer_head *head;
    1616             : 
    1617        1607 :         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
    1618        1607 :         pagevec_init(&pvec);
    1619        1607 :         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
    1620           0 :                 count = pagevec_count(&pvec);
    1621           0 :                 for (i = 0; i < count; i++) {
    1622           0 :                         struct page *page = pvec.pages[i];
    1623             : 
    1624           0 :                         if (!page_has_buffers(page))
    1625           0 :                                 continue;
    1626             :                         /*
    1627             :                          * We use page lock instead of bd_mapping->private_lock
    1628             :                          * to pin buffers here since we can afford to sleep and
    1629             :                          * it scales better than a global spinlock lock.
    1630             :                          */
    1631           0 :                         lock_page(page);
    1632             :                         /* Recheck when the page is locked which pins bhs */
    1633           0 :                         if (!page_has_buffers(page))
    1634           0 :                                 goto unlock_page;
    1635           0 :                         head = page_buffers(page);
    1636           0 :                         bh = head;
    1637           0 :                         do {
    1638           0 :                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
    1639           0 :                                         goto next;
    1640           0 :                                 if (bh->b_blocknr >= block + len)
    1641             :                                         break;
    1642           0 :                                 clear_buffer_dirty(bh);
    1643           0 :                                 wait_on_buffer(bh);
    1644           0 :                                 clear_buffer_req(bh);
    1645           0 : next:
    1646           0 :                                 bh = bh->b_this_page;
    1647           0 :                         } while (bh != head);
    1648           0 : unlock_page:
    1649           0 :                         unlock_page(page);
    1650             :                 }
    1651           0 :                 pagevec_release(&pvec);
    1652           0 :                 cond_resched();
    1653             :                 /* End of range already reached? */
    1654           0 :                 if (index > end || !index)
    1655             :                         break;
    1656             :         }
    1657        1607 : }
    1658             : EXPORT_SYMBOL(clean_bdev_aliases);
    1659             : 
    1660             : /*
    1661             :  * Size is a power-of-two in the range 512..PAGE_SIZE,
    1662             :  * and the case we care about most is PAGE_SIZE.
    1663             :  *
    1664             :  * So this *could* possibly be written with those
    1665             :  * constraints in mind (relevant mostly if some
    1666             :  * architecture has a slow bit-scan instruction)
    1667             :  */
    1668        3281 : static inline int block_size_bits(unsigned int blocksize)
    1669             : {
    1670        3281 :         return ilog2(blocksize);
    1671             : }
    1672             : 
    1673        3281 : static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
    1674             : {
    1675        6562 :         BUG_ON(!PageLocked(page));
    1676             : 
    1677        3281 :         if (!page_has_buffers(page))
    1678        1713 :                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
    1679             :                                      b_state);
    1680        3281 :         return page_buffers(page);
    1681             : }
    1682             : 
    1683             : /*
    1684             :  * NOTE! All mapped/uptodate combinations are valid:
    1685             :  *
    1686             :  *      Mapped  Uptodate        Meaning
    1687             :  *
    1688             :  *      No      No              "unknown" - must do get_block()
    1689             :  *      No      Yes             "hole" - zero-filled
    1690             :  *      Yes     No              "allocated" - allocated on disk, not read in
    1691             :  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
    1692             :  *
    1693             :  * "Dirty" is valid only with the last case (mapped+uptodate).
    1694             :  */
    1695             : 
    1696             : /*
    1697             :  * While block_write_full_page is writing back the dirty buffers under
    1698             :  * the page lock, whoever dirtied the buffers may decide to clean them
    1699             :  * again at any time.  We handle that by only looking at the buffer
    1700             :  * state inside lock_buffer().
    1701             :  *
    1702             :  * If block_write_full_page() is called for regular writeback
    1703             :  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
    1704             :  * locked buffer.   This only can happen if someone has written the buffer
    1705             :  * directly, with submit_bh().  At the address_space level PageWriteback
    1706             :  * prevents this contention from occurring.
    1707             :  *
    1708             :  * If block_write_full_page() is called with wbc->sync_mode ==
    1709             :  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
    1710             :  * causes the writes to be flagged as synchronous writes.
    1711             :  */
    1712         872 : int __block_write_full_page(struct inode *inode, struct page *page,
    1713             :                         get_block_t *get_block, struct writeback_control *wbc,
    1714             :                         bh_end_io_t *handler)
    1715             : {
    1716         872 :         int err;
    1717         872 :         sector_t block;
    1718         872 :         sector_t last_block;
    1719         872 :         struct buffer_head *bh, *head;
    1720         872 :         unsigned int blocksize, bbits;
    1721         872 :         int nr_underway = 0;
    1722         872 :         int write_flags = wbc_to_write_flags(wbc);
    1723             : 
    1724         872 :         head = create_page_buffers(page, inode,
    1725             :                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
    1726             : 
    1727             :         /*
    1728             :          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
    1729             :          * here, and the (potentially unmapped) buffers may become dirty at
    1730             :          * any time.  If a buffer becomes dirty here after we've inspected it
    1731             :          * then we just miss that fact, and the page stays dirty.
    1732             :          *
    1733             :          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
    1734             :          * handle that here by just cleaning them.
    1735             :          */
    1736             : 
    1737         872 :         bh = head;
    1738         872 :         blocksize = bh->b_size;
    1739         872 :         bbits = block_size_bits(blocksize);
    1740             : 
    1741         872 :         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
    1742         872 :         last_block = (i_size_read(inode) - 1) >> bbits;
    1743             : 
    1744             :         /*
    1745             :          * Get all the dirty buffers mapped to disk addresses and
    1746             :          * handle any aliases from the underlying blockdev's mapping.
    1747             :          */
    1748         872 :         do {
    1749         872 :                 if (block > last_block) {
    1750             :                         /*
    1751             :                          * mapped buffers outside i_size will occur, because
    1752             :                          * this page can be outside i_size when there is a
    1753             :                          * truncate in progress.
    1754             :                          */
    1755             :                         /*
    1756             :                          * The buffer was zeroed by block_write_full_page()
    1757             :                          */
    1758           0 :                         clear_buffer_dirty(bh);
    1759           0 :                         set_buffer_uptodate(bh);
    1760        1744 :                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
    1761           0 :                            buffer_dirty(bh)) {
    1762           0 :                         WARN_ON(bh->b_size != blocksize);
    1763           0 :                         err = get_block(inode, block, bh, 1);
    1764           0 :                         if (err)
    1765           0 :                                 goto recover;
    1766           0 :                         clear_buffer_delay(bh);
    1767           0 :                         if (buffer_new(bh)) {
    1768             :                                 /* blockdev mappings never come here */
    1769           0 :                                 clear_buffer_new(bh);
    1770           0 :                                 clean_bdev_bh_alias(bh);
    1771             :                         }
    1772             :                 }
    1773         872 :                 bh = bh->b_this_page;
    1774         872 :                 block++;
    1775         872 :         } while (bh != head);
    1776             : 
    1777         872 :         do {
    1778         872 :                 if (!buffer_mapped(bh))
    1779           0 :                         continue;
    1780             :                 /*
    1781             :                  * If it's a fully non-blocking write attempt and we cannot
    1782             :                  * lock the buffer then redirty the page.  Note that this can
    1783             :                  * potentially cause a busy-wait loop from writeback threads
    1784             :                  * and kswapd activity, but those code paths have their own
    1785             :                  * higher-level throttling.
    1786             :                  */
    1787         872 :                 if (wbc->sync_mode != WB_SYNC_NONE) {
    1788           0 :                         lock_buffer(bh);
    1789         872 :                 } else if (!trylock_buffer(bh)) {
    1790           0 :                         redirty_page_for_writepage(wbc, page);
    1791           0 :                         continue;
    1792             :                 }
    1793         872 :                 if (test_clear_buffer_dirty(bh)) {
    1794         867 :                         mark_buffer_async_write_endio(bh, handler);
    1795             :                 } else {
    1796           5 :                         unlock_buffer(bh);
    1797             :                 }
    1798         872 :         } while ((bh = bh->b_this_page) != head);
    1799             : 
    1800             :         /*
    1801             :          * The page and its buffers are protected by PageWriteback(), so we can
    1802             :          * drop the bh refcounts early.
    1803             :          */
    1804        1744 :         BUG_ON(PageWriteback(page));
    1805         872 :         set_page_writeback(page);
    1806             : 
    1807         872 :         do {
    1808         872 :                 struct buffer_head *next = bh->b_this_page;
    1809         872 :                 if (buffer_async_write(bh)) {
    1810         867 :                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
    1811         867 :                                         inode->i_write_hint, wbc);
    1812         867 :                         nr_underway++;
    1813             :                 }
    1814         872 :                 bh = next;
    1815         872 :         } while (bh != head);
    1816         872 :         unlock_page(page);
    1817             : 
    1818         872 :         err = 0;
    1819         872 : done:
    1820         872 :         if (nr_underway == 0) {
    1821             :                 /*
    1822             :                  * The page was marked dirty, but the buffers were
    1823             :                  * clean.  Someone wrote them back by hand with
    1824             :                  * ll_rw_block/submit_bh.  A rare case.
    1825             :                  */
    1826           5 :                 end_page_writeback(page);
    1827             : 
    1828             :                 /*
    1829             :                  * The page and buffer_heads can be released at any time from
    1830             :                  * here on.
    1831             :                  */
    1832             :         }
    1833         872 :         return err;
    1834             : 
    1835           0 : recover:
    1836             :         /*
    1837             :          * ENOSPC, or some other error.  We may already have added some
    1838             :          * blocks to the file, so we need to write these out to avoid
    1839             :          * exposing stale data.
    1840             :          * The page is currently locked and not marked for writeback
    1841             :          */
    1842           0 :         bh = head;
    1843             :         /* Recovery: lock and submit the mapped buffers */
    1844           0 :         do {
    1845           0 :                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
    1846           0 :                     !buffer_delay(bh)) {
    1847           0 :                         lock_buffer(bh);
    1848           0 :                         mark_buffer_async_write_endio(bh, handler);
    1849             :                 } else {
    1850             :                         /*
    1851             :                          * The buffer may have been set dirty during
    1852             :                          * attachment to a dirty page.
    1853             :                          */
    1854           0 :                         clear_buffer_dirty(bh);
    1855             :                 }
    1856           0 :         } while ((bh = bh->b_this_page) != head);
    1857           0 :         SetPageError(page);
    1858           0 :         BUG_ON(PageWriteback(page));
    1859           0 :         mapping_set_error(page->mapping, err);
    1860           0 :         set_page_writeback(page);
    1861           0 :         do {
    1862           0 :                 struct buffer_head *next = bh->b_this_page;
    1863           0 :                 if (buffer_async_write(bh)) {
    1864           0 :                         clear_buffer_dirty(bh);
    1865           0 :                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
    1866           0 :                                         inode->i_write_hint, wbc);
    1867           0 :                         nr_underway++;
    1868             :                 }
    1869           0 :                 bh = next;
    1870           0 :         } while (bh != head);
    1871           0 :         unlock_page(page);
    1872           0 :         goto done;
    1873             : }
    1874             : EXPORT_SYMBOL(__block_write_full_page);
    1875             : 
    1876             : /*
    1877             :  * If a page has any new buffers, zero them out here, and mark them uptodate
    1878             :  * and dirty so they'll be written out (in order to prevent uninitialised
    1879             :  * block data from leaking). And clear the new bit.
    1880             :  */
    1881           0 : void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
    1882             : {
    1883           0 :         unsigned int block_start, block_end;
    1884           0 :         struct buffer_head *head, *bh;
    1885             : 
    1886           0 :         BUG_ON(!PageLocked(page));
    1887           0 :         if (!page_has_buffers(page))
    1888             :                 return;
    1889             : 
    1890           0 :         bh = head = page_buffers(page);
    1891           0 :         block_start = 0;
    1892           0 :         do {
    1893           0 :                 block_end = block_start + bh->b_size;
    1894             : 
    1895           0 :                 if (buffer_new(bh)) {
    1896           0 :                         if (block_end > from && block_start < to) {
    1897           0 :                                 if (!PageUptodate(page)) {
    1898           0 :                                         unsigned start, size;
    1899             : 
    1900           0 :                                         start = max(from, block_start);
    1901           0 :                                         size = min(to, block_end) - start;
    1902             : 
    1903           0 :                                         zero_user(page, start, size);
    1904           0 :                                         set_buffer_uptodate(bh);
    1905             :                                 }
    1906             : 
    1907           0 :                                 clear_buffer_new(bh);
    1908           0 :                                 mark_buffer_dirty(bh);
    1909             :                         }
    1910             :                 }
    1911             : 
    1912           0 :                 block_start = block_end;
    1913           0 :                 bh = bh->b_this_page;
    1914           0 :         } while (bh != head);
    1915             : }
    1916             : EXPORT_SYMBOL(page_zero_new_buffers);
    1917             : 
    1918             : static void
    1919           0 : iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
    1920             :                 struct iomap *iomap)
    1921             : {
    1922           0 :         loff_t offset = block << inode->i_blkbits;
    1923             : 
    1924           0 :         bh->b_bdev = iomap->bdev;
    1925             : 
    1926             :         /*
    1927             :          * Block points to offset in file we need to map, iomap contains
    1928             :          * the offset at which the map starts. If the map ends before the
    1929             :          * current block, then do not map the buffer and let the caller
    1930             :          * handle it.
    1931             :          */
    1932           0 :         BUG_ON(offset >= iomap->offset + iomap->length);
    1933             : 
    1934           0 :         switch (iomap->type) {
    1935             :         case IOMAP_HOLE:
    1936             :                 /*
    1937             :                  * If the buffer is not up to date or beyond the current EOF,
    1938             :                  * we need to mark it as new to ensure sub-block zeroing is
    1939             :                  * executed if necessary.
    1940             :                  */
    1941           0 :                 if (!buffer_uptodate(bh) ||
    1942           0 :                     (offset >= i_size_read(inode)))
    1943           0 :                         set_buffer_new(bh);
    1944             :                 break;
    1945             :         case IOMAP_DELALLOC:
    1946           0 :                 if (!buffer_uptodate(bh) ||
    1947           0 :                     (offset >= i_size_read(inode)))
    1948           0 :                         set_buffer_new(bh);
    1949           0 :                 set_buffer_uptodate(bh);
    1950           0 :                 set_buffer_mapped(bh);
    1951           0 :                 set_buffer_delay(bh);
    1952             :                 break;
    1953             :         case IOMAP_UNWRITTEN:
    1954             :                 /*
    1955             :                  * For unwritten regions, we always need to ensure that regions
    1956             :                  * in the block we are not writing to are zeroed. Mark the
    1957             :                  * buffer as new to ensure this.
    1958             :                  */
    1959           0 :                 set_buffer_new(bh);
    1960           0 :                 set_buffer_unwritten(bh);
    1961           0 :                 fallthrough;
    1962           0 :         case IOMAP_MAPPED:
    1963           0 :                 if ((iomap->flags & IOMAP_F_NEW) ||
    1964           0 :                     offset >= i_size_read(inode))
    1965           0 :                         set_buffer_new(bh);
    1966           0 :                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
    1967           0 :                                 inode->i_blkbits;
    1968           0 :                 set_buffer_mapped(bh);
    1969             :                 break;
    1970             :         }
    1971           0 : }
    1972             : 
    1973        2398 : int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
    1974             :                 get_block_t *get_block, struct iomap *iomap)
    1975             : {
    1976        2398 :         unsigned from = pos & (PAGE_SIZE - 1);
    1977        2398 :         unsigned to = from + len;
    1978        2398 :         struct inode *inode = page->mapping->host;
    1979        2398 :         unsigned block_start, block_end;
    1980        2398 :         sector_t block;
    1981        2398 :         int err = 0;
    1982        2398 :         unsigned blocksize, bbits;
    1983        2398 :         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
    1984             : 
    1985        4796 :         BUG_ON(!PageLocked(page));
    1986        2398 :         BUG_ON(from > PAGE_SIZE);
    1987        2398 :         BUG_ON(to > PAGE_SIZE);
    1988        2398 :         BUG_ON(from > to);
    1989             : 
    1990        2398 :         head = create_page_buffers(page, inode, 0);
    1991        2398 :         blocksize = head->b_size;
    1992        2398 :         bbits = block_size_bits(blocksize);
    1993             : 
    1994        2398 :         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
    1995             : 
    1996        4796 :         for(bh = head, block_start = 0; bh != head || !block_start;
    1997        2398 :             block++, block_start=block_end, bh = bh->b_this_page) {
    1998        2398 :                 block_end = block_start + blocksize;
    1999        2398 :                 if (block_end <= from || block_start >= to) {
    2000           0 :                         if (PageUptodate(page)) {
    2001           0 :                                 if (!buffer_uptodate(bh))
    2002           0 :                                         set_buffer_uptodate(bh);
    2003             :                         }
    2004           0 :                         continue;
    2005             :                 }
    2006        2398 :                 if (buffer_new(bh))
    2007           0 :                         clear_buffer_new(bh);
    2008        2398 :                 if (!buffer_mapped(bh)) {
    2009        1712 :                         WARN_ON(bh->b_size != blocksize);
    2010        1712 :                         if (get_block) {
    2011        1712 :                                 err = get_block(inode, block, bh, 1);
    2012        1712 :                                 if (err)
    2013             :                                         break;
    2014             :                         } else {
    2015           0 :                                 iomap_to_bh(inode, block, bh, iomap);
    2016             :                         }
    2017             : 
    2018        1712 :                         if (buffer_new(bh)) {
    2019        1607 :                                 clean_bdev_bh_alias(bh);
    2020        1607 :                                 if (PageUptodate(page)) {
    2021           0 :                                         clear_buffer_new(bh);
    2022           0 :                                         set_buffer_uptodate(bh);
    2023           0 :                                         mark_buffer_dirty(bh);
    2024           0 :                                         continue;
    2025             :                                 }
    2026        1607 :                                 if (block_end > to || block_start < from)
    2027         413 :                                         zero_user_segments(page,
    2028             :                                                 to, block_end,
    2029             :                                                 block_start, from);
    2030        1607 :                                 continue;
    2031             :                         }
    2032             :                 }
    2033         791 :                 if (PageUptodate(page)) {
    2034         690 :                         if (!buffer_uptodate(bh))
    2035           0 :                                 set_buffer_uptodate(bh);
    2036         690 :                         continue; 
    2037             :                 }
    2038         101 :                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
    2039         101 :                     !buffer_unwritten(bh) &&
    2040         101 :                      (block_start < from || block_end > to)) {
    2041           8 :                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
    2042           8 :                         *wait_bh++=bh;
    2043             :                 }
    2044             :         }
    2045             :         /*
    2046             :          * If we issued read requests - let them complete.
    2047             :          */
    2048        2406 :         while(wait_bh > wait) {
    2049           8 :                 wait_on_buffer(*--wait_bh);
    2050           8 :                 if (!buffer_uptodate(*wait_bh))
    2051           0 :                         err = -EIO;
    2052             :         }
    2053        2398 :         if (unlikely(err))
    2054           0 :                 page_zero_new_buffers(page, from, to);
    2055        2398 :         return err;
    2056             : }
    2057             : 
    2058        2398 : int __block_write_begin(struct page *page, loff_t pos, unsigned len,
    2059             :                 get_block_t *get_block)
    2060             : {
    2061        2094 :         return __block_write_begin_int(page, pos, len, get_block, NULL);
    2062             : }
    2063             : EXPORT_SYMBOL(__block_write_begin);
    2064             : 
    2065        2398 : static int __block_commit_write(struct inode *inode, struct page *page,
    2066             :                 unsigned from, unsigned to)
    2067             : {
    2068        2398 :         unsigned block_start, block_end;
    2069        2398 :         int partial = 0;
    2070        2398 :         unsigned blocksize;
    2071        2398 :         struct buffer_head *bh, *head;
    2072             : 
    2073        2398 :         bh = head = page_buffers(page);
    2074        2398 :         blocksize = bh->b_size;
    2075             : 
    2076        2398 :         block_start = 0;
    2077        2398 :         do {
    2078        2398 :                 block_end = block_start + blocksize;
    2079        2398 :                 if (block_end <= from || block_start >= to) {
    2080           0 :                         if (!buffer_uptodate(bh))
    2081           0 :                                 partial = 1;
    2082             :                 } else {
    2083        2398 :                         set_buffer_uptodate(bh);
    2084        2398 :                         mark_buffer_dirty(bh);
    2085             :                 }
    2086        2398 :                 if (buffer_new(bh))
    2087        1607 :                         clear_buffer_new(bh);
    2088             : 
    2089        2398 :                 block_start = block_end;
    2090        2398 :                 bh = bh->b_this_page;
    2091        2398 :         } while (bh != head);
    2092             : 
    2093             :         /*
    2094             :          * If this is a partial write which happened to make all buffers
    2095             :          * uptodate then we can optimize away a bogus readpage() for
    2096             :          * the next read(). Here we 'discover' whether the page went
    2097             :          * uptodate as a result of this (potentially partial) write.
    2098             :          */
    2099        2398 :         if (!partial)
    2100        2398 :                 SetPageUptodate(page);
    2101        2398 :         return 0;
    2102             : }
    2103             : 
    2104             : /*
    2105             :  * block_write_begin takes care of the basic task of block allocation and
    2106             :  * bringing partial write blocks uptodate first.
    2107             :  *
    2108             :  * The filesystem needs to handle block truncation upon failure.
    2109             :  */
    2110           0 : int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
    2111             :                 unsigned flags, struct page **pagep, get_block_t *get_block)
    2112             : {
    2113           0 :         pgoff_t index = pos >> PAGE_SHIFT;
    2114           0 :         struct page *page;
    2115           0 :         int status;
    2116             : 
    2117           0 :         page = grab_cache_page_write_begin(mapping, index, flags);
    2118           0 :         if (!page)
    2119             :                 return -ENOMEM;
    2120             : 
    2121           0 :         status = __block_write_begin(page, pos, len, get_block);
    2122           0 :         if (unlikely(status)) {
    2123           0 :                 unlock_page(page);
    2124           0 :                 put_page(page);
    2125           0 :                 page = NULL;
    2126             :         }
    2127             : 
    2128           0 :         *pagep = page;
    2129           0 :         return status;
    2130             : }
    2131             : EXPORT_SYMBOL(block_write_begin);
    2132             : 
    2133        2094 : int block_write_end(struct file *file, struct address_space *mapping,
    2134             :                         loff_t pos, unsigned len, unsigned copied,
    2135             :                         struct page *page, void *fsdata)
    2136             : {
    2137        2094 :         struct inode *inode = mapping->host;
    2138        2094 :         unsigned start;
    2139             : 
    2140        2094 :         start = pos & (PAGE_SIZE - 1);
    2141             : 
    2142        2094 :         if (unlikely(copied < len)) {
    2143             :                 /*
    2144             :                  * The buffers that were written will now be uptodate, so we
    2145             :                  * don't have to worry about a readpage reading them and
    2146             :                  * overwriting a partial write. However if we have encountered
    2147             :                  * a short write and only partially written into a buffer, it
    2148             :                  * will not be marked uptodate, so a readpage might come in and
    2149             :                  * destroy our partial write.
    2150             :                  *
    2151             :                  * Do the simplest thing, and just treat any short write to a
    2152             :                  * non uptodate page as a zero-length write, and force the
    2153             :                  * caller to redo the whole thing.
    2154             :                  */
    2155           0 :                 if (!PageUptodate(page))
    2156           0 :                         copied = 0;
    2157             : 
    2158           0 :                 page_zero_new_buffers(page, start+copied, start+len);
    2159             :         }
    2160        2094 :         flush_dcache_page(page);
    2161             : 
    2162             :         /* This could be a short (even 0-length) commit */
    2163        2094 :         __block_commit_write(inode, page, start, start+copied);
    2164             : 
    2165        2094 :         return copied;
    2166             : }
    2167             : EXPORT_SYMBOL(block_write_end);
    2168             : 
    2169        2094 : int generic_write_end(struct file *file, struct address_space *mapping,
    2170             :                         loff_t pos, unsigned len, unsigned copied,
    2171             :                         struct page *page, void *fsdata)
    2172             : {
    2173        2094 :         struct inode *inode = mapping->host;
    2174        2094 :         loff_t old_size = inode->i_size;
    2175        2094 :         bool i_size_changed = false;
    2176             : 
    2177        2094 :         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
    2178             : 
    2179             :         /*
    2180             :          * No need to use i_size_read() here, the i_size cannot change under us
    2181             :          * because we hold i_rwsem.
    2182             :          *
    2183             :          * But it's important to update i_size while still holding page lock:
    2184             :          * page writeout could otherwise come in and zero beyond i_size.
    2185             :          */
    2186        2094 :         if (pos + copied > inode->i_size) {
    2187        2001 :                 i_size_write(inode, pos + copied);
    2188        2001 :                 i_size_changed = true;
    2189             :         }
    2190             : 
    2191        2094 :         unlock_page(page);
    2192        2094 :         put_page(page);
    2193             : 
    2194        2094 :         if (old_size < pos)
    2195           0 :                 pagecache_isize_extended(inode, old_size, pos);
    2196             :         /*
    2197             :          * Don't mark the inode dirty under page lock. First, it unnecessarily
    2198             :          * makes the holding time of page lock longer. Second, it forces lock
    2199             :          * ordering of page lock and transaction start for journaling
    2200             :          * filesystems.
    2201             :          */
    2202        2094 :         if (i_size_changed)
    2203        2001 :                 mark_inode_dirty(inode);
    2204        2094 :         return copied;
    2205             : }
    2206             : EXPORT_SYMBOL(generic_write_end);
    2207             : 
    2208             : /*
    2209             :  * block_is_partially_uptodate checks whether buffers within a page are
    2210             :  * uptodate or not.
    2211             :  *
    2212             :  * Returns true if all buffers which correspond to a file portion
    2213             :  * we want to read are uptodate.
    2214             :  */
    2215           0 : int block_is_partially_uptodate(struct page *page, unsigned long from,
    2216             :                                         unsigned long count)
    2217             : {
    2218           0 :         unsigned block_start, block_end, blocksize;
    2219           0 :         unsigned to;
    2220           0 :         struct buffer_head *bh, *head;
    2221           0 :         int ret = 1;
    2222             : 
    2223           0 :         if (!page_has_buffers(page))
    2224             :                 return 0;
    2225             : 
    2226           0 :         head = page_buffers(page);
    2227           0 :         blocksize = head->b_size;
    2228           0 :         to = min_t(unsigned, PAGE_SIZE - from, count);
    2229           0 :         to = from + to;
    2230           0 :         if (from < blocksize && to > PAGE_SIZE - blocksize)
    2231             :                 return 0;
    2232             : 
    2233             :         bh = head;
    2234             :         block_start = 0;
    2235           0 :         do {
    2236           0 :                 block_end = block_start + blocksize;
    2237           0 :                 if (block_end > from && block_start < to) {
    2238           0 :                         if (!buffer_uptodate(bh)) {
    2239             :                                 ret = 0;
    2240             :                                 break;
    2241             :                         }
    2242           0 :                         if (block_end >= to)
    2243             :                                 break;
    2244             :                 }
    2245           0 :                 block_start = block_end;
    2246           0 :                 bh = bh->b_this_page;
    2247           0 :         } while (bh != head);
    2248             : 
    2249             :         return ret;
    2250             : }
    2251             : EXPORT_SYMBOL(block_is_partially_uptodate);
    2252             : 
    2253             : /*
    2254             :  * Generic "read page" function for block devices that have the normal
    2255             :  * get_block functionality. This is most of the block device filesystems.
    2256             :  * Reads the page asynchronously --- the unlock_buffer() and
    2257             :  * set/clear_buffer_uptodate() functions propagate buffer state into the
    2258             :  * page struct once IO has completed.
    2259             :  */
    2260          11 : int block_read_full_page(struct page *page, get_block_t *get_block)
    2261             : {
    2262          11 :         struct inode *inode = page->mapping->host;
    2263          11 :         sector_t iblock, lblock;
    2264          11 :         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
    2265          11 :         unsigned int blocksize, bbits;
    2266          11 :         int nr, i;
    2267          11 :         int fully_mapped = 1;
    2268             : 
    2269          11 :         head = create_page_buffers(page, inode, 0);
    2270          11 :         blocksize = head->b_size;
    2271          11 :         bbits = block_size_bits(blocksize);
    2272             : 
    2273          11 :         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
    2274          11 :         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
    2275          11 :         bh = head;
    2276          11 :         nr = 0;
    2277          11 :         i = 0;
    2278             : 
    2279          11 :         do {
    2280          11 :                 if (buffer_uptodate(bh))
    2281          10 :                         continue;
    2282             : 
    2283           1 :                 if (!buffer_mapped(bh)) {
    2284           1 :                         int err = 0;
    2285             : 
    2286           1 :                         fully_mapped = 0;
    2287           1 :                         if (iblock < lblock) {
    2288           1 :                                 WARN_ON(bh->b_size != blocksize);
    2289           1 :                                 err = get_block(inode, iblock, bh, 0);
    2290           1 :                                 if (err)
    2291           0 :                                         SetPageError(page);
    2292             :                         }
    2293           1 :                         if (!buffer_mapped(bh)) {
    2294           0 :                                 zero_user(page, i * blocksize, blocksize);
    2295           0 :                                 if (!err)
    2296           0 :                                         set_buffer_uptodate(bh);
    2297           0 :                                 continue;
    2298             :                         }
    2299             :                         /*
    2300             :                          * get_block() might have updated the buffer
    2301             :                          * synchronously
    2302             :                          */
    2303           1 :                         if (buffer_uptodate(bh))
    2304           0 :                                 continue;
    2305             :                 }
    2306           1 :                 arr[nr++] = bh;
    2307          11 :         } while (i++, iblock++, (bh = bh->b_this_page) != head);
    2308             : 
    2309          11 :         if (fully_mapped)
    2310          10 :                 SetPageMappedToDisk(page);
    2311             : 
    2312          11 :         if (!nr) {
    2313             :                 /*
    2314             :                  * All buffers are uptodate - we can set the page uptodate
    2315             :                  * as well. But not if get_block() returned an error.
    2316             :                  */
    2317          20 :                 if (!PageError(page))
    2318          10 :                         SetPageUptodate(page);
    2319          10 :                 unlock_page(page);
    2320          10 :                 return 0;
    2321             :         }
    2322             : 
    2323             :         /* Stage two: lock the buffers */
    2324           2 :         for (i = 0; i < nr; i++) {
    2325           1 :                 bh = arr[i];
    2326           1 :                 lock_buffer(bh);
    2327           1 :                 mark_buffer_async_read(bh);
    2328             :         }
    2329             : 
    2330             :         /*
    2331             :          * Stage 3: start the IO.  Check for uptodateness
    2332             :          * inside the buffer lock in case another process reading
    2333             :          * the underlying blockdev brought it uptodate (the sct fix).
    2334             :          */
    2335           2 :         for (i = 0; i < nr; i++) {
    2336           1 :                 bh = arr[i];
    2337           1 :                 if (buffer_uptodate(bh))
    2338           0 :                         end_buffer_async_read(bh, 1);
    2339             :                 else
    2340           1 :                         submit_bh(REQ_OP_READ, 0, bh);
    2341             :         }
    2342             :         return 0;
    2343             : }
    2344             : EXPORT_SYMBOL(block_read_full_page);
    2345             : 
    2346             : /* utility function for filesystems that need to do work on expanding
    2347             :  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
    2348             :  * deal with the hole.  
    2349             :  */
    2350           0 : int generic_cont_expand_simple(struct inode *inode, loff_t size)
    2351             : {
    2352           0 :         struct address_space *mapping = inode->i_mapping;
    2353           0 :         struct page *page;
    2354           0 :         void *fsdata;
    2355           0 :         int err;
    2356             : 
    2357           0 :         err = inode_newsize_ok(inode, size);
    2358           0 :         if (err)
    2359           0 :                 goto out;
    2360             : 
    2361           0 :         err = pagecache_write_begin(NULL, mapping, size, 0,
    2362             :                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
    2363           0 :         if (err)
    2364           0 :                 goto out;
    2365             : 
    2366           0 :         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
    2367           0 :         BUG_ON(err > 0);
    2368             : 
    2369           0 : out:
    2370           0 :         return err;
    2371             : }
    2372             : EXPORT_SYMBOL(generic_cont_expand_simple);
    2373             : 
    2374           0 : static int cont_expand_zero(struct file *file, struct address_space *mapping,
    2375             :                             loff_t pos, loff_t *bytes)
    2376             : {
    2377           0 :         struct inode *inode = mapping->host;
    2378           0 :         unsigned int blocksize = i_blocksize(inode);
    2379           0 :         struct page *page;
    2380           0 :         void *fsdata;
    2381           0 :         pgoff_t index, curidx;
    2382           0 :         loff_t curpos;
    2383           0 :         unsigned zerofrom, offset, len;
    2384           0 :         int err = 0;
    2385             : 
    2386           0 :         index = pos >> PAGE_SHIFT;
    2387           0 :         offset = pos & ~PAGE_MASK;
    2388             : 
    2389           0 :         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
    2390           0 :                 zerofrom = curpos & ~PAGE_MASK;
    2391           0 :                 if (zerofrom & (blocksize-1)) {
    2392           0 :                         *bytes |= (blocksize-1);
    2393           0 :                         (*bytes)++;
    2394             :                 }
    2395           0 :                 len = PAGE_SIZE - zerofrom;
    2396             : 
    2397           0 :                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
    2398             :                                             &page, &fsdata);
    2399           0 :                 if (err)
    2400           0 :                         goto out;
    2401           0 :                 zero_user(page, zerofrom, len);
    2402           0 :                 err = pagecache_write_end(file, mapping, curpos, len, len,
    2403             :                                                 page, fsdata);
    2404           0 :                 if (err < 0)
    2405           0 :                         goto out;
    2406           0 :                 BUG_ON(err != len);
    2407           0 :                 err = 0;
    2408             : 
    2409           0 :                 balance_dirty_pages_ratelimited(mapping);
    2410             : 
    2411           0 :                 if (fatal_signal_pending(current)) {
    2412           0 :                         err = -EINTR;
    2413           0 :                         goto out;
    2414             :                 }
    2415             :         }
    2416             : 
    2417             :         /* page covers the boundary, find the boundary offset */
    2418           0 :         if (index == curidx) {
    2419           0 :                 zerofrom = curpos & ~PAGE_MASK;
    2420             :                 /* if we will expand the thing last block will be filled */
    2421           0 :                 if (offset <= zerofrom) {
    2422           0 :                         goto out;
    2423             :                 }
    2424           0 :                 if (zerofrom & (blocksize-1)) {
    2425           0 :                         *bytes |= (blocksize-1);
    2426           0 :                         (*bytes)++;
    2427             :                 }
    2428           0 :                 len = offset - zerofrom;
    2429             : 
    2430           0 :                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
    2431             :                                             &page, &fsdata);
    2432           0 :                 if (err)
    2433           0 :                         goto out;
    2434           0 :                 zero_user(page, zerofrom, len);
    2435           0 :                 err = pagecache_write_end(file, mapping, curpos, len, len,
    2436             :                                                 page, fsdata);
    2437           0 :                 if (err < 0)
    2438           0 :                         goto out;
    2439           0 :                 BUG_ON(err != len);
    2440             :                 err = 0;
    2441             :         }
    2442           0 : out:
    2443           0 :         return err;
    2444             : }
    2445             : 
    2446             : /*
    2447             :  * For moronic filesystems that do not allow holes in file.
    2448             :  * We may have to extend the file.
    2449             :  */
    2450           0 : int cont_write_begin(struct file *file, struct address_space *mapping,
    2451             :                         loff_t pos, unsigned len, unsigned flags,
    2452             :                         struct page **pagep, void **fsdata,
    2453             :                         get_block_t *get_block, loff_t *bytes)
    2454             : {
    2455           0 :         struct inode *inode = mapping->host;
    2456           0 :         unsigned int blocksize = i_blocksize(inode);
    2457           0 :         unsigned int zerofrom;
    2458           0 :         int err;
    2459             : 
    2460           0 :         err = cont_expand_zero(file, mapping, pos, bytes);
    2461           0 :         if (err)
    2462             :                 return err;
    2463             : 
    2464           0 :         zerofrom = *bytes & ~PAGE_MASK;
    2465           0 :         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
    2466           0 :                 *bytes |= (blocksize-1);
    2467           0 :                 (*bytes)++;
    2468             :         }
    2469             : 
    2470           0 :         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
    2471             : }
    2472             : EXPORT_SYMBOL(cont_write_begin);
    2473             : 
    2474         304 : int block_commit_write(struct page *page, unsigned from, unsigned to)
    2475             : {
    2476         304 :         struct inode *inode = page->mapping->host;
    2477           0 :         __block_commit_write(inode,page,from,to);
    2478         304 :         return 0;
    2479             : }
    2480             : EXPORT_SYMBOL(block_commit_write);
    2481             : 
    2482             : /*
    2483             :  * block_page_mkwrite() is not allowed to change the file size as it gets
    2484             :  * called from a page fault handler when a page is first dirtied. Hence we must
    2485             :  * be careful to check for EOF conditions here. We set the page up correctly
    2486             :  * for a written page which means we get ENOSPC checking when writing into
    2487             :  * holes and correct delalloc and unwritten extent mapping on filesystems that
    2488             :  * support these features.
    2489             :  *
    2490             :  * We are not allowed to take the i_mutex here so we have to play games to
    2491             :  * protect against truncate races as the page could now be beyond EOF.  Because
    2492             :  * truncate writes the inode size before removing pages, once we have the
    2493             :  * page lock we can determine safely if the page is beyond EOF. If it is not
    2494             :  * beyond EOF, then the page is guaranteed safe against truncation until we
    2495             :  * unlock the page.
    2496             :  *
    2497             :  * Direct callers of this function should protect against filesystem freezing
    2498             :  * using sb_start_pagefault() - sb_end_pagefault() functions.
    2499             :  */
    2500         304 : int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
    2501             :                          get_block_t get_block)
    2502             : {
    2503         304 :         struct page *page = vmf->page;
    2504         304 :         struct inode *inode = file_inode(vma->vm_file);
    2505         304 :         unsigned long end;
    2506         304 :         loff_t size;
    2507         304 :         int ret;
    2508             : 
    2509         304 :         lock_page(page);
    2510         304 :         size = i_size_read(inode);
    2511         304 :         if ((page->mapping != inode->i_mapping) ||
    2512         304 :             (page_offset(page) > size)) {
    2513             :                 /* We overload EFAULT to mean page got truncated */
    2514           0 :                 ret = -EFAULT;
    2515           0 :                 goto out_unlock;
    2516             :         }
    2517             : 
    2518             :         /* page is wholly or partially inside EOF */
    2519         304 :         if (((page->index + 1) << PAGE_SHIFT) > size)
    2520           0 :                 end = size & ~PAGE_MASK;
    2521             :         else
    2522             :                 end = PAGE_SIZE;
    2523             : 
    2524         304 :         ret = __block_write_begin(page, 0, end, get_block);
    2525         304 :         if (!ret)
    2526         304 :                 ret = block_commit_write(page, 0, end);
    2527             : 
    2528         304 :         if (unlikely(ret < 0))
    2529           0 :                 goto out_unlock;
    2530         304 :         set_page_dirty(page);
    2531         304 :         wait_for_stable_page(page);
    2532         304 :         return 0;
    2533           0 : out_unlock:
    2534           0 :         unlock_page(page);
    2535           0 :         return ret;
    2536             : }
    2537             : EXPORT_SYMBOL(block_page_mkwrite);
    2538             : 
    2539             : /*
    2540             :  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
    2541             :  * immediately, while under the page lock.  So it needs a special end_io
    2542             :  * handler which does not touch the bh after unlocking it.
    2543             :  */
    2544           0 : static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
    2545             : {
    2546           0 :         __end_buffer_read_notouch(bh, uptodate);
    2547           0 : }
    2548             : 
    2549             : /*
    2550             :  * Attach the singly-linked list of buffers created by nobh_write_begin, to
    2551             :  * the page (converting it to circular linked list and taking care of page
    2552             :  * dirty races).
    2553             :  */
    2554           0 : static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
    2555             : {
    2556           0 :         struct buffer_head *bh;
    2557             : 
    2558           0 :         BUG_ON(!PageLocked(page));
    2559             : 
    2560           0 :         spin_lock(&page->mapping->private_lock);
    2561           0 :         bh = head;
    2562           0 :         do {
    2563           0 :                 if (PageDirty(page))
    2564           0 :                         set_buffer_dirty(bh);
    2565           0 :                 if (!bh->b_this_page)
    2566           0 :                         bh->b_this_page = head;
    2567           0 :                 bh = bh->b_this_page;
    2568           0 :         } while (bh != head);
    2569           0 :         attach_page_private(page, head);
    2570           0 :         spin_unlock(&page->mapping->private_lock);
    2571           0 : }
    2572             : 
    2573             : /*
    2574             :  * On entry, the page is fully not uptodate.
    2575             :  * On exit the page is fully uptodate in the areas outside (from,to)
    2576             :  * The filesystem needs to handle block truncation upon failure.
    2577             :  */
    2578           0 : int nobh_write_begin(struct address_space *mapping,
    2579             :                         loff_t pos, unsigned len, unsigned flags,
    2580             :                         struct page **pagep, void **fsdata,
    2581             :                         get_block_t *get_block)
    2582             : {
    2583           0 :         struct inode *inode = mapping->host;
    2584           0 :         const unsigned blkbits = inode->i_blkbits;
    2585           0 :         const unsigned blocksize = 1 << blkbits;
    2586           0 :         struct buffer_head *head, *bh;
    2587           0 :         struct page *page;
    2588           0 :         pgoff_t index;
    2589           0 :         unsigned from, to;
    2590           0 :         unsigned block_in_page;
    2591           0 :         unsigned block_start, block_end;
    2592           0 :         sector_t block_in_file;
    2593           0 :         int nr_reads = 0;
    2594           0 :         int ret = 0;
    2595           0 :         int is_mapped_to_disk = 1;
    2596             : 
    2597           0 :         index = pos >> PAGE_SHIFT;
    2598           0 :         from = pos & (PAGE_SIZE - 1);
    2599           0 :         to = from + len;
    2600             : 
    2601           0 :         page = grab_cache_page_write_begin(mapping, index, flags);
    2602           0 :         if (!page)
    2603             :                 return -ENOMEM;
    2604           0 :         *pagep = page;
    2605           0 :         *fsdata = NULL;
    2606             : 
    2607           0 :         if (page_has_buffers(page)) {
    2608           0 :                 ret = __block_write_begin(page, pos, len, get_block);
    2609           0 :                 if (unlikely(ret))
    2610           0 :                         goto out_release;
    2611             :                 return ret;
    2612             :         }
    2613             : 
    2614           0 :         if (PageMappedToDisk(page))
    2615             :                 return 0;
    2616             : 
    2617             :         /*
    2618             :          * Allocate buffers so that we can keep track of state, and potentially
    2619             :          * attach them to the page if an error occurs. In the common case of
    2620             :          * no error, they will just be freed again without ever being attached
    2621             :          * to the page (which is all OK, because we're under the page lock).
    2622             :          *
    2623             :          * Be careful: the buffer linked list is a NULL terminated one, rather
    2624             :          * than the circular one we're used to.
    2625             :          */
    2626           0 :         head = alloc_page_buffers(page, blocksize, false);
    2627           0 :         if (!head) {
    2628           0 :                 ret = -ENOMEM;
    2629           0 :                 goto out_release;
    2630             :         }
    2631             : 
    2632           0 :         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
    2633             : 
    2634             :         /*
    2635             :          * We loop across all blocks in the page, whether or not they are
    2636             :          * part of the affected region.  This is so we can discover if the
    2637             :          * page is fully mapped-to-disk.
    2638             :          */
    2639           0 :         for (block_start = 0, block_in_page = 0, bh = head;
    2640           0 :                   block_start < PAGE_SIZE;
    2641           0 :                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
    2642           0 :                 int create;
    2643             : 
    2644           0 :                 block_end = block_start + blocksize;
    2645           0 :                 bh->b_state = 0;
    2646           0 :                 create = 1;
    2647           0 :                 if (block_start >= to)
    2648           0 :                         create = 0;
    2649           0 :                 ret = get_block(inode, block_in_file + block_in_page,
    2650             :                                         bh, create);
    2651           0 :                 if (ret)
    2652           0 :                         goto failed;
    2653           0 :                 if (!buffer_mapped(bh))
    2654           0 :                         is_mapped_to_disk = 0;
    2655           0 :                 if (buffer_new(bh))
    2656           0 :                         clean_bdev_bh_alias(bh);
    2657           0 :                 if (PageUptodate(page)) {
    2658           0 :                         set_buffer_uptodate(bh);
    2659           0 :                         continue;
    2660             :                 }
    2661           0 :                 if (buffer_new(bh) || !buffer_mapped(bh)) {
    2662           0 :                         zero_user_segments(page, block_start, from,
    2663             :                                                         to, block_end);
    2664           0 :                         continue;
    2665             :                 }
    2666           0 :                 if (buffer_uptodate(bh))
    2667           0 :                         continue;       /* reiserfs does this */
    2668           0 :                 if (block_start < from || block_end > to) {
    2669           0 :                         lock_buffer(bh);
    2670           0 :                         bh->b_end_io = end_buffer_read_nobh;
    2671           0 :                         submit_bh(REQ_OP_READ, 0, bh);
    2672           0 :                         nr_reads++;
    2673             :                 }
    2674             :         }
    2675             : 
    2676           0 :         if (nr_reads) {
    2677             :                 /*
    2678             :                  * The page is locked, so these buffers are protected from
    2679             :                  * any VM or truncate activity.  Hence we don't need to care
    2680             :                  * for the buffer_head refcounts.
    2681             :                  */
    2682           0 :                 for (bh = head; bh; bh = bh->b_this_page) {
    2683           0 :                         wait_on_buffer(bh);
    2684           0 :                         if (!buffer_uptodate(bh))
    2685           0 :                                 ret = -EIO;
    2686             :                 }
    2687           0 :                 if (ret)
    2688           0 :                         goto failed;
    2689             :         }
    2690             : 
    2691           0 :         if (is_mapped_to_disk)
    2692           0 :                 SetPageMappedToDisk(page);
    2693             : 
    2694           0 :         *fsdata = head; /* to be released by nobh_write_end */
    2695             : 
    2696           0 :         return 0;
    2697             : 
    2698           0 : failed:
    2699           0 :         BUG_ON(!ret);
    2700             :         /*
    2701             :          * Error recovery is a bit difficult. We need to zero out blocks that
    2702             :          * were newly allocated, and dirty them to ensure they get written out.
    2703             :          * Buffers need to be attached to the page at this point, otherwise
    2704             :          * the handling of potential IO errors during writeout would be hard
    2705             :          * (could try doing synchronous writeout, but what if that fails too?)
    2706             :          */
    2707           0 :         attach_nobh_buffers(page, head);
    2708           0 :         page_zero_new_buffers(page, from, to);
    2709             : 
    2710           0 : out_release:
    2711           0 :         unlock_page(page);
    2712           0 :         put_page(page);
    2713           0 :         *pagep = NULL;
    2714             : 
    2715           0 :         return ret;
    2716             : }
    2717             : EXPORT_SYMBOL(nobh_write_begin);
    2718             : 
    2719           0 : int nobh_write_end(struct file *file, struct address_space *mapping,
    2720             :                         loff_t pos, unsigned len, unsigned copied,
    2721             :                         struct page *page, void *fsdata)
    2722             : {
    2723           0 :         struct inode *inode = page->mapping->host;
    2724           0 :         struct buffer_head *head = fsdata;
    2725           0 :         struct buffer_head *bh;
    2726           0 :         BUG_ON(fsdata != NULL && page_has_buffers(page));
    2727             : 
    2728           0 :         if (unlikely(copied < len) && head)
    2729           0 :                 attach_nobh_buffers(page, head);
    2730           0 :         if (page_has_buffers(page))
    2731           0 :                 return generic_write_end(file, mapping, pos, len,
    2732             :                                         copied, page, fsdata);
    2733             : 
    2734           0 :         SetPageUptodate(page);
    2735           0 :         set_page_dirty(page);
    2736           0 :         if (pos+copied > inode->i_size) {
    2737           0 :                 i_size_write(inode, pos+copied);
    2738           0 :                 mark_inode_dirty(inode);
    2739             :         }
    2740             : 
    2741           0 :         unlock_page(page);
    2742           0 :         put_page(page);
    2743             : 
    2744           0 :         while (head) {
    2745           0 :                 bh = head;
    2746           0 :                 head = head->b_this_page;
    2747           0 :                 free_buffer_head(bh);
    2748             :         }
    2749             : 
    2750           0 :         return copied;
    2751             : }
    2752             : EXPORT_SYMBOL(nobh_write_end);
    2753             : 
    2754             : /*
    2755             :  * nobh_writepage() - based on block_full_write_page() except
    2756             :  * that it tries to operate without attaching bufferheads to
    2757             :  * the page.
    2758             :  */
    2759           0 : int nobh_writepage(struct page *page, get_block_t *get_block,
    2760             :                         struct writeback_control *wbc)
    2761             : {
    2762           0 :         struct inode * const inode = page->mapping->host;
    2763           0 :         loff_t i_size = i_size_read(inode);
    2764           0 :         const pgoff_t end_index = i_size >> PAGE_SHIFT;
    2765           0 :         unsigned offset;
    2766           0 :         int ret;
    2767             : 
    2768             :         /* Is the page fully inside i_size? */
    2769           0 :         if (page->index < end_index)
    2770           0 :                 goto out;
    2771             : 
    2772             :         /* Is the page fully outside i_size? (truncate in progress) */
    2773           0 :         offset = i_size & (PAGE_SIZE-1);
    2774           0 :         if (page->index >= end_index+1 || !offset) {
    2775           0 :                 unlock_page(page);
    2776           0 :                 return 0; /* don't care */
    2777             :         }
    2778             : 
    2779             :         /*
    2780             :          * The page straddles i_size.  It must be zeroed out on each and every
    2781             :          * writepage invocation because it may be mmapped.  "A file is mapped
    2782             :          * in multiples of the page size.  For a file that is not a multiple of
    2783             :          * the  page size, the remaining memory is zeroed when mapped, and
    2784             :          * writes to that region are not written out to the file."
    2785             :          */
    2786           0 :         zero_user_segment(page, offset, PAGE_SIZE);
    2787           0 : out:
    2788           0 :         ret = mpage_writepage(page, get_block, wbc);
    2789           0 :         if (ret == -EAGAIN)
    2790           0 :                 ret = __block_write_full_page(inode, page, get_block, wbc,
    2791             :                                               end_buffer_async_write);
    2792             :         return ret;
    2793             : }
    2794             : EXPORT_SYMBOL(nobh_writepage);
    2795             : 
    2796           0 : int nobh_truncate_page(struct address_space *mapping,
    2797             :                         loff_t from, get_block_t *get_block)
    2798             : {
    2799           0 :         pgoff_t index = from >> PAGE_SHIFT;
    2800           0 :         unsigned offset = from & (PAGE_SIZE-1);
    2801           0 :         unsigned blocksize;
    2802           0 :         sector_t iblock;
    2803           0 :         unsigned length, pos;
    2804           0 :         struct inode *inode = mapping->host;
    2805           0 :         struct page *page;
    2806           0 :         struct buffer_head map_bh;
    2807           0 :         int err;
    2808             : 
    2809           0 :         blocksize = i_blocksize(inode);
    2810           0 :         length = offset & (blocksize - 1);
    2811             : 
    2812             :         /* Block boundary? Nothing to do */
    2813           0 :         if (!length)
    2814             :                 return 0;
    2815             : 
    2816           0 :         length = blocksize - length;
    2817           0 :         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
    2818             : 
    2819           0 :         page = grab_cache_page(mapping, index);
    2820           0 :         err = -ENOMEM;
    2821           0 :         if (!page)
    2822           0 :                 goto out;
    2823             : 
    2824           0 :         if (page_has_buffers(page)) {
    2825           0 : has_buffers:
    2826           0 :                 unlock_page(page);
    2827           0 :                 put_page(page);
    2828           0 :                 return block_truncate_page(mapping, from, get_block);
    2829             :         }
    2830             : 
    2831             :         /* Find the buffer that contains "offset" */
    2832             :         pos = blocksize;
    2833           0 :         while (offset >= pos) {
    2834           0 :                 iblock++;
    2835           0 :                 pos += blocksize;
    2836             :         }
    2837             : 
    2838           0 :         map_bh.b_size = blocksize;
    2839           0 :         map_bh.b_state = 0;
    2840           0 :         err = get_block(inode, iblock, &map_bh, 0);
    2841           0 :         if (err)
    2842           0 :                 goto unlock;
    2843             :         /* unmapped? It's a hole - nothing to do */
    2844           0 :         if (!buffer_mapped(&map_bh))
    2845           0 :                 goto unlock;
    2846             : 
    2847             :         /* Ok, it's mapped. Make sure it's up-to-date */
    2848           0 :         if (!PageUptodate(page)) {
    2849           0 :                 err = mapping->a_ops->readpage(NULL, page);
    2850           0 :                 if (err) {
    2851           0 :                         put_page(page);
    2852           0 :                         goto out;
    2853             :                 }
    2854           0 :                 lock_page(page);
    2855           0 :                 if (!PageUptodate(page)) {
    2856           0 :                         err = -EIO;
    2857           0 :                         goto unlock;
    2858             :                 }
    2859           0 :                 if (page_has_buffers(page))
    2860           0 :                         goto has_buffers;
    2861             :         }
    2862           0 :         zero_user(page, offset, length);
    2863           0 :         set_page_dirty(page);
    2864           0 :         err = 0;
    2865             : 
    2866           0 : unlock:
    2867           0 :         unlock_page(page);
    2868           0 :         put_page(page);
    2869             : out:
    2870             :         return err;
    2871             : }
    2872             : EXPORT_SYMBOL(nobh_truncate_page);
    2873             : 
    2874           0 : int block_truncate_page(struct address_space *mapping,
    2875             :                         loff_t from, get_block_t *get_block)
    2876             : {
    2877           0 :         pgoff_t index = from >> PAGE_SHIFT;
    2878           0 :         unsigned offset = from & (PAGE_SIZE-1);
    2879           0 :         unsigned blocksize;
    2880           0 :         sector_t iblock;
    2881           0 :         unsigned length, pos;
    2882           0 :         struct inode *inode = mapping->host;
    2883           0 :         struct page *page;
    2884           0 :         struct buffer_head *bh;
    2885           0 :         int err;
    2886             : 
    2887           0 :         blocksize = i_blocksize(inode);
    2888           0 :         length = offset & (blocksize - 1);
    2889             : 
    2890             :         /* Block boundary? Nothing to do */
    2891           0 :         if (!length)
    2892             :                 return 0;
    2893             : 
    2894           0 :         length = blocksize - length;
    2895           0 :         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
    2896             :         
    2897           0 :         page = grab_cache_page(mapping, index);
    2898           0 :         err = -ENOMEM;
    2899           0 :         if (!page)
    2900           0 :                 goto out;
    2901             : 
    2902           0 :         if (!page_has_buffers(page))
    2903           0 :                 create_empty_buffers(page, blocksize, 0);
    2904             : 
    2905             :         /* Find the buffer that contains "offset" */
    2906           0 :         bh = page_buffers(page);
    2907           0 :         pos = blocksize;
    2908           0 :         while (offset >= pos) {
    2909           0 :                 bh = bh->b_this_page;
    2910           0 :                 iblock++;
    2911           0 :                 pos += blocksize;
    2912             :         }
    2913             : 
    2914           0 :         err = 0;
    2915           0 :         if (!buffer_mapped(bh)) {
    2916           0 :                 WARN_ON(bh->b_size != blocksize);
    2917           0 :                 err = get_block(inode, iblock, bh, 0);
    2918           0 :                 if (err)
    2919           0 :                         goto unlock;
    2920             :                 /* unmapped? It's a hole - nothing to do */
    2921           0 :                 if (!buffer_mapped(bh))
    2922           0 :                         goto unlock;
    2923             :         }
    2924             : 
    2925             :         /* Ok, it's mapped. Make sure it's up-to-date */
    2926           0 :         if (PageUptodate(page))
    2927           0 :                 set_buffer_uptodate(bh);
    2928             : 
    2929           0 :         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
    2930           0 :                 err = -EIO;
    2931           0 :                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
    2932           0 :                 wait_on_buffer(bh);
    2933             :                 /* Uhhuh. Read error. Complain and punt. */
    2934           0 :                 if (!buffer_uptodate(bh))
    2935           0 :                         goto unlock;
    2936             :         }
    2937             : 
    2938           0 :         zero_user(page, offset, length);
    2939           0 :         mark_buffer_dirty(bh);
    2940           0 :         err = 0;
    2941             : 
    2942           0 : unlock:
    2943           0 :         unlock_page(page);
    2944           0 :         put_page(page);
    2945             : out:
    2946             :         return err;
    2947             : }
    2948             : EXPORT_SYMBOL(block_truncate_page);
    2949             : 
    2950             : /*
    2951             :  * The generic ->writepage function for buffer-backed address_spaces
    2952             :  */
    2953         872 : int block_write_full_page(struct page *page, get_block_t *get_block,
    2954             :                         struct writeback_control *wbc)
    2955             : {
    2956         872 :         struct inode * const inode = page->mapping->host;
    2957         872 :         loff_t i_size = i_size_read(inode);
    2958         872 :         const pgoff_t end_index = i_size >> PAGE_SHIFT;
    2959         872 :         unsigned offset;
    2960             : 
    2961             :         /* Is the page fully inside i_size? */
    2962         872 :         if (page->index < end_index)
    2963         872 :                 return __block_write_full_page(inode, page, get_block, wbc,
    2964             :                                                end_buffer_async_write);
    2965             : 
    2966             :         /* Is the page fully outside i_size? (truncate in progress) */
    2967           0 :         offset = i_size & (PAGE_SIZE-1);
    2968           0 :         if (page->index >= end_index+1 || !offset) {
    2969           0 :                 unlock_page(page);
    2970           0 :                 return 0; /* don't care */
    2971             :         }
    2972             : 
    2973             :         /*
    2974             :          * The page straddles i_size.  It must be zeroed out on each and every
    2975             :          * writepage invocation because it may be mmapped.  "A file is mapped
    2976             :          * in multiples of the page size.  For a file that is not a multiple of
    2977             :          * the  page size, the remaining memory is zeroed when mapped, and
    2978             :          * writes to that region are not written out to the file."
    2979             :          */
    2980           0 :         zero_user_segment(page, offset, PAGE_SIZE);
    2981           0 :         return __block_write_full_page(inode, page, get_block, wbc,
    2982             :                                                         end_buffer_async_write);
    2983             : }
    2984             : EXPORT_SYMBOL(block_write_full_page);
    2985             : 
    2986           0 : sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
    2987             :                             get_block_t *get_block)
    2988             : {
    2989           0 :         struct inode *inode = mapping->host;
    2990           0 :         struct buffer_head tmp = {
    2991           0 :                 .b_size = i_blocksize(inode),
    2992             :         };
    2993             : 
    2994           0 :         get_block(inode, block, &tmp, 0);
    2995           0 :         return tmp.b_blocknr;
    2996             : }
    2997             : EXPORT_SYMBOL(generic_block_bmap);
    2998             : 
    2999        6715 : static void end_bio_bh_io_sync(struct bio *bio)
    3000             : {
    3001        6715 :         struct buffer_head *bh = bio->bi_private;
    3002             : 
    3003        6715 :         if (unlikely(bio_flagged(bio, BIO_QUIET)))
    3004           0 :                 set_bit(BH_Quiet, &bh->b_state);
    3005             : 
    3006        6715 :         bh->b_end_io(bh, !bio->bi_status);
    3007        6715 :         bio_put(bio);
    3008        6715 : }
    3009             : 
    3010        6715 : static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
    3011             :                          enum rw_hint write_hint, struct writeback_control *wbc)
    3012             : {
    3013        6715 :         struct bio *bio;
    3014             : 
    3015        6715 :         BUG_ON(!buffer_locked(bh));
    3016        6715 :         BUG_ON(!buffer_mapped(bh));
    3017        6715 :         BUG_ON(!bh->b_end_io);
    3018        6715 :         BUG_ON(buffer_delay(bh));
    3019        6715 :         BUG_ON(buffer_unwritten(bh));
    3020             : 
    3021             :         /*
    3022             :          * Only clear out a write error when rewriting
    3023             :          */
    3024        6715 :         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
    3025         768 :                 clear_buffer_write_io_error(bh);
    3026             : 
    3027        6715 :         bio = bio_alloc(GFP_NOIO, 1);
    3028             : 
    3029        6715 :         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
    3030             : 
    3031        6715 :         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
    3032        6715 :         bio_set_dev(bio, bh->b_bdev);
    3033        6715 :         bio->bi_write_hint = write_hint;
    3034             : 
    3035        6715 :         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
    3036        6715 :         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
    3037             : 
    3038        6715 :         bio->bi_end_io = end_bio_bh_io_sync;
    3039        6715 :         bio->bi_private = bh;
    3040             : 
    3041        6715 :         if (buffer_meta(bh))
    3042         867 :                 op_flags |= REQ_META;
    3043        6715 :         if (buffer_prio(bh))
    3044         867 :                 op_flags |= REQ_PRIO;
    3045        6715 :         bio_set_op_attrs(bio, op, op_flags);
    3046             : 
    3047             :         /* Take care of bh's that straddle the end of the device */
    3048        6715 :         guard_bio_eod(bio);
    3049             : 
    3050        6715 :         if (wbc) {
    3051             :                 wbc_init_bio(wbc, bio);
    3052        6715 :                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
    3053             :         }
    3054             : 
    3055        6715 :         submit_bio(bio);
    3056        6715 :         return 0;
    3057             : }
    3058             : 
    3059        5848 : int submit_bh(int op, int op_flags, struct buffer_head *bh)
    3060             : {
    3061        5828 :         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
    3062             : }
    3063             : EXPORT_SYMBOL(submit_bh);
    3064             : 
    3065             : /**
    3066             :  * ll_rw_block: low-level access to block devices (DEPRECATED)
    3067             :  * @op: whether to %READ or %WRITE
    3068             :  * @op_flags: req_flag_bits
    3069             :  * @nr: number of &struct buffer_heads in the array
    3070             :  * @bhs: array of pointers to &struct buffer_head
    3071             :  *
    3072             :  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
    3073             :  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
    3074             :  * @op_flags contains flags modifying the detailed I/O behavior, most notably
    3075             :  * %REQ_RAHEAD.
    3076             :  *
    3077             :  * This function drops any buffer that it cannot get a lock on (with the
    3078             :  * BH_Lock state bit), any buffer that appears to be clean when doing a write
    3079             :  * request, and any buffer that appears to be up-to-date when doing read
    3080             :  * request.  Further it marks as clean buffers that are processed for
    3081             :  * writing (the buffer cache won't assume that they are actually clean
    3082             :  * until the buffer gets unlocked).
    3083             :  *
    3084             :  * ll_rw_block sets b_end_io to simple completion handler that marks
    3085             :  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
    3086             :  * any waiters. 
    3087             :  *
    3088             :  * All of the buffers must be for the same device, and must also be a
    3089             :  * multiple of the current approved size for the device.
    3090             :  */
    3091           9 : void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
    3092             : {
    3093           9 :         int i;
    3094             : 
    3095          18 :         for (i = 0; i < nr; i++) {
    3096           9 :                 struct buffer_head *bh = bhs[i];
    3097             : 
    3098           9 :                 if (!trylock_buffer(bh))
    3099           0 :                         continue;
    3100           9 :                 if (op == WRITE) {
    3101           0 :                         if (test_clear_buffer_dirty(bh)) {
    3102           0 :                                 bh->b_end_io = end_buffer_write_sync;
    3103           0 :                                 get_bh(bh);
    3104           0 :                                 submit_bh(op, op_flags, bh);
    3105           0 :                                 continue;
    3106             :                         }
    3107             :                 } else {
    3108           9 :                         if (!buffer_uptodate(bh)) {
    3109           9 :                                 bh->b_end_io = end_buffer_read_sync;
    3110           9 :                                 get_bh(bh);
    3111           9 :                                 submit_bh(op, op_flags, bh);
    3112           9 :                                 continue;
    3113             :                         }
    3114             :                 }
    3115           0 :                 unlock_buffer(bh);
    3116             :         }
    3117           9 : }
    3118             : EXPORT_SYMBOL(ll_rw_block);
    3119             : 
    3120          10 : void write_dirty_buffer(struct buffer_head *bh, int op_flags)
    3121             : {
    3122          10 :         lock_buffer(bh);
    3123          10 :         if (!test_clear_buffer_dirty(bh)) {
    3124           0 :                 unlock_buffer(bh);
    3125           0 :                 return;
    3126             :         }
    3127          10 :         bh->b_end_io = end_buffer_write_sync;
    3128          10 :         get_bh(bh);
    3129          10 :         submit_bh(REQ_OP_WRITE, op_flags, bh);
    3130             : }
    3131             : EXPORT_SYMBOL(write_dirty_buffer);
    3132             : 
    3133             : /*
    3134             :  * For a data-integrity writeout, we need to wait upon any in-progress I/O
    3135             :  * and then start new I/O and then wait upon it.  The caller must have a ref on
    3136             :  * the buffer_head.
    3137             :  */
    3138           1 : int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
    3139             : {
    3140           1 :         int ret = 0;
    3141             : 
    3142           1 :         WARN_ON(atomic_read(&bh->b_count) < 1);
    3143           1 :         lock_buffer(bh);
    3144           1 :         if (test_clear_buffer_dirty(bh)) {
    3145             :                 /*
    3146             :                  * The bh should be mapped, but it might not be if the
    3147             :                  * device was hot-removed. Not much we can do but fail the I/O.
    3148             :                  */
    3149           1 :                 if (!buffer_mapped(bh)) {
    3150           0 :                         unlock_buffer(bh);
    3151           0 :                         return -EIO;
    3152             :                 }
    3153             : 
    3154           1 :                 get_bh(bh);
    3155           1 :                 bh->b_end_io = end_buffer_write_sync;
    3156           1 :                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
    3157           1 :                 wait_on_buffer(bh);
    3158           2 :                 if (!ret && !buffer_uptodate(bh))
    3159           0 :                         ret = -EIO;
    3160             :         } else {
    3161           0 :                 unlock_buffer(bh);
    3162             :         }
    3163             :         return ret;
    3164             : }
    3165             : EXPORT_SYMBOL(__sync_dirty_buffer);
    3166             : 
    3167           0 : int sync_dirty_buffer(struct buffer_head *bh)
    3168             : {
    3169           0 :         return __sync_dirty_buffer(bh, REQ_SYNC);
    3170             : }
    3171             : EXPORT_SYMBOL(sync_dirty_buffer);
    3172             : 
    3173             : /*
    3174             :  * try_to_free_buffers() checks if all the buffers on this particular page
    3175             :  * are unused, and releases them if so.
    3176             :  *
    3177             :  * Exclusion against try_to_free_buffers may be obtained by either
    3178             :  * locking the page or by holding its mapping's private_lock.
    3179             :  *
    3180             :  * If the page is dirty but all the buffers are clean then we need to
    3181             :  * be sure to mark the page clean as well.  This is because the page
    3182             :  * may be against a block device, and a later reattachment of buffers
    3183             :  * to a dirty page will set *all* buffers dirty.  Which would corrupt
    3184             :  * filesystem data on the same device.
    3185             :  *
    3186             :  * The same applies to regular filesystem pages: if all the buffers are
    3187             :  * clean then we set the page clean and proceed.  To do that, we require
    3188             :  * total exclusion from __set_page_dirty_buffers().  That is obtained with
    3189             :  * private_lock.
    3190             :  *
    3191             :  * try_to_free_buffers() is non-blocking.
    3192             :  */
    3193         503 : static inline int buffer_busy(struct buffer_head *bh)
    3194             : {
    3195        1006 :         return atomic_read(&bh->b_count) |
    3196         503 :                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
    3197             : }
    3198             : 
    3199             : static int
    3200         499 : drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
    3201             : {
    3202         499 :         struct buffer_head *head = page_buffers(page);
    3203         499 :         struct buffer_head *bh;
    3204             : 
    3205         499 :         bh = head;
    3206         503 :         do {
    3207         503 :                 if (buffer_busy(bh))
    3208           1 :                         goto failed;
    3209         502 :                 bh = bh->b_this_page;
    3210         502 :         } while (bh != head);
    3211             : 
    3212         501 :         do {
    3213         501 :                 struct buffer_head *next = bh->b_this_page;
    3214             : 
    3215         501 :                 if (bh->b_assoc_map)
    3216           0 :                         __remove_assoc_queue(bh);
    3217         501 :                 bh = next;
    3218         501 :         } while (bh != head);
    3219         498 :         *buffers_to_free = head;
    3220         498 :         detach_page_private(page);
    3221         498 :         return 1;
    3222           1 : failed:
    3223           1 :         return 0;
    3224             : }
    3225             : 
    3226         499 : int try_to_free_buffers(struct page *page)
    3227             : {
    3228         499 :         struct address_space * const mapping = page->mapping;
    3229         499 :         struct buffer_head *buffers_to_free = NULL;
    3230         499 :         int ret = 0;
    3231             : 
    3232         998 :         BUG_ON(!PageLocked(page));
    3233         998 :         if (PageWriteback(page))
    3234             :                 return 0;
    3235             : 
    3236         499 :         if (mapping == NULL) {          /* can this still happen? */
    3237           0 :                 ret = drop_buffers(page, &buffers_to_free);
    3238           0 :                 goto out;
    3239             :         }
    3240             : 
    3241         499 :         spin_lock(&mapping->private_lock);
    3242         499 :         ret = drop_buffers(page, &buffers_to_free);
    3243             : 
    3244             :         /*
    3245             :          * If the filesystem writes its buffers by hand (eg ext3)
    3246             :          * then we can have clean buffers against a dirty page.  We
    3247             :          * clean the page here; otherwise the VM will never notice
    3248             :          * that the filesystem did any IO at all.
    3249             :          *
    3250             :          * Also, during truncate, discard_buffer will have marked all
    3251             :          * the page's buffers clean.  We discover that here and clean
    3252             :          * the page also.
    3253             :          *
    3254             :          * private_lock must be held over this entire operation in order
    3255             :          * to synchronise against __set_page_dirty_buffers and prevent the
    3256             :          * dirty bit from being lost.
    3257             :          */
    3258         499 :         if (ret)
    3259         498 :                 cancel_dirty_page(page);
    3260         499 :         spin_unlock(&mapping->private_lock);
    3261         499 : out:
    3262         499 :         if (buffers_to_free) {
    3263             :                 struct buffer_head *bh = buffers_to_free;
    3264             : 
    3265         501 :                 do {
    3266         501 :                         struct buffer_head *next = bh->b_this_page;
    3267         501 :                         free_buffer_head(bh);
    3268         501 :                         bh = next;
    3269         501 :                 } while (bh != buffers_to_free);
    3270             :         }
    3271             :         return ret;
    3272             : }
    3273             : EXPORT_SYMBOL(try_to_free_buffers);
    3274             : 
    3275             : /*
    3276             :  * There are no bdflush tunables left.  But distributions are
    3277             :  * still running obsolete flush daemons, so we terminate them here.
    3278             :  *
    3279             :  * Use of bdflush() is deprecated and will be removed in a future kernel.
    3280             :  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
    3281             :  */
    3282           0 : SYSCALL_DEFINE2(bdflush, int, func, long, data)
    3283             : {
    3284           0 :         static int msg_count;
    3285             : 
    3286           0 :         if (!capable(CAP_SYS_ADMIN))
    3287             :                 return -EPERM;
    3288             : 
    3289           0 :         if (msg_count < 5) {
    3290           0 :                 msg_count++;
    3291           0 :                 printk(KERN_INFO
    3292             :                         "warning: process `%s' used the obsolete bdflush"
    3293           0 :                         " system call\n", current->comm);
    3294           0 :                 printk(KERN_INFO "Fix your initscripts?\n");
    3295             :         }
    3296             : 
    3297           0 :         if (func == 1)
    3298           0 :                 do_exit(0);
    3299             :         return 0;
    3300             : }
    3301             : 
    3302             : /*
    3303             :  * Buffer-head allocation
    3304             :  */
    3305             : static struct kmem_cache *bh_cachep __read_mostly;
    3306             : 
    3307             : /*
    3308             :  * Once the number of bh's in the machine exceeds this level, we start
    3309             :  * stripping them in writeback.
    3310             :  */
    3311             : static unsigned long max_buffer_heads;
    3312             : 
    3313             : int buffer_heads_over_limit;
    3314             : 
    3315             : struct bh_accounting {
    3316             :         int nr;                 /* Number of live bh's */
    3317             :         int ratelimit;          /* Limit cacheline bouncing */
    3318             : };
    3319             : 
    3320             : static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
    3321             : 
    3322        9971 : static void recalc_bh_state(void)
    3323             : {
    3324        9971 :         int i;
    3325        9971 :         int tot = 0;
    3326             : 
    3327        9971 :         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
    3328             :                 return;
    3329           0 :         __this_cpu_write(bh_accounting.ratelimit, 0);
    3330           0 :         for_each_online_cpu(i)
    3331           0 :                 tot += per_cpu(bh_accounting, i).nr;
    3332           0 :         buffer_heads_over_limit = (tot > max_buffer_heads);
    3333             : }
    3334             : 
    3335        7659 : struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
    3336             : {
    3337        7659 :         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
    3338        7659 :         if (ret) {
    3339        7659 :                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
    3340        7659 :                 spin_lock_init(&ret->b_uptodate_lock);
    3341        7659 :                 preempt_disable();
    3342        7659 :                 __this_cpu_inc(bh_accounting.nr);
    3343        7659 :                 recalc_bh_state();
    3344        7659 :                 preempt_enable();
    3345             :         }
    3346        7659 :         return ret;
    3347             : }
    3348             : EXPORT_SYMBOL(alloc_buffer_head);
    3349             : 
    3350        2312 : void free_buffer_head(struct buffer_head *bh)
    3351             : {
    3352        2312 :         BUG_ON(!list_empty(&bh->b_assoc_buffers));
    3353        2312 :         kmem_cache_free(bh_cachep, bh);
    3354        2312 :         preempt_disable();
    3355        2312 :         __this_cpu_dec(bh_accounting.nr);
    3356        2312 :         recalc_bh_state();
    3357        2312 :         preempt_enable();
    3358        2312 : }
    3359             : EXPORT_SYMBOL(free_buffer_head);
    3360             : 
    3361           0 : static int buffer_exit_cpu_dead(unsigned int cpu)
    3362             : {
    3363           0 :         int i;
    3364           0 :         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
    3365             : 
    3366           0 :         for (i = 0; i < BH_LRU_SIZE; i++) {
    3367           0 :                 brelse(b->bhs[i]);
    3368           0 :                 b->bhs[i] = NULL;
    3369             :         }
    3370           0 :         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
    3371           0 :         per_cpu(bh_accounting, cpu).nr = 0;
    3372           0 :         return 0;
    3373             : }
    3374             : 
    3375             : /**
    3376             :  * bh_uptodate_or_lock - Test whether the buffer is uptodate
    3377             :  * @bh: struct buffer_head
    3378             :  *
    3379             :  * Return true if the buffer is up-to-date and false,
    3380             :  * with the buffer locked, if not.
    3381             :  */
    3382          54 : int bh_uptodate_or_lock(struct buffer_head *bh)
    3383             : {
    3384          54 :         if (!buffer_uptodate(bh)) {
    3385          26 :                 lock_buffer(bh);
    3386          26 :                 if (!buffer_uptodate(bh))
    3387             :                         return 0;
    3388           0 :                 unlock_buffer(bh);
    3389             :         }
    3390             :         return 1;
    3391             : }
    3392             : EXPORT_SYMBOL(bh_uptodate_or_lock);
    3393             : 
    3394             : /**
    3395             :  * bh_submit_read - Submit a locked buffer for reading
    3396             :  * @bh: struct buffer_head
    3397             :  *
    3398             :  * Returns zero on success and -EIO on error.
    3399             :  */
    3400           0 : int bh_submit_read(struct buffer_head *bh)
    3401             : {
    3402           0 :         BUG_ON(!buffer_locked(bh));
    3403             : 
    3404           0 :         if (buffer_uptodate(bh)) {
    3405           0 :                 unlock_buffer(bh);
    3406           0 :                 return 0;
    3407             :         }
    3408             : 
    3409           0 :         get_bh(bh);
    3410           0 :         bh->b_end_io = end_buffer_read_sync;
    3411           0 :         submit_bh(REQ_OP_READ, 0, bh);
    3412           0 :         wait_on_buffer(bh);
    3413           0 :         if (buffer_uptodate(bh))
    3414           0 :                 return 0;
    3415             :         return -EIO;
    3416             : }
    3417             : EXPORT_SYMBOL(bh_submit_read);
    3418             : 
    3419           1 : void __init buffer_init(void)
    3420             : {
    3421           1 :         unsigned long nrpages;
    3422           1 :         int ret;
    3423             : 
    3424           1 :         bh_cachep = kmem_cache_create("buffer_head",
    3425             :                         sizeof(struct buffer_head), 0,
    3426             :                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
    3427             :                                 SLAB_MEM_SPREAD),
    3428             :                                 NULL);
    3429             : 
    3430             :         /*
    3431             :          * Limit the bh occupancy to 10% of ZONE_NORMAL
    3432             :          */
    3433           1 :         nrpages = (nr_free_buffer_pages() * 10) / 100;
    3434           1 :         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
    3435           1 :         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
    3436             :                                         NULL, buffer_exit_cpu_dead);
    3437           1 :         WARN_ON(ret < 0);
    3438           1 : }

Generated by: LCOV version 1.14