Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : #include <linux/slab.h>
3 : #include <linux/file.h>
4 : #include <linux/fdtable.h>
5 : #include <linux/freezer.h>
6 : #include <linux/mm.h>
7 : #include <linux/stat.h>
8 : #include <linux/fcntl.h>
9 : #include <linux/swap.h>
10 : #include <linux/ctype.h>
11 : #include <linux/string.h>
12 : #include <linux/init.h>
13 : #include <linux/pagemap.h>
14 : #include <linux/perf_event.h>
15 : #include <linux/highmem.h>
16 : #include <linux/spinlock.h>
17 : #include <linux/key.h>
18 : #include <linux/personality.h>
19 : #include <linux/binfmts.h>
20 : #include <linux/coredump.h>
21 : #include <linux/sched/coredump.h>
22 : #include <linux/sched/signal.h>
23 : #include <linux/sched/task_stack.h>
24 : #include <linux/utsname.h>
25 : #include <linux/pid_namespace.h>
26 : #include <linux/module.h>
27 : #include <linux/namei.h>
28 : #include <linux/mount.h>
29 : #include <linux/security.h>
30 : #include <linux/syscalls.h>
31 : #include <linux/tsacct_kern.h>
32 : #include <linux/cn_proc.h>
33 : #include <linux/audit.h>
34 : #include <linux/tracehook.h>
35 : #include <linux/kmod.h>
36 : #include <linux/fsnotify.h>
37 : #include <linux/fs_struct.h>
38 : #include <linux/pipe_fs_i.h>
39 : #include <linux/oom.h>
40 : #include <linux/compat.h>
41 : #include <linux/fs.h>
42 : #include <linux/path.h>
43 : #include <linux/timekeeping.h>
44 :
45 : #include <linux/uaccess.h>
46 : #include <asm/mmu_context.h>
47 : #include <asm/tlb.h>
48 : #include <asm/exec.h>
49 :
50 : #include <trace/events/task.h>
51 : #include "internal.h"
52 :
53 : #include <trace/events/sched.h>
54 :
55 : int core_uses_pid;
56 : unsigned int core_pipe_limit;
57 : char core_pattern[CORENAME_MAX_SIZE] = "core";
58 : static int core_name_size = CORENAME_MAX_SIZE;
59 :
60 : struct core_name {
61 : char *corename;
62 : int used, size;
63 : };
64 :
65 : /* The maximal length of core_pattern is also specified in sysctl.c */
66 :
67 0 : static int expand_corename(struct core_name *cn, int size)
68 : {
69 0 : char *corename = krealloc(cn->corename, size, GFP_KERNEL);
70 :
71 0 : if (!corename)
72 : return -ENOMEM;
73 :
74 0 : if (size > core_name_size) /* racy but harmless */
75 0 : core_name_size = size;
76 :
77 0 : cn->size = ksize(corename);
78 0 : cn->corename = corename;
79 0 : return 0;
80 : }
81 :
82 0 : static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
83 : va_list arg)
84 : {
85 0 : int free, need;
86 0 : va_list arg_copy;
87 :
88 0 : again:
89 0 : free = cn->size - cn->used;
90 :
91 0 : va_copy(arg_copy, arg);
92 0 : need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
93 0 : va_end(arg_copy);
94 :
95 0 : if (need < free) {
96 0 : cn->used += need;
97 0 : return 0;
98 : }
99 :
100 0 : if (!expand_corename(cn, cn->size + need - free + 1))
101 0 : goto again;
102 :
103 : return -ENOMEM;
104 : }
105 :
106 0 : static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
107 : {
108 0 : va_list arg;
109 0 : int ret;
110 :
111 0 : va_start(arg, fmt);
112 0 : ret = cn_vprintf(cn, fmt, arg);
113 0 : va_end(arg);
114 :
115 0 : return ret;
116 : }
117 :
118 : static __printf(2, 3)
119 0 : int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
120 : {
121 0 : int cur = cn->used;
122 0 : va_list arg;
123 0 : int ret;
124 :
125 0 : va_start(arg, fmt);
126 0 : ret = cn_vprintf(cn, fmt, arg);
127 0 : va_end(arg);
128 :
129 0 : if (ret == 0) {
130 : /*
131 : * Ensure that this coredump name component can't cause the
132 : * resulting corefile path to consist of a ".." or ".".
133 : */
134 0 : if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
135 0 : (cn->used - cur == 2 && cn->corename[cur] == '.'
136 0 : && cn->corename[cur+1] == '.'))
137 0 : cn->corename[cur] = '!';
138 :
139 : /*
140 : * Empty names are fishy and could be used to create a "//" in a
141 : * corefile name, causing the coredump to happen one directory
142 : * level too high. Enforce that all components of the core
143 : * pattern are at least one character long.
144 : */
145 0 : if (cn->used == cur)
146 0 : ret = cn_printf(cn, "!");
147 : }
148 :
149 0 : for (; cur < cn->used; ++cur) {
150 0 : if (cn->corename[cur] == '/')
151 0 : cn->corename[cur] = '!';
152 : }
153 0 : return ret;
154 : }
155 :
156 0 : static int cn_print_exe_file(struct core_name *cn, bool name_only)
157 : {
158 0 : struct file *exe_file;
159 0 : char *pathbuf, *path, *ptr;
160 0 : int ret;
161 :
162 0 : exe_file = get_mm_exe_file(current->mm);
163 0 : if (!exe_file)
164 0 : return cn_esc_printf(cn, "%s (path unknown)", current->comm);
165 :
166 0 : pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167 0 : if (!pathbuf) {
168 0 : ret = -ENOMEM;
169 0 : goto put_exe_file;
170 : }
171 :
172 0 : path = file_path(exe_file, pathbuf, PATH_MAX);
173 0 : if (IS_ERR(path)) {
174 0 : ret = PTR_ERR(path);
175 0 : goto free_buf;
176 : }
177 :
178 0 : if (name_only) {
179 0 : ptr = strrchr(path, '/');
180 0 : if (ptr)
181 0 : path = ptr + 1;
182 : }
183 0 : ret = cn_esc_printf(cn, "%s", path);
184 :
185 0 : free_buf:
186 0 : kfree(pathbuf);
187 0 : put_exe_file:
188 0 : fput(exe_file);
189 0 : return ret;
190 : }
191 :
192 : /* format_corename will inspect the pattern parameter, and output a
193 : * name into corename, which must have space for at least
194 : * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
195 : */
196 0 : static int format_corename(struct core_name *cn, struct coredump_params *cprm,
197 : size_t **argv, int *argc)
198 : {
199 0 : const struct cred *cred = current_cred();
200 0 : const char *pat_ptr = core_pattern;
201 0 : int ispipe = (*pat_ptr == '|');
202 0 : bool was_space = false;
203 0 : int pid_in_pattern = 0;
204 0 : int err = 0;
205 :
206 0 : cn->used = 0;
207 0 : cn->corename = NULL;
208 0 : if (expand_corename(cn, core_name_size))
209 : return -ENOMEM;
210 0 : cn->corename[0] = '\0';
211 :
212 0 : if (ispipe) {
213 0 : int argvs = sizeof(core_pattern) / 2;
214 0 : (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
215 0 : if (!(*argv))
216 : return -ENOMEM;
217 0 : (*argv)[(*argc)++] = 0;
218 0 : ++pat_ptr;
219 0 : if (!(*pat_ptr))
220 : return -ENOMEM;
221 : }
222 :
223 : /* Repeat as long as we have more pattern to process and more output
224 : space */
225 0 : while (*pat_ptr) {
226 : /*
227 : * Split on spaces before doing template expansion so that
228 : * %e and %E don't get split if they have spaces in them
229 : */
230 0 : if (ispipe) {
231 0 : if (isspace(*pat_ptr)) {
232 0 : if (cn->used != 0)
233 0 : was_space = true;
234 0 : pat_ptr++;
235 0 : continue;
236 0 : } else if (was_space) {
237 0 : was_space = false;
238 0 : err = cn_printf(cn, "%c", '\0');
239 0 : if (err)
240 0 : return err;
241 0 : (*argv)[(*argc)++] = cn->used;
242 : }
243 : }
244 0 : if (*pat_ptr != '%') {
245 0 : err = cn_printf(cn, "%c", *pat_ptr++);
246 : } else {
247 0 : switch (*++pat_ptr) {
248 : /* single % at the end, drop that */
249 0 : case 0:
250 0 : goto out;
251 : /* Double percent, output one percent */
252 0 : case '%':
253 0 : err = cn_printf(cn, "%c", '%');
254 0 : break;
255 : /* pid */
256 0 : case 'p':
257 0 : pid_in_pattern = 1;
258 0 : err = cn_printf(cn, "%d",
259 : task_tgid_vnr(current));
260 0 : break;
261 : /* global pid */
262 : case 'P':
263 0 : err = cn_printf(cn, "%d",
264 : task_tgid_nr(current));
265 0 : break;
266 : case 'i':
267 0 : err = cn_printf(cn, "%d",
268 : task_pid_vnr(current));
269 0 : break;
270 : case 'I':
271 0 : err = cn_printf(cn, "%d",
272 : task_pid_nr(current));
273 0 : break;
274 : /* uid */
275 0 : case 'u':
276 0 : err = cn_printf(cn, "%u",
277 : from_kuid(&init_user_ns,
278 : cred->uid));
279 0 : break;
280 : /* gid */
281 0 : case 'g':
282 0 : err = cn_printf(cn, "%u",
283 : from_kgid(&init_user_ns,
284 : cred->gid));
285 0 : break;
286 0 : case 'd':
287 0 : err = cn_printf(cn, "%d",
288 : __get_dumpable(cprm->mm_flags));
289 0 : break;
290 : /* signal that caused the coredump */
291 0 : case 's':
292 0 : err = cn_printf(cn, "%d",
293 0 : cprm->siginfo->si_signo);
294 0 : break;
295 : /* UNIX time of coredump */
296 0 : case 't': {
297 0 : time64_t time;
298 :
299 0 : time = ktime_get_real_seconds();
300 0 : err = cn_printf(cn, "%lld", time);
301 0 : break;
302 : }
303 : /* hostname */
304 0 : case 'h':
305 0 : down_read(&uts_sem);
306 0 : err = cn_esc_printf(cn, "%s",
307 0 : utsname()->nodename);
308 0 : up_read(&uts_sem);
309 0 : break;
310 : /* executable, could be changed by prctl PR_SET_NAME etc */
311 : case 'e':
312 0 : err = cn_esc_printf(cn, "%s", current->comm);
313 0 : break;
314 : /* file name of executable */
315 0 : case 'f':
316 0 : err = cn_print_exe_file(cn, true);
317 0 : break;
318 0 : case 'E':
319 0 : err = cn_print_exe_file(cn, false);
320 0 : break;
321 : /* core limit size */
322 : case 'c':
323 0 : err = cn_printf(cn, "%lu",
324 : rlimit(RLIMIT_CORE));
325 0 : break;
326 : default:
327 : break;
328 : }
329 0 : ++pat_ptr;
330 : }
331 :
332 0 : if (err)
333 0 : return err;
334 : }
335 :
336 0 : out:
337 : /* Backward compatibility with core_uses_pid:
338 : *
339 : * If core_pattern does not include a %p (as is the default)
340 : * and core_uses_pid is set, then .%pid will be appended to
341 : * the filename. Do not do this for piped commands. */
342 0 : if (!ispipe && !pid_in_pattern && core_uses_pid) {
343 0 : err = cn_printf(cn, ".%d", task_tgid_vnr(current));
344 0 : if (err)
345 0 : return err;
346 : }
347 : return ispipe;
348 : }
349 :
350 0 : static int zap_process(struct task_struct *start, int exit_code, int flags)
351 : {
352 0 : struct task_struct *t;
353 0 : int nr = 0;
354 :
355 : /* ignore all signals except SIGKILL, see prepare_signal() */
356 0 : start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
357 0 : start->signal->group_exit_code = exit_code;
358 0 : start->signal->group_stop_count = 0;
359 :
360 0 : for_each_thread(start, t) {
361 0 : task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
362 0 : if (t != current && t->mm) {
363 0 : sigaddset(&t->pending.signal, SIGKILL);
364 0 : signal_wake_up(t, 1);
365 0 : nr++;
366 : }
367 : }
368 :
369 0 : return nr;
370 : }
371 :
372 0 : static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
373 : struct core_state *core_state, int exit_code)
374 : {
375 0 : struct task_struct *g, *p;
376 0 : unsigned long flags;
377 0 : int nr = -EAGAIN;
378 :
379 0 : spin_lock_irq(&tsk->sighand->siglock);
380 0 : if (!signal_group_exit(tsk->signal)) {
381 0 : mm->core_state = core_state;
382 0 : tsk->signal->group_exit_task = tsk;
383 0 : nr = zap_process(tsk, exit_code, 0);
384 0 : clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
385 : }
386 0 : spin_unlock_irq(&tsk->sighand->siglock);
387 0 : if (unlikely(nr < 0))
388 : return nr;
389 :
390 0 : tsk->flags |= PF_DUMPCORE;
391 0 : if (atomic_read(&mm->mm_users) == nr + 1)
392 0 : goto done;
393 : /*
394 : * We should find and kill all tasks which use this mm, and we should
395 : * count them correctly into ->nr_threads. We don't take tasklist
396 : * lock, but this is safe wrt:
397 : *
398 : * fork:
399 : * None of sub-threads can fork after zap_process(leader). All
400 : * processes which were created before this point should be
401 : * visible to zap_threads() because copy_process() adds the new
402 : * process to the tail of init_task.tasks list, and lock/unlock
403 : * of ->siglock provides a memory barrier.
404 : *
405 : * do_exit:
406 : * The caller holds mm->mmap_lock. This means that the task which
407 : * uses this mm can't pass exit_mm(), so it can't exit or clear
408 : * its ->mm.
409 : *
410 : * de_thread:
411 : * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
412 : * we must see either old or new leader, this does not matter.
413 : * However, it can change p->sighand, so lock_task_sighand(p)
414 : * must be used. Since p->mm != NULL and we hold ->mmap_lock
415 : * it can't fail.
416 : *
417 : * Note also that "g" can be the old leader with ->mm == NULL
418 : * and already unhashed and thus removed from ->thread_group.
419 : * This is OK, __unhash_process()->list_del_rcu() does not
420 : * clear the ->next pointer, we will find the new leader via
421 : * next_thread().
422 : */
423 0 : rcu_read_lock();
424 0 : for_each_process(g) {
425 0 : if (g == tsk->group_leader)
426 0 : continue;
427 0 : if (g->flags & PF_KTHREAD)
428 0 : continue;
429 :
430 0 : for_each_thread(g, p) {
431 0 : if (unlikely(!p->mm))
432 0 : continue;
433 0 : if (unlikely(p->mm == mm)) {
434 0 : lock_task_sighand(p, &flags);
435 0 : nr += zap_process(p, exit_code,
436 : SIGNAL_GROUP_EXIT);
437 0 : unlock_task_sighand(p, &flags);
438 : }
439 : break;
440 : }
441 : }
442 0 : rcu_read_unlock();
443 0 : done:
444 0 : atomic_set(&core_state->nr_threads, nr);
445 0 : return nr;
446 : }
447 :
448 0 : static int coredump_wait(int exit_code, struct core_state *core_state)
449 : {
450 0 : struct task_struct *tsk = current;
451 0 : struct mm_struct *mm = tsk->mm;
452 0 : int core_waiters = -EBUSY;
453 :
454 0 : init_completion(&core_state->startup);
455 0 : core_state->dumper.task = tsk;
456 0 : core_state->dumper.next = NULL;
457 :
458 0 : if (mmap_write_lock_killable(mm))
459 : return -EINTR;
460 :
461 0 : if (!mm->core_state)
462 0 : core_waiters = zap_threads(tsk, mm, core_state, exit_code);
463 0 : mmap_write_unlock(mm);
464 :
465 0 : if (core_waiters > 0) {
466 0 : struct core_thread *ptr;
467 :
468 0 : freezer_do_not_count();
469 0 : wait_for_completion(&core_state->startup);
470 0 : freezer_count();
471 : /*
472 : * Wait for all the threads to become inactive, so that
473 : * all the thread context (extended register state, like
474 : * fpu etc) gets copied to the memory.
475 : */
476 0 : ptr = core_state->dumper.next;
477 0 : while (ptr != NULL) {
478 0 : wait_task_inactive(ptr->task, 0);
479 0 : ptr = ptr->next;
480 : }
481 : }
482 :
483 : return core_waiters;
484 : }
485 :
486 0 : static void coredump_finish(struct mm_struct *mm, bool core_dumped)
487 : {
488 0 : struct core_thread *curr, *next;
489 0 : struct task_struct *task;
490 :
491 0 : spin_lock_irq(¤t->sighand->siglock);
492 0 : if (core_dumped && !__fatal_signal_pending(current))
493 0 : current->signal->group_exit_code |= 0x80;
494 0 : current->signal->group_exit_task = NULL;
495 0 : current->signal->flags = SIGNAL_GROUP_EXIT;
496 0 : spin_unlock_irq(¤t->sighand->siglock);
497 :
498 0 : next = mm->core_state->dumper.next;
499 0 : while ((curr = next) != NULL) {
500 0 : next = curr->next;
501 0 : task = curr->task;
502 : /*
503 : * see exit_mm(), curr->task must not see
504 : * ->task == NULL before we read ->next.
505 : */
506 0 : smp_mb();
507 0 : curr->task = NULL;
508 0 : wake_up_process(task);
509 : }
510 :
511 0 : mm->core_state = NULL;
512 0 : }
513 :
514 0 : static bool dump_interrupted(void)
515 : {
516 : /*
517 : * SIGKILL or freezing() interrupt the coredumping. Perhaps we
518 : * can do try_to_freeze() and check __fatal_signal_pending(),
519 : * but then we need to teach dump_write() to restart and clear
520 : * TIF_SIGPENDING.
521 : */
522 0 : return signal_pending(current);
523 : }
524 :
525 0 : static void wait_for_dump_helpers(struct file *file)
526 : {
527 0 : struct pipe_inode_info *pipe = file->private_data;
528 :
529 0 : pipe_lock(pipe);
530 0 : pipe->readers++;
531 0 : pipe->writers--;
532 0 : wake_up_interruptible_sync(&pipe->rd_wait);
533 0 : kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
534 0 : pipe_unlock(pipe);
535 :
536 : /*
537 : * We actually want wait_event_freezable() but then we need
538 : * to clear TIF_SIGPENDING and improve dump_interrupted().
539 : */
540 0 : wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
541 :
542 0 : pipe_lock(pipe);
543 0 : pipe->readers--;
544 0 : pipe->writers++;
545 0 : pipe_unlock(pipe);
546 0 : }
547 :
548 : /*
549 : * umh_pipe_setup
550 : * helper function to customize the process used
551 : * to collect the core in userspace. Specifically
552 : * it sets up a pipe and installs it as fd 0 (stdin)
553 : * for the process. Returns 0 on success, or
554 : * PTR_ERR on failure.
555 : * Note that it also sets the core limit to 1. This
556 : * is a special value that we use to trap recursive
557 : * core dumps
558 : */
559 0 : static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
560 : {
561 0 : struct file *files[2];
562 0 : struct coredump_params *cp = (struct coredump_params *)info->data;
563 0 : int err = create_pipe_files(files, 0);
564 0 : if (err)
565 : return err;
566 :
567 0 : cp->file = files[1];
568 :
569 0 : err = replace_fd(0, files[0], 0);
570 0 : fput(files[0]);
571 : /* and disallow core files too */
572 0 : current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
573 :
574 0 : return err;
575 : }
576 :
577 0 : void do_coredump(const kernel_siginfo_t *siginfo)
578 : {
579 0 : struct core_state core_state;
580 0 : struct core_name cn;
581 0 : struct mm_struct *mm = current->mm;
582 0 : struct linux_binfmt * binfmt;
583 0 : const struct cred *old_cred;
584 0 : struct cred *cred;
585 0 : int retval = 0;
586 0 : int ispipe;
587 0 : size_t *argv = NULL;
588 0 : int argc = 0;
589 : /* require nonrelative corefile path and be extra careful */
590 0 : bool need_suid_safe = false;
591 0 : bool core_dumped = false;
592 0 : static atomic_t core_dump_count = ATOMIC_INIT(0);
593 0 : struct coredump_params cprm = {
594 : .siginfo = siginfo,
595 0 : .regs = signal_pt_regs(),
596 0 : .limit = rlimit(RLIMIT_CORE),
597 : /*
598 : * We must use the same mm->flags while dumping core to avoid
599 : * inconsistency of bit flags, since this flag is not protected
600 : * by any locks.
601 : */
602 0 : .mm_flags = mm->flags,
603 : };
604 :
605 0 : audit_core_dumps(siginfo->si_signo);
606 :
607 0 : binfmt = mm->binfmt;
608 0 : if (!binfmt || !binfmt->core_dump)
609 0 : goto fail;
610 0 : if (!__get_dumpable(cprm.mm_flags))
611 0 : goto fail;
612 :
613 0 : cred = prepare_creds();
614 0 : if (!cred)
615 0 : goto fail;
616 : /*
617 : * We cannot trust fsuid as being the "true" uid of the process
618 : * nor do we know its entire history. We only know it was tainted
619 : * so we dump it as root in mode 2, and only into a controlled
620 : * environment (pipe handler or fully qualified path).
621 : */
622 0 : if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
623 : /* Setuid core dump mode */
624 0 : cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
625 0 : need_suid_safe = true;
626 : }
627 :
628 0 : retval = coredump_wait(siginfo->si_signo, &core_state);
629 0 : if (retval < 0)
630 0 : goto fail_creds;
631 :
632 0 : old_cred = override_creds(cred);
633 :
634 0 : ispipe = format_corename(&cn, &cprm, &argv, &argc);
635 :
636 0 : if (ispipe) {
637 0 : int argi;
638 0 : int dump_count;
639 0 : char **helper_argv;
640 0 : struct subprocess_info *sub_info;
641 :
642 0 : if (ispipe < 0) {
643 0 : printk(KERN_WARNING "format_corename failed\n");
644 0 : printk(KERN_WARNING "Aborting core\n");
645 0 : goto fail_unlock;
646 : }
647 :
648 0 : if (cprm.limit == 1) {
649 : /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
650 : *
651 : * Normally core limits are irrelevant to pipes, since
652 : * we're not writing to the file system, but we use
653 : * cprm.limit of 1 here as a special value, this is a
654 : * consistent way to catch recursive crashes.
655 : * We can still crash if the core_pattern binary sets
656 : * RLIM_CORE = !1, but it runs as root, and can do
657 : * lots of stupid things.
658 : *
659 : * Note that we use task_tgid_vnr here to grab the pid
660 : * of the process group leader. That way we get the
661 : * right pid if a thread in a multi-threaded
662 : * core_pattern process dies.
663 : */
664 0 : printk(KERN_WARNING
665 : "Process %d(%s) has RLIMIT_CORE set to 1\n",
666 0 : task_tgid_vnr(current), current->comm);
667 0 : printk(KERN_WARNING "Aborting core\n");
668 0 : goto fail_unlock;
669 : }
670 0 : cprm.limit = RLIM_INFINITY;
671 :
672 0 : dump_count = atomic_inc_return(&core_dump_count);
673 0 : if (core_pipe_limit && (core_pipe_limit < dump_count)) {
674 0 : printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
675 0 : task_tgid_vnr(current), current->comm);
676 0 : printk(KERN_WARNING "Skipping core dump\n");
677 0 : goto fail_dropcount;
678 : }
679 :
680 0 : helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
681 : GFP_KERNEL);
682 0 : if (!helper_argv) {
683 0 : printk(KERN_WARNING "%s failed to allocate memory\n",
684 : __func__);
685 0 : goto fail_dropcount;
686 : }
687 0 : for (argi = 0; argi < argc; argi++)
688 0 : helper_argv[argi] = cn.corename + argv[argi];
689 0 : helper_argv[argi] = NULL;
690 :
691 0 : retval = -ENOMEM;
692 0 : sub_info = call_usermodehelper_setup(helper_argv[0],
693 : helper_argv, NULL, GFP_KERNEL,
694 : umh_pipe_setup, NULL, &cprm);
695 0 : if (sub_info)
696 0 : retval = call_usermodehelper_exec(sub_info,
697 : UMH_WAIT_EXEC);
698 :
699 0 : kfree(helper_argv);
700 0 : if (retval) {
701 0 : printk(KERN_INFO "Core dump to |%s pipe failed\n",
702 : cn.corename);
703 0 : goto close_fail;
704 : }
705 : } else {
706 0 : struct user_namespace *mnt_userns;
707 0 : struct inode *inode;
708 0 : int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
709 : O_LARGEFILE | O_EXCL;
710 :
711 0 : if (cprm.limit < binfmt->min_coredump)
712 0 : goto fail_unlock;
713 :
714 0 : if (need_suid_safe && cn.corename[0] != '/') {
715 0 : printk(KERN_WARNING "Pid %d(%s) can only dump core "\
716 : "to fully qualified path!\n",
717 0 : task_tgid_vnr(current), current->comm);
718 0 : printk(KERN_WARNING "Skipping core dump\n");
719 0 : goto fail_unlock;
720 : }
721 :
722 : /*
723 : * Unlink the file if it exists unless this is a SUID
724 : * binary - in that case, we're running around with root
725 : * privs and don't want to unlink another user's coredump.
726 : */
727 0 : if (!need_suid_safe) {
728 : /*
729 : * If it doesn't exist, that's fine. If there's some
730 : * other problem, we'll catch it at the filp_open().
731 : */
732 0 : do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
733 : }
734 :
735 : /*
736 : * There is a race between unlinking and creating the
737 : * file, but if that causes an EEXIST here, that's
738 : * fine - another process raced with us while creating
739 : * the corefile, and the other process won. To userspace,
740 : * what matters is that at least one of the two processes
741 : * writes its coredump successfully, not which one.
742 : */
743 0 : if (need_suid_safe) {
744 : /*
745 : * Using user namespaces, normal user tasks can change
746 : * their current->fs->root to point to arbitrary
747 : * directories. Since the intention of the "only dump
748 : * with a fully qualified path" rule is to control where
749 : * coredumps may be placed using root privileges,
750 : * current->fs->root must not be used. Instead, use the
751 : * root directory of init_task.
752 : */
753 0 : struct path root;
754 :
755 0 : task_lock(&init_task);
756 0 : get_fs_root(init_task.fs, &root);
757 0 : task_unlock(&init_task);
758 0 : cprm.file = file_open_root(root.dentry, root.mnt,
759 0 : cn.corename, open_flags, 0600);
760 0 : path_put(&root);
761 : } else {
762 0 : cprm.file = filp_open(cn.corename, open_flags, 0600);
763 : }
764 0 : if (IS_ERR(cprm.file))
765 0 : goto fail_unlock;
766 :
767 0 : inode = file_inode(cprm.file);
768 0 : if (inode->i_nlink > 1)
769 0 : goto close_fail;
770 0 : if (d_unhashed(cprm.file->f_path.dentry))
771 0 : goto close_fail;
772 : /*
773 : * AK: actually i see no reason to not allow this for named
774 : * pipes etc, but keep the previous behaviour for now.
775 : */
776 0 : if (!S_ISREG(inode->i_mode))
777 0 : goto close_fail;
778 : /*
779 : * Don't dump core if the filesystem changed owner or mode
780 : * of the file during file creation. This is an issue when
781 : * a process dumps core while its cwd is e.g. on a vfat
782 : * filesystem.
783 : */
784 0 : mnt_userns = file_mnt_user_ns(cprm.file);
785 0 : if (!uid_eq(i_uid_into_mnt(mnt_userns, inode), current_fsuid()))
786 0 : goto close_fail;
787 0 : if ((inode->i_mode & 0677) != 0600)
788 0 : goto close_fail;
789 0 : if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
790 0 : goto close_fail;
791 0 : if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
792 : 0, 0, cprm.file))
793 0 : goto close_fail;
794 : }
795 :
796 : /* get us an unshared descriptor table; almost always a no-op */
797 : /* The cell spufs coredump code reads the file descriptor tables */
798 0 : retval = unshare_files();
799 0 : if (retval)
800 0 : goto close_fail;
801 0 : if (!dump_interrupted()) {
802 : /*
803 : * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
804 : * have this set to NULL.
805 : */
806 0 : if (!cprm.file) {
807 0 : pr_info("Core dump to |%s disabled\n", cn.corename);
808 0 : goto close_fail;
809 : }
810 0 : file_start_write(cprm.file);
811 0 : core_dumped = binfmt->core_dump(&cprm);
812 0 : file_end_write(cprm.file);
813 : }
814 0 : if (ispipe && core_pipe_limit)
815 0 : wait_for_dump_helpers(cprm.file);
816 0 : close_fail:
817 0 : if (cprm.file)
818 0 : filp_close(cprm.file, NULL);
819 0 : fail_dropcount:
820 0 : if (ispipe)
821 0 : atomic_dec(&core_dump_count);
822 0 : fail_unlock:
823 0 : kfree(argv);
824 0 : kfree(cn.corename);
825 0 : coredump_finish(mm, core_dumped);
826 0 : revert_creds(old_cred);
827 0 : fail_creds:
828 0 : put_cred(cred);
829 0 : fail:
830 0 : return;
831 : }
832 :
833 : /*
834 : * Core dumping helper functions. These are the only things you should
835 : * do on a core-file: use only these functions to write out all the
836 : * necessary info.
837 : */
838 0 : int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
839 : {
840 0 : struct file *file = cprm->file;
841 0 : loff_t pos = file->f_pos;
842 0 : ssize_t n;
843 0 : if (cprm->written + nr > cprm->limit)
844 : return 0;
845 :
846 :
847 0 : if (dump_interrupted())
848 : return 0;
849 0 : n = __kernel_write(file, addr, nr, &pos);
850 0 : if (n != nr)
851 : return 0;
852 0 : file->f_pos = pos;
853 0 : cprm->written += n;
854 0 : cprm->pos += n;
855 :
856 0 : return 1;
857 : }
858 : EXPORT_SYMBOL(dump_emit);
859 :
860 0 : int dump_skip(struct coredump_params *cprm, size_t nr)
861 : {
862 0 : static char zeroes[PAGE_SIZE];
863 0 : struct file *file = cprm->file;
864 0 : if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
865 0 : if (dump_interrupted() ||
866 0 : file->f_op->llseek(file, nr, SEEK_CUR) < 0)
867 0 : return 0;
868 0 : cprm->pos += nr;
869 0 : return 1;
870 : } else {
871 0 : while (nr > PAGE_SIZE) {
872 0 : if (!dump_emit(cprm, zeroes, PAGE_SIZE))
873 : return 0;
874 0 : nr -= PAGE_SIZE;
875 : }
876 0 : return dump_emit(cprm, zeroes, nr);
877 : }
878 : }
879 : EXPORT_SYMBOL(dump_skip);
880 :
881 : #ifdef CONFIG_ELF_CORE
882 : int dump_user_range(struct coredump_params *cprm, unsigned long start,
883 : unsigned long len)
884 : {
885 : unsigned long addr;
886 :
887 : for (addr = start; addr < start + len; addr += PAGE_SIZE) {
888 : struct page *page;
889 : int stop;
890 :
891 : /*
892 : * To avoid having to allocate page tables for virtual address
893 : * ranges that have never been used yet, and also to make it
894 : * easy to generate sparse core files, use a helper that returns
895 : * NULL when encountering an empty page table entry that would
896 : * otherwise have been filled with the zero page.
897 : */
898 : page = get_dump_page(addr);
899 : if (page) {
900 : void *kaddr = kmap_local_page(page);
901 :
902 : stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
903 : kunmap_local(kaddr);
904 : put_page(page);
905 : } else {
906 : stop = !dump_skip(cprm, PAGE_SIZE);
907 : }
908 : if (stop)
909 : return 0;
910 : }
911 : return 1;
912 : }
913 : #endif
914 :
915 0 : int dump_align(struct coredump_params *cprm, int align)
916 : {
917 0 : unsigned mod = cprm->pos & (align - 1);
918 0 : if (align & (align - 1))
919 : return 0;
920 0 : return mod ? dump_skip(cprm, align - mod) : 1;
921 : }
922 : EXPORT_SYMBOL(dump_align);
923 :
924 : /*
925 : * Ensures that file size is big enough to contain the current file
926 : * postion. This prevents gdb from complaining about a truncated file
927 : * if the last "write" to the file was dump_skip.
928 : */
929 0 : void dump_truncate(struct coredump_params *cprm)
930 : {
931 0 : struct file *file = cprm->file;
932 0 : loff_t offset;
933 :
934 0 : if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
935 0 : offset = file->f_op->llseek(file, 0, SEEK_CUR);
936 0 : if (i_size_read(file->f_mapping->host) < offset)
937 0 : do_truncate(file_mnt_user_ns(file), file->f_path.dentry,
938 : offset, 0, file);
939 : }
940 0 : }
941 : EXPORT_SYMBOL(dump_truncate);
942 :
943 : /*
944 : * The purpose of always_dump_vma() is to make sure that special kernel mappings
945 : * that are useful for post-mortem analysis are included in every core dump.
946 : * In that way we ensure that the core dump is fully interpretable later
947 : * without matching up the same kernel and hardware config to see what PC values
948 : * meant. These special mappings include - vDSO, vsyscall, and other
949 : * architecture specific mappings
950 : */
951 0 : static bool always_dump_vma(struct vm_area_struct *vma)
952 : {
953 : /* Any vsyscall mappings? */
954 0 : if (vma == get_gate_vma(vma->vm_mm))
955 : return true;
956 :
957 : /*
958 : * Assume that all vmas with a .name op should always be dumped.
959 : * If this changes, a new vm_ops field can easily be added.
960 : */
961 0 : if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
962 : return true;
963 :
964 : /*
965 : * arch_vma_name() returns non-NULL for special architecture mappings,
966 : * such as vDSO sections.
967 : */
968 0 : if (arch_vma_name(vma))
969 0 : return true;
970 :
971 : return false;
972 : }
973 :
974 : /*
975 : * Decide how much of @vma's contents should be included in a core dump.
976 : */
977 0 : static unsigned long vma_dump_size(struct vm_area_struct *vma,
978 : unsigned long mm_flags)
979 : {
980 : #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
981 :
982 : /* always dump the vdso and vsyscall sections */
983 0 : if (always_dump_vma(vma))
984 0 : goto whole;
985 :
986 0 : if (vma->vm_flags & VM_DONTDUMP)
987 : return 0;
988 :
989 : /* support for DAX */
990 0 : if (vma_is_dax(vma)) {
991 : if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
992 : goto whole;
993 : if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
994 : goto whole;
995 : return 0;
996 : }
997 :
998 : /* Hugetlb memory check */
999 0 : if (is_vm_hugetlb_page(vma)) {
1000 : if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1001 : goto whole;
1002 : if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1003 : goto whole;
1004 : return 0;
1005 : }
1006 :
1007 : /* Do not dump I/O mapped devices or special mappings */
1008 0 : if (vma->vm_flags & VM_IO)
1009 : return 0;
1010 :
1011 : /* By default, dump shared memory if mapped from an anonymous file. */
1012 0 : if (vma->vm_flags & VM_SHARED) {
1013 0 : if (file_inode(vma->vm_file)->i_nlink == 0 ?
1014 0 : FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1015 0 : goto whole;
1016 : return 0;
1017 : }
1018 :
1019 : /* Dump segments that have been written to. */
1020 0 : if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1021 0 : goto whole;
1022 0 : if (vma->vm_file == NULL)
1023 : return 0;
1024 :
1025 0 : if (FILTER(MAPPED_PRIVATE))
1026 0 : goto whole;
1027 :
1028 : /*
1029 : * If this is the beginning of an executable file mapping,
1030 : * dump the first page to aid in determining what was mapped here.
1031 : */
1032 0 : if (FILTER(ELF_HEADERS) &&
1033 0 : vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
1034 0 : (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1035 0 : return PAGE_SIZE;
1036 :
1037 : #undef FILTER
1038 :
1039 : return 0;
1040 :
1041 0 : whole:
1042 0 : return vma->vm_end - vma->vm_start;
1043 : }
1044 :
1045 0 : static struct vm_area_struct *first_vma(struct task_struct *tsk,
1046 : struct vm_area_struct *gate_vma)
1047 : {
1048 0 : struct vm_area_struct *ret = tsk->mm->mmap;
1049 :
1050 0 : if (ret)
1051 0 : return ret;
1052 : return gate_vma;
1053 : }
1054 :
1055 : /*
1056 : * Helper function for iterating across a vma list. It ensures that the caller
1057 : * will visit `gate_vma' prior to terminating the search.
1058 : */
1059 0 : static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1060 : struct vm_area_struct *gate_vma)
1061 : {
1062 0 : struct vm_area_struct *ret;
1063 :
1064 0 : ret = this_vma->vm_next;
1065 0 : if (ret)
1066 : return ret;
1067 0 : if (this_vma == gate_vma)
1068 : return NULL;
1069 : return gate_vma;
1070 : }
1071 :
1072 : /*
1073 : * Under the mmap_lock, take a snapshot of relevant information about the task's
1074 : * VMAs.
1075 : */
1076 0 : int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
1077 : struct core_vma_metadata **vma_meta,
1078 : size_t *vma_data_size_ptr)
1079 : {
1080 0 : struct vm_area_struct *vma, *gate_vma;
1081 0 : struct mm_struct *mm = current->mm;
1082 0 : int i;
1083 0 : size_t vma_data_size = 0;
1084 :
1085 : /*
1086 : * Once the stack expansion code is fixed to not change VMA bounds
1087 : * under mmap_lock in read mode, this can be changed to take the
1088 : * mmap_lock in read mode.
1089 : */
1090 0 : if (mmap_write_lock_killable(mm))
1091 : return -EINTR;
1092 :
1093 0 : gate_vma = get_gate_vma(mm);
1094 0 : *vma_count = mm->map_count + (gate_vma ? 1 : 0);
1095 :
1096 0 : *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
1097 0 : if (!*vma_meta) {
1098 0 : mmap_write_unlock(mm);
1099 0 : return -ENOMEM;
1100 : }
1101 :
1102 0 : for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1103 0 : vma = next_vma(vma, gate_vma), i++) {
1104 0 : struct core_vma_metadata *m = (*vma_meta) + i;
1105 :
1106 0 : m->start = vma->vm_start;
1107 0 : m->end = vma->vm_end;
1108 0 : m->flags = vma->vm_flags;
1109 0 : m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1110 :
1111 0 : vma_data_size += m->dump_size;
1112 : }
1113 :
1114 0 : mmap_write_unlock(mm);
1115 :
1116 0 : if (WARN_ON(i != *vma_count))
1117 : return -EFAULT;
1118 :
1119 0 : *vma_data_size_ptr = vma_data_size;
1120 0 : return 0;
1121 : }
|