Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * fs/eventpoll.c (Efficient event retrieval implementation)
4 : * Copyright (C) 2001,...,2009 Davide Libenzi
5 : *
6 : * Davide Libenzi <davidel@xmailserver.org>
7 : */
8 :
9 : #include <linux/init.h>
10 : #include <linux/kernel.h>
11 : #include <linux/sched/signal.h>
12 : #include <linux/fs.h>
13 : #include <linux/file.h>
14 : #include <linux/signal.h>
15 : #include <linux/errno.h>
16 : #include <linux/mm.h>
17 : #include <linux/slab.h>
18 : #include <linux/poll.h>
19 : #include <linux/string.h>
20 : #include <linux/list.h>
21 : #include <linux/hash.h>
22 : #include <linux/spinlock.h>
23 : #include <linux/syscalls.h>
24 : #include <linux/rbtree.h>
25 : #include <linux/wait.h>
26 : #include <linux/eventpoll.h>
27 : #include <linux/mount.h>
28 : #include <linux/bitops.h>
29 : #include <linux/mutex.h>
30 : #include <linux/anon_inodes.h>
31 : #include <linux/device.h>
32 : #include <linux/uaccess.h>
33 : #include <asm/io.h>
34 : #include <asm/mman.h>
35 : #include <linux/atomic.h>
36 : #include <linux/proc_fs.h>
37 : #include <linux/seq_file.h>
38 : #include <linux/compat.h>
39 : #include <linux/rculist.h>
40 : #include <net/busy_poll.h>
41 :
42 : /*
43 : * LOCKING:
44 : * There are three level of locking required by epoll :
45 : *
46 : * 1) epmutex (mutex)
47 : * 2) ep->mtx (mutex)
48 : * 3) ep->lock (rwlock)
49 : *
50 : * The acquire order is the one listed above, from 1 to 3.
51 : * We need a rwlock (ep->lock) because we manipulate objects
52 : * from inside the poll callback, that might be triggered from
53 : * a wake_up() that in turn might be called from IRQ context.
54 : * So we can't sleep inside the poll callback and hence we need
55 : * a spinlock. During the event transfer loop (from kernel to
56 : * user space) we could end up sleeping due a copy_to_user(), so
57 : * we need a lock that will allow us to sleep. This lock is a
58 : * mutex (ep->mtx). It is acquired during the event transfer loop,
59 : * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 : * Then we also need a global mutex to serialize eventpoll_release_file()
61 : * and ep_free().
62 : * This mutex is acquired by ep_free() during the epoll file
63 : * cleanup path and it is also acquired by eventpoll_release_file()
64 : * if a file has been pushed inside an epoll set and it is then
65 : * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 : * It is also acquired when inserting an epoll fd onto another epoll
67 : * fd. We do this so that we walk the epoll tree and ensure that this
68 : * insertion does not create a cycle of epoll file descriptors, which
69 : * could lead to deadlock. We need a global mutex to prevent two
70 : * simultaneous inserts (A into B and B into A) from racing and
71 : * constructing a cycle without either insert observing that it is
72 : * going to.
73 : * It is necessary to acquire multiple "ep->mtx"es at once in the
74 : * case when one epoll fd is added to another. In this case, we
75 : * always acquire the locks in the order of nesting (i.e. after
76 : * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 : * before e2->mtx). Since we disallow cycles of epoll file
78 : * descriptors, this ensures that the mutexes are well-ordered. In
79 : * order to communicate this nesting to lockdep, when walking a tree
80 : * of epoll file descriptors, we use the current recursion depth as
81 : * the lockdep subkey.
82 : * It is possible to drop the "ep->mtx" and to use the global
83 : * mutex "epmutex" (together with "ep->lock") to have it working,
84 : * but having "ep->mtx" will make the interface more scalable.
85 : * Events that require holding "epmutex" are very rare, while for
86 : * normal operations the epoll private "ep->mtx" will guarantee
87 : * a better scalability.
88 : */
89 :
90 : /* Epoll private bits inside the event mask */
91 : #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 :
93 : #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 :
95 : #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 : EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 :
98 : /* Maximum number of nesting allowed inside epoll sets */
99 : #define EP_MAX_NESTS 4
100 :
101 : #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 :
103 : #define EP_UNACTIVE_PTR ((void *) -1L)
104 :
105 : #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 :
107 : struct epoll_filefd {
108 : struct file *file;
109 : int fd;
110 : } __packed;
111 :
112 : /* Wait structure used by the poll hooks */
113 : struct eppoll_entry {
114 : /* List header used to link this structure to the "struct epitem" */
115 : struct eppoll_entry *next;
116 :
117 : /* The "base" pointer is set to the container "struct epitem" */
118 : struct epitem *base;
119 :
120 : /*
121 : * Wait queue item that will be linked to the target file wait
122 : * queue head.
123 : */
124 : wait_queue_entry_t wait;
125 :
126 : /* The wait queue head that linked the "wait" wait queue item */
127 : wait_queue_head_t *whead;
128 : };
129 :
130 : /*
131 : * Each file descriptor added to the eventpoll interface will
132 : * have an entry of this type linked to the "rbr" RB tree.
133 : * Avoid increasing the size of this struct, there can be many thousands
134 : * of these on a server and we do not want this to take another cache line.
135 : */
136 : struct epitem {
137 : union {
138 : /* RB tree node links this structure to the eventpoll RB tree */
139 : struct rb_node rbn;
140 : /* Used to free the struct epitem */
141 : struct rcu_head rcu;
142 : };
143 :
144 : /* List header used to link this structure to the eventpoll ready list */
145 : struct list_head rdllink;
146 :
147 : /*
148 : * Works together "struct eventpoll"->ovflist in keeping the
149 : * single linked chain of items.
150 : */
151 : struct epitem *next;
152 :
153 : /* The file descriptor information this item refers to */
154 : struct epoll_filefd ffd;
155 :
156 : /* List containing poll wait queues */
157 : struct eppoll_entry *pwqlist;
158 :
159 : /* The "container" of this item */
160 : struct eventpoll *ep;
161 :
162 : /* List header used to link this item to the "struct file" items list */
163 : struct hlist_node fllink;
164 :
165 : /* wakeup_source used when EPOLLWAKEUP is set */
166 : struct wakeup_source __rcu *ws;
167 :
168 : /* The structure that describe the interested events and the source fd */
169 : struct epoll_event event;
170 : };
171 :
172 : /*
173 : * This structure is stored inside the "private_data" member of the file
174 : * structure and represents the main data structure for the eventpoll
175 : * interface.
176 : */
177 : struct eventpoll {
178 : /*
179 : * This mutex is used to ensure that files are not removed
180 : * while epoll is using them. This is held during the event
181 : * collection loop, the file cleanup path, the epoll file exit
182 : * code and the ctl operations.
183 : */
184 : struct mutex mtx;
185 :
186 : /* Wait queue used by sys_epoll_wait() */
187 : wait_queue_head_t wq;
188 :
189 : /* Wait queue used by file->poll() */
190 : wait_queue_head_t poll_wait;
191 :
192 : /* List of ready file descriptors */
193 : struct list_head rdllist;
194 :
195 : /* Lock which protects rdllist and ovflist */
196 : rwlock_t lock;
197 :
198 : /* RB tree root used to store monitored fd structs */
199 : struct rb_root_cached rbr;
200 :
201 : /*
202 : * This is a single linked list that chains all the "struct epitem" that
203 : * happened while transferring ready events to userspace w/out
204 : * holding ->lock.
205 : */
206 : struct epitem *ovflist;
207 :
208 : /* wakeup_source used when ep_scan_ready_list is running */
209 : struct wakeup_source *ws;
210 :
211 : /* The user that created the eventpoll descriptor */
212 : struct user_struct *user;
213 :
214 : struct file *file;
215 :
216 : /* used to optimize loop detection check */
217 : u64 gen;
218 : struct hlist_head refs;
219 :
220 : #ifdef CONFIG_NET_RX_BUSY_POLL
221 : /* used to track busy poll napi_id */
222 : unsigned int napi_id;
223 : #endif
224 :
225 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 : /* tracks wakeup nests for lockdep validation */
227 : u8 nests;
228 : #endif
229 : };
230 :
231 : /* Wrapper struct used by poll queueing */
232 : struct ep_pqueue {
233 : poll_table pt;
234 : struct epitem *epi;
235 : };
236 :
237 : /*
238 : * Configuration options available inside /proc/sys/fs/epoll/
239 : */
240 : /* Maximum number of epoll watched descriptors, per user */
241 : static long max_user_watches __read_mostly;
242 :
243 : /*
244 : * This mutex is used to serialize ep_free() and eventpoll_release_file().
245 : */
246 : static DEFINE_MUTEX(epmutex);
247 :
248 : static u64 loop_check_gen = 0;
249 :
250 : /* Used to check for epoll file descriptor inclusion loops */
251 : static struct eventpoll *inserting_into;
252 :
253 : /* Slab cache used to allocate "struct epitem" */
254 : static struct kmem_cache *epi_cache __read_mostly;
255 :
256 : /* Slab cache used to allocate "struct eppoll_entry" */
257 : static struct kmem_cache *pwq_cache __read_mostly;
258 :
259 : /*
260 : * List of files with newly added links, where we may need to limit the number
261 : * of emanating paths. Protected by the epmutex.
262 : */
263 : struct epitems_head {
264 : struct hlist_head epitems;
265 : struct epitems_head *next;
266 : };
267 : static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268 :
269 : static struct kmem_cache *ephead_cache __read_mostly;
270 :
271 527 : static inline void free_ephead(struct epitems_head *head)
272 : {
273 527 : if (head)
274 183 : kmem_cache_free(ephead_cache, head);
275 527 : }
276 :
277 5 : static void list_file(struct file *file)
278 : {
279 5 : struct epitems_head *head;
280 :
281 5 : head = container_of(file->f_ep, struct epitems_head, epitems);
282 5 : if (!head->next) {
283 5 : head->next = tfile_check_list;
284 5 : tfile_check_list = head;
285 : }
286 : }
287 :
288 5 : static void unlist_file(struct epitems_head *head)
289 : {
290 5 : struct epitems_head *to_free = head;
291 5 : struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 5 : if (p) {
293 5 : struct epitem *epi= container_of(p, struct epitem, fllink);
294 5 : spin_lock(&epi->ffd.file->f_lock);
295 5 : if (!hlist_empty(&head->epitems))
296 5 : to_free = NULL;
297 5 : head->next = NULL;
298 5 : spin_unlock(&epi->ffd.file->f_lock);
299 : }
300 5 : free_ephead(to_free);
301 5 : }
302 :
303 : #ifdef CONFIG_SYSCTL
304 :
305 : #include <linux/sysctl.h>
306 :
307 : static long long_zero;
308 : static long long_max = LONG_MAX;
309 :
310 : struct ctl_table epoll_table[] = {
311 : {
312 : .procname = "max_user_watches",
313 : .data = &max_user_watches,
314 : .maxlen = sizeof(max_user_watches),
315 : .mode = 0644,
316 : .proc_handler = proc_doulongvec_minmax,
317 : .extra1 = &long_zero,
318 : .extra2 = &long_max,
319 : },
320 : { }
321 : };
322 : #endif /* CONFIG_SYSCTL */
323 :
324 : static const struct file_operations eventpoll_fops;
325 :
326 11992 : static inline int is_file_epoll(struct file *f)
327 : {
328 11992 : return f->f_op == &eventpoll_fops;
329 : }
330 :
331 : /* Setup the structure that is used as key for the RB tree */
332 1021 : static inline void ep_set_ffd(struct epoll_filefd *ffd,
333 : struct file *file, int fd)
334 : {
335 1021 : ffd->file = file;
336 1021 : ffd->fd = fd;
337 : }
338 :
339 : /* Compare RB tree keys */
340 3780 : static inline int ep_cmp_ffd(struct epoll_filefd *p1,
341 : struct epoll_filefd *p2)
342 : {
343 3780 : return (p1->file > p2->file ? +1:
344 1953 : (p1->file < p2->file ? -1 : p1->fd - p2->fd));
345 : }
346 :
347 : /* Tells us if the item is currently linked */
348 3686 : static inline int ep_is_linked(struct epitem *epi)
349 : {
350 97 : return !list_empty(&epi->rdllink);
351 : }
352 :
353 0 : static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
354 : {
355 0 : return container_of(p, struct eppoll_entry, wait);
356 : }
357 :
358 : /* Get the "struct epitem" from a wait queue pointer */
359 5222 : static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
360 : {
361 5222 : return container_of(p, struct eppoll_entry, wait)->base;
362 : }
363 :
364 : /**
365 : * ep_events_available - Checks if ready events might be available.
366 : *
367 : * @ep: Pointer to the eventpoll context.
368 : *
369 : * Returns: Returns a value different than zero if ready events are available,
370 : * or zero otherwise.
371 : */
372 5025 : static inline int ep_events_available(struct eventpoll *ep)
373 : {
374 15130 : return !list_empty_careful(&ep->rdllist) ||
375 2010 : READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
376 : }
377 :
378 : #ifdef CONFIG_NET_RX_BUSY_POLL
379 0 : static bool ep_busy_loop_end(void *p, unsigned long start_time)
380 : {
381 0 : struct eventpoll *ep = p;
382 :
383 0 : return ep_events_available(ep) || busy_loop_timeout(start_time);
384 : }
385 :
386 : /*
387 : * Busy poll if globally on and supporting sockets found && no events,
388 : * busy loop will return if need_resched or ep_events_available.
389 : *
390 : * we must do our busy polling with irqs enabled
391 : */
392 1535 : static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
393 : {
394 1535 : unsigned int napi_id = READ_ONCE(ep->napi_id);
395 :
396 1535 : if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
397 0 : napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
398 : BUSY_POLL_BUDGET);
399 0 : if (ep_events_available(ep))
400 : return true;
401 : /*
402 : * Busy poll timed out. Drop NAPI ID for now, we can add
403 : * it back in when we have moved a socket with a valid NAPI
404 : * ID onto the ready list.
405 : */
406 0 : ep->napi_id = 0;
407 0 : return false;
408 : }
409 : return false;
410 : }
411 :
412 : /*
413 : * Set epoll busy poll NAPI ID from sk.
414 : */
415 5532 : static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416 : {
417 5532 : struct eventpoll *ep;
418 5532 : unsigned int napi_id;
419 5532 : struct socket *sock;
420 5532 : struct sock *sk;
421 :
422 5532 : if (!net_busy_loop_on())
423 : return;
424 :
425 0 : sock = sock_from_file(epi->ffd.file);
426 0 : if (!sock)
427 : return;
428 :
429 0 : sk = sock->sk;
430 0 : if (!sk)
431 : return;
432 :
433 0 : napi_id = READ_ONCE(sk->sk_napi_id);
434 0 : ep = epi->ep;
435 :
436 : /* Non-NAPI IDs can be rejected
437 : * or
438 : * Nothing to do if we already have this ID
439 : */
440 0 : if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
441 : return;
442 :
443 : /* record NAPI ID for use in next busy poll */
444 0 : ep->napi_id = napi_id;
445 : }
446 :
447 : #else
448 :
449 : static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
450 : {
451 : return false;
452 : }
453 :
454 : static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
455 : {
456 : }
457 :
458 : #endif /* CONFIG_NET_RX_BUSY_POLL */
459 :
460 : /*
461 : * As described in commit 0ccf831cb lockdep: annotate epoll
462 : * the use of wait queues used by epoll is done in a very controlled
463 : * manner. Wake ups can nest inside each other, but are never done
464 : * with the same locking. For example:
465 : *
466 : * dfd = socket(...);
467 : * efd1 = epoll_create();
468 : * efd2 = epoll_create();
469 : * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
470 : * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
471 : *
472 : * When a packet arrives to the device underneath "dfd", the net code will
473 : * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
474 : * callback wakeup entry on that queue, and the wake_up() performed by the
475 : * "dfd" net code will end up in ep_poll_callback(). At this point epoll
476 : * (efd1) notices that it may have some event ready, so it needs to wake up
477 : * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
478 : * that ends up in another wake_up(), after having checked about the
479 : * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
480 : * avoid stack blasting.
481 : *
482 : * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
483 : * this special case of epoll.
484 : */
485 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
486 :
487 193 : static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
488 : {
489 193 : struct eventpoll *ep_src;
490 193 : unsigned long flags;
491 193 : u8 nests = 0;
492 :
493 : /*
494 : * To set the subclass or nesting level for spin_lock_irqsave_nested()
495 : * it might be natural to create a per-cpu nest count. However, since
496 : * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
497 : * schedule() in the -rt kernel, the per-cpu variable are no longer
498 : * protected. Thus, we are introducing a per eventpoll nest field.
499 : * If we are not being call from ep_poll_callback(), epi is NULL and
500 : * we are at the first level of nesting, 0. Otherwise, we are being
501 : * called from ep_poll_callback() and if a previous wakeup source is
502 : * not an epoll file itself, we are at depth 1 since the wakeup source
503 : * is depth 0. If the wakeup source is a previous epoll file in the
504 : * wakeup chain then we use its nests value and record ours as
505 : * nests + 1. The previous epoll file nests value is stable since its
506 : * already holding its own poll_wait.lock.
507 : */
508 193 : if (epi) {
509 193 : if ((is_file_epoll(epi->ffd.file))) {
510 0 : ep_src = epi->ffd.file->private_data;
511 0 : nests = ep_src->nests;
512 : } else {
513 : nests = 1;
514 : }
515 : }
516 193 : spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
517 193 : ep->nests = nests + 1;
518 193 : wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
519 193 : ep->nests = 0;
520 193 : spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
521 193 : }
522 :
523 : #else
524 :
525 : static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
526 : {
527 : wake_up_poll(&ep->poll_wait, EPOLLIN);
528 : }
529 :
530 : #endif
531 :
532 213 : static void ep_remove_wait_queue(struct eppoll_entry *pwq)
533 : {
534 213 : wait_queue_head_t *whead;
535 :
536 213 : rcu_read_lock();
537 : /*
538 : * If it is cleared by POLLFREE, it should be rcu-safe.
539 : * If we read NULL we need a barrier paired with
540 : * smp_store_release() in ep_poll_callback(), otherwise
541 : * we rely on whead->lock.
542 : */
543 213 : whead = smp_load_acquire(&pwq->whead);
544 213 : if (whead)
545 213 : remove_wait_queue(whead, &pwq->wait);
546 213 : rcu_read_unlock();
547 213 : }
548 :
549 : /*
550 : * This function unregisters poll callbacks from the associated file
551 : * descriptor. Must be called with "mtx" held (or "epmutex" if called from
552 : * ep_free).
553 : */
554 217 : static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
555 : {
556 217 : struct eppoll_entry **p = &epi->pwqlist;
557 217 : struct eppoll_entry *pwq;
558 :
559 430 : while ((pwq = *p) != NULL) {
560 213 : *p = pwq->next;
561 213 : ep_remove_wait_queue(pwq);
562 213 : kmem_cache_free(pwq_cache, pwq);
563 : }
564 217 : }
565 :
566 : /* call only when ep->mtx is held */
567 10179 : static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
568 : {
569 10179 : return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
570 : }
571 :
572 : /* call only when ep->mtx is held */
573 4133 : static inline void ep_pm_stay_awake(struct epitem *epi)
574 : {
575 4267 : struct wakeup_source *ws = ep_wakeup_source(epi);
576 :
577 4133 : if (ws)
578 4133 : __pm_stay_awake(ws);
579 3997 : }
580 :
581 218 : static inline bool ep_has_wakeup_source(struct epitem *epi)
582 : {
583 218 : return rcu_access_pointer(epi->ws) ? true : false;
584 : }
585 :
586 : /* call when ep->mtx cannot be held (ep_poll_callback) */
587 1892 : static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
588 : {
589 1892 : struct wakeup_source *ws;
590 :
591 1892 : rcu_read_lock();
592 1892 : ws = rcu_dereference(epi->ws);
593 1892 : if (ws)
594 1892 : __pm_stay_awake(ws);
595 1892 : rcu_read_unlock();
596 1892 : }
597 :
598 :
599 : /*
600 : * ep->mutex needs to be held because we could be hit by
601 : * eventpoll_release_file() and epoll_ctl().
602 : */
603 4738 : static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
604 : {
605 : /*
606 : * Steal the ready list, and re-init the original one to the
607 : * empty list. Also, set ep->ovflist to NULL so that events
608 : * happening while looping w/out locks, are not lost. We cannot
609 : * have the poll callback to queue directly on ep->rdllist,
610 : * because we want the "sproc" callback to be able to do it
611 : * in a lockless way.
612 : */
613 9476 : lockdep_assert_irqs_enabled();
614 4738 : write_lock_irq(&ep->lock);
615 4737 : list_splice_init(&ep->rdllist, txlist);
616 4737 : WRITE_ONCE(ep->ovflist, NULL);
617 4737 : write_unlock_irq(&ep->lock);
618 4738 : }
619 :
620 4738 : static void ep_done_scan(struct eventpoll *ep,
621 : struct list_head *txlist)
622 : {
623 4738 : struct epitem *epi, *nepi;
624 :
625 4738 : write_lock_irq(&ep->lock);
626 : /*
627 : * During the time we spent inside the "sproc" callback, some
628 : * other events might have been queued by the poll callback.
629 : * We re-insert them inside the main ready-list here.
630 : */
631 4743 : for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
632 5 : nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
633 : /*
634 : * We need to check if the item is already in the list.
635 : * During the "sproc" callback execution time, items are
636 : * queued into ->ovflist but the "txlist" might already
637 : * contain them, and the list_splice() below takes care of them.
638 : */
639 6 : if (!ep_is_linked(epi)) {
640 : /*
641 : * ->ovflist is LIFO, so we have to reverse it in order
642 : * to keep in FIFO.
643 : */
644 1 : list_add(&epi->rdllink, &ep->rdllist);
645 6 : ep_pm_stay_awake(epi);
646 : }
647 : }
648 : /*
649 : * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
650 : * releasing the lock, events will be queued in the normal way inside
651 : * ep->rdllist.
652 : */
653 4737 : WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
654 :
655 : /*
656 : * Quickly re-inject items left on "txlist".
657 : */
658 4737 : list_splice(txlist, &ep->rdllist);
659 4737 : __pm_relax(ep->ws);
660 4737 : write_unlock_irq(&ep->lock);
661 4737 : }
662 :
663 213 : static void epi_rcu_free(struct rcu_head *head)
664 : {
665 213 : struct epitem *epi = container_of(head, struct epitem, rcu);
666 213 : kmem_cache_free(epi_cache, epi);
667 213 : }
668 :
669 : /*
670 : * Removes a "struct epitem" from the eventpoll RB tree and deallocates
671 : * all the associated resources. Must be called with "mtx" held.
672 : */
673 213 : static int ep_remove(struct eventpoll *ep, struct epitem *epi)
674 : {
675 213 : struct file *file = epi->ffd.file;
676 213 : struct epitems_head *to_free;
677 213 : struct hlist_head *head;
678 :
679 426 : lockdep_assert_irqs_enabled();
680 :
681 : /*
682 : * Removes poll wait queue hooks.
683 : */
684 213 : ep_unregister_pollwait(ep, epi);
685 :
686 : /* Remove the current item from the list of epoll hooks */
687 213 : spin_lock(&file->f_lock);
688 213 : to_free = NULL;
689 213 : head = file->f_ep;
690 213 : if (head->first == &epi->fllink && !epi->fllink.next) {
691 183 : file->f_ep = NULL;
692 183 : if (!is_file_epoll(file)) {
693 183 : struct epitems_head *v;
694 183 : v = container_of(head, struct epitems_head, epitems);
695 183 : if (!smp_load_acquire(&v->next))
696 183 : to_free = v;
697 : }
698 : }
699 213 : hlist_del_rcu(&epi->fllink);
700 213 : spin_unlock(&file->f_lock);
701 213 : free_ephead(to_free);
702 :
703 213 : rb_erase_cached(&epi->rbn, &ep->rbr);
704 :
705 213 : write_lock_irq(&ep->lock);
706 213 : if (ep_is_linked(epi))
707 186 : list_del_init(&epi->rdllink);
708 213 : write_unlock_irq(&ep->lock);
709 :
710 213 : wakeup_source_unregister(ep_wakeup_source(epi));
711 : /*
712 : * At this point it is safe to free the eventpoll item. Use the union
713 : * field epi->rcu, since we are trying to minimize the size of
714 : * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
715 : * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
716 : * use of the rbn field.
717 : */
718 213 : call_rcu(&epi->rcu, epi_rcu_free);
719 :
720 213 : atomic_long_dec(&ep->user->epoll_watches);
721 :
722 213 : return 0;
723 : }
724 :
725 15 : static void ep_free(struct eventpoll *ep)
726 : {
727 15 : struct rb_node *rbp;
728 15 : struct epitem *epi;
729 :
730 : /* We need to release all tasks waiting for these file */
731 15 : if (waitqueue_active(&ep->poll_wait))
732 0 : ep_poll_safewake(ep, NULL);
733 :
734 : /*
735 : * We need to lock this because we could be hit by
736 : * eventpoll_release_file() while we're freeing the "struct eventpoll".
737 : * We do not need to hold "ep->mtx" here because the epoll file
738 : * is on the way to be removed and no one has references to it
739 : * anymore. The only hit might come from eventpoll_release_file() but
740 : * holding "epmutex" is sufficient here.
741 : */
742 15 : mutex_lock(&epmutex);
743 :
744 : /*
745 : * Walks through the whole tree by unregistering poll callbacks.
746 : */
747 19 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
748 4 : epi = rb_entry(rbp, struct epitem, rbn);
749 :
750 4 : ep_unregister_pollwait(ep, epi);
751 4 : cond_resched();
752 : }
753 :
754 : /*
755 : * Walks through the whole tree by freeing each "struct epitem". At this
756 : * point we are sure no poll callbacks will be lingering around, and also by
757 : * holding "epmutex" we can be sure that no file cleanup code will hit
758 : * us during this operation. So we can avoid the lock on "ep->lock".
759 : * We do not need to lock ep->mtx, either, we only do it to prevent
760 : * a lockdep warning.
761 : */
762 15 : mutex_lock(&ep->mtx);
763 19 : while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
764 4 : epi = rb_entry(rbp, struct epitem, rbn);
765 4 : ep_remove(ep, epi);
766 4 : cond_resched();
767 : }
768 15 : mutex_unlock(&ep->mtx);
769 :
770 15 : mutex_unlock(&epmutex);
771 15 : mutex_destroy(&ep->mtx);
772 15 : free_uid(ep->user);
773 15 : wakeup_source_unregister(ep->ws);
774 15 : kfree(ep);
775 15 : }
776 :
777 15 : static int ep_eventpoll_release(struct inode *inode, struct file *file)
778 : {
779 15 : struct eventpoll *ep = file->private_data;
780 :
781 15 : if (ep)
782 15 : ep_free(ep);
783 :
784 15 : return 0;
785 : }
786 :
787 : static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
788 :
789 196 : static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
790 : {
791 196 : struct eventpoll *ep = file->private_data;
792 196 : LIST_HEAD(txlist);
793 196 : struct epitem *epi, *tmp;
794 196 : poll_table pt;
795 196 : __poll_t res = 0;
796 :
797 196 : init_poll_funcptr(&pt, NULL);
798 :
799 : /* Insert inside our poll wait queue */
800 196 : poll_wait(file, &ep->poll_wait, wait);
801 :
802 : /*
803 : * Proceed to find out if wanted events are really available inside
804 : * the ready list.
805 : */
806 196 : mutex_lock_nested(&ep->mtx, depth);
807 197 : ep_start_scan(ep, &txlist);
808 196 : list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
809 123 : if (ep_item_poll(epi, &pt, depth + 1)) {
810 : res = EPOLLIN | EPOLLRDNORM;
811 : break;
812 : } else {
813 : /*
814 : * Item has been dropped into the ready list by the poll
815 : * callback, but it's not actually ready, as far as
816 : * caller requested events goes. We can remove it here.
817 : */
818 0 : __pm_relax(ep_wakeup_source(epi));
819 0 : list_del_init(&epi->rdllink);
820 : }
821 : }
822 197 : ep_done_scan(ep, &txlist);
823 196 : mutex_unlock(&ep->mtx);
824 196 : return res;
825 : }
826 :
827 : /*
828 : * Differs from ep_eventpoll_poll() in that internal callers already have
829 : * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
830 : * is correctly annotated.
831 : */
832 6481 : static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
833 : int depth)
834 : {
835 6481 : struct file *file = epi->ffd.file;
836 6481 : __poll_t res;
837 :
838 6481 : pt->_key = epi->event.events;
839 6481 : if (!is_file_epoll(file))
840 6284 : res = vfs_poll(file, pt);
841 : else
842 197 : res = __ep_eventpoll_poll(file, pt, depth);
843 6483 : return res & epi->event.events;
844 : }
845 :
846 0 : static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
847 : {
848 0 : return __ep_eventpoll_poll(file, wait, 0);
849 : }
850 :
851 : #ifdef CONFIG_PROC_FS
852 0 : static void ep_show_fdinfo(struct seq_file *m, struct file *f)
853 : {
854 0 : struct eventpoll *ep = f->private_data;
855 0 : struct rb_node *rbp;
856 :
857 0 : mutex_lock(&ep->mtx);
858 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
859 0 : struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
860 0 : struct inode *inode = file_inode(epi->ffd.file);
861 :
862 0 : seq_printf(m, "tfd: %8d events: %8x data: %16llx "
863 : " pos:%lli ino:%lx sdev:%x\n",
864 : epi->ffd.fd, epi->event.events,
865 0 : (long long)epi->event.data,
866 0 : (long long)epi->ffd.file->f_pos,
867 0 : inode->i_ino, inode->i_sb->s_dev);
868 0 : if (seq_has_overflowed(m))
869 : break;
870 : }
871 0 : mutex_unlock(&ep->mtx);
872 0 : }
873 : #endif
874 :
875 : /* File callbacks that implement the eventpoll file behaviour */
876 : static const struct file_operations eventpoll_fops = {
877 : #ifdef CONFIG_PROC_FS
878 : .show_fdinfo = ep_show_fdinfo,
879 : #endif
880 : .release = ep_eventpoll_release,
881 : .poll = ep_eventpoll_poll,
882 : .llseek = noop_llseek,
883 : };
884 :
885 : /*
886 : * This is called from eventpoll_release() to unlink files from the eventpoll
887 : * interface. We need to have this facility to cleanup correctly files that are
888 : * closed without being removed from the eventpoll interface.
889 : */
890 24 : void eventpoll_release_file(struct file *file)
891 : {
892 24 : struct eventpoll *ep;
893 24 : struct epitem *epi;
894 24 : struct hlist_node *next;
895 :
896 : /*
897 : * We don't want to get "file->f_lock" because it is not
898 : * necessary. It is not necessary because we're in the "struct file"
899 : * cleanup path, and this means that no one is using this file anymore.
900 : * So, for example, epoll_ctl() cannot hit here since if we reach this
901 : * point, the file counter already went to zero and fget() would fail.
902 : * The only hit might come from ep_free() but by holding the mutex
903 : * will correctly serialize the operation. We do need to acquire
904 : * "ep->mtx" after "epmutex" because ep_remove() requires it when called
905 : * from anywhere but ep_free().
906 : *
907 : * Besides, ep_remove() acquires the lock, so we can't hold it here.
908 : */
909 24 : mutex_lock(&epmutex);
910 24 : if (unlikely(!file->f_ep)) {
911 0 : mutex_unlock(&epmutex);
912 0 : return;
913 : }
914 72 : hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
915 24 : ep = epi->ep;
916 24 : mutex_lock_nested(&ep->mtx, 0);
917 24 : ep_remove(ep, epi);
918 24 : mutex_unlock(&ep->mtx);
919 : }
920 24 : mutex_unlock(&epmutex);
921 : }
922 :
923 24 : static int ep_alloc(struct eventpoll **pep)
924 : {
925 24 : int error;
926 24 : struct user_struct *user;
927 24 : struct eventpoll *ep;
928 :
929 24 : user = get_current_user();
930 24 : error = -ENOMEM;
931 24 : ep = kzalloc(sizeof(*ep), GFP_KERNEL);
932 24 : if (unlikely(!ep))
933 0 : goto free_uid;
934 :
935 24 : mutex_init(&ep->mtx);
936 24 : rwlock_init(&ep->lock);
937 24 : init_waitqueue_head(&ep->wq);
938 24 : init_waitqueue_head(&ep->poll_wait);
939 24 : INIT_LIST_HEAD(&ep->rdllist);
940 24 : ep->rbr = RB_ROOT_CACHED;
941 24 : ep->ovflist = EP_UNACTIVE_PTR;
942 24 : ep->user = user;
943 :
944 24 : *pep = ep;
945 :
946 24 : return 0;
947 :
948 0 : free_uid:
949 0 : free_uid(user);
950 0 : return error;
951 : }
952 :
953 : /*
954 : * Search the file inside the eventpoll tree. The RB tree operations
955 : * are protected by the "mtx" mutex, and ep_find() must be called with
956 : * "mtx" held.
957 : */
958 712 : static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
959 : {
960 712 : int kcmp;
961 712 : struct rb_node *rbp;
962 712 : struct epitem *epi, *epir = NULL;
963 712 : struct epoll_filefd ffd;
964 :
965 712 : ep_set_ffd(&ffd, file, fd);
966 3026 : for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
967 2717 : epi = rb_entry(rbp, struct epitem, rbn);
968 2717 : kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
969 403 : if (kcmp > 0)
970 1257 : rbp = rbp->rb_right;
971 1460 : else if (kcmp < 0)
972 1057 : rbp = rbp->rb_left;
973 : else {
974 : epir = epi;
975 : break;
976 : }
977 : }
978 :
979 712 : return epir;
980 : }
981 :
982 : #ifdef CONFIG_KCMP
983 : static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
984 : {
985 : struct rb_node *rbp;
986 : struct epitem *epi;
987 :
988 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
989 : epi = rb_entry(rbp, struct epitem, rbn);
990 : if (epi->ffd.fd == tfd) {
991 : if (toff == 0)
992 : return epi;
993 : else
994 : toff--;
995 : }
996 : cond_resched();
997 : }
998 :
999 : return NULL;
1000 : }
1001 :
1002 : struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1003 : unsigned long toff)
1004 : {
1005 : struct file *file_raw;
1006 : struct eventpoll *ep;
1007 : struct epitem *epi;
1008 :
1009 : if (!is_file_epoll(file))
1010 : return ERR_PTR(-EINVAL);
1011 :
1012 : ep = file->private_data;
1013 :
1014 : mutex_lock(&ep->mtx);
1015 : epi = ep_find_tfd(ep, tfd, toff);
1016 : if (epi)
1017 : file_raw = epi->ffd.file;
1018 : else
1019 : file_raw = ERR_PTR(-ENOENT);
1020 : mutex_unlock(&ep->mtx);
1021 :
1022 : return file_raw;
1023 : }
1024 : #endif /* CONFIG_KCMP */
1025 :
1026 : /**
1027 : * Adds a new entry to the tail of the list in a lockless way, i.e.
1028 : * multiple CPUs are allowed to call this function concurrently.
1029 : *
1030 : * Beware: it is necessary to prevent any other modifications of the
1031 : * existing list until all changes are completed, in other words
1032 : * concurrent list_add_tail_lockless() calls should be protected
1033 : * with a read lock, where write lock acts as a barrier which
1034 : * makes sure all list_add_tail_lockless() calls are fully
1035 : * completed.
1036 : *
1037 : * Also an element can be locklessly added to the list only in one
1038 : * direction i.e. either to the tail either to the head, otherwise
1039 : * concurrent access will corrupt the list.
1040 : *
1041 : * Returns %false if element has been already added to the list, %true
1042 : * otherwise.
1043 : */
1044 1887 : static inline bool list_add_tail_lockless(struct list_head *new,
1045 : struct list_head *head)
1046 : {
1047 1887 : struct list_head *prev;
1048 :
1049 : /*
1050 : * This is simple 'new->next = head' operation, but cmpxchg()
1051 : * is used in order to detect that same element has been just
1052 : * added to the list from another CPU: the winner observes
1053 : * new->next == new.
1054 : */
1055 1887 : if (cmpxchg(&new->next, new, head) != new)
1056 : return false;
1057 :
1058 : /*
1059 : * Initially ->next of a new element must be updated with the head
1060 : * (we are inserting to the tail) and only then pointers are atomically
1061 : * exchanged. XCHG guarantees memory ordering, thus ->next should be
1062 : * updated before pointers are actually swapped and pointers are
1063 : * swapped before prev->next is updated.
1064 : */
1065 :
1066 1887 : prev = xchg(&head->prev, new);
1067 :
1068 : /*
1069 : * It is safe to modify prev->next and new->prev, because a new element
1070 : * is added only to the tail and new->next is updated before XCHG.
1071 : */
1072 :
1073 1887 : prev->next = new;
1074 1887 : new->prev = prev;
1075 :
1076 1887 : return true;
1077 : }
1078 :
1079 : /**
1080 : * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1081 : * i.e. multiple CPUs are allowed to call this function concurrently.
1082 : *
1083 : * Returns %false if epi element has been already chained, %true otherwise.
1084 : */
1085 5 : static inline bool chain_epi_lockless(struct epitem *epi)
1086 : {
1087 5 : struct eventpoll *ep = epi->ep;
1088 :
1089 : /* Fast preliminary check */
1090 5 : if (epi->next != EP_UNACTIVE_PTR)
1091 : return false;
1092 :
1093 : /* Check that the same epi has not been just chained from another CPU */
1094 5 : if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1095 : return false;
1096 :
1097 : /* Atomically exchange tail */
1098 5 : epi->next = xchg(&ep->ovflist, epi);
1099 :
1100 5 : return true;
1101 : }
1102 :
1103 : /*
1104 : * This is the callback that is passed to the wait queue wakeup
1105 : * mechanism. It is called by the stored file descriptors when they
1106 : * have events to report.
1107 : *
1108 : * This callback takes a read lock in order not to content with concurrent
1109 : * events from another file descriptors, thus all modifications to ->rdllist
1110 : * or ->ovflist are lockless. Read lock is paired with the write lock from
1111 : * ep_scan_ready_list(), which stops all list modifications and guarantees
1112 : * that lists state is seen correctly.
1113 : *
1114 : * Another thing worth to mention is that ep_poll_callback() can be called
1115 : * concurrently for the same @epi from different CPUs if poll table was inited
1116 : * with several wait queues entries. Plural wakeup from different CPUs of a
1117 : * single wait queue is serialized by wq.lock, but the case when multiple wait
1118 : * queues are used should be detected accordingly. This is detected using
1119 : * cmpxchg() operation.
1120 : */
1121 5222 : static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1122 : {
1123 5222 : int pwake = 0;
1124 5222 : struct epitem *epi = ep_item_from_wait(wait);
1125 5222 : struct eventpoll *ep = epi->ep;
1126 5222 : __poll_t pollflags = key_to_poll(key);
1127 5222 : unsigned long flags;
1128 5222 : int ewake = 0;
1129 :
1130 5222 : read_lock_irqsave(&ep->lock, flags);
1131 :
1132 5223 : ep_set_busy_poll_napi_id(epi);
1133 :
1134 : /*
1135 : * If the event mask does not contain any poll(2) event, we consider the
1136 : * descriptor to be disabled. This condition is likely the effect of the
1137 : * EPOLLONESHOT bit that disables the descriptor when an event is received,
1138 : * until the next EPOLL_CTL_MOD will be issued.
1139 : */
1140 5223 : if (!(epi->event.events & ~EP_PRIVATE_BITS))
1141 0 : goto out_unlock;
1142 :
1143 : /*
1144 : * Check the events coming with the callback. At this stage, not
1145 : * every device reports the events in the "key" parameter of the
1146 : * callback. We need to be able to handle both cases here, hence the
1147 : * test for "key" != NULL before the event match test.
1148 : */
1149 5223 : if (pollflags && !(pollflags & epi->event.events))
1150 1961 : goto out_unlock;
1151 :
1152 : /*
1153 : * If we are transferring events to userspace, we can hold no locks
1154 : * (because we're accessing user memory, and because of linux f_op->poll()
1155 : * semantics). All the events that happen during that period of time are
1156 : * chained in ep->ovflist and requeued later on.
1157 : */
1158 3262 : if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1159 5 : if (chain_epi_lockless(epi))
1160 5 : ep_pm_stay_awake_rcu(epi);
1161 3257 : } else if (!ep_is_linked(epi)) {
1162 : /* In the usual case, add event to ready list. */
1163 1887 : if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1164 1887 : ep_pm_stay_awake_rcu(epi);
1165 : }
1166 :
1167 : /*
1168 : * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1169 : * wait list.
1170 : */
1171 3262 : if (waitqueue_active(&ep->wq)) {
1172 1526 : if ((epi->event.events & EPOLLEXCLUSIVE) &&
1173 0 : !(pollflags & POLLFREE)) {
1174 0 : switch (pollflags & EPOLLINOUT_BITS) {
1175 0 : case EPOLLIN:
1176 0 : if (epi->event.events & EPOLLIN)
1177 : ewake = 1;
1178 : break;
1179 0 : case EPOLLOUT:
1180 0 : if (epi->event.events & EPOLLOUT)
1181 0 : ewake = 1;
1182 : break;
1183 0 : case 0:
1184 0 : ewake = 1;
1185 0 : break;
1186 : }
1187 1526 : }
1188 1526 : wake_up(&ep->wq);
1189 : }
1190 3262 : if (waitqueue_active(&ep->poll_wait))
1191 193 : pwake++;
1192 :
1193 3069 : out_unlock:
1194 5223 : read_unlock_irqrestore(&ep->lock, flags);
1195 :
1196 : /* We have to call this outside the lock */
1197 5222 : if (pwake)
1198 193 : ep_poll_safewake(ep, epi);
1199 :
1200 5222 : if (!(epi->event.events & EPOLLEXCLUSIVE))
1201 5222 : ewake = 1;
1202 :
1203 5222 : if (pollflags & POLLFREE) {
1204 : /*
1205 : * If we race with ep_remove_wait_queue() it can miss
1206 : * ->whead = NULL and do another remove_wait_queue() after
1207 : * us, so we can't use __remove_wait_queue().
1208 : */
1209 0 : list_del_init(&wait->entry);
1210 : /*
1211 : * ->whead != NULL protects us from the race with ep_free()
1212 : * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1213 : * held by the caller. Once we nullify it, nothing protects
1214 : * ep/epi or even wait.
1215 : */
1216 0 : smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1217 : }
1218 :
1219 5222 : return ewake;
1220 : }
1221 :
1222 : /*
1223 : * This is the callback that is used to add our wait queue to the
1224 : * target file wakeup lists.
1225 : */
1226 310 : static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1227 : poll_table *pt)
1228 : {
1229 310 : struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1230 310 : struct epitem *epi = epq->epi;
1231 310 : struct eppoll_entry *pwq;
1232 :
1233 310 : if (unlikely(!epi)) // an earlier allocation has failed
1234 : return;
1235 :
1236 310 : pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1237 310 : if (unlikely(!pwq)) {
1238 0 : epq->epi = NULL;
1239 0 : return;
1240 : }
1241 :
1242 310 : init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1243 310 : pwq->whead = whead;
1244 310 : pwq->base = epi;
1245 310 : if (epi->event.events & EPOLLEXCLUSIVE)
1246 0 : add_wait_queue_exclusive(whead, &pwq->wait);
1247 : else
1248 310 : add_wait_queue(whead, &pwq->wait);
1249 310 : pwq->next = epi->pwqlist;
1250 310 : epi->pwqlist = pwq;
1251 : }
1252 :
1253 309 : static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1254 : {
1255 309 : int kcmp;
1256 309 : struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1257 309 : struct epitem *epic;
1258 309 : bool leftmost = true;
1259 :
1260 1372 : while (*p) {
1261 1063 : parent = *p;
1262 1063 : epic = rb_entry(parent, struct epitem, rbn);
1263 1063 : kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1264 0 : if (kcmp > 0) {
1265 570 : p = &parent->rb_right;
1266 570 : leftmost = false;
1267 : } else
1268 493 : p = &parent->rb_left;
1269 : }
1270 309 : rb_link_node(&epi->rbn, parent, p);
1271 309 : rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1272 309 : }
1273 :
1274 :
1275 :
1276 : #define PATH_ARR_SIZE 5
1277 : /*
1278 : * These are the number paths of length 1 to 5, that we are allowing to emanate
1279 : * from a single file of interest. For example, we allow 1000 paths of length
1280 : * 1, to emanate from each file of interest. This essentially represents the
1281 : * potential wakeup paths, which need to be limited in order to avoid massive
1282 : * uncontrolled wakeup storms. The common use case should be a single ep which
1283 : * is connected to n file sources. In this case each file source has 1 path
1284 : * of length 1. Thus, the numbers below should be more than sufficient. These
1285 : * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1286 : * and delete can't add additional paths. Protected by the epmutex.
1287 : */
1288 : static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1289 : static int path_count[PATH_ARR_SIZE];
1290 :
1291 5 : static int path_count_inc(int nests)
1292 : {
1293 : /* Allow an arbitrary number of depth 1 paths */
1294 5 : if (nests == 0)
1295 : return 0;
1296 :
1297 4 : if (++path_count[nests] > path_limits[nests])
1298 0 : return -1;
1299 : return 0;
1300 : }
1301 :
1302 : static void path_count_init(void)
1303 : {
1304 : int i;
1305 :
1306 30 : for (i = 0; i < PATH_ARR_SIZE; i++)
1307 25 : path_count[i] = 0;
1308 : }
1309 :
1310 9 : static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1311 : {
1312 9 : int error = 0;
1313 9 : struct epitem *epi;
1314 :
1315 9 : if (depth > EP_MAX_NESTS) /* too deep nesting */
1316 : return -1;
1317 :
1318 : /* CTL_DEL can remove links here, but that can't increase our count */
1319 36 : hlist_for_each_entry_rcu(epi, refs, fllink) {
1320 9 : struct hlist_head *refs = &epi->ep->refs;
1321 9 : if (hlist_empty(refs))
1322 5 : error = path_count_inc(depth);
1323 : else
1324 4 : error = reverse_path_check_proc(refs, depth + 1);
1325 9 : if (error != 0)
1326 : break;
1327 : }
1328 : return error;
1329 : }
1330 :
1331 : /**
1332 : * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1333 : * links that are proposed to be newly added. We need to
1334 : * make sure that those added links don't add too many
1335 : * paths such that we will spend all our time waking up
1336 : * eventpoll objects.
1337 : *
1338 : * Returns: Returns zero if the proposed links don't create too many paths,
1339 : * -1 otherwise.
1340 : */
1341 3 : static int reverse_path_check(void)
1342 : {
1343 3 : struct epitems_head *p;
1344 :
1345 8 : for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1346 : int error;
1347 5 : path_count_init();
1348 5 : rcu_read_lock();
1349 5 : error = reverse_path_check_proc(&p->epitems, 0);
1350 5 : rcu_read_unlock();
1351 5 : if (error)
1352 0 : return error;
1353 : }
1354 : return 0;
1355 : }
1356 :
1357 0 : static int ep_create_wakeup_source(struct epitem *epi)
1358 : {
1359 0 : struct name_snapshot n;
1360 0 : struct wakeup_source *ws;
1361 :
1362 0 : if (!epi->ep->ws) {
1363 0 : epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1364 0 : if (!epi->ep->ws)
1365 : return -ENOMEM;
1366 : }
1367 :
1368 0 : take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1369 0 : ws = wakeup_source_register(NULL, n.name.name);
1370 0 : release_dentry_name_snapshot(&n);
1371 :
1372 0 : if (!ws)
1373 0 : return -ENOMEM;
1374 : rcu_assign_pointer(epi->ws, ws);
1375 :
1376 : return 0;
1377 : }
1378 :
1379 : /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1380 0 : static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1381 : {
1382 0 : struct wakeup_source *ws = ep_wakeup_source(epi);
1383 :
1384 0 : RCU_INIT_POINTER(epi->ws, NULL);
1385 :
1386 : /*
1387 : * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1388 : * used internally by wakeup_source_remove, too (called by
1389 : * wakeup_source_unregister), so we cannot use call_rcu
1390 : */
1391 0 : synchronize_rcu();
1392 0 : wakeup_source_unregister(ws);
1393 0 : }
1394 :
1395 309 : static int attach_epitem(struct file *file, struct epitem *epi)
1396 : {
1397 309 : struct epitems_head *to_free = NULL;
1398 309 : struct hlist_head *head = NULL;
1399 309 : struct eventpoll *ep = NULL;
1400 :
1401 309 : if (is_file_epoll(file))
1402 2 : ep = file->private_data;
1403 :
1404 2 : if (ep) {
1405 2 : head = &ep->refs;
1406 307 : } else if (!READ_ONCE(file->f_ep)) {
1407 268 : allocate:
1408 268 : to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1409 268 : if (!to_free)
1410 : return -ENOMEM;
1411 268 : head = &to_free->epitems;
1412 : }
1413 309 : spin_lock(&file->f_lock);
1414 309 : if (!file->f_ep) {
1415 270 : if (unlikely(!head)) {
1416 0 : spin_unlock(&file->f_lock);
1417 0 : goto allocate;
1418 : }
1419 270 : file->f_ep = head;
1420 270 : to_free = NULL;
1421 : }
1422 309 : hlist_add_head_rcu(&epi->fllink, file->f_ep);
1423 309 : spin_unlock(&file->f_lock);
1424 309 : free_ephead(to_free);
1425 309 : return 0;
1426 : }
1427 :
1428 : /*
1429 : * Must be called with "mtx" held.
1430 : */
1431 309 : static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1432 : struct file *tfile, int fd, int full_check)
1433 : {
1434 309 : int error, pwake = 0;
1435 309 : __poll_t revents;
1436 309 : long user_watches;
1437 309 : struct epitem *epi;
1438 309 : struct ep_pqueue epq;
1439 309 : struct eventpoll *tep = NULL;
1440 :
1441 309 : if (is_file_epoll(tfile))
1442 2 : tep = tfile->private_data;
1443 :
1444 618 : lockdep_assert_irqs_enabled();
1445 :
1446 309 : user_watches = atomic_long_read(&ep->user->epoll_watches);
1447 309 : if (unlikely(user_watches >= max_user_watches))
1448 : return -ENOSPC;
1449 309 : if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
1450 : return -ENOMEM;
1451 :
1452 : /* Item initialization follow here ... */
1453 309 : INIT_LIST_HEAD(&epi->rdllink);
1454 309 : epi->ep = ep;
1455 309 : ep_set_ffd(&epi->ffd, tfile, fd);
1456 309 : epi->event = *event;
1457 309 : epi->next = EP_UNACTIVE_PTR;
1458 :
1459 309 : if (tep)
1460 2 : mutex_lock_nested(&tep->mtx, 1);
1461 : /* Add the current item to the list of active epoll hook for this file */
1462 309 : if (unlikely(attach_epitem(tfile, epi) < 0)) {
1463 0 : kmem_cache_free(epi_cache, epi);
1464 0 : if (tep)
1465 0 : mutex_unlock(&tep->mtx);
1466 0 : return -ENOMEM;
1467 : }
1468 :
1469 309 : if (full_check && !tep)
1470 1 : list_file(tfile);
1471 :
1472 309 : atomic_long_inc(&ep->user->epoll_watches);
1473 :
1474 : /*
1475 : * Add the current item to the RB tree. All RB tree operations are
1476 : * protected by "mtx", and ep_insert() is called with "mtx" held.
1477 : */
1478 309 : ep_rbtree_insert(ep, epi);
1479 309 : if (tep)
1480 2 : mutex_unlock(&tep->mtx);
1481 :
1482 : /* now check if we've created too many backpaths */
1483 309 : if (unlikely(full_check && reverse_path_check())) {
1484 0 : ep_remove(ep, epi);
1485 0 : return -EINVAL;
1486 : }
1487 :
1488 309 : if (epi->event.events & EPOLLWAKEUP) {
1489 0 : error = ep_create_wakeup_source(epi);
1490 0 : if (error) {
1491 0 : ep_remove(ep, epi);
1492 0 : return error;
1493 : }
1494 : }
1495 :
1496 : /* Initialize the poll table using the queue callback */
1497 309 : epq.epi = epi;
1498 309 : init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1499 :
1500 : /*
1501 : * Attach the item to the poll hooks and get current event bits.
1502 : * We can safely use the file* here because its usage count has
1503 : * been increased by the caller of this function. Note that after
1504 : * this operation completes, the poll callback can start hitting
1505 : * the new item.
1506 : */
1507 309 : revents = ep_item_poll(epi, &epq.pt, 1);
1508 :
1509 : /*
1510 : * We have to check if something went wrong during the poll wait queue
1511 : * install process. Namely an allocation for a wait queue failed due
1512 : * high memory pressure.
1513 : */
1514 309 : if (unlikely(!epq.epi)) {
1515 0 : ep_remove(ep, epi);
1516 0 : return -ENOMEM;
1517 : }
1518 :
1519 : /* We have to drop the new item inside our item list to keep track of it */
1520 309 : write_lock_irq(&ep->lock);
1521 :
1522 : /* record NAPI ID of new item if present */
1523 309 : ep_set_busy_poll_napi_id(epi);
1524 :
1525 : /* If the file is already "ready" we drop it inside the ready list */
1526 309 : if (revents && !ep_is_linked(epi)) {
1527 97 : list_add_tail(&epi->rdllink, &ep->rdllist);
1528 97 : ep_pm_stay_awake(epi);
1529 :
1530 : /* Notify waiting tasks that events are available */
1531 97 : if (waitqueue_active(&ep->wq))
1532 0 : wake_up(&ep->wq);
1533 97 : if (waitqueue_active(&ep->poll_wait))
1534 0 : pwake++;
1535 : }
1536 :
1537 309 : write_unlock_irq(&ep->lock);
1538 :
1539 : /* We have to call this outside the lock */
1540 309 : if (pwake)
1541 0 : ep_poll_safewake(ep, NULL);
1542 :
1543 : return 0;
1544 : }
1545 :
1546 : /*
1547 : * Modify the interest event mask by dropping an event if the new mask
1548 : * has a match in the current file status. Must be called with "mtx" held.
1549 : */
1550 218 : static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1551 : const struct epoll_event *event)
1552 : {
1553 218 : int pwake = 0;
1554 218 : poll_table pt;
1555 :
1556 436 : lockdep_assert_irqs_enabled();
1557 :
1558 218 : init_poll_funcptr(&pt, NULL);
1559 :
1560 : /*
1561 : * Set the new event interest mask before calling f_op->poll();
1562 : * otherwise we might miss an event that happens between the
1563 : * f_op->poll() call and the new event set registering.
1564 : */
1565 218 : epi->event.events = event->events; /* need barrier below */
1566 218 : epi->event.data = event->data; /* protected by mtx */
1567 218 : if (epi->event.events & EPOLLWAKEUP) {
1568 0 : if (!ep_has_wakeup_source(epi))
1569 0 : ep_create_wakeup_source(epi);
1570 218 : } else if (ep_has_wakeup_source(epi)) {
1571 0 : ep_destroy_wakeup_source(epi);
1572 : }
1573 :
1574 : /*
1575 : * The following barrier has two effects:
1576 : *
1577 : * 1) Flush epi changes above to other CPUs. This ensures
1578 : * we do not miss events from ep_poll_callback if an
1579 : * event occurs immediately after we call f_op->poll().
1580 : * We need this because we did not take ep->lock while
1581 : * changing epi above (but ep_poll_callback does take
1582 : * ep->lock).
1583 : *
1584 : * 2) We also need to ensure we do not miss _past_ events
1585 : * when calling f_op->poll(). This barrier also
1586 : * pairs with the barrier in wq_has_sleeper (see
1587 : * comments for wq_has_sleeper).
1588 : *
1589 : * This barrier will now guarantee ep_poll_callback or f_op->poll
1590 : * (or both) will notice the readiness of an item.
1591 : */
1592 218 : smp_mb();
1593 :
1594 : /*
1595 : * Get current event bits. We can safely use the file* here because
1596 : * its usage count has been increased by the caller of this function.
1597 : * If the item is "hot" and it is not registered inside the ready
1598 : * list, push it inside.
1599 : */
1600 218 : if (ep_item_poll(epi, &pt, 1)) {
1601 113 : write_lock_irq(&ep->lock);
1602 113 : if (!ep_is_linked(epi)) {
1603 37 : list_add_tail(&epi->rdllink, &ep->rdllist);
1604 37 : ep_pm_stay_awake(epi);
1605 :
1606 : /* Notify waiting tasks that events are available */
1607 37 : if (waitqueue_active(&ep->wq))
1608 0 : wake_up(&ep->wq);
1609 37 : if (waitqueue_active(&ep->poll_wait))
1610 0 : pwake++;
1611 : }
1612 113 : write_unlock_irq(&ep->lock);
1613 : }
1614 :
1615 : /* We have to call this outside the lock */
1616 113 : if (pwake)
1617 0 : ep_poll_safewake(ep, NULL);
1618 :
1619 218 : return 0;
1620 : }
1621 :
1622 4540 : static int ep_send_events(struct eventpoll *ep,
1623 : struct epoll_event __user *events, int maxevents)
1624 : {
1625 4540 : struct epitem *epi, *tmp;
1626 4540 : LIST_HEAD(txlist);
1627 4540 : poll_table pt;
1628 4540 : int res = 0;
1629 :
1630 : /*
1631 : * Always short-circuit for fatal signals to allow threads to make a
1632 : * timely exit without the chance of finding more events available and
1633 : * fetching repeatedly.
1634 : */
1635 4540 : if (fatal_signal_pending(current))
1636 : return -EINTR;
1637 :
1638 4540 : init_poll_funcptr(&pt, NULL);
1639 :
1640 4540 : mutex_lock(&ep->mtx);
1641 4542 : ep_start_scan(ep, &txlist);
1642 :
1643 : /*
1644 : * We can loop without lock because we are passed a task private list.
1645 : * Items cannot vanish during the loop we are holding ep->mtx.
1646 : */
1647 10375 : list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1648 5836 : struct wakeup_source *ws;
1649 5836 : __poll_t revents;
1650 :
1651 5836 : if (res >= maxevents)
1652 : break;
1653 :
1654 : /*
1655 : * Activate ep->ws before deactivating epi->ws to prevent
1656 : * triggering auto-suspend here (in case we reactive epi->ws
1657 : * below).
1658 : *
1659 : * This could be rearranged to delay the deactivation of epi->ws
1660 : * instead, but then epi->ws would temporarily be out of sync
1661 : * with ep_is_linked().
1662 : */
1663 5834 : ws = ep_wakeup_source(epi);
1664 5833 : if (ws) {
1665 : if (ws->active)
1666 5833 : __pm_stay_awake(ep->ws);
1667 5833 : __pm_relax(ws);
1668 : }
1669 :
1670 5833 : list_del_init(&epi->rdllink);
1671 :
1672 : /*
1673 : * If the event mask intersect the caller-requested one,
1674 : * deliver the event to userspace. Again, we are holding ep->mtx,
1675 : * so no operations coming from userspace can change the item.
1676 : */
1677 5833 : revents = ep_item_poll(epi, &pt, 1);
1678 5833 : if (!revents)
1679 1710 : continue;
1680 :
1681 4123 : if (__put_user(revents, &events->events) ||
1682 4124 : __put_user(epi->event.data, &events->data)) {
1683 0 : list_add(&epi->rdllink, &txlist);
1684 0 : ep_pm_stay_awake(epi);
1685 0 : if (!res)
1686 0 : res = -EFAULT;
1687 : break;
1688 : }
1689 4124 : res++;
1690 4124 : events++;
1691 4124 : if (epi->event.events & EPOLLONESHOT)
1692 0 : epi->event.events &= EP_PRIVATE_BITS;
1693 4124 : else if (!(epi->event.events & EPOLLET)) {
1694 : /*
1695 : * If this file has been added with Level
1696 : * Trigger mode, we need to insert back inside
1697 : * the ready list, so that the next call to
1698 : * epoll_wait() will check again the events
1699 : * availability. At this point, no one can insert
1700 : * into ep->rdllist besides us. The epoll_ctl()
1701 : * callers are locked out by
1702 : * ep_scan_ready_list() holding "mtx" and the
1703 : * poll callback will queue them in ep->ovflist.
1704 : */
1705 3998 : list_add_tail(&epi->rdllink, &ep->rdllist);
1706 9831 : ep_pm_stay_awake(epi);
1707 : }
1708 : }
1709 4541 : ep_done_scan(ep, &txlist);
1710 4540 : mutex_unlock(&ep->mtx);
1711 :
1712 4540 : return res;
1713 : }
1714 :
1715 3488 : static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1716 : {
1717 3488 : struct timespec64 now;
1718 :
1719 3488 : if (ms < 0)
1720 : return NULL;
1721 :
1722 1433 : if (!ms) {
1723 1355 : to->tv_sec = 0;
1724 1355 : to->tv_nsec = 0;
1725 1355 : return to;
1726 : }
1727 :
1728 78 : to->tv_sec = ms / MSEC_PER_SEC;
1729 78 : to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1730 :
1731 78 : ktime_get_ts64(&now);
1732 78 : *to = timespec64_add_safe(now, *to);
1733 78 : return to;
1734 : }
1735 :
1736 : /**
1737 : * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1738 : * event buffer.
1739 : *
1740 : * @ep: Pointer to the eventpoll context.
1741 : * @events: Pointer to the userspace buffer where the ready events should be
1742 : * stored.
1743 : * @maxevents: Size (in terms of number of events) of the caller event buffer.
1744 : * @timeout: Maximum timeout for the ready events fetch operation, in
1745 : * timespec. If the timeout is zero, the function will not block,
1746 : * while if the @timeout ptr is NULL, the function will block
1747 : * until at least one event has been retrieved (or an error
1748 : * occurred).
1749 : *
1750 : * Returns: Returns the number of ready events which have been fetched, or an
1751 : * error code, in case of error.
1752 : */
1753 3489 : static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1754 : int maxevents, struct timespec64 *timeout)
1755 : {
1756 3489 : int res, eavail, timed_out = 0;
1757 3489 : u64 slack = 0;
1758 3489 : wait_queue_entry_t wait;
1759 3489 : ktime_t expires, *to = NULL;
1760 :
1761 6978 : lockdep_assert_irqs_enabled();
1762 :
1763 3490 : if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1764 78 : slack = select_estimate_accuracy(timeout);
1765 78 : to = &expires;
1766 156 : *to = timespec64_to_ktime(*timeout);
1767 3412 : } else if (timeout) {
1768 : /*
1769 : * Avoid the unnecessary trip to the wait queue loop, if the
1770 : * caller specified a non blocking operation.
1771 : */
1772 1357 : timed_out = 1;
1773 : }
1774 :
1775 : /*
1776 : * This call is racy: We may or may not see events that are being added
1777 : * to the ready list under the lock (e.g., in IRQ callbacks). For, cases
1778 : * with a non-zero timeout, this thread will check the ready list under
1779 : * lock and will added to the wait queue. For, cases with a zero
1780 : * timeout, the user by definition should not care and will have to
1781 : * recheck again.
1782 : */
1783 3490 : eavail = ep_events_available(ep);
1784 :
1785 3491 : while (1) {
1786 3491 : if (eavail) {
1787 : /*
1788 : * Try to transfer events to user space. In case we get
1789 : * 0 events and there's still timeout left over, we go
1790 : * trying again in search of more luck.
1791 : */
1792 9081 : res = ep_send_events(ep, events, maxevents);
1793 4539 : if (res)
1794 3109 : return res;
1795 : }
1796 :
1797 1906 : if (timed_out)
1798 : return 0;
1799 :
1800 1534 : eavail = ep_busy_loop(ep, timed_out);
1801 1535 : if (eavail)
1802 0 : continue;
1803 :
1804 1535 : if (signal_pending(current))
1805 : return -EINTR;
1806 :
1807 : /*
1808 : * Internally init_wait() uses autoremove_wake_function(),
1809 : * thus wait entry is removed from the wait queue on each
1810 : * wakeup. Why it is important? In case of several waiters
1811 : * each new wakeup will hit the next waiter, giving it the
1812 : * chance to harvest new event. Otherwise wakeup can be
1813 : * lost. This is also good performance-wise, because on
1814 : * normal wakeup path no need to call __remove_wait_queue()
1815 : * explicitly, thus ep->lock is not taken, which halts the
1816 : * event delivery.
1817 : */
1818 1535 : init_wait(&wait);
1819 :
1820 1535 : write_lock_irq(&ep->lock);
1821 : /*
1822 : * Barrierless variant, waitqueue_active() is called under
1823 : * the same lock on wakeup ep_poll_callback() side, so it
1824 : * is safe to avoid an explicit barrier.
1825 : */
1826 1535 : __set_current_state(TASK_INTERRUPTIBLE);
1827 :
1828 : /*
1829 : * Do the final check under the lock. ep_scan_ready_list()
1830 : * plays with two lists (->rdllist and ->ovflist) and there
1831 : * is always a race when both lists are empty for short
1832 : * period of time although events are pending, so lock is
1833 : * important.
1834 : */
1835 1535 : eavail = ep_events_available(ep);
1836 1534 : if (!eavail)
1837 1534 : __add_wait_queue_exclusive(&ep->wq, &wait);
1838 :
1839 1535 : write_unlock_irq(&ep->lock);
1840 :
1841 1535 : if (!eavail)
1842 1534 : timed_out = !schedule_hrtimeout_range(to, slack,
1843 : HRTIMER_MODE_ABS);
1844 1526 : __set_current_state(TASK_RUNNING);
1845 :
1846 : /*
1847 : * We were woken up, thus go and try to harvest some events.
1848 : * If timed out and still on the wait queue, recheck eavail
1849 : * carefully under lock, below.
1850 : */
1851 1526 : eavail = 1;
1852 :
1853 6068 : if (!list_empty_careful(&wait.entry)) {
1854 1 : write_lock_irq(&ep->lock);
1855 : /*
1856 : * If the thread timed out and is not on the wait queue,
1857 : * it means that the thread was woken up after its
1858 : * timeout expired before it could reacquire the lock.
1859 : * Thus, when wait.entry is empty, it needs to harvest
1860 : * events.
1861 : */
1862 1 : if (timed_out)
1863 1 : eavail = list_empty(&wait.entry);
1864 1 : __remove_wait_queue(&ep->wq, &wait);
1865 1 : write_unlock_irq(&ep->lock);
1866 : }
1867 : }
1868 : }
1869 :
1870 : /**
1871 : * ep_loop_check_proc - verify that adding an epoll file inside another
1872 : * epoll structure, does not violate the constraints, in
1873 : * terms of closed loops, or too deep chains (which can
1874 : * result in excessive stack usage).
1875 : *
1876 : * @priv: Pointer to the epoll file to be currently checked.
1877 : * @depth: Current depth of the path being checked.
1878 : *
1879 : * Returns: Returns zero if adding the epoll @file inside current epoll
1880 : * structure @ep does not violate the constraints, or -1 otherwise.
1881 : */
1882 2 : static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1883 : {
1884 2 : int error = 0;
1885 2 : struct rb_node *rbp;
1886 2 : struct epitem *epi;
1887 :
1888 2 : mutex_lock_nested(&ep->mtx, depth + 1);
1889 2 : ep->gen = loop_check_gen;
1890 6 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1891 4 : epi = rb_entry(rbp, struct epitem, rbn);
1892 4 : if (unlikely(is_file_epoll(epi->ffd.file))) {
1893 0 : struct eventpoll *ep_tovisit;
1894 0 : ep_tovisit = epi->ffd.file->private_data;
1895 0 : if (ep_tovisit->gen == loop_check_gen)
1896 0 : continue;
1897 0 : if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1898 : error = -1;
1899 : else
1900 0 : error = ep_loop_check_proc(ep_tovisit, depth + 1);
1901 0 : if (error != 0)
1902 : break;
1903 : } else {
1904 : /*
1905 : * If we've reached a file that is not associated with
1906 : * an ep, then we need to check if the newly added
1907 : * links are going to add too many wakeup paths. We do
1908 : * this by adding it to the tfile_check_list, if it's
1909 : * not already there, and calling reverse_path_check()
1910 : * during ep_insert().
1911 : */
1912 8 : list_file(epi->ffd.file);
1913 : }
1914 : }
1915 2 : mutex_unlock(&ep->mtx);
1916 :
1917 2 : return error;
1918 : }
1919 :
1920 : /**
1921 : * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1922 : * into another epoll file (represented by @from) does not create
1923 : * closed loops or too deep chains.
1924 : *
1925 : * @from: Pointer to the epoll we are inserting into.
1926 : * @to: Pointer to the epoll to be inserted.
1927 : *
1928 : * Returns: Returns zero if adding the epoll @to inside the epoll @from
1929 : * does not violate the constraints, or -1 otherwise.
1930 : */
1931 2 : static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1932 : {
1933 2 : inserting_into = ep;
1934 2 : return ep_loop_check_proc(to, 0);
1935 : }
1936 :
1937 3 : static void clear_tfile_check_list(void)
1938 : {
1939 3 : rcu_read_lock();
1940 8 : while (tfile_check_list != EP_UNACTIVE_PTR) {
1941 5 : struct epitems_head *head = tfile_check_list;
1942 5 : tfile_check_list = head->next;
1943 5 : unlist_file(head);
1944 : }
1945 3 : rcu_read_unlock();
1946 3 : }
1947 :
1948 : /*
1949 : * Open an eventpoll file descriptor.
1950 : */
1951 24 : static int do_epoll_create(int flags)
1952 : {
1953 24 : int error, fd;
1954 24 : struct eventpoll *ep = NULL;
1955 24 : struct file *file;
1956 :
1957 : /* Check the EPOLL_* constant for consistency. */
1958 24 : BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1959 :
1960 24 : if (flags & ~EPOLL_CLOEXEC)
1961 : return -EINVAL;
1962 : /*
1963 : * Create the internal data structure ("struct eventpoll").
1964 : */
1965 24 : error = ep_alloc(&ep);
1966 24 : if (error < 0)
1967 : return error;
1968 : /*
1969 : * Creates all the items needed to setup an eventpoll file. That is,
1970 : * a file structure and a free file descriptor.
1971 : */
1972 24 : fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1973 24 : if (fd < 0) {
1974 0 : error = fd;
1975 0 : goto out_free_ep;
1976 : }
1977 24 : file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1978 : O_RDWR | (flags & O_CLOEXEC));
1979 24 : if (IS_ERR(file)) {
1980 0 : error = PTR_ERR(file);
1981 0 : goto out_free_fd;
1982 : }
1983 24 : ep->file = file;
1984 24 : fd_install(fd, file);
1985 24 : return fd;
1986 :
1987 0 : out_free_fd:
1988 0 : put_unused_fd(fd);
1989 0 : out_free_ep:
1990 0 : ep_free(ep);
1991 0 : return error;
1992 : }
1993 :
1994 48 : SYSCALL_DEFINE1(epoll_create1, int, flags)
1995 : {
1996 24 : return do_epoll_create(flags);
1997 : }
1998 :
1999 0 : SYSCALL_DEFINE1(epoll_create, int, size)
2000 : {
2001 0 : if (size <= 0)
2002 : return -EINVAL;
2003 :
2004 0 : return do_epoll_create(0);
2005 : }
2006 :
2007 718 : static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2008 : bool nonblock)
2009 : {
2010 718 : if (!nonblock) {
2011 718 : mutex_lock_nested(mutex, depth);
2012 718 : return 0;
2013 : }
2014 0 : if (mutex_trylock(mutex))
2015 0 : return 0;
2016 : return -EAGAIN;
2017 : }
2018 :
2019 712 : int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2020 : bool nonblock)
2021 : {
2022 712 : int error;
2023 712 : int full_check = 0;
2024 712 : struct fd f, tf;
2025 712 : struct eventpoll *ep;
2026 712 : struct epitem *epi;
2027 712 : struct eventpoll *tep = NULL;
2028 :
2029 712 : error = -EBADF;
2030 712 : f = fdget(epfd);
2031 712 : if (!f.file)
2032 0 : goto error_return;
2033 :
2034 : /* Get the "struct file *" for the target file */
2035 712 : tf = fdget(fd);
2036 712 : if (!tf.file)
2037 0 : goto error_fput;
2038 :
2039 : /* The target file descriptor must support poll */
2040 712 : error = -EPERM;
2041 712 : if (!file_can_poll(tf.file))
2042 0 : goto error_tgt_fput;
2043 :
2044 : /* Check if EPOLLWAKEUP is allowed */
2045 712 : if (ep_op_has_event(op))
2046 527 : ep_take_care_of_epollwakeup(epds);
2047 :
2048 : /*
2049 : * We have to check that the file structure underneath the file descriptor
2050 : * the user passed to us _is_ an eventpoll file. And also we do not permit
2051 : * adding an epoll file descriptor inside itself.
2052 : */
2053 712 : error = -EINVAL;
2054 712 : if (f.file == tf.file || !is_file_epoll(f.file))
2055 0 : goto error_tgt_fput;
2056 :
2057 : /*
2058 : * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2059 : * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2060 : * Also, we do not currently supported nested exclusive wakeups.
2061 : */
2062 712 : if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2063 0 : if (op == EPOLL_CTL_MOD)
2064 0 : goto error_tgt_fput;
2065 0 : if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2066 0 : (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2067 0 : goto error_tgt_fput;
2068 : }
2069 :
2070 : /*
2071 : * At this point it is safe to assume that the "private_data" contains
2072 : * our own data structure.
2073 : */
2074 712 : ep = f.file->private_data;
2075 :
2076 : /*
2077 : * When we insert an epoll file descriptor, inside another epoll file
2078 : * descriptor, there is the change of creating closed loops, which are
2079 : * better be handled here, than in more critical paths. While we are
2080 : * checking for loops we also determine the list of files reachable
2081 : * and hang them on the tfile_check_list, so we can check that we
2082 : * haven't created too many possible wakeup paths.
2083 : *
2084 : * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2085 : * the epoll file descriptor is attaching directly to a wakeup source,
2086 : * unless the epoll file descriptor is nested. The purpose of taking the
2087 : * 'epmutex' on add is to prevent complex toplogies such as loops and
2088 : * deep wakeup paths from forming in parallel through multiple
2089 : * EPOLL_CTL_ADD operations.
2090 : */
2091 712 : error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2092 712 : if (error)
2093 0 : goto error_tgt_fput;
2094 712 : if (op == EPOLL_CTL_ADD) {
2095 309 : if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2096 308 : is_file_epoll(tf.file)) {
2097 3 : mutex_unlock(&ep->mtx);
2098 3 : error = epoll_mutex_lock(&epmutex, 0, nonblock);
2099 3 : if (error)
2100 0 : goto error_tgt_fput;
2101 3 : loop_check_gen++;
2102 3 : full_check = 1;
2103 3 : if (is_file_epoll(tf.file)) {
2104 2 : tep = tf.file->private_data;
2105 2 : error = -ELOOP;
2106 2 : if (ep_loop_check(ep, tep) != 0)
2107 0 : goto error_tgt_fput;
2108 : }
2109 3 : error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2110 3 : if (error)
2111 0 : goto error_tgt_fput;
2112 : }
2113 : }
2114 :
2115 : /*
2116 : * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2117 : * above, we can be sure to be able to use the item looked up by
2118 : * ep_find() till we release the mutex.
2119 : */
2120 712 : epi = ep_find(ep, tf.file, fd);
2121 :
2122 712 : error = -EINVAL;
2123 712 : switch (op) {
2124 309 : case EPOLL_CTL_ADD:
2125 309 : if (!epi) {
2126 309 : epds->events |= EPOLLERR | EPOLLHUP;
2127 309 : error = ep_insert(ep, epds, tf.file, fd, full_check);
2128 : } else
2129 : error = -EEXIST;
2130 : break;
2131 185 : case EPOLL_CTL_DEL:
2132 185 : if (epi)
2133 185 : error = ep_remove(ep, epi);
2134 : else
2135 : error = -ENOENT;
2136 : break;
2137 218 : case EPOLL_CTL_MOD:
2138 218 : if (epi) {
2139 218 : if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2140 218 : epds->events |= EPOLLERR | EPOLLHUP;
2141 218 : error = ep_modify(ep, epi, epds);
2142 : }
2143 : } else
2144 : error = -ENOENT;
2145 : break;
2146 : }
2147 712 : mutex_unlock(&ep->mtx);
2148 :
2149 712 : error_tgt_fput:
2150 712 : if (full_check) {
2151 3 : clear_tfile_check_list();
2152 3 : loop_check_gen++;
2153 3 : mutex_unlock(&epmutex);
2154 : }
2155 :
2156 720 : fdput(tf);
2157 712 : error_fput:
2158 720 : fdput(f);
2159 712 : error_return:
2160 :
2161 712 : return error;
2162 : }
2163 :
2164 : /*
2165 : * The following function implements the controller interface for
2166 : * the eventpoll file that enables the insertion/removal/change of
2167 : * file descriptors inside the interest set.
2168 : */
2169 1424 : SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2170 : struct epoll_event __user *, event)
2171 : {
2172 712 : struct epoll_event epds;
2173 :
2174 712 : if (ep_op_has_event(op) &&
2175 527 : copy_from_user(&epds, event, sizeof(struct epoll_event)))
2176 : return -EFAULT;
2177 :
2178 712 : return do_epoll_ctl(epfd, op, fd, &epds, false);
2179 : }
2180 :
2181 : /*
2182 : * Implement the event wait interface for the eventpoll file. It is the kernel
2183 : * part of the user space epoll_wait(2).
2184 : */
2185 3487 : static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2186 : int maxevents, struct timespec64 *to)
2187 : {
2188 3487 : int error;
2189 3487 : struct fd f;
2190 3487 : struct eventpoll *ep;
2191 :
2192 : /* The maximum number of event must be greater than zero */
2193 3487 : if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2194 : return -EINVAL;
2195 :
2196 : /* Verify that the area passed by the user is writeable */
2197 6974 : if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2198 : return -EFAULT;
2199 :
2200 : /* Get the "struct file *" for the eventpoll file */
2201 3487 : f = fdget(epfd);
2202 3490 : if (!f.file)
2203 : return -EBADF;
2204 :
2205 : /*
2206 : * We have to check that the file structure underneath the fd
2207 : * the user passed to us _is_ an eventpoll file.
2208 : */
2209 3490 : error = -EINVAL;
2210 3490 : if (!is_file_epoll(f.file))
2211 0 : goto error_fput;
2212 :
2213 : /*
2214 : * At this point it is safe to assume that the "private_data" contains
2215 : * our own data structure.
2216 : */
2217 3490 : ep = f.file->private_data;
2218 :
2219 : /* Time to fish for events ... */
2220 3490 : error = ep_poll(ep, events, maxevents, to);
2221 :
2222 3480 : error_fput:
2223 3480 : fdput(f);
2224 3480 : return error;
2225 : }
2226 :
2227 6978 : SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2228 : int, maxevents, int, timeout)
2229 : {
2230 3489 : struct timespec64 to;
2231 :
2232 3489 : return do_epoll_wait(epfd, events, maxevents,
2233 : ep_timeout_to_timespec(&to, timeout));
2234 : }
2235 :
2236 : /*
2237 : * Implement the event wait interface for the eventpoll file. It is the kernel
2238 : * part of the user space epoll_pwait(2).
2239 : */
2240 0 : static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2241 : int maxevents, struct timespec64 *to,
2242 : const sigset_t __user *sigmask, size_t sigsetsize)
2243 : {
2244 0 : int error;
2245 :
2246 : /*
2247 : * If the caller wants a certain signal mask to be set during the wait,
2248 : * we apply it here.
2249 : */
2250 0 : error = set_user_sigmask(sigmask, sigsetsize);
2251 0 : if (error)
2252 : return error;
2253 :
2254 0 : error = do_epoll_wait(epfd, events, maxevents, to);
2255 :
2256 0 : restore_saved_sigmask_unless(error == -EINTR);
2257 :
2258 0 : return error;
2259 : }
2260 :
2261 0 : SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2262 : int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2263 : size_t, sigsetsize)
2264 : {
2265 0 : struct timespec64 to;
2266 :
2267 0 : return do_epoll_pwait(epfd, events, maxevents,
2268 : ep_timeout_to_timespec(&to, timeout),
2269 : sigmask, sigsetsize);
2270 : }
2271 :
2272 0 : SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2273 : int, maxevents, const struct __kernel_timespec __user *, timeout,
2274 : const sigset_t __user *, sigmask, size_t, sigsetsize)
2275 : {
2276 0 : struct timespec64 ts, *to = NULL;
2277 :
2278 0 : if (timeout) {
2279 0 : if (get_timespec64(&ts, timeout))
2280 : return -EFAULT;
2281 0 : to = &ts;
2282 0 : if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2283 : return -EINVAL;
2284 : }
2285 :
2286 0 : return do_epoll_pwait(epfd, events, maxevents, to,
2287 : sigmask, sigsetsize);
2288 : }
2289 :
2290 : #ifdef CONFIG_COMPAT
2291 0 : static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2292 : int maxevents, struct timespec64 *timeout,
2293 : const compat_sigset_t __user *sigmask,
2294 : compat_size_t sigsetsize)
2295 : {
2296 0 : long err;
2297 :
2298 : /*
2299 : * If the caller wants a certain signal mask to be set during the wait,
2300 : * we apply it here.
2301 : */
2302 0 : err = set_compat_user_sigmask(sigmask, sigsetsize);
2303 0 : if (err)
2304 : return err;
2305 :
2306 0 : err = do_epoll_wait(epfd, events, maxevents, timeout);
2307 :
2308 0 : restore_saved_sigmask_unless(err == -EINTR);
2309 :
2310 0 : return err;
2311 : }
2312 :
2313 0 : COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2314 : struct epoll_event __user *, events,
2315 : int, maxevents, int, timeout,
2316 : const compat_sigset_t __user *, sigmask,
2317 : compat_size_t, sigsetsize)
2318 : {
2319 0 : struct timespec64 to;
2320 :
2321 0 : return do_compat_epoll_pwait(epfd, events, maxevents,
2322 : ep_timeout_to_timespec(&to, timeout),
2323 : sigmask, sigsetsize);
2324 : }
2325 :
2326 0 : COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2327 : struct epoll_event __user *, events,
2328 : int, maxevents,
2329 : const struct __kernel_timespec __user *, timeout,
2330 : const compat_sigset_t __user *, sigmask,
2331 : compat_size_t, sigsetsize)
2332 : {
2333 0 : struct timespec64 ts, *to = NULL;
2334 :
2335 0 : if (timeout) {
2336 0 : if (get_timespec64(&ts, timeout))
2337 : return -EFAULT;
2338 0 : to = &ts;
2339 0 : if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2340 : return -EINVAL;
2341 : }
2342 :
2343 0 : return do_compat_epoll_pwait(epfd, events, maxevents, to,
2344 : sigmask, sigsetsize);
2345 : }
2346 :
2347 : #endif
2348 :
2349 1 : static int __init eventpoll_init(void)
2350 : {
2351 1 : struct sysinfo si;
2352 :
2353 1 : si_meminfo(&si);
2354 : /*
2355 : * Allows top 4% of lomem to be allocated for epoll watches (per user).
2356 : */
2357 1 : max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2358 : EP_ITEM_COST;
2359 1 : BUG_ON(max_user_watches < 0);
2360 :
2361 : /*
2362 : * We can have many thousands of epitems, so prevent this from
2363 : * using an extra cache line on 64-bit (and smaller) CPUs
2364 : */
2365 1 : BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2366 :
2367 : /* Allocates slab cache used to allocate "struct epitem" items */
2368 1 : epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2369 : 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2370 :
2371 : /* Allocates slab cache used to allocate "struct eppoll_entry" */
2372 1 : pwq_cache = kmem_cache_create("eventpoll_pwq",
2373 : sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2374 :
2375 1 : ephead_cache = kmem_cache_create("ep_head",
2376 : sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2377 :
2378 1 : return 0;
2379 : }
2380 : fs_initcall(eventpoll_init);
|