Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/fs/ext4/super.c
4 : *
5 : * Copyright (C) 1992, 1993, 1994, 1995
6 : * Remy Card (card@masi.ibp.fr)
7 : * Laboratoire MASI - Institut Blaise Pascal
8 : * Universite Pierre et Marie Curie (Paris VI)
9 : *
10 : * from
11 : *
12 : * linux/fs/minix/inode.c
13 : *
14 : * Copyright (C) 1991, 1992 Linus Torvalds
15 : *
16 : * Big-endian to little-endian byte-swapping/bitmaps by
17 : * David S. Miller (davem@caip.rutgers.edu), 1995
18 : */
19 :
20 : #include <linux/module.h>
21 : #include <linux/string.h>
22 : #include <linux/fs.h>
23 : #include <linux/time.h>
24 : #include <linux/vmalloc.h>
25 : #include <linux/slab.h>
26 : #include <linux/init.h>
27 : #include <linux/blkdev.h>
28 : #include <linux/backing-dev.h>
29 : #include <linux/parser.h>
30 : #include <linux/buffer_head.h>
31 : #include <linux/exportfs.h>
32 : #include <linux/vfs.h>
33 : #include <linux/random.h>
34 : #include <linux/mount.h>
35 : #include <linux/namei.h>
36 : #include <linux/quotaops.h>
37 : #include <linux/seq_file.h>
38 : #include <linux/ctype.h>
39 : #include <linux/log2.h>
40 : #include <linux/crc16.h>
41 : #include <linux/dax.h>
42 : #include <linux/cleancache.h>
43 : #include <linux/uaccess.h>
44 : #include <linux/iversion.h>
45 : #include <linux/unicode.h>
46 : #include <linux/part_stat.h>
47 : #include <linux/kthread.h>
48 : #include <linux/freezer.h>
49 :
50 : #include "ext4.h"
51 : #include "ext4_extents.h" /* Needed for trace points definition */
52 : #include "ext4_jbd2.h"
53 : #include "xattr.h"
54 : #include "acl.h"
55 : #include "mballoc.h"
56 : #include "fsmap.h"
57 :
58 : #define CREATE_TRACE_POINTS
59 : #include <trace/events/ext4.h>
60 :
61 : static struct ext4_lazy_init *ext4_li_info;
62 : static DEFINE_MUTEX(ext4_li_mtx);
63 : static struct ratelimit_state ext4_mount_msg_ratelimit;
64 :
65 : static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 : unsigned long journal_devnum);
67 : static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 : static void ext4_update_super(struct super_block *sb);
69 : static int ext4_commit_super(struct super_block *sb);
70 : static int ext4_mark_recovery_complete(struct super_block *sb,
71 : struct ext4_super_block *es);
72 : static int ext4_clear_journal_err(struct super_block *sb,
73 : struct ext4_super_block *es);
74 : static int ext4_sync_fs(struct super_block *sb, int wait);
75 : static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 : static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 : static int ext4_unfreeze(struct super_block *sb);
78 : static int ext4_freeze(struct super_block *sb);
79 : static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 : const char *dev_name, void *data);
81 : static inline int ext2_feature_set_ok(struct super_block *sb);
82 : static inline int ext3_feature_set_ok(struct super_block *sb);
83 : static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 : static void ext4_destroy_lazyinit_thread(void);
85 : static void ext4_unregister_li_request(struct super_block *sb);
86 : static void ext4_clear_request_list(void);
87 : static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 : unsigned int journal_inum);
89 :
90 : /*
91 : * Lock ordering
92 : *
93 : * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94 : * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 : *
96 : * page fault path:
97 : * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98 : * page lock -> i_data_sem (rw)
99 : *
100 : * buffered write path:
101 : * sb_start_write -> i_mutex -> mmap_lock
102 : * sb_start_write -> i_mutex -> transaction start -> page lock ->
103 : * i_data_sem (rw)
104 : *
105 : * truncate:
106 : * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107 : * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108 : * i_data_sem (rw)
109 : *
110 : * direct IO:
111 : * sb_start_write -> i_mutex -> mmap_lock
112 : * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 : *
114 : * writepages:
115 : * transaction start -> page lock(s) -> i_data_sem (rw)
116 : */
117 :
118 : #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 : static struct file_system_type ext2_fs_type = {
120 : .owner = THIS_MODULE,
121 : .name = "ext2",
122 : .mount = ext4_mount,
123 : .kill_sb = kill_block_super,
124 : .fs_flags = FS_REQUIRES_DEV,
125 : };
126 : MODULE_ALIAS_FS("ext2");
127 : MODULE_ALIAS("ext2");
128 : #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 : #else
130 : #define IS_EXT2_SB(sb) (0)
131 : #endif
132 :
133 :
134 : static struct file_system_type ext3_fs_type = {
135 : .owner = THIS_MODULE,
136 : .name = "ext3",
137 : .mount = ext4_mount,
138 : .kill_sb = kill_block_super,
139 : .fs_flags = FS_REQUIRES_DEV,
140 : };
141 : MODULE_ALIAS_FS("ext3");
142 : MODULE_ALIAS("ext3");
143 : #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144 :
145 :
146 3903 : static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 : bh_end_io_t *end_io)
148 : {
149 : /*
150 : * buffer's verified bit is no longer valid after reading from
151 : * disk again due to write out error, clear it to make sure we
152 : * recheck the buffer contents.
153 : */
154 3903 : clear_buffer_verified(bh);
155 :
156 3903 : bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 3903 : get_bh(bh);
158 3903 : submit_bh(REQ_OP_READ, op_flags, bh);
159 3903 : }
160 :
161 3488 : void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 : bh_end_io_t *end_io)
163 : {
164 3488 : BUG_ON(!buffer_locked(bh));
165 :
166 3488 : if (ext4_buffer_uptodate(bh)) {
167 87 : unlock_buffer(bh);
168 87 : return;
169 : }
170 3401 : __ext4_read_bh(bh, op_flags, end_io);
171 : }
172 :
173 502 : int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 : {
175 502 : BUG_ON(!buffer_locked(bh));
176 :
177 502 : if (ext4_buffer_uptodate(bh)) {
178 0 : unlock_buffer(bh);
179 0 : return 0;
180 : }
181 :
182 502 : __ext4_read_bh(bh, op_flags, end_io);
183 :
184 502 : wait_on_buffer(bh);
185 502 : if (buffer_uptodate(bh))
186 502 : return 0;
187 : return -EIO;
188 : }
189 :
190 3943 : int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 : {
192 3943 : if (trylock_buffer(bh)) {
193 3840 : if (wait)
194 470 : return ext4_read_bh(bh, op_flags, NULL);
195 3370 : ext4_read_bh_nowait(bh, op_flags, NULL);
196 3370 : return 0;
197 : }
198 103 : if (wait) {
199 1 : wait_on_buffer(bh);
200 1 : if (buffer_uptodate(bh))
201 : return 0;
202 0 : return -EIO;
203 : }
204 : return 0;
205 : }
206 :
207 : /*
208 : * This works like __bread_gfp() except it uses ERR_PTR for error
209 : * returns. Currently with sb_bread it's impossible to distinguish
210 : * between ENOMEM and EIO situations (since both result in a NULL
211 : * return.
212 : */
213 4 : static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
214 : sector_t block, int op_flags,
215 : gfp_t gfp)
216 : {
217 4 : struct buffer_head *bh;
218 4 : int ret;
219 :
220 4 : bh = sb_getblk_gfp(sb, block, gfp);
221 4 : if (bh == NULL)
222 4 : return ERR_PTR(-ENOMEM);
223 4 : if (ext4_buffer_uptodate(bh))
224 : return bh;
225 :
226 4 : ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
227 4 : if (ret) {
228 0 : put_bh(bh);
229 0 : return ERR_PTR(ret);
230 : }
231 : return bh;
232 : }
233 :
234 0 : struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
235 : int op_flags)
236 : {
237 0 : return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
238 : }
239 :
240 4 : struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
241 : sector_t block)
242 : {
243 0 : return __ext4_sb_bread_gfp(sb, block, 0, 0);
244 : }
245 :
246 3367 : void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
247 : {
248 3367 : struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
249 :
250 3367 : if (likely(bh)) {
251 3367 : ext4_read_bh_lock(bh, REQ_RAHEAD, false);
252 3367 : brelse(bh);
253 : }
254 3367 : }
255 :
256 2 : static int ext4_verify_csum_type(struct super_block *sb,
257 : struct ext4_super_block *es)
258 : {
259 2 : if (!ext4_has_feature_metadata_csum(sb))
260 : return 1;
261 :
262 0 : return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
263 : }
264 :
265 0 : static __le32 ext4_superblock_csum(struct super_block *sb,
266 : struct ext4_super_block *es)
267 : {
268 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
269 0 : int offset = offsetof(struct ext4_super_block, s_checksum);
270 0 : __u32 csum;
271 :
272 0 : csum = ext4_chksum(sbi, ~0, (char *)es, offset);
273 :
274 0 : return cpu_to_le32(csum);
275 : }
276 :
277 2 : static int ext4_superblock_csum_verify(struct super_block *sb,
278 : struct ext4_super_block *es)
279 : {
280 2 : if (!ext4_has_metadata_csum(sb))
281 : return 1;
282 :
283 0 : return es->s_checksum == ext4_superblock_csum(sb, es);
284 : }
285 :
286 398 : void ext4_superblock_csum_set(struct super_block *sb)
287 : {
288 398 : struct ext4_super_block *es = EXT4_SB(sb)->s_es;
289 :
290 398 : if (!ext4_has_metadata_csum(sb))
291 : return;
292 :
293 0 : es->s_checksum = ext4_superblock_csum(sb, es);
294 : }
295 :
296 738 : ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
297 : struct ext4_group_desc *bg)
298 : {
299 722 : return le32_to_cpu(bg->bg_block_bitmap_lo) |
300 738 : (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
301 738 : (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
302 : }
303 :
304 1080 : ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
305 : struct ext4_group_desc *bg)
306 : {
307 1064 : return le32_to_cpu(bg->bg_inode_bitmap_lo) |
308 1080 : (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
309 1080 : (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
310 : }
311 :
312 16405 : ext4_fsblk_t ext4_inode_table(struct super_block *sb,
313 : struct ext4_group_desc *bg)
314 : {
315 16389 : return le32_to_cpu(bg->bg_inode_table_lo) |
316 16405 : (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 16405 : (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
318 : }
319 :
320 529 : __u32 ext4_free_group_clusters(struct super_block *sb,
321 : struct ext4_group_desc *bg)
322 : {
323 513 : return le16_to_cpu(bg->bg_free_blocks_count_lo) |
324 529 : (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 529 : (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
326 : }
327 :
328 3463 : __u32 ext4_free_inodes_count(struct super_block *sb,
329 : struct ext4_group_desc *bg)
330 : {
331 3447 : return le16_to_cpu(bg->bg_free_inodes_count_lo) |
332 3463 : (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 3463 : (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
334 : }
335 :
336 276 : __u32 ext4_used_dirs_count(struct super_block *sb,
337 : struct ext4_group_desc *bg)
338 : {
339 260 : return le16_to_cpu(bg->bg_used_dirs_count_lo) |
340 276 : (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 276 : (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
342 : }
343 :
344 743 : __u32 ext4_itable_unused_count(struct super_block *sb,
345 : struct ext4_group_desc *bg)
346 : {
347 743 : return le16_to_cpu(bg->bg_itable_unused_lo) |
348 743 : (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 743 : (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
350 : }
351 :
352 0 : void ext4_block_bitmap_set(struct super_block *sb,
353 : struct ext4_group_desc *bg, ext4_fsblk_t blk)
354 : {
355 0 : bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
356 0 : if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
357 0 : bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
358 0 : }
359 :
360 0 : void ext4_inode_bitmap_set(struct super_block *sb,
361 : struct ext4_group_desc *bg, ext4_fsblk_t blk)
362 : {
363 0 : bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
364 0 : if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
365 0 : bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
366 0 : }
367 :
368 0 : void ext4_inode_table_set(struct super_block *sb,
369 : struct ext4_group_desc *bg, ext4_fsblk_t blk)
370 : {
371 0 : bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
372 0 : if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 0 : bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
374 0 : }
375 :
376 451 : void ext4_free_group_clusters_set(struct super_block *sb,
377 : struct ext4_group_desc *bg, __u32 count)
378 : {
379 451 : bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
380 451 : if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 0 : bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
382 451 : }
383 :
384 834 : void ext4_free_inodes_set(struct super_block *sb,
385 : struct ext4_group_desc *bg, __u32 count)
386 : {
387 834 : bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
388 834 : if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 0 : bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
390 834 : }
391 :
392 244 : void ext4_used_dirs_set(struct super_block *sb,
393 : struct ext4_group_desc *bg, __u32 count)
394 : {
395 244 : bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
396 244 : if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 0 : bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
398 244 : }
399 :
400 0 : void ext4_itable_unused_set(struct super_block *sb,
401 : struct ext4_group_desc *bg, __u32 count)
402 : {
403 0 : bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
404 0 : if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 0 : bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
406 0 : }
407 :
408 1 : static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
409 : {
410 1 : now = clamp_val(now, 0, (1ull << 40) - 1);
411 :
412 1 : *lo = cpu_to_le32(lower_32_bits(now));
413 1 : *hi = upper_32_bits(now);
414 0 : }
415 :
416 0 : static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
417 : {
418 0 : return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
419 : }
420 : #define ext4_update_tstamp(es, tstamp) \
421 : __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
422 : ktime_get_real_seconds())
423 : #define ext4_get_tstamp(es, tstamp) \
424 : __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
425 :
426 : /*
427 : * The del_gendisk() function uninitializes the disk-specific data
428 : * structures, including the bdi structure, without telling anyone
429 : * else. Once this happens, any attempt to call mark_buffer_dirty()
430 : * (for example, by ext4_commit_super), will cause a kernel OOPS.
431 : * This is a kludge to prevent these oops until we can put in a proper
432 : * hook in del_gendisk() to inform the VFS and file system layers.
433 : */
434 1 : static int block_device_ejected(struct super_block *sb)
435 : {
436 1 : struct inode *bd_inode = sb->s_bdev->bd_inode;
437 1 : struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
438 :
439 1 : return bdi->dev == NULL;
440 : }
441 :
442 58 : static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
443 : {
444 58 : struct super_block *sb = journal->j_private;
445 58 : struct ext4_sb_info *sbi = EXT4_SB(sb);
446 58 : int error = is_journal_aborted(journal);
447 58 : struct ext4_journal_cb_entry *jce;
448 :
449 58 : BUG_ON(txn->t_state == T_FINISHED);
450 :
451 58 : ext4_process_freed_data(sb, txn->t_tid);
452 :
453 58 : spin_lock(&sbi->s_md_lock);
454 58 : while (!list_empty(&txn->t_private_list)) {
455 0 : jce = list_entry(txn->t_private_list.next,
456 : struct ext4_journal_cb_entry, jce_list);
457 0 : list_del_init(&jce->jce_list);
458 0 : spin_unlock(&sbi->s_md_lock);
459 0 : jce->jce_func(sb, jce, error);
460 58 : spin_lock(&sbi->s_md_lock);
461 : }
462 58 : spin_unlock(&sbi->s_md_lock);
463 58 : }
464 :
465 : /*
466 : * This writepage callback for write_cache_pages()
467 : * takes care of a few cases after page cleaning.
468 : *
469 : * write_cache_pages() already checks for dirty pages
470 : * and calls clear_page_dirty_for_io(), which we want,
471 : * to write protect the pages.
472 : *
473 : * However, we may have to redirty a page (see below.)
474 : */
475 0 : static int ext4_journalled_writepage_callback(struct page *page,
476 : struct writeback_control *wbc,
477 : void *data)
478 : {
479 0 : transaction_t *transaction = (transaction_t *) data;
480 0 : struct buffer_head *bh, *head;
481 0 : struct journal_head *jh;
482 :
483 0 : bh = head = page_buffers(page);
484 0 : do {
485 : /*
486 : * We have to redirty a page in these cases:
487 : * 1) If buffer is dirty, it means the page was dirty because it
488 : * contains a buffer that needs checkpointing. So the dirty bit
489 : * needs to be preserved so that checkpointing writes the buffer
490 : * properly.
491 : * 2) If buffer is not part of the committing transaction
492 : * (we may have just accidentally come across this buffer because
493 : * inode range tracking is not exact) or if the currently running
494 : * transaction already contains this buffer as well, dirty bit
495 : * needs to be preserved so that the buffer gets writeprotected
496 : * properly on running transaction's commit.
497 : */
498 0 : jh = bh2jh(bh);
499 0 : if (buffer_dirty(bh) ||
500 0 : (jh && (jh->b_transaction != transaction ||
501 0 : jh->b_next_transaction))) {
502 0 : redirty_page_for_writepage(wbc, page);
503 0 : goto out;
504 : }
505 0 : } while ((bh = bh->b_this_page) != head);
506 :
507 0 : out:
508 0 : return AOP_WRITEPAGE_ACTIVATE;
509 : }
510 :
511 0 : static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
512 : {
513 0 : struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
514 0 : struct writeback_control wbc = {
515 : .sync_mode = WB_SYNC_ALL,
516 : .nr_to_write = LONG_MAX,
517 0 : .range_start = jinode->i_dirty_start,
518 0 : .range_end = jinode->i_dirty_end,
519 : };
520 :
521 0 : return write_cache_pages(mapping, &wbc,
522 : ext4_journalled_writepage_callback,
523 0 : jinode->i_transaction);
524 : }
525 :
526 2 : static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
527 : {
528 2 : int ret;
529 :
530 2 : if (ext4_should_journal_data(jinode->i_vfs_inode))
531 0 : ret = ext4_journalled_submit_inode_data_buffers(jinode);
532 : else
533 2 : ret = jbd2_journal_submit_inode_data_buffers(jinode);
534 :
535 2 : return ret;
536 : }
537 :
538 2 : static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
539 : {
540 2 : int ret = 0;
541 :
542 2 : if (!ext4_should_journal_data(jinode->i_vfs_inode))
543 2 : ret = jbd2_journal_finish_inode_data_buffers(jinode);
544 :
545 2 : return ret;
546 : }
547 :
548 0 : static bool system_going_down(void)
549 : {
550 0 : return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
551 0 : || system_state == SYSTEM_RESTART;
552 : }
553 :
554 : struct ext4_err_translation {
555 : int code;
556 : int errno;
557 : };
558 :
559 : #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
560 :
561 : static struct ext4_err_translation err_translation[] = {
562 : EXT4_ERR_TRANSLATE(EIO),
563 : EXT4_ERR_TRANSLATE(ENOMEM),
564 : EXT4_ERR_TRANSLATE(EFSBADCRC),
565 : EXT4_ERR_TRANSLATE(EFSCORRUPTED),
566 : EXT4_ERR_TRANSLATE(ENOSPC),
567 : EXT4_ERR_TRANSLATE(ENOKEY),
568 : EXT4_ERR_TRANSLATE(EROFS),
569 : EXT4_ERR_TRANSLATE(EFBIG),
570 : EXT4_ERR_TRANSLATE(EEXIST),
571 : EXT4_ERR_TRANSLATE(ERANGE),
572 : EXT4_ERR_TRANSLATE(EOVERFLOW),
573 : EXT4_ERR_TRANSLATE(EBUSY),
574 : EXT4_ERR_TRANSLATE(ENOTDIR),
575 : EXT4_ERR_TRANSLATE(ENOTEMPTY),
576 : EXT4_ERR_TRANSLATE(ESHUTDOWN),
577 : EXT4_ERR_TRANSLATE(EFAULT),
578 : };
579 :
580 0 : static int ext4_errno_to_code(int errno)
581 : {
582 : int i;
583 :
584 0 : for (i = 0; i < ARRAY_SIZE(err_translation); i++)
585 0 : if (err_translation[i].errno == errno)
586 0 : return err_translation[i].code;
587 : return EXT4_ERR_UNKNOWN;
588 : }
589 :
590 0 : static void save_error_info(struct super_block *sb, int error,
591 : __u32 ino, __u64 block,
592 : const char *func, unsigned int line)
593 : {
594 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
595 :
596 : /* We default to EFSCORRUPTED error... */
597 0 : if (error == 0)
598 0 : error = EFSCORRUPTED;
599 :
600 0 : spin_lock(&sbi->s_error_lock);
601 0 : sbi->s_add_error_count++;
602 0 : sbi->s_last_error_code = error;
603 0 : sbi->s_last_error_line = line;
604 0 : sbi->s_last_error_ino = ino;
605 0 : sbi->s_last_error_block = block;
606 0 : sbi->s_last_error_func = func;
607 0 : sbi->s_last_error_time = ktime_get_real_seconds();
608 0 : if (!sbi->s_first_error_time) {
609 0 : sbi->s_first_error_code = error;
610 0 : sbi->s_first_error_line = line;
611 0 : sbi->s_first_error_ino = ino;
612 0 : sbi->s_first_error_block = block;
613 0 : sbi->s_first_error_func = func;
614 0 : sbi->s_first_error_time = sbi->s_last_error_time;
615 : }
616 0 : spin_unlock(&sbi->s_error_lock);
617 0 : }
618 :
619 : /* Deal with the reporting of failure conditions on a filesystem such as
620 : * inconsistencies detected or read IO failures.
621 : *
622 : * On ext2, we can store the error state of the filesystem in the
623 : * superblock. That is not possible on ext4, because we may have other
624 : * write ordering constraints on the superblock which prevent us from
625 : * writing it out straight away; and given that the journal is about to
626 : * be aborted, we can't rely on the current, or future, transactions to
627 : * write out the superblock safely.
628 : *
629 : * We'll just use the jbd2_journal_abort() error code to record an error in
630 : * the journal instead. On recovery, the journal will complain about
631 : * that error until we've noted it down and cleared it.
632 : *
633 : * If force_ro is set, we unconditionally force the filesystem into an
634 : * ABORT|READONLY state, unless the error response on the fs has been set to
635 : * panic in which case we take the easy way out and panic immediately. This is
636 : * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
637 : * at a critical moment in log management.
638 : */
639 0 : static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
640 : __u32 ino, __u64 block,
641 : const char *func, unsigned int line)
642 : {
643 0 : journal_t *journal = EXT4_SB(sb)->s_journal;
644 0 : bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
645 :
646 0 : EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
647 0 : if (test_opt(sb, WARN_ON_ERROR))
648 0 : WARN_ON_ONCE(1);
649 :
650 0 : if (!continue_fs && !sb_rdonly(sb)) {
651 0 : ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
652 0 : if (journal)
653 0 : jbd2_journal_abort(journal, -EIO);
654 : }
655 :
656 0 : if (!bdev_read_only(sb->s_bdev)) {
657 0 : save_error_info(sb, error, ino, block, func, line);
658 : /*
659 : * In case the fs should keep running, we need to writeout
660 : * superblock through the journal. Due to lock ordering
661 : * constraints, it may not be safe to do it right here so we
662 : * defer superblock flushing to a workqueue.
663 : */
664 0 : if (continue_fs)
665 0 : schedule_work(&EXT4_SB(sb)->s_error_work);
666 : else
667 0 : ext4_commit_super(sb);
668 : }
669 :
670 0 : if (sb_rdonly(sb) || continue_fs)
671 : return;
672 :
673 : /*
674 : * We force ERRORS_RO behavior when system is rebooting. Otherwise we
675 : * could panic during 'reboot -f' as the underlying device got already
676 : * disabled.
677 : */
678 0 : if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
679 0 : panic("EXT4-fs (device %s): panic forced after error\n",
680 0 : sb->s_id);
681 : }
682 0 : ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
683 : /*
684 : * Make sure updated value of ->s_mount_flags will be visible before
685 : * ->s_flags update
686 : */
687 0 : smp_wmb();
688 0 : sb->s_flags |= SB_RDONLY;
689 : }
690 :
691 0 : static void flush_stashed_error_work(struct work_struct *work)
692 : {
693 0 : struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
694 : s_error_work);
695 0 : journal_t *journal = sbi->s_journal;
696 0 : handle_t *handle;
697 :
698 : /*
699 : * If the journal is still running, we have to write out superblock
700 : * through the journal to avoid collisions of other journalled sb
701 : * updates.
702 : *
703 : * We use directly jbd2 functions here to avoid recursing back into
704 : * ext4 error handling code during handling of previous errors.
705 : */
706 0 : if (!sb_rdonly(sbi->s_sb) && journal) {
707 0 : handle = jbd2_journal_start(journal, 1);
708 0 : if (IS_ERR(handle))
709 0 : goto write_directly;
710 0 : if (jbd2_journal_get_write_access(handle, sbi->s_sbh)) {
711 0 : jbd2_journal_stop(handle);
712 0 : goto write_directly;
713 : }
714 0 : ext4_update_super(sbi->s_sb);
715 0 : if (jbd2_journal_dirty_metadata(handle, sbi->s_sbh)) {
716 0 : jbd2_journal_stop(handle);
717 0 : goto write_directly;
718 : }
719 0 : jbd2_journal_stop(handle);
720 0 : return;
721 : }
722 0 : write_directly:
723 : /*
724 : * Write through journal failed. Write sb directly to get error info
725 : * out and hope for the best.
726 : */
727 0 : ext4_commit_super(sbi->s_sb);
728 : }
729 :
730 : #define ext4_error_ratelimit(sb) \
731 : ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
732 : "EXT4-fs error")
733 :
734 0 : void __ext4_error(struct super_block *sb, const char *function,
735 : unsigned int line, bool force_ro, int error, __u64 block,
736 : const char *fmt, ...)
737 : {
738 0 : struct va_format vaf;
739 0 : va_list args;
740 :
741 0 : if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
742 0 : return;
743 :
744 0 : trace_ext4_error(sb, function, line);
745 0 : if (ext4_error_ratelimit(sb)) {
746 0 : va_start(args, fmt);
747 0 : vaf.fmt = fmt;
748 0 : vaf.va = &args;
749 0 : printk(KERN_CRIT
750 : "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
751 0 : sb->s_id, function, line, current->comm, &vaf);
752 0 : va_end(args);
753 : }
754 0 : ext4_handle_error(sb, force_ro, error, 0, block, function, line);
755 : }
756 :
757 0 : void __ext4_error_inode(struct inode *inode, const char *function,
758 : unsigned int line, ext4_fsblk_t block, int error,
759 : const char *fmt, ...)
760 : {
761 0 : va_list args;
762 0 : struct va_format vaf;
763 :
764 0 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
765 0 : return;
766 :
767 0 : trace_ext4_error(inode->i_sb, function, line);
768 0 : if (ext4_error_ratelimit(inode->i_sb)) {
769 0 : va_start(args, fmt);
770 0 : vaf.fmt = fmt;
771 0 : vaf.va = &args;
772 0 : if (block)
773 0 : printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
774 : "inode #%lu: block %llu: comm %s: %pV\n",
775 0 : inode->i_sb->s_id, function, line, inode->i_ino,
776 0 : block, current->comm, &vaf);
777 : else
778 0 : printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
779 : "inode #%lu: comm %s: %pV\n",
780 0 : inode->i_sb->s_id, function, line, inode->i_ino,
781 0 : current->comm, &vaf);
782 0 : va_end(args);
783 : }
784 0 : ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
785 : function, line);
786 : }
787 :
788 0 : void __ext4_error_file(struct file *file, const char *function,
789 : unsigned int line, ext4_fsblk_t block,
790 : const char *fmt, ...)
791 : {
792 0 : va_list args;
793 0 : struct va_format vaf;
794 0 : struct inode *inode = file_inode(file);
795 0 : char pathname[80], *path;
796 :
797 0 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
798 0 : return;
799 :
800 0 : trace_ext4_error(inode->i_sb, function, line);
801 0 : if (ext4_error_ratelimit(inode->i_sb)) {
802 0 : path = file_path(file, pathname, sizeof(pathname));
803 0 : if (IS_ERR(path))
804 0 : path = "(unknown)";
805 0 : va_start(args, fmt);
806 0 : vaf.fmt = fmt;
807 0 : vaf.va = &args;
808 0 : if (block)
809 0 : printk(KERN_CRIT
810 : "EXT4-fs error (device %s): %s:%d: inode #%lu: "
811 : "block %llu: comm %s: path %s: %pV\n",
812 0 : inode->i_sb->s_id, function, line, inode->i_ino,
813 0 : block, current->comm, path, &vaf);
814 : else
815 0 : printk(KERN_CRIT
816 : "EXT4-fs error (device %s): %s:%d: inode #%lu: "
817 : "comm %s: path %s: %pV\n",
818 0 : inode->i_sb->s_id, function, line, inode->i_ino,
819 0 : current->comm, path, &vaf);
820 0 : va_end(args);
821 : }
822 0 : ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
823 : function, line);
824 : }
825 :
826 0 : const char *ext4_decode_error(struct super_block *sb, int errno,
827 : char nbuf[16])
828 : {
829 0 : char *errstr = NULL;
830 :
831 0 : switch (errno) {
832 : case -EFSCORRUPTED:
833 : errstr = "Corrupt filesystem";
834 : break;
835 0 : case -EFSBADCRC:
836 0 : errstr = "Filesystem failed CRC";
837 0 : break;
838 0 : case -EIO:
839 0 : errstr = "IO failure";
840 0 : break;
841 0 : case -ENOMEM:
842 0 : errstr = "Out of memory";
843 0 : break;
844 0 : case -EROFS:
845 0 : if (!sb || (EXT4_SB(sb)->s_journal &&
846 0 : EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
847 : errstr = "Journal has aborted";
848 : else
849 : errstr = "Readonly filesystem";
850 : break;
851 0 : default:
852 : /* If the caller passed in an extra buffer for unknown
853 : * errors, textualise them now. Else we just return
854 : * NULL. */
855 0 : if (nbuf) {
856 : /* Check for truncated error codes... */
857 0 : if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
858 0 : errstr = nbuf;
859 : }
860 : break;
861 : }
862 :
863 0 : return errstr;
864 : }
865 :
866 : /* __ext4_std_error decodes expected errors from journaling functions
867 : * automatically and invokes the appropriate error response. */
868 :
869 0 : void __ext4_std_error(struct super_block *sb, const char *function,
870 : unsigned int line, int errno)
871 : {
872 0 : char nbuf[16];
873 0 : const char *errstr;
874 :
875 0 : if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
876 0 : return;
877 :
878 : /* Special case: if the error is EROFS, and we're not already
879 : * inside a transaction, then there's really no point in logging
880 : * an error. */
881 0 : if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
882 : return;
883 :
884 0 : if (ext4_error_ratelimit(sb)) {
885 0 : errstr = ext4_decode_error(sb, errno, nbuf);
886 0 : printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
887 0 : sb->s_id, function, line, errstr);
888 : }
889 :
890 0 : ext4_handle_error(sb, false, -errno, 0, 0, function, line);
891 : }
892 :
893 2 : void __ext4_msg(struct super_block *sb,
894 : const char *prefix, const char *fmt, ...)
895 : {
896 2 : struct va_format vaf;
897 2 : va_list args;
898 :
899 2 : atomic_inc(&EXT4_SB(sb)->s_msg_count);
900 2 : if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
901 0 : return;
902 :
903 2 : va_start(args, fmt);
904 2 : vaf.fmt = fmt;
905 2 : vaf.va = &args;
906 2 : printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
907 2 : va_end(args);
908 : }
909 :
910 0 : static int ext4_warning_ratelimit(struct super_block *sb)
911 : {
912 0 : atomic_inc(&EXT4_SB(sb)->s_warning_count);
913 0 : return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
914 : "EXT4-fs warning");
915 : }
916 :
917 0 : void __ext4_warning(struct super_block *sb, const char *function,
918 : unsigned int line, const char *fmt, ...)
919 : {
920 0 : struct va_format vaf;
921 0 : va_list args;
922 :
923 0 : if (!ext4_warning_ratelimit(sb))
924 0 : return;
925 :
926 0 : va_start(args, fmt);
927 0 : vaf.fmt = fmt;
928 0 : vaf.va = &args;
929 0 : printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
930 0 : sb->s_id, function, line, &vaf);
931 0 : va_end(args);
932 : }
933 :
934 0 : void __ext4_warning_inode(const struct inode *inode, const char *function,
935 : unsigned int line, const char *fmt, ...)
936 : {
937 0 : struct va_format vaf;
938 0 : va_list args;
939 :
940 0 : if (!ext4_warning_ratelimit(inode->i_sb))
941 0 : return;
942 :
943 0 : va_start(args, fmt);
944 0 : vaf.fmt = fmt;
945 0 : vaf.va = &args;
946 0 : printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
947 0 : "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
948 0 : function, line, inode->i_ino, current->comm, &vaf);
949 0 : va_end(args);
950 : }
951 :
952 0 : void __ext4_grp_locked_error(const char *function, unsigned int line,
953 : struct super_block *sb, ext4_group_t grp,
954 : unsigned long ino, ext4_fsblk_t block,
955 : const char *fmt, ...)
956 : __releases(bitlock)
957 : __acquires(bitlock)
958 : {
959 0 : struct va_format vaf;
960 0 : va_list args;
961 :
962 0 : if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
963 : return;
964 :
965 0 : trace_ext4_error(sb, function, line);
966 0 : if (ext4_error_ratelimit(sb)) {
967 0 : va_start(args, fmt);
968 0 : vaf.fmt = fmt;
969 0 : vaf.va = &args;
970 0 : printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
971 0 : sb->s_id, function, line, grp);
972 0 : if (ino)
973 0 : printk(KERN_CONT "inode %lu: ", ino);
974 0 : if (block)
975 0 : printk(KERN_CONT "block %llu:",
976 : (unsigned long long) block);
977 0 : printk(KERN_CONT "%pV\n", &vaf);
978 0 : va_end(args);
979 : }
980 :
981 0 : if (test_opt(sb, ERRORS_CONT)) {
982 0 : if (test_opt(sb, WARN_ON_ERROR))
983 0 : WARN_ON_ONCE(1);
984 0 : EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
985 0 : if (!bdev_read_only(sb->s_bdev)) {
986 0 : save_error_info(sb, EFSCORRUPTED, ino, block, function,
987 : line);
988 0 : schedule_work(&EXT4_SB(sb)->s_error_work);
989 : }
990 0 : return;
991 : }
992 0 : ext4_unlock_group(sb, grp);
993 0 : ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
994 : /*
995 : * We only get here in the ERRORS_RO case; relocking the group
996 : * may be dangerous, but nothing bad will happen since the
997 : * filesystem will have already been marked read/only and the
998 : * journal has been aborted. We return 1 as a hint to callers
999 : * who might what to use the return value from
1000 : * ext4_grp_locked_error() to distinguish between the
1001 : * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1002 : * aggressively from the ext4 function in question, with a
1003 : * more appropriate error code.
1004 : */
1005 0 : ext4_lock_group(sb, grp);
1006 0 : return;
1007 : }
1008 :
1009 0 : void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1010 : ext4_group_t group,
1011 : unsigned int flags)
1012 : {
1013 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1014 0 : struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1015 0 : struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1016 0 : int ret;
1017 :
1018 0 : if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1019 0 : ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1020 0 : &grp->bb_state);
1021 0 : if (!ret)
1022 0 : percpu_counter_sub(&sbi->s_freeclusters_counter,
1023 0 : grp->bb_free);
1024 : }
1025 :
1026 0 : if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1027 0 : ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1028 0 : &grp->bb_state);
1029 0 : if (!ret && gdp) {
1030 0 : int count;
1031 :
1032 0 : count = ext4_free_inodes_count(sb, gdp);
1033 0 : percpu_counter_sub(&sbi->s_freeinodes_counter,
1034 : count);
1035 : }
1036 : }
1037 0 : }
1038 :
1039 1 : void ext4_update_dynamic_rev(struct super_block *sb)
1040 : {
1041 1 : struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1042 :
1043 1 : if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1044 : return;
1045 :
1046 0 : ext4_warning(sb,
1047 : "updating to rev %d because of new feature flag, "
1048 : "running e2fsck is recommended",
1049 : EXT4_DYNAMIC_REV);
1050 :
1051 0 : es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1052 0 : es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1053 0 : es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1054 : /* leave es->s_feature_*compat flags alone */
1055 : /* es->s_uuid will be set by e2fsck if empty */
1056 :
1057 : /*
1058 : * The rest of the superblock fields should be zero, and if not it
1059 : * means they are likely already in use, so leave them alone. We
1060 : * can leave it up to e2fsck to clean up any inconsistencies there.
1061 : */
1062 : }
1063 :
1064 : /*
1065 : * Open the external journal device
1066 : */
1067 0 : static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1068 : {
1069 0 : struct block_device *bdev;
1070 :
1071 0 : bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1072 0 : if (IS_ERR(bdev))
1073 0 : goto fail;
1074 : return bdev;
1075 :
1076 0 : fail:
1077 0 : ext4_msg(sb, KERN_ERR,
1078 : "failed to open journal device unknown-block(%u,%u) %ld",
1079 : MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1080 0 : return NULL;
1081 : }
1082 :
1083 : /*
1084 : * Release the journal device
1085 : */
1086 0 : static void ext4_blkdev_put(struct block_device *bdev)
1087 : {
1088 0 : blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1089 : }
1090 :
1091 1 : static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1092 : {
1093 1 : struct block_device *bdev;
1094 1 : bdev = sbi->s_journal_bdev;
1095 1 : if (bdev) {
1096 0 : ext4_blkdev_put(bdev);
1097 0 : sbi->s_journal_bdev = NULL;
1098 : }
1099 1 : }
1100 :
1101 0 : static inline struct inode *orphan_list_entry(struct list_head *l)
1102 : {
1103 0 : return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1104 : }
1105 :
1106 0 : static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1107 : {
1108 0 : struct list_head *l;
1109 :
1110 0 : ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1111 : le32_to_cpu(sbi->s_es->s_last_orphan));
1112 :
1113 0 : printk(KERN_ERR "sb_info orphan list:\n");
1114 0 : list_for_each(l, &sbi->s_orphan) {
1115 0 : struct inode *inode = orphan_list_entry(l);
1116 0 : printk(KERN_ERR " "
1117 : "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1118 0 : inode->i_sb->s_id, inode->i_ino, inode,
1119 0 : inode->i_mode, inode->i_nlink,
1120 0 : NEXT_ORPHAN(inode));
1121 : }
1122 0 : }
1123 :
1124 : #ifdef CONFIG_QUOTA
1125 : static int ext4_quota_off(struct super_block *sb, int type);
1126 :
1127 : static inline void ext4_quota_off_umount(struct super_block *sb)
1128 : {
1129 : int type;
1130 :
1131 : /* Use our quota_off function to clear inode flags etc. */
1132 : for (type = 0; type < EXT4_MAXQUOTAS; type++)
1133 : ext4_quota_off(sb, type);
1134 : }
1135 :
1136 : /*
1137 : * This is a helper function which is used in the mount/remount
1138 : * codepaths (which holds s_umount) to fetch the quota file name.
1139 : */
1140 : static inline char *get_qf_name(struct super_block *sb,
1141 : struct ext4_sb_info *sbi,
1142 : int type)
1143 : {
1144 : return rcu_dereference_protected(sbi->s_qf_names[type],
1145 : lockdep_is_held(&sb->s_umount));
1146 : }
1147 : #else
1148 0 : static inline void ext4_quota_off_umount(struct super_block *sb)
1149 : {
1150 0 : }
1151 : #endif
1152 :
1153 0 : static void ext4_put_super(struct super_block *sb)
1154 : {
1155 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1156 0 : struct ext4_super_block *es = sbi->s_es;
1157 0 : struct buffer_head **group_desc;
1158 0 : struct flex_groups **flex_groups;
1159 0 : int aborted = 0;
1160 0 : int i, err;
1161 :
1162 0 : ext4_unregister_li_request(sb);
1163 0 : ext4_quota_off_umount(sb);
1164 :
1165 0 : flush_work(&sbi->s_error_work);
1166 0 : destroy_workqueue(sbi->rsv_conversion_wq);
1167 :
1168 : /*
1169 : * Unregister sysfs before destroying jbd2 journal.
1170 : * Since we could still access attr_journal_task attribute via sysfs
1171 : * path which could have sbi->s_journal->j_task as NULL
1172 : */
1173 0 : ext4_unregister_sysfs(sb);
1174 :
1175 0 : if (sbi->s_journal) {
1176 0 : aborted = is_journal_aborted(sbi->s_journal);
1177 0 : err = jbd2_journal_destroy(sbi->s_journal);
1178 0 : sbi->s_journal = NULL;
1179 0 : if ((err < 0) && !aborted) {
1180 0 : ext4_abort(sb, -err, "Couldn't clean up the journal");
1181 : }
1182 : }
1183 :
1184 0 : ext4_es_unregister_shrinker(sbi);
1185 0 : del_timer_sync(&sbi->s_err_report);
1186 0 : ext4_release_system_zone(sb);
1187 0 : ext4_mb_release(sb);
1188 0 : ext4_ext_release(sb);
1189 :
1190 0 : if (!sb_rdonly(sb) && !aborted) {
1191 0 : ext4_clear_feature_journal_needs_recovery(sb);
1192 0 : es->s_state = cpu_to_le16(sbi->s_mount_state);
1193 : }
1194 0 : if (!sb_rdonly(sb))
1195 0 : ext4_commit_super(sb);
1196 :
1197 0 : rcu_read_lock();
1198 0 : group_desc = rcu_dereference(sbi->s_group_desc);
1199 0 : for (i = 0; i < sbi->s_gdb_count; i++)
1200 0 : brelse(group_desc[i]);
1201 0 : kvfree(group_desc);
1202 0 : flex_groups = rcu_dereference(sbi->s_flex_groups);
1203 0 : if (flex_groups) {
1204 0 : for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1205 0 : kvfree(flex_groups[i]);
1206 0 : kvfree(flex_groups);
1207 : }
1208 0 : rcu_read_unlock();
1209 0 : percpu_counter_destroy(&sbi->s_freeclusters_counter);
1210 0 : percpu_counter_destroy(&sbi->s_freeinodes_counter);
1211 0 : percpu_counter_destroy(&sbi->s_dirs_counter);
1212 0 : percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1213 0 : percpu_free_rwsem(&sbi->s_writepages_rwsem);
1214 : #ifdef CONFIG_QUOTA
1215 : for (i = 0; i < EXT4_MAXQUOTAS; i++)
1216 : kfree(get_qf_name(sb, sbi, i));
1217 : #endif
1218 :
1219 : /* Debugging code just in case the in-memory inode orphan list
1220 : * isn't empty. The on-disk one can be non-empty if we've
1221 : * detected an error and taken the fs readonly, but the
1222 : * in-memory list had better be clean by this point. */
1223 0 : if (!list_empty(&sbi->s_orphan))
1224 0 : dump_orphan_list(sb, sbi);
1225 0 : ASSERT(list_empty(&sbi->s_orphan));
1226 :
1227 0 : sync_blockdev(sb->s_bdev);
1228 0 : invalidate_bdev(sb->s_bdev);
1229 0 : if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1230 : /*
1231 : * Invalidate the journal device's buffers. We don't want them
1232 : * floating about in memory - the physical journal device may
1233 : * hotswapped, and it breaks the `ro-after' testing code.
1234 : */
1235 0 : sync_blockdev(sbi->s_journal_bdev);
1236 0 : invalidate_bdev(sbi->s_journal_bdev);
1237 0 : ext4_blkdev_remove(sbi);
1238 : }
1239 :
1240 0 : ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1241 0 : sbi->s_ea_inode_cache = NULL;
1242 :
1243 0 : ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1244 0 : sbi->s_ea_block_cache = NULL;
1245 :
1246 0 : if (sbi->s_mmp_tsk)
1247 0 : kthread_stop(sbi->s_mmp_tsk);
1248 0 : brelse(sbi->s_sbh);
1249 0 : sb->s_fs_info = NULL;
1250 : /*
1251 : * Now that we are completely done shutting down the
1252 : * superblock, we need to actually destroy the kobject.
1253 : */
1254 0 : kobject_put(&sbi->s_kobj);
1255 0 : wait_for_completion(&sbi->s_kobj_unregister);
1256 0 : if (sbi->s_chksum_driver)
1257 0 : crypto_free_shash(sbi->s_chksum_driver);
1258 0 : kfree(sbi->s_blockgroup_lock);
1259 0 : fs_put_dax(sbi->s_daxdev);
1260 0 : fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1261 : #ifdef CONFIG_UNICODE
1262 : utf8_unload(sb->s_encoding);
1263 : #endif
1264 0 : kfree(sbi);
1265 0 : }
1266 :
1267 : static struct kmem_cache *ext4_inode_cachep;
1268 :
1269 : /*
1270 : * Called inside transaction, so use GFP_NOFS
1271 : */
1272 5577 : static struct inode *ext4_alloc_inode(struct super_block *sb)
1273 : {
1274 5577 : struct ext4_inode_info *ei;
1275 :
1276 5577 : ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1277 5577 : if (!ei)
1278 : return NULL;
1279 :
1280 5577 : inode_set_iversion(&ei->vfs_inode, 1);
1281 5577 : spin_lock_init(&ei->i_raw_lock);
1282 5577 : INIT_LIST_HEAD(&ei->i_prealloc_list);
1283 5577 : atomic_set(&ei->i_prealloc_active, 0);
1284 5577 : spin_lock_init(&ei->i_prealloc_lock);
1285 5577 : ext4_es_init_tree(&ei->i_es_tree);
1286 5577 : rwlock_init(&ei->i_es_lock);
1287 5577 : INIT_LIST_HEAD(&ei->i_es_list);
1288 5577 : ei->i_es_all_nr = 0;
1289 5577 : ei->i_es_shk_nr = 0;
1290 5577 : ei->i_es_shrink_lblk = 0;
1291 5577 : ei->i_reserved_data_blocks = 0;
1292 5577 : spin_lock_init(&(ei->i_block_reservation_lock));
1293 5577 : ext4_init_pending_tree(&ei->i_pending_tree);
1294 : #ifdef CONFIG_QUOTA
1295 : ei->i_reserved_quota = 0;
1296 : memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1297 : #endif
1298 5577 : ei->jinode = NULL;
1299 5577 : INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1300 5577 : spin_lock_init(&ei->i_completed_io_lock);
1301 5577 : ei->i_sync_tid = 0;
1302 5577 : ei->i_datasync_tid = 0;
1303 5577 : atomic_set(&ei->i_unwritten, 0);
1304 5577 : INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1305 5577 : ext4_fc_init_inode(&ei->vfs_inode);
1306 5577 : mutex_init(&ei->i_fc_lock);
1307 5577 : return &ei->vfs_inode;
1308 : }
1309 :
1310 612 : static int ext4_drop_inode(struct inode *inode)
1311 : {
1312 612 : int drop = generic_drop_inode(inode);
1313 :
1314 419 : if (!drop)
1315 612 : drop = fscrypt_drop_inode(inode);
1316 :
1317 612 : trace_ext4_drop_inode(inode, drop);
1318 612 : return drop;
1319 : }
1320 :
1321 193 : static void ext4_free_in_core_inode(struct inode *inode)
1322 : {
1323 193 : fscrypt_free_inode(inode);
1324 193 : if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1325 0 : pr_warn("%s: inode %ld still in fc list",
1326 : __func__, inode->i_ino);
1327 : }
1328 193 : kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1329 193 : }
1330 :
1331 193 : static void ext4_destroy_inode(struct inode *inode)
1332 : {
1333 193 : if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1334 0 : ext4_msg(inode->i_sb, KERN_ERR,
1335 : "Inode %lu (%p): orphan list check failed!",
1336 : inode->i_ino, EXT4_I(inode));
1337 0 : print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1338 0 : EXT4_I(inode), sizeof(struct ext4_inode_info),
1339 : true);
1340 0 : dump_stack();
1341 : }
1342 193 : }
1343 :
1344 5408 : static void init_once(void *foo)
1345 : {
1346 5408 : struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1347 :
1348 5408 : INIT_LIST_HEAD(&ei->i_orphan);
1349 5408 : init_rwsem(&ei->xattr_sem);
1350 5408 : init_rwsem(&ei->i_data_sem);
1351 5408 : init_rwsem(&ei->i_mmap_sem);
1352 5408 : inode_init_once(&ei->vfs_inode);
1353 5408 : ext4_fc_init_inode(&ei->vfs_inode);
1354 5408 : }
1355 :
1356 1 : static int __init init_inodecache(void)
1357 : {
1358 1 : ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1359 : sizeof(struct ext4_inode_info), 0,
1360 : (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1361 : SLAB_ACCOUNT),
1362 : offsetof(struct ext4_inode_info, i_data),
1363 : sizeof_field(struct ext4_inode_info, i_data),
1364 : init_once);
1365 1 : if (ext4_inode_cachep == NULL)
1366 0 : return -ENOMEM;
1367 : return 0;
1368 : }
1369 :
1370 0 : static void destroy_inodecache(void)
1371 : {
1372 : /*
1373 : * Make sure all delayed rcu free inodes are flushed before we
1374 : * destroy cache.
1375 : */
1376 0 : rcu_barrier();
1377 0 : kmem_cache_destroy(ext4_inode_cachep);
1378 0 : }
1379 :
1380 193 : void ext4_clear_inode(struct inode *inode)
1381 : {
1382 193 : ext4_fc_del(inode);
1383 193 : invalidate_inode_buffers(inode);
1384 193 : clear_inode(inode);
1385 193 : ext4_discard_preallocations(inode, 0);
1386 193 : ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1387 193 : dquot_drop(inode);
1388 193 : if (EXT4_I(inode)->jinode) {
1389 78 : jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1390 78 : EXT4_I(inode)->jinode);
1391 78 : jbd2_free_inode(EXT4_I(inode)->jinode);
1392 78 : EXT4_I(inode)->jinode = NULL;
1393 : }
1394 193 : fscrypt_put_encryption_info(inode);
1395 193 : fsverity_cleanup_inode(inode);
1396 193 : }
1397 :
1398 0 : static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1399 : u64 ino, u32 generation)
1400 : {
1401 0 : struct inode *inode;
1402 :
1403 : /*
1404 : * Currently we don't know the generation for parent directory, so
1405 : * a generation of 0 means "accept any"
1406 : */
1407 0 : inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1408 0 : if (IS_ERR(inode))
1409 0 : return ERR_CAST(inode);
1410 0 : if (generation && inode->i_generation != generation) {
1411 0 : iput(inode);
1412 0 : return ERR_PTR(-ESTALE);
1413 : }
1414 :
1415 : return inode;
1416 : }
1417 :
1418 0 : static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1419 : int fh_len, int fh_type)
1420 : {
1421 0 : return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1422 : ext4_nfs_get_inode);
1423 : }
1424 :
1425 0 : static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1426 : int fh_len, int fh_type)
1427 : {
1428 0 : return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1429 : ext4_nfs_get_inode);
1430 : }
1431 :
1432 0 : static int ext4_nfs_commit_metadata(struct inode *inode)
1433 : {
1434 0 : struct writeback_control wbc = {
1435 : .sync_mode = WB_SYNC_ALL
1436 : };
1437 :
1438 0 : trace_ext4_nfs_commit_metadata(inode);
1439 0 : return ext4_write_inode(inode, &wbc);
1440 : }
1441 :
1442 : /*
1443 : * Try to release metadata pages (indirect blocks, directories) which are
1444 : * mapped via the block device. Since these pages could have journal heads
1445 : * which would prevent try_to_free_buffers() from freeing them, we must use
1446 : * jbd2 layer's try_to_free_buffers() function to release them.
1447 : */
1448 0 : static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1449 : gfp_t wait)
1450 : {
1451 0 : journal_t *journal = EXT4_SB(sb)->s_journal;
1452 :
1453 0 : WARN_ON(PageChecked(page));
1454 0 : if (!page_has_buffers(page))
1455 : return 0;
1456 0 : if (journal)
1457 0 : return jbd2_journal_try_to_free_buffers(journal, page);
1458 :
1459 0 : return try_to_free_buffers(page);
1460 : }
1461 :
1462 : #ifdef CONFIG_FS_ENCRYPTION
1463 : static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1464 : {
1465 : return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1466 : EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1467 : }
1468 :
1469 : static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1470 : void *fs_data)
1471 : {
1472 : handle_t *handle = fs_data;
1473 : int res, res2, credits, retries = 0;
1474 :
1475 : /*
1476 : * Encrypting the root directory is not allowed because e2fsck expects
1477 : * lost+found to exist and be unencrypted, and encrypting the root
1478 : * directory would imply encrypting the lost+found directory as well as
1479 : * the filename "lost+found" itself.
1480 : */
1481 : if (inode->i_ino == EXT4_ROOT_INO)
1482 : return -EPERM;
1483 :
1484 : if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1485 : return -EINVAL;
1486 :
1487 : if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1488 : return -EOPNOTSUPP;
1489 :
1490 : res = ext4_convert_inline_data(inode);
1491 : if (res)
1492 : return res;
1493 :
1494 : /*
1495 : * If a journal handle was specified, then the encryption context is
1496 : * being set on a new inode via inheritance and is part of a larger
1497 : * transaction to create the inode. Otherwise the encryption context is
1498 : * being set on an existing inode in its own transaction. Only in the
1499 : * latter case should the "retry on ENOSPC" logic be used.
1500 : */
1501 :
1502 : if (handle) {
1503 : res = ext4_xattr_set_handle(handle, inode,
1504 : EXT4_XATTR_INDEX_ENCRYPTION,
1505 : EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1506 : ctx, len, 0);
1507 : if (!res) {
1508 : ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1509 : ext4_clear_inode_state(inode,
1510 : EXT4_STATE_MAY_INLINE_DATA);
1511 : /*
1512 : * Update inode->i_flags - S_ENCRYPTED will be enabled,
1513 : * S_DAX may be disabled
1514 : */
1515 : ext4_set_inode_flags(inode, false);
1516 : }
1517 : return res;
1518 : }
1519 :
1520 : res = dquot_initialize(inode);
1521 : if (res)
1522 : return res;
1523 : retry:
1524 : res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1525 : &credits);
1526 : if (res)
1527 : return res;
1528 :
1529 : handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1530 : if (IS_ERR(handle))
1531 : return PTR_ERR(handle);
1532 :
1533 : res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1534 : EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1535 : ctx, len, 0);
1536 : if (!res) {
1537 : ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1538 : /*
1539 : * Update inode->i_flags - S_ENCRYPTED will be enabled,
1540 : * S_DAX may be disabled
1541 : */
1542 : ext4_set_inode_flags(inode, false);
1543 : res = ext4_mark_inode_dirty(handle, inode);
1544 : if (res)
1545 : EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1546 : }
1547 : res2 = ext4_journal_stop(handle);
1548 :
1549 : if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1550 : goto retry;
1551 : if (!res)
1552 : res = res2;
1553 : return res;
1554 : }
1555 :
1556 : static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1557 : {
1558 : return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1559 : }
1560 :
1561 : static bool ext4_has_stable_inodes(struct super_block *sb)
1562 : {
1563 : return ext4_has_feature_stable_inodes(sb);
1564 : }
1565 :
1566 : static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1567 : int *ino_bits_ret, int *lblk_bits_ret)
1568 : {
1569 : *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1570 : *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1571 : }
1572 :
1573 : static const struct fscrypt_operations ext4_cryptops = {
1574 : .key_prefix = "ext4:",
1575 : .get_context = ext4_get_context,
1576 : .set_context = ext4_set_context,
1577 : .get_dummy_policy = ext4_get_dummy_policy,
1578 : .empty_dir = ext4_empty_dir,
1579 : .max_namelen = EXT4_NAME_LEN,
1580 : .has_stable_inodes = ext4_has_stable_inodes,
1581 : .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1582 : };
1583 : #endif
1584 :
1585 : #ifdef CONFIG_QUOTA
1586 : static const char * const quotatypes[] = INITQFNAMES;
1587 : #define QTYPE2NAME(t) (quotatypes[t])
1588 :
1589 : static int ext4_write_dquot(struct dquot *dquot);
1590 : static int ext4_acquire_dquot(struct dquot *dquot);
1591 : static int ext4_release_dquot(struct dquot *dquot);
1592 : static int ext4_mark_dquot_dirty(struct dquot *dquot);
1593 : static int ext4_write_info(struct super_block *sb, int type);
1594 : static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1595 : const struct path *path);
1596 : static int ext4_quota_on_mount(struct super_block *sb, int type);
1597 : static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1598 : size_t len, loff_t off);
1599 : static ssize_t ext4_quota_write(struct super_block *sb, int type,
1600 : const char *data, size_t len, loff_t off);
1601 : static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1602 : unsigned int flags);
1603 : static int ext4_enable_quotas(struct super_block *sb);
1604 :
1605 : static struct dquot **ext4_get_dquots(struct inode *inode)
1606 : {
1607 : return EXT4_I(inode)->i_dquot;
1608 : }
1609 :
1610 : static const struct dquot_operations ext4_quota_operations = {
1611 : .get_reserved_space = ext4_get_reserved_space,
1612 : .write_dquot = ext4_write_dquot,
1613 : .acquire_dquot = ext4_acquire_dquot,
1614 : .release_dquot = ext4_release_dquot,
1615 : .mark_dirty = ext4_mark_dquot_dirty,
1616 : .write_info = ext4_write_info,
1617 : .alloc_dquot = dquot_alloc,
1618 : .destroy_dquot = dquot_destroy,
1619 : .get_projid = ext4_get_projid,
1620 : .get_inode_usage = ext4_get_inode_usage,
1621 : .get_next_id = dquot_get_next_id,
1622 : };
1623 :
1624 : static const struct quotactl_ops ext4_qctl_operations = {
1625 : .quota_on = ext4_quota_on,
1626 : .quota_off = ext4_quota_off,
1627 : .quota_sync = dquot_quota_sync,
1628 : .get_state = dquot_get_state,
1629 : .set_info = dquot_set_dqinfo,
1630 : .get_dqblk = dquot_get_dqblk,
1631 : .set_dqblk = dquot_set_dqblk,
1632 : .get_nextdqblk = dquot_get_next_dqblk,
1633 : };
1634 : #endif
1635 :
1636 : static const struct super_operations ext4_sops = {
1637 : .alloc_inode = ext4_alloc_inode,
1638 : .free_inode = ext4_free_in_core_inode,
1639 : .destroy_inode = ext4_destroy_inode,
1640 : .write_inode = ext4_write_inode,
1641 : .dirty_inode = ext4_dirty_inode,
1642 : .drop_inode = ext4_drop_inode,
1643 : .evict_inode = ext4_evict_inode,
1644 : .put_super = ext4_put_super,
1645 : .sync_fs = ext4_sync_fs,
1646 : .freeze_fs = ext4_freeze,
1647 : .unfreeze_fs = ext4_unfreeze,
1648 : .statfs = ext4_statfs,
1649 : .remount_fs = ext4_remount,
1650 : .show_options = ext4_show_options,
1651 : #ifdef CONFIG_QUOTA
1652 : .quota_read = ext4_quota_read,
1653 : .quota_write = ext4_quota_write,
1654 : .get_dquots = ext4_get_dquots,
1655 : #endif
1656 : .bdev_try_to_free_page = bdev_try_to_free_page,
1657 : };
1658 :
1659 : static const struct export_operations ext4_export_ops = {
1660 : .fh_to_dentry = ext4_fh_to_dentry,
1661 : .fh_to_parent = ext4_fh_to_parent,
1662 : .get_parent = ext4_get_parent,
1663 : .commit_metadata = ext4_nfs_commit_metadata,
1664 : };
1665 :
1666 : enum {
1667 : Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1668 : Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1669 : Opt_nouid32, Opt_debug, Opt_removed,
1670 : Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1671 : Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1672 : Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1673 : Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1674 : Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1675 : Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1676 : Opt_inlinecrypt,
1677 : Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1678 : Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1679 : Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1680 : Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1681 : Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1682 : Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1683 : Opt_nowarn_on_error, Opt_mblk_io_submit,
1684 : Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1685 : Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1686 : Opt_inode_readahead_blks, Opt_journal_ioprio,
1687 : Opt_dioread_nolock, Opt_dioread_lock,
1688 : Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1689 : Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1690 : Opt_prefetch_block_bitmaps,
1691 : #ifdef CONFIG_EXT4_DEBUG
1692 : Opt_fc_debug_max_replay, Opt_fc_debug_force
1693 : #endif
1694 : };
1695 :
1696 : static const match_table_t tokens = {
1697 : {Opt_bsd_df, "bsddf"},
1698 : {Opt_minix_df, "minixdf"},
1699 : {Opt_grpid, "grpid"},
1700 : {Opt_grpid, "bsdgroups"},
1701 : {Opt_nogrpid, "nogrpid"},
1702 : {Opt_nogrpid, "sysvgroups"},
1703 : {Opt_resgid, "resgid=%u"},
1704 : {Opt_resuid, "resuid=%u"},
1705 : {Opt_sb, "sb=%u"},
1706 : {Opt_err_cont, "errors=continue"},
1707 : {Opt_err_panic, "errors=panic"},
1708 : {Opt_err_ro, "errors=remount-ro"},
1709 : {Opt_nouid32, "nouid32"},
1710 : {Opt_debug, "debug"},
1711 : {Opt_removed, "oldalloc"},
1712 : {Opt_removed, "orlov"},
1713 : {Opt_user_xattr, "user_xattr"},
1714 : {Opt_nouser_xattr, "nouser_xattr"},
1715 : {Opt_acl, "acl"},
1716 : {Opt_noacl, "noacl"},
1717 : {Opt_noload, "norecovery"},
1718 : {Opt_noload, "noload"},
1719 : {Opt_removed, "nobh"},
1720 : {Opt_removed, "bh"},
1721 : {Opt_commit, "commit=%u"},
1722 : {Opt_min_batch_time, "min_batch_time=%u"},
1723 : {Opt_max_batch_time, "max_batch_time=%u"},
1724 : {Opt_journal_dev, "journal_dev=%u"},
1725 : {Opt_journal_path, "journal_path=%s"},
1726 : {Opt_journal_checksum, "journal_checksum"},
1727 : {Opt_nojournal_checksum, "nojournal_checksum"},
1728 : {Opt_journal_async_commit, "journal_async_commit"},
1729 : {Opt_abort, "abort"},
1730 : {Opt_data_journal, "data=journal"},
1731 : {Opt_data_ordered, "data=ordered"},
1732 : {Opt_data_writeback, "data=writeback"},
1733 : {Opt_data_err_abort, "data_err=abort"},
1734 : {Opt_data_err_ignore, "data_err=ignore"},
1735 : {Opt_offusrjquota, "usrjquota="},
1736 : {Opt_usrjquota, "usrjquota=%s"},
1737 : {Opt_offgrpjquota, "grpjquota="},
1738 : {Opt_grpjquota, "grpjquota=%s"},
1739 : {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1740 : {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1741 : {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1742 : {Opt_grpquota, "grpquota"},
1743 : {Opt_noquota, "noquota"},
1744 : {Opt_quota, "quota"},
1745 : {Opt_usrquota, "usrquota"},
1746 : {Opt_prjquota, "prjquota"},
1747 : {Opt_barrier, "barrier=%u"},
1748 : {Opt_barrier, "barrier"},
1749 : {Opt_nobarrier, "nobarrier"},
1750 : {Opt_i_version, "i_version"},
1751 : {Opt_dax, "dax"},
1752 : {Opt_dax_always, "dax=always"},
1753 : {Opt_dax_inode, "dax=inode"},
1754 : {Opt_dax_never, "dax=never"},
1755 : {Opt_stripe, "stripe=%u"},
1756 : {Opt_delalloc, "delalloc"},
1757 : {Opt_warn_on_error, "warn_on_error"},
1758 : {Opt_nowarn_on_error, "nowarn_on_error"},
1759 : {Opt_lazytime, "lazytime"},
1760 : {Opt_nolazytime, "nolazytime"},
1761 : {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1762 : {Opt_nodelalloc, "nodelalloc"},
1763 : {Opt_removed, "mblk_io_submit"},
1764 : {Opt_removed, "nomblk_io_submit"},
1765 : {Opt_block_validity, "block_validity"},
1766 : {Opt_noblock_validity, "noblock_validity"},
1767 : {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1768 : {Opt_journal_ioprio, "journal_ioprio=%u"},
1769 : {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1770 : {Opt_auto_da_alloc, "auto_da_alloc"},
1771 : {Opt_noauto_da_alloc, "noauto_da_alloc"},
1772 : {Opt_dioread_nolock, "dioread_nolock"},
1773 : {Opt_dioread_lock, "nodioread_nolock"},
1774 : {Opt_dioread_lock, "dioread_lock"},
1775 : {Opt_discard, "discard"},
1776 : {Opt_nodiscard, "nodiscard"},
1777 : {Opt_init_itable, "init_itable=%u"},
1778 : {Opt_init_itable, "init_itable"},
1779 : {Opt_noinit_itable, "noinit_itable"},
1780 : #ifdef CONFIG_EXT4_DEBUG
1781 : {Opt_fc_debug_force, "fc_debug_force"},
1782 : {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1783 : #endif
1784 : {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1785 : {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1786 : {Opt_test_dummy_encryption, "test_dummy_encryption"},
1787 : {Opt_inlinecrypt, "inlinecrypt"},
1788 : {Opt_nombcache, "nombcache"},
1789 : {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1790 : {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1791 : {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1792 : {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1793 : {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1794 : {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1795 : {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1796 : {Opt_err, NULL},
1797 : };
1798 :
1799 2 : static ext4_fsblk_t get_sb_block(void **data)
1800 : {
1801 2 : ext4_fsblk_t sb_block;
1802 2 : char *options = (char *) *data;
1803 :
1804 2 : if (!options || strncmp(options, "sb=", 3) != 0)
1805 : return 1; /* Default location */
1806 :
1807 0 : options += 3;
1808 : /* TODO: use simple_strtoll with >32bit ext4 */
1809 0 : sb_block = simple_strtoul(options, &options, 0);
1810 0 : if (*options && *options != ',') {
1811 0 : printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1812 : (char *) *data);
1813 0 : return 1;
1814 : }
1815 0 : if (*options == ',')
1816 0 : options++;
1817 0 : *data = (void *) options;
1818 :
1819 0 : return sb_block;
1820 : }
1821 :
1822 : #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1823 : static const char deprecated_msg[] =
1824 : "Mount option \"%s\" will be removed by %s\n"
1825 : "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1826 :
1827 : #ifdef CONFIG_QUOTA
1828 : static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1829 : {
1830 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1831 : char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1832 : int ret = -1;
1833 :
1834 : if (sb_any_quota_loaded(sb) && !old_qname) {
1835 : ext4_msg(sb, KERN_ERR,
1836 : "Cannot change journaled "
1837 : "quota options when quota turned on");
1838 : return -1;
1839 : }
1840 : if (ext4_has_feature_quota(sb)) {
1841 : ext4_msg(sb, KERN_INFO, "Journaled quota options "
1842 : "ignored when QUOTA feature is enabled");
1843 : return 1;
1844 : }
1845 : qname = match_strdup(args);
1846 : if (!qname) {
1847 : ext4_msg(sb, KERN_ERR,
1848 : "Not enough memory for storing quotafile name");
1849 : return -1;
1850 : }
1851 : if (old_qname) {
1852 : if (strcmp(old_qname, qname) == 0)
1853 : ret = 1;
1854 : else
1855 : ext4_msg(sb, KERN_ERR,
1856 : "%s quota file already specified",
1857 : QTYPE2NAME(qtype));
1858 : goto errout;
1859 : }
1860 : if (strchr(qname, '/')) {
1861 : ext4_msg(sb, KERN_ERR,
1862 : "quotafile must be on filesystem root");
1863 : goto errout;
1864 : }
1865 : rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1866 : set_opt(sb, QUOTA);
1867 : return 1;
1868 : errout:
1869 : kfree(qname);
1870 : return ret;
1871 : }
1872 :
1873 : static int clear_qf_name(struct super_block *sb, int qtype)
1874 : {
1875 :
1876 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1877 : char *old_qname = get_qf_name(sb, sbi, qtype);
1878 :
1879 : if (sb_any_quota_loaded(sb) && old_qname) {
1880 : ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1881 : " when quota turned on");
1882 : return -1;
1883 : }
1884 : rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1885 : synchronize_rcu();
1886 : kfree(old_qname);
1887 : return 1;
1888 : }
1889 : #endif
1890 :
1891 : #define MOPT_SET 0x0001
1892 : #define MOPT_CLEAR 0x0002
1893 : #define MOPT_NOSUPPORT 0x0004
1894 : #define MOPT_EXPLICIT 0x0008
1895 : #define MOPT_CLEAR_ERR 0x0010
1896 : #define MOPT_GTE0 0x0020
1897 : #ifdef CONFIG_QUOTA
1898 : #define MOPT_Q 0
1899 : #define MOPT_QFMT 0x0040
1900 : #else
1901 : #define MOPT_Q MOPT_NOSUPPORT
1902 : #define MOPT_QFMT MOPT_NOSUPPORT
1903 : #endif
1904 : #define MOPT_DATAJ 0x0080
1905 : #define MOPT_NO_EXT2 0x0100
1906 : #define MOPT_NO_EXT3 0x0200
1907 : #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1908 : #define MOPT_STRING 0x0400
1909 : #define MOPT_SKIP 0x0800
1910 : #define MOPT_2 0x1000
1911 :
1912 : static const struct mount_opts {
1913 : int token;
1914 : int mount_opt;
1915 : int flags;
1916 : } ext4_mount_opts[] = {
1917 : {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1918 : {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1919 : {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1920 : {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1921 : {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1922 : {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1923 : {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1924 : MOPT_EXT4_ONLY | MOPT_SET},
1925 : {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1926 : MOPT_EXT4_ONLY | MOPT_CLEAR},
1927 : {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1928 : {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1929 : {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1930 : MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1931 : {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1932 : MOPT_EXT4_ONLY | MOPT_CLEAR},
1933 : {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1934 : {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1935 : {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1936 : MOPT_EXT4_ONLY | MOPT_CLEAR},
1937 : {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1938 : MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1939 : {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1940 : EXT4_MOUNT_JOURNAL_CHECKSUM),
1941 : MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1942 : {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1943 : {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1944 : {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1945 : {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1946 : {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1947 : MOPT_NO_EXT2},
1948 : {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1949 : MOPT_NO_EXT2},
1950 : {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1951 : {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1952 : {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1953 : {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1954 : {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1955 : {Opt_commit, 0, MOPT_GTE0},
1956 : {Opt_max_batch_time, 0, MOPT_GTE0},
1957 : {Opt_min_batch_time, 0, MOPT_GTE0},
1958 : {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1959 : {Opt_init_itable, 0, MOPT_GTE0},
1960 : {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1961 : {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1962 : MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1963 : {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1964 : MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1965 : {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1966 : MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1967 : {Opt_stripe, 0, MOPT_GTE0},
1968 : {Opt_resuid, 0, MOPT_GTE0},
1969 : {Opt_resgid, 0, MOPT_GTE0},
1970 : {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1971 : {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1972 : {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1973 : {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1974 : {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1975 : {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1976 : MOPT_NO_EXT2 | MOPT_DATAJ},
1977 : {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1978 : {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1979 : #ifdef CONFIG_EXT4_FS_POSIX_ACL
1980 : {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1981 : {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1982 : #else
1983 : {Opt_acl, 0, MOPT_NOSUPPORT},
1984 : {Opt_noacl, 0, MOPT_NOSUPPORT},
1985 : #endif
1986 : {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1987 : {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1988 : {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1989 : {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1990 : {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1991 : MOPT_SET | MOPT_Q},
1992 : {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1993 : MOPT_SET | MOPT_Q},
1994 : {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1995 : MOPT_SET | MOPT_Q},
1996 : {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1997 : EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1998 : MOPT_CLEAR | MOPT_Q},
1999 : {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2000 : {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2001 : {Opt_offusrjquota, 0, MOPT_Q},
2002 : {Opt_offgrpjquota, 0, MOPT_Q},
2003 : {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2004 : {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2005 : {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2006 : {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2007 : {Opt_test_dummy_encryption, 0, MOPT_STRING},
2008 : {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2009 : {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2010 : MOPT_SET},
2011 : #ifdef CONFIG_EXT4_DEBUG
2012 : {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2013 : MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2014 : {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2015 : #endif
2016 : {Opt_err, 0, 0}
2017 : };
2018 :
2019 : #ifdef CONFIG_UNICODE
2020 : static const struct ext4_sb_encodings {
2021 : __u16 magic;
2022 : char *name;
2023 : char *version;
2024 : } ext4_sb_encoding_map[] = {
2025 : {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2026 : };
2027 :
2028 : static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2029 : const struct ext4_sb_encodings **encoding,
2030 : __u16 *flags)
2031 : {
2032 : __u16 magic = le16_to_cpu(es->s_encoding);
2033 : int i;
2034 :
2035 : for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2036 : if (magic == ext4_sb_encoding_map[i].magic)
2037 : break;
2038 :
2039 : if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2040 : return -EINVAL;
2041 :
2042 : *encoding = &ext4_sb_encoding_map[i];
2043 : *flags = le16_to_cpu(es->s_encoding_flags);
2044 :
2045 : return 0;
2046 : }
2047 : #endif
2048 :
2049 0 : static int ext4_set_test_dummy_encryption(struct super_block *sb,
2050 : const char *opt,
2051 : const substring_t *arg,
2052 : bool is_remount)
2053 : {
2054 : #ifdef CONFIG_FS_ENCRYPTION
2055 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2056 : int err;
2057 :
2058 : /*
2059 : * This mount option is just for testing, and it's not worthwhile to
2060 : * implement the extra complexity (e.g. RCU protection) that would be
2061 : * needed to allow it to be set or changed during remount. We do allow
2062 : * it to be specified during remount, but only if there is no change.
2063 : */
2064 : if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2065 : ext4_msg(sb, KERN_WARNING,
2066 : "Can't set test_dummy_encryption on remount");
2067 : return -1;
2068 : }
2069 : err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2070 : &sbi->s_dummy_enc_policy);
2071 : if (err) {
2072 : if (err == -EEXIST)
2073 : ext4_msg(sb, KERN_WARNING,
2074 : "Can't change test_dummy_encryption on remount");
2075 : else if (err == -EINVAL)
2076 : ext4_msg(sb, KERN_WARNING,
2077 : "Value of option \"%s\" is unrecognized", opt);
2078 : else
2079 : ext4_msg(sb, KERN_WARNING,
2080 : "Error processing option \"%s\" [%d]",
2081 : opt, err);
2082 : return -1;
2083 : }
2084 : ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2085 : #else
2086 0 : ext4_msg(sb, KERN_WARNING,
2087 : "Test dummy encryption mount option ignored");
2088 : #endif
2089 0 : return 1;
2090 : }
2091 :
2092 1 : static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2093 : substring_t *args, unsigned long *journal_devnum,
2094 : unsigned int *journal_ioprio, int is_remount)
2095 : {
2096 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2097 1 : const struct mount_opts *m;
2098 1 : kuid_t uid;
2099 1 : kgid_t gid;
2100 1 : int arg = 0;
2101 :
2102 : #ifdef CONFIG_QUOTA
2103 : if (token == Opt_usrjquota)
2104 : return set_qf_name(sb, USRQUOTA, &args[0]);
2105 : else if (token == Opt_grpjquota)
2106 : return set_qf_name(sb, GRPQUOTA, &args[0]);
2107 : else if (token == Opt_offusrjquota)
2108 : return clear_qf_name(sb, USRQUOTA);
2109 : else if (token == Opt_offgrpjquota)
2110 : return clear_qf_name(sb, GRPQUOTA);
2111 : #endif
2112 1 : switch (token) {
2113 0 : case Opt_noacl:
2114 : case Opt_nouser_xattr:
2115 0 : ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2116 0 : break;
2117 : case Opt_sb:
2118 : return 1; /* handled by get_sb_block() */
2119 0 : case Opt_removed:
2120 0 : ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2121 0 : return 1;
2122 : case Opt_abort:
2123 0 : ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2124 0 : return 1;
2125 0 : case Opt_i_version:
2126 0 : sb->s_flags |= SB_I_VERSION;
2127 0 : return 1;
2128 0 : case Opt_lazytime:
2129 0 : sb->s_flags |= SB_LAZYTIME;
2130 0 : return 1;
2131 0 : case Opt_nolazytime:
2132 0 : sb->s_flags &= ~SB_LAZYTIME;
2133 0 : return 1;
2134 0 : case Opt_inlinecrypt:
2135 : #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2136 : sb->s_flags |= SB_INLINECRYPT;
2137 : #else
2138 0 : ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2139 : #endif
2140 0 : return 1;
2141 : }
2142 :
2143 20 : for (m = ext4_mount_opts; m->token != Opt_err; m++)
2144 20 : if (token == m->token)
2145 : break;
2146 :
2147 1 : if (m->token == Opt_err) {
2148 0 : ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2149 : "or missing value", opt);
2150 0 : return -1;
2151 : }
2152 :
2153 1 : if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2154 : ext4_msg(sb, KERN_ERR,
2155 : "Mount option \"%s\" incompatible with ext2", opt);
2156 : return -1;
2157 : }
2158 1 : if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2159 0 : ext4_msg(sb, KERN_ERR,
2160 : "Mount option \"%s\" incompatible with ext3", opt);
2161 0 : return -1;
2162 : }
2163 :
2164 1 : if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2165 : return -1;
2166 1 : if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2167 : return -1;
2168 1 : if (m->flags & MOPT_EXPLICIT) {
2169 0 : if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2170 0 : set_opt2(sb, EXPLICIT_DELALLOC);
2171 0 : } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2172 0 : set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2173 : } else
2174 : return -1;
2175 : }
2176 1 : if (m->flags & MOPT_CLEAR_ERR)
2177 1 : clear_opt(sb, ERRORS_MASK);
2178 1 : if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2179 : ext4_msg(sb, KERN_ERR, "Cannot change quota "
2180 : "options when quota turned on");
2181 : return -1;
2182 : }
2183 :
2184 1 : if (m->flags & MOPT_NOSUPPORT) {
2185 0 : ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2186 1 : } else if (token == Opt_commit) {
2187 0 : if (arg == 0)
2188 0 : arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2189 0 : else if (arg > INT_MAX / HZ) {
2190 0 : ext4_msg(sb, KERN_ERR,
2191 : "Invalid commit interval %d, "
2192 : "must be smaller than %d",
2193 : arg, INT_MAX / HZ);
2194 0 : return -1;
2195 : }
2196 0 : sbi->s_commit_interval = HZ * arg;
2197 1 : } else if (token == Opt_debug_want_extra_isize) {
2198 0 : if ((arg & 1) ||
2199 0 : (arg < 4) ||
2200 0 : (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2201 0 : ext4_msg(sb, KERN_ERR,
2202 : "Invalid want_extra_isize %d", arg);
2203 0 : return -1;
2204 : }
2205 0 : sbi->s_want_extra_isize = arg;
2206 1 : } else if (token == Opt_max_batch_time) {
2207 0 : sbi->s_max_batch_time = arg;
2208 1 : } else if (token == Opt_min_batch_time) {
2209 0 : sbi->s_min_batch_time = arg;
2210 1 : } else if (token == Opt_inode_readahead_blks) {
2211 0 : if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2212 0 : ext4_msg(sb, KERN_ERR,
2213 : "EXT4-fs: inode_readahead_blks must be "
2214 : "0 or a power of 2 smaller than 2^31");
2215 0 : return -1;
2216 : }
2217 0 : sbi->s_inode_readahead_blks = arg;
2218 1 : } else if (token == Opt_init_itable) {
2219 0 : set_opt(sb, INIT_INODE_TABLE);
2220 0 : if (!args->from)
2221 0 : arg = EXT4_DEF_LI_WAIT_MULT;
2222 0 : sbi->s_li_wait_mult = arg;
2223 1 : } else if (token == Opt_max_dir_size_kb) {
2224 0 : sbi->s_max_dir_size_kb = arg;
2225 : #ifdef CONFIG_EXT4_DEBUG
2226 : } else if (token == Opt_fc_debug_max_replay) {
2227 : sbi->s_fc_debug_max_replay = arg;
2228 : #endif
2229 1 : } else if (token == Opt_stripe) {
2230 0 : sbi->s_stripe = arg;
2231 1 : } else if (token == Opt_resuid) {
2232 0 : uid = make_kuid(current_user_ns(), arg);
2233 0 : if (!uid_valid(uid)) {
2234 0 : ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2235 0 : return -1;
2236 : }
2237 0 : sbi->s_resuid = uid;
2238 1 : } else if (token == Opt_resgid) {
2239 0 : gid = make_kgid(current_user_ns(), arg);
2240 0 : if (!gid_valid(gid)) {
2241 0 : ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2242 0 : return -1;
2243 : }
2244 0 : sbi->s_resgid = gid;
2245 1 : } else if (token == Opt_journal_dev) {
2246 0 : if (is_remount) {
2247 0 : ext4_msg(sb, KERN_ERR,
2248 : "Cannot specify journal on remount");
2249 0 : return -1;
2250 : }
2251 0 : *journal_devnum = arg;
2252 1 : } else if (token == Opt_journal_path) {
2253 0 : char *journal_path;
2254 0 : struct inode *journal_inode;
2255 0 : struct path path;
2256 0 : int error;
2257 :
2258 0 : if (is_remount) {
2259 0 : ext4_msg(sb, KERN_ERR,
2260 : "Cannot specify journal on remount");
2261 0 : return -1;
2262 : }
2263 0 : journal_path = match_strdup(&args[0]);
2264 0 : if (!journal_path) {
2265 0 : ext4_msg(sb, KERN_ERR, "error: could not dup "
2266 : "journal device string");
2267 0 : return -1;
2268 : }
2269 :
2270 0 : error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2271 0 : if (error) {
2272 0 : ext4_msg(sb, KERN_ERR, "error: could not find "
2273 : "journal device path: error %d", error);
2274 0 : kfree(journal_path);
2275 0 : return -1;
2276 : }
2277 :
2278 0 : journal_inode = d_inode(path.dentry);
2279 0 : if (!S_ISBLK(journal_inode->i_mode)) {
2280 0 : ext4_msg(sb, KERN_ERR, "error: journal path %s "
2281 : "is not a block device", journal_path);
2282 0 : path_put(&path);
2283 0 : kfree(journal_path);
2284 0 : return -1;
2285 : }
2286 :
2287 0 : *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2288 0 : path_put(&path);
2289 0 : kfree(journal_path);
2290 1 : } else if (token == Opt_journal_ioprio) {
2291 0 : if (arg > 7) {
2292 0 : ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2293 : " (must be 0-7)");
2294 0 : return -1;
2295 : }
2296 0 : *journal_ioprio =
2297 0 : IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2298 1 : } else if (token == Opt_test_dummy_encryption) {
2299 0 : return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2300 : is_remount);
2301 1 : } else if (m->flags & MOPT_DATAJ) {
2302 0 : if (is_remount) {
2303 0 : if (!sbi->s_journal)
2304 0 : ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2305 0 : else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2306 0 : ext4_msg(sb, KERN_ERR,
2307 : "Cannot change data mode on remount");
2308 0 : return -1;
2309 : }
2310 : } else {
2311 0 : clear_opt(sb, DATA_FLAGS);
2312 0 : sbi->s_mount_opt |= m->mount_opt;
2313 : }
2314 : #ifdef CONFIG_QUOTA
2315 : } else if (m->flags & MOPT_QFMT) {
2316 : if (sb_any_quota_loaded(sb) &&
2317 : sbi->s_jquota_fmt != m->mount_opt) {
2318 : ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2319 : "quota options when quota turned on");
2320 : return -1;
2321 : }
2322 : if (ext4_has_feature_quota(sb)) {
2323 : ext4_msg(sb, KERN_INFO,
2324 : "Quota format mount options ignored "
2325 : "when QUOTA feature is enabled");
2326 : return 1;
2327 : }
2328 : sbi->s_jquota_fmt = m->mount_opt;
2329 : #endif
2330 1 : } else if (token == Opt_dax || token == Opt_dax_always ||
2331 1 : token == Opt_dax_inode || token == Opt_dax_never) {
2332 : #ifdef CONFIG_FS_DAX
2333 : switch (token) {
2334 : case Opt_dax:
2335 : case Opt_dax_always:
2336 : if (is_remount &&
2337 : (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2338 : (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2339 : fail_dax_change_remount:
2340 : ext4_msg(sb, KERN_ERR, "can't change "
2341 : "dax mount option while remounting");
2342 : return -1;
2343 : }
2344 : if (is_remount &&
2345 : (test_opt(sb, DATA_FLAGS) ==
2346 : EXT4_MOUNT_JOURNAL_DATA)) {
2347 : ext4_msg(sb, KERN_ERR, "can't mount with "
2348 : "both data=journal and dax");
2349 : return -1;
2350 : }
2351 : ext4_msg(sb, KERN_WARNING,
2352 : "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2353 : sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2354 : sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2355 : break;
2356 : case Opt_dax_never:
2357 : if (is_remount &&
2358 : (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2359 : (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2360 : goto fail_dax_change_remount;
2361 : sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2362 : sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2363 : break;
2364 : case Opt_dax_inode:
2365 : if (is_remount &&
2366 : ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2367 : (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2368 : !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2369 : goto fail_dax_change_remount;
2370 : sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2371 : sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2372 : /* Strictly for printing options */
2373 : sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2374 : break;
2375 : }
2376 : #else
2377 0 : ext4_msg(sb, KERN_INFO, "dax option not supported");
2378 0 : sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2379 0 : sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2380 0 : return -1;
2381 : #endif
2382 1 : } else if (token == Opt_data_err_abort) {
2383 0 : sbi->s_mount_opt |= m->mount_opt;
2384 1 : } else if (token == Opt_data_err_ignore) {
2385 0 : sbi->s_mount_opt &= ~m->mount_opt;
2386 : } else {
2387 1 : if (!args->from)
2388 1 : arg = 1;
2389 1 : if (m->flags & MOPT_CLEAR)
2390 0 : arg = !arg;
2391 1 : else if (unlikely(!(m->flags & MOPT_SET))) {
2392 0 : ext4_msg(sb, KERN_WARNING,
2393 : "buggy handling of option %s", opt);
2394 0 : WARN_ON(1);
2395 0 : return -1;
2396 : }
2397 1 : if (m->flags & MOPT_2) {
2398 0 : if (arg != 0)
2399 0 : sbi->s_mount_opt2 |= m->mount_opt;
2400 : else
2401 0 : sbi->s_mount_opt2 &= ~m->mount_opt;
2402 : } else {
2403 1 : if (arg != 0)
2404 1 : sbi->s_mount_opt |= m->mount_opt;
2405 : else
2406 0 : sbi->s_mount_opt &= ~m->mount_opt;
2407 : }
2408 : }
2409 : return 1;
2410 : }
2411 :
2412 3 : static int parse_options(char *options, struct super_block *sb,
2413 : unsigned long *journal_devnum,
2414 : unsigned int *journal_ioprio,
2415 : int is_remount)
2416 : {
2417 3 : struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2418 3 : char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2419 3 : substring_t args[MAX_OPT_ARGS];
2420 3 : int token;
2421 :
2422 3 : if (!options)
2423 : return 1;
2424 :
2425 2 : while ((p = strsep(&options, ",")) != NULL) {
2426 1 : if (!*p)
2427 0 : continue;
2428 : /*
2429 : * Initialize args struct so we know whether arg was
2430 : * found; some options take optional arguments.
2431 : */
2432 1 : args[0].to = args[0].from = NULL;
2433 1 : token = match_token(p, tokens, args);
2434 1 : if (handle_mount_opt(sb, p, token, args, journal_devnum,
2435 : journal_ioprio, is_remount) < 0)
2436 : return 0;
2437 : }
2438 : #ifdef CONFIG_QUOTA
2439 : /*
2440 : * We do the test below only for project quotas. 'usrquota' and
2441 : * 'grpquota' mount options are allowed even without quota feature
2442 : * to support legacy quotas in quota files.
2443 : */
2444 : if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2445 : ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2446 : "Cannot enable project quota enforcement.");
2447 : return 0;
2448 : }
2449 : usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2450 : grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2451 : if (usr_qf_name || grp_qf_name) {
2452 : if (test_opt(sb, USRQUOTA) && usr_qf_name)
2453 : clear_opt(sb, USRQUOTA);
2454 :
2455 : if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2456 : clear_opt(sb, GRPQUOTA);
2457 :
2458 : if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2459 : ext4_msg(sb, KERN_ERR, "old and new quota "
2460 : "format mixing");
2461 : return 0;
2462 : }
2463 :
2464 : if (!sbi->s_jquota_fmt) {
2465 : ext4_msg(sb, KERN_ERR, "journaled quota format "
2466 : "not specified");
2467 : return 0;
2468 : }
2469 : }
2470 : #endif
2471 1 : if (test_opt(sb, DIOREAD_NOLOCK)) {
2472 1 : int blocksize =
2473 1 : BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2474 1 : if (blocksize < PAGE_SIZE)
2475 0 : ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2476 : "experimental mount option 'dioread_nolock' "
2477 : "for blocksize < PAGE_SIZE");
2478 : }
2479 : return 1;
2480 : }
2481 :
2482 606 : static inline void ext4_show_quota_options(struct seq_file *seq,
2483 : struct super_block *sb)
2484 : {
2485 : #if defined(CONFIG_QUOTA)
2486 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2487 : char *usr_qf_name, *grp_qf_name;
2488 :
2489 : if (sbi->s_jquota_fmt) {
2490 : char *fmtname = "";
2491 :
2492 : switch (sbi->s_jquota_fmt) {
2493 : case QFMT_VFS_OLD:
2494 : fmtname = "vfsold";
2495 : break;
2496 : case QFMT_VFS_V0:
2497 : fmtname = "vfsv0";
2498 : break;
2499 : case QFMT_VFS_V1:
2500 : fmtname = "vfsv1";
2501 : break;
2502 : }
2503 : seq_printf(seq, ",jqfmt=%s", fmtname);
2504 : }
2505 :
2506 : rcu_read_lock();
2507 : usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2508 : grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2509 : if (usr_qf_name)
2510 : seq_show_option(seq, "usrjquota", usr_qf_name);
2511 : if (grp_qf_name)
2512 : seq_show_option(seq, "grpjquota", grp_qf_name);
2513 : rcu_read_unlock();
2514 : #endif
2515 606 : }
2516 :
2517 0 : static const char *token2str(int token)
2518 : {
2519 0 : const struct match_token *t;
2520 :
2521 0 : for (t = tokens; t->token != Opt_err; t++)
2522 0 : if (t->token == token && !strchr(t->pattern, '='))
2523 : break;
2524 0 : return t->pattern;
2525 : }
2526 :
2527 : /*
2528 : * Show an option if
2529 : * - it's set to a non-default value OR
2530 : * - if the per-sb default is different from the global default
2531 : */
2532 606 : static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2533 : int nodefs)
2534 : {
2535 606 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2536 606 : struct ext4_super_block *es = sbi->s_es;
2537 606 : int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2538 606 : const struct mount_opts *m;
2539 606 : char sep = nodefs ? '\n' : ',';
2540 :
2541 : #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2542 : #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2543 :
2544 606 : if (sbi->s_sb_block != 1)
2545 0 : SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2546 :
2547 42466 : for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2548 41859 : int want_set = m->flags & MOPT_SET;
2549 41859 : if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2550 24871 : (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2551 21236 : continue;
2552 20623 : if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2553 20623 : continue; /* skip if same as the default */
2554 0 : if ((want_set &&
2555 0 : (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2556 0 : (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2557 0 : continue; /* select Opt_noFoo vs Opt_Foo */
2558 0 : SEQ_OPTS_PRINT("%s", token2str(m->token));
2559 : }
2560 :
2561 607 : if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2562 606 : le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2563 1 : SEQ_OPTS_PRINT("resuid=%u",
2564 : from_kuid_munged(&init_user_ns, sbi->s_resuid));
2565 606 : if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2566 607 : le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2567 0 : SEQ_OPTS_PRINT("resgid=%u",
2568 : from_kgid_munged(&init_user_ns, sbi->s_resgid));
2569 605 : def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2570 605 : if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2571 602 : SEQ_OPTS_PUTS("errors=remount-ro");
2572 606 : if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2573 0 : SEQ_OPTS_PUTS("errors=continue");
2574 606 : if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2575 0 : SEQ_OPTS_PUTS("errors=panic");
2576 606 : if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2577 0 : SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2578 607 : if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2579 0 : SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2580 607 : if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2581 0 : SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2582 607 : if (sb->s_flags & SB_I_VERSION)
2583 0 : SEQ_OPTS_PUTS("i_version");
2584 607 : if (nodefs || sbi->s_stripe)
2585 0 : SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2586 607 : if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2587 607 : (sbi->s_mount_opt ^ def_mount_opt)) {
2588 0 : if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2589 0 : SEQ_OPTS_PUTS("data=journal");
2590 0 : else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2591 0 : SEQ_OPTS_PUTS("data=ordered");
2592 0 : else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2593 0 : SEQ_OPTS_PUTS("data=writeback");
2594 : }
2595 607 : if (nodefs ||
2596 607 : sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2597 1 : SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2598 : sbi->s_inode_readahead_blks);
2599 :
2600 607 : if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2601 606 : (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2602 0 : SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2603 607 : if (nodefs || sbi->s_max_dir_size_kb)
2604 0 : SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2605 606 : if (test_opt(sb, DATA_ERR_ABORT))
2606 0 : SEQ_OPTS_PUTS("data_err=abort");
2607 :
2608 606 : fscrypt_show_test_dummy_encryption(seq, sep, sb);
2609 :
2610 606 : if (sb->s_flags & SB_INLINECRYPT)
2611 0 : SEQ_OPTS_PUTS("inlinecrypt");
2612 :
2613 606 : if (test_opt(sb, DAX_ALWAYS)) {
2614 : if (IS_EXT2_SB(sb))
2615 : SEQ_OPTS_PUTS("dax");
2616 : else
2617 : SEQ_OPTS_PUTS("dax=always");
2618 606 : } else if (test_opt2(sb, DAX_NEVER)) {
2619 0 : SEQ_OPTS_PUTS("dax=never");
2620 606 : } else if (test_opt2(sb, DAX_INODE)) {
2621 0 : SEQ_OPTS_PUTS("dax=inode");
2622 : }
2623 606 : ext4_show_quota_options(seq, sb);
2624 606 : return 0;
2625 : }
2626 :
2627 606 : static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2628 : {
2629 606 : return _ext4_show_options(seq, root->d_sb, 0);
2630 : }
2631 :
2632 0 : int ext4_seq_options_show(struct seq_file *seq, void *offset)
2633 : {
2634 0 : struct super_block *sb = seq->private;
2635 0 : int rc;
2636 :
2637 0 : seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2638 0 : rc = _ext4_show_options(seq, sb, 1);
2639 0 : seq_puts(seq, "\n");
2640 0 : return rc;
2641 : }
2642 :
2643 2 : static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2644 : int read_only)
2645 : {
2646 2 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2647 2 : int err = 0;
2648 :
2649 2 : if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2650 0 : ext4_msg(sb, KERN_ERR, "revision level too high, "
2651 : "forcing read-only mode");
2652 0 : err = -EROFS;
2653 0 : goto done;
2654 : }
2655 2 : if (read_only)
2656 1 : goto done;
2657 1 : if (!(sbi->s_mount_state & EXT4_VALID_FS))
2658 0 : ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2659 : "running e2fsck is recommended");
2660 1 : else if (sbi->s_mount_state & EXT4_ERROR_FS)
2661 0 : ext4_msg(sb, KERN_WARNING,
2662 : "warning: mounting fs with errors, "
2663 : "running e2fsck is recommended");
2664 1 : else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2665 0 : le16_to_cpu(es->s_mnt_count) >=
2666 : (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2667 0 : ext4_msg(sb, KERN_WARNING,
2668 : "warning: maximal mount count reached, "
2669 : "running e2fsck is recommended");
2670 1 : else if (le32_to_cpu(es->s_checkinterval) &&
2671 0 : (ext4_get_tstamp(es, s_lastcheck) +
2672 0 : le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2673 0 : ext4_msg(sb, KERN_WARNING,
2674 : "warning: checktime reached, "
2675 : "running e2fsck is recommended");
2676 1 : if (!sbi->s_journal)
2677 0 : es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2678 1 : if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2679 0 : es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2680 1 : le16_add_cpu(&es->s_mnt_count, 1);
2681 1 : ext4_update_tstamp(es, s_mtime);
2682 1 : if (sbi->s_journal)
2683 1 : ext4_set_feature_journal_needs_recovery(sb);
2684 :
2685 1 : err = ext4_commit_super(sb);
2686 2 : done:
2687 2 : if (test_opt(sb, DEBUG))
2688 0 : printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2689 : "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2690 : sb->s_blocksize,
2691 : sbi->s_groups_count,
2692 0 : EXT4_BLOCKS_PER_GROUP(sb),
2693 0 : EXT4_INODES_PER_GROUP(sb),
2694 : sbi->s_mount_opt, sbi->s_mount_opt2);
2695 :
2696 2 : cleancache_init_fs(sb);
2697 2 : return err;
2698 : }
2699 :
2700 1 : int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2701 : {
2702 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2703 1 : struct flex_groups **old_groups, **new_groups;
2704 1 : int size, i, j;
2705 :
2706 1 : if (!sbi->s_log_groups_per_flex)
2707 : return 0;
2708 :
2709 1 : size = ext4_flex_group(sbi, ngroup - 1) + 1;
2710 1 : if (size <= sbi->s_flex_groups_allocated)
2711 : return 0;
2712 :
2713 1 : new_groups = kvzalloc(roundup_pow_of_two(size *
2714 : sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2715 1 : if (!new_groups) {
2716 0 : ext4_msg(sb, KERN_ERR,
2717 : "not enough memory for %d flex group pointers", size);
2718 0 : return -ENOMEM;
2719 : }
2720 2 : for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2721 1 : new_groups[i] = kvzalloc(roundup_pow_of_two(
2722 : sizeof(struct flex_groups)),
2723 : GFP_KERNEL);
2724 1 : if (!new_groups[i]) {
2725 0 : for (j = sbi->s_flex_groups_allocated; j < i; j++)
2726 0 : kvfree(new_groups[j]);
2727 0 : kvfree(new_groups);
2728 0 : ext4_msg(sb, KERN_ERR,
2729 : "not enough memory for %d flex groups", size);
2730 0 : return -ENOMEM;
2731 : }
2732 : }
2733 1 : rcu_read_lock();
2734 1 : old_groups = rcu_dereference(sbi->s_flex_groups);
2735 1 : if (old_groups)
2736 0 : memcpy(new_groups, old_groups,
2737 0 : (sbi->s_flex_groups_allocated *
2738 : sizeof(struct flex_groups *)));
2739 1 : rcu_read_unlock();
2740 1 : rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2741 1 : sbi->s_flex_groups_allocated = size;
2742 1 : if (old_groups)
2743 0 : ext4_kvfree_array_rcu(old_groups);
2744 : return 0;
2745 : }
2746 :
2747 1 : static int ext4_fill_flex_info(struct super_block *sb)
2748 : {
2749 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2750 1 : struct ext4_group_desc *gdp = NULL;
2751 1 : struct flex_groups *fg;
2752 1 : ext4_group_t flex_group;
2753 1 : int i, err;
2754 :
2755 1 : sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2756 1 : if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2757 0 : sbi->s_log_groups_per_flex = 0;
2758 0 : return 1;
2759 : }
2760 :
2761 1 : err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2762 1 : if (err)
2763 0 : goto failed;
2764 :
2765 17 : for (i = 0; i < sbi->s_groups_count; i++) {
2766 16 : gdp = ext4_get_group_desc(sb, i, NULL);
2767 :
2768 16 : flex_group = ext4_flex_group(sbi, i);
2769 32 : fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2770 16 : atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2771 16 : atomic64_add(ext4_free_group_clusters(sb, gdp),
2772 : &fg->free_clusters);
2773 32 : atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2774 : }
2775 :
2776 : return 1;
2777 0 : failed:
2778 0 : return 0;
2779 : }
2780 :
2781 1317 : static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2782 : struct ext4_group_desc *gdp)
2783 : {
2784 1317 : int offset = offsetof(struct ext4_group_desc, bg_checksum);
2785 1317 : __u16 crc = 0;
2786 1317 : __le32 le_group = cpu_to_le32(block_group);
2787 1317 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2788 :
2789 1317 : if (ext4_has_metadata_csum(sbi->s_sb)) {
2790 : /* Use new metadata_csum algorithm */
2791 0 : __u32 csum32;
2792 0 : __u16 dummy_csum = 0;
2793 :
2794 0 : csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2795 : sizeof(le_group));
2796 0 : csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2797 0 : csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2798 : sizeof(dummy_csum));
2799 0 : offset += sizeof(dummy_csum);
2800 0 : if (offset < sbi->s_desc_size)
2801 0 : csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2802 : sbi->s_desc_size - offset);
2803 :
2804 0 : crc = csum32 & 0xFFFF;
2805 0 : goto out;
2806 : }
2807 :
2808 : /* old crc16 code */
2809 1317 : if (!ext4_has_feature_gdt_csum(sb))
2810 : return 0;
2811 :
2812 1317 : crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2813 1317 : crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2814 1317 : crc = crc16(crc, (__u8 *)gdp, offset);
2815 1317 : offset += sizeof(gdp->bg_checksum); /* skip checksum */
2816 : /* for checksum of struct ext4_group_desc do the rest...*/
2817 1317 : if (ext4_has_feature_64bit(sb) &&
2818 0 : offset < le16_to_cpu(sbi->s_es->s_desc_size))
2819 0 : crc = crc16(crc, (__u8 *)gdp + offset,
2820 0 : le16_to_cpu(sbi->s_es->s_desc_size) -
2821 : offset);
2822 :
2823 1317 : out:
2824 : return cpu_to_le16(crc);
2825 : }
2826 :
2827 32 : int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2828 : struct ext4_group_desc *gdp)
2829 : {
2830 64 : if (ext4_has_group_desc_csum(sb) &&
2831 32 : (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2832 0 : return 0;
2833 :
2834 : return 1;
2835 : }
2836 :
2837 1285 : void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2838 : struct ext4_group_desc *gdp)
2839 : {
2840 1285 : if (!ext4_has_group_desc_csum(sb))
2841 : return;
2842 1285 : gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2843 : }
2844 :
2845 : /* Called at mount-time, super-block is locked */
2846 1 : static int ext4_check_descriptors(struct super_block *sb,
2847 : ext4_fsblk_t sb_block,
2848 : ext4_group_t *first_not_zeroed)
2849 : {
2850 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2851 1 : ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2852 1 : ext4_fsblk_t last_block;
2853 1 : ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2854 1 : ext4_fsblk_t block_bitmap;
2855 1 : ext4_fsblk_t inode_bitmap;
2856 1 : ext4_fsblk_t inode_table;
2857 1 : int flexbg_flag = 0;
2858 1 : ext4_group_t i, grp = sbi->s_groups_count;
2859 :
2860 1 : if (ext4_has_feature_flex_bg(sb))
2861 1 : flexbg_flag = 1;
2862 :
2863 1 : ext4_debug("Checking group descriptors");
2864 :
2865 17 : for (i = 0; i < sbi->s_groups_count; i++) {
2866 16 : struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2867 :
2868 16 : if (i == sbi->s_groups_count - 1 || flexbg_flag)
2869 16 : last_block = ext4_blocks_count(sbi->s_es) - 1;
2870 : else
2871 0 : last_block = first_block +
2872 0 : (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2873 :
2874 16 : if ((grp == sbi->s_groups_count) &&
2875 16 : !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2876 0 : grp = i;
2877 :
2878 16 : block_bitmap = ext4_block_bitmap(sb, gdp);
2879 16 : if (block_bitmap == sb_block) {
2880 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2881 : "Block bitmap for group %u overlaps "
2882 : "superblock", i);
2883 0 : if (!sb_rdonly(sb))
2884 : return 0;
2885 : }
2886 16 : if (block_bitmap >= sb_block + 1 &&
2887 : block_bitmap <= last_bg_block) {
2888 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2889 : "Block bitmap for group %u overlaps "
2890 : "block group descriptors", i);
2891 0 : if (!sb_rdonly(sb))
2892 : return 0;
2893 : }
2894 16 : if (block_bitmap < first_block || block_bitmap > last_block) {
2895 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2896 : "Block bitmap for group %u not in group "
2897 : "(block %llu)!", i, block_bitmap);
2898 0 : return 0;
2899 : }
2900 16 : inode_bitmap = ext4_inode_bitmap(sb, gdp);
2901 16 : if (inode_bitmap == sb_block) {
2902 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903 : "Inode bitmap for group %u overlaps "
2904 : "superblock", i);
2905 0 : if (!sb_rdonly(sb))
2906 : return 0;
2907 : }
2908 16 : if (inode_bitmap >= sb_block + 1 &&
2909 : inode_bitmap <= last_bg_block) {
2910 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2911 : "Inode bitmap for group %u overlaps "
2912 : "block group descriptors", i);
2913 0 : if (!sb_rdonly(sb))
2914 : return 0;
2915 : }
2916 16 : if (inode_bitmap < first_block || inode_bitmap > last_block) {
2917 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2918 : "Inode bitmap for group %u not in group "
2919 : "(block %llu)!", i, inode_bitmap);
2920 0 : return 0;
2921 : }
2922 16 : inode_table = ext4_inode_table(sb, gdp);
2923 16 : if (inode_table == sb_block) {
2924 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925 : "Inode table for group %u overlaps "
2926 : "superblock", i);
2927 0 : if (!sb_rdonly(sb))
2928 : return 0;
2929 : }
2930 16 : if (inode_table >= sb_block + 1 &&
2931 : inode_table <= last_bg_block) {
2932 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2933 : "Inode table for group %u overlaps "
2934 : "block group descriptors", i);
2935 0 : if (!sb_rdonly(sb))
2936 : return 0;
2937 : }
2938 16 : if (inode_table < first_block ||
2939 16 : inode_table + sbi->s_itb_per_group - 1 > last_block) {
2940 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2941 : "Inode table for group %u not in group "
2942 : "(block %llu)!", i, inode_table);
2943 0 : return 0;
2944 : }
2945 16 : ext4_lock_group(sb, i);
2946 16 : if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2947 0 : ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2948 : "Checksum for group %u failed (%u!=%u)",
2949 : i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2950 : gdp)), le16_to_cpu(gdp->bg_checksum));
2951 0 : if (!sb_rdonly(sb)) {
2952 0 : ext4_unlock_group(sb, i);
2953 0 : return 0;
2954 : }
2955 : }
2956 16 : ext4_unlock_group(sb, i);
2957 16 : if (!flexbg_flag)
2958 0 : first_block += EXT4_BLOCKS_PER_GROUP(sb);
2959 : }
2960 1 : if (NULL != first_not_zeroed)
2961 1 : *first_not_zeroed = grp;
2962 : return 1;
2963 : }
2964 :
2965 : /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2966 : * the superblock) which were deleted from all directories, but held open by
2967 : * a process at the time of a crash. We walk the list and try to delete these
2968 : * inodes at recovery time (only with a read-write filesystem).
2969 : *
2970 : * In order to keep the orphan inode chain consistent during traversal (in
2971 : * case of crash during recovery), we link each inode into the superblock
2972 : * orphan list_head and handle it the same way as an inode deletion during
2973 : * normal operation (which journals the operations for us).
2974 : *
2975 : * We only do an iget() and an iput() on each inode, which is very safe if we
2976 : * accidentally point at an in-use or already deleted inode. The worst that
2977 : * can happen in this case is that we get a "bit already cleared" message from
2978 : * ext4_free_inode(). The only reason we would point at a wrong inode is if
2979 : * e2fsck was run on this filesystem, and it must have already done the orphan
2980 : * inode cleanup for us, so we can safely abort without any further action.
2981 : */
2982 1 : static void ext4_orphan_cleanup(struct super_block *sb,
2983 : struct ext4_super_block *es)
2984 : {
2985 1 : unsigned int s_flags = sb->s_flags;
2986 1 : int ret, nr_orphans = 0, nr_truncates = 0;
2987 : #ifdef CONFIG_QUOTA
2988 : int quota_update = 0;
2989 : int i;
2990 : #endif
2991 1 : if (!es->s_last_orphan) {
2992 : jbd_debug(4, "no orphan inodes to clean up\n");
2993 : return;
2994 : }
2995 :
2996 0 : if (bdev_read_only(sb->s_bdev)) {
2997 0 : ext4_msg(sb, KERN_ERR, "write access "
2998 : "unavailable, skipping orphan cleanup");
2999 0 : return;
3000 : }
3001 :
3002 : /* Check if feature set would not allow a r/w mount */
3003 0 : if (!ext4_feature_set_ok(sb, 0)) {
3004 0 : ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3005 : "unknown ROCOMPAT features");
3006 0 : return;
3007 : }
3008 :
3009 0 : if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3010 : /* don't clear list on RO mount w/ errors */
3011 0 : if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3012 0 : ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3013 : "clearing orphan list.\n");
3014 0 : es->s_last_orphan = 0;
3015 : }
3016 0 : jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3017 0 : return;
3018 : }
3019 :
3020 0 : if (s_flags & SB_RDONLY) {
3021 0 : ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3022 0 : sb->s_flags &= ~SB_RDONLY;
3023 : }
3024 : #ifdef CONFIG_QUOTA
3025 : /* Needed for iput() to work correctly and not trash data */
3026 : sb->s_flags |= SB_ACTIVE;
3027 :
3028 : /*
3029 : * Turn on quotas which were not enabled for read-only mounts if
3030 : * filesystem has quota feature, so that they are updated correctly.
3031 : */
3032 : if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3033 : int ret = ext4_enable_quotas(sb);
3034 :
3035 : if (!ret)
3036 : quota_update = 1;
3037 : else
3038 : ext4_msg(sb, KERN_ERR,
3039 : "Cannot turn on quotas: error %d", ret);
3040 : }
3041 :
3042 : /* Turn on journaled quotas used for old sytle */
3043 : for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3044 : if (EXT4_SB(sb)->s_qf_names[i]) {
3045 : int ret = ext4_quota_on_mount(sb, i);
3046 :
3047 : if (!ret)
3048 : quota_update = 1;
3049 : else
3050 : ext4_msg(sb, KERN_ERR,
3051 : "Cannot turn on journaled "
3052 : "quota: type %d: error %d", i, ret);
3053 : }
3054 : }
3055 : #endif
3056 :
3057 0 : while (es->s_last_orphan) {
3058 0 : struct inode *inode;
3059 :
3060 : /*
3061 : * We may have encountered an error during cleanup; if
3062 : * so, skip the rest.
3063 : */
3064 0 : if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3065 0 : jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3066 0 : es->s_last_orphan = 0;
3067 0 : break;
3068 : }
3069 :
3070 0 : inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3071 0 : if (IS_ERR(inode)) {
3072 0 : es->s_last_orphan = 0;
3073 0 : break;
3074 : }
3075 :
3076 0 : list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3077 0 : dquot_initialize(inode);
3078 0 : if (inode->i_nlink) {
3079 0 : if (test_opt(sb, DEBUG))
3080 0 : ext4_msg(sb, KERN_DEBUG,
3081 : "%s: truncating inode %lu to %lld bytes",
3082 : __func__, inode->i_ino, inode->i_size);
3083 : jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3084 0 : inode->i_ino, inode->i_size);
3085 0 : inode_lock(inode);
3086 0 : truncate_inode_pages(inode->i_mapping, inode->i_size);
3087 0 : ret = ext4_truncate(inode);
3088 0 : if (ret)
3089 0 : ext4_std_error(inode->i_sb, ret);
3090 0 : inode_unlock(inode);
3091 0 : nr_truncates++;
3092 : } else {
3093 0 : if (test_opt(sb, DEBUG))
3094 0 : ext4_msg(sb, KERN_DEBUG,
3095 : "%s: deleting unreferenced inode %lu",
3096 : __func__, inode->i_ino);
3097 : jbd_debug(2, "deleting unreferenced inode %lu\n",
3098 0 : inode->i_ino);
3099 0 : nr_orphans++;
3100 : }
3101 0 : iput(inode); /* The delete magic happens here! */
3102 : }
3103 :
3104 : #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3105 :
3106 0 : if (nr_orphans)
3107 0 : ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3108 : PLURAL(nr_orphans));
3109 0 : if (nr_truncates)
3110 0 : ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3111 : PLURAL(nr_truncates));
3112 : #ifdef CONFIG_QUOTA
3113 : /* Turn off quotas if they were enabled for orphan cleanup */
3114 : if (quota_update) {
3115 : for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3116 : if (sb_dqopt(sb)->files[i])
3117 : dquot_quota_off(sb, i);
3118 : }
3119 : }
3120 : #endif
3121 0 : sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3122 : }
3123 :
3124 : /*
3125 : * Maximal extent format file size.
3126 : * Resulting logical blkno at s_maxbytes must fit in our on-disk
3127 : * extent format containers, within a sector_t, and within i_blocks
3128 : * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3129 : * so that won't be a limiting factor.
3130 : *
3131 : * However there is other limiting factor. We do store extents in the form
3132 : * of starting block and length, hence the resulting length of the extent
3133 : * covering maximum file size must fit into on-disk format containers as
3134 : * well. Given that length is always by 1 unit bigger than max unit (because
3135 : * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3136 : *
3137 : * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3138 : */
3139 1 : static loff_t ext4_max_size(int blkbits, int has_huge_files)
3140 : {
3141 1 : loff_t res;
3142 1 : loff_t upper_limit = MAX_LFS_FILESIZE;
3143 :
3144 1 : BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3145 :
3146 1 : if (!has_huge_files) {
3147 0 : upper_limit = (1LL << 32) - 1;
3148 :
3149 : /* total blocks in file system block size */
3150 0 : upper_limit >>= (blkbits - 9);
3151 0 : upper_limit <<= blkbits;
3152 : }
3153 :
3154 : /*
3155 : * 32-bit extent-start container, ee_block. We lower the maxbytes
3156 : * by one fs block, so ee_len can cover the extent of maximum file
3157 : * size
3158 : */
3159 1 : res = (1LL << 32) - 1;
3160 1 : res <<= blkbits;
3161 :
3162 : /* Sanity check against vm- & vfs- imposed limits */
3163 1 : if (res > upper_limit)
3164 : res = upper_limit;
3165 :
3166 1 : return res;
3167 : }
3168 :
3169 : /*
3170 : * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3171 : * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3172 : * We need to be 1 filesystem block less than the 2^48 sector limit.
3173 : */
3174 1 : static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3175 : {
3176 1 : loff_t res = EXT4_NDIR_BLOCKS;
3177 1 : int meta_blocks;
3178 1 : loff_t upper_limit;
3179 : /* This is calculated to be the largest file size for a dense, block
3180 : * mapped file such that the file's total number of 512-byte sectors,
3181 : * including data and all indirect blocks, does not exceed (2^48 - 1).
3182 : *
3183 : * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3184 : * number of 512-byte sectors of the file.
3185 : */
3186 :
3187 1 : if (!has_huge_files) {
3188 : /*
3189 : * !has_huge_files or implies that the inode i_block field
3190 : * represents total file blocks in 2^32 512-byte sectors ==
3191 : * size of vfs inode i_blocks * 8
3192 : */
3193 0 : upper_limit = (1LL << 32) - 1;
3194 :
3195 : /* total blocks in file system block size */
3196 0 : upper_limit >>= (bits - 9);
3197 :
3198 : } else {
3199 : /*
3200 : * We use 48 bit ext4_inode i_blocks
3201 : * With EXT4_HUGE_FILE_FL set the i_blocks
3202 : * represent total number of blocks in
3203 : * file system block size
3204 : */
3205 : upper_limit = (1LL << 48) - 1;
3206 :
3207 : }
3208 :
3209 : /* indirect blocks */
3210 1 : meta_blocks = 1;
3211 : /* double indirect blocks */
3212 1 : meta_blocks += 1 + (1LL << (bits-2));
3213 : /* tripple indirect blocks */
3214 1 : meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3215 :
3216 1 : upper_limit -= meta_blocks;
3217 1 : upper_limit <<= bits;
3218 :
3219 1 : res += 1LL << (bits-2);
3220 1 : res += 1LL << (2*(bits-2));
3221 1 : res += 1LL << (3*(bits-2));
3222 1 : res <<= bits;
3223 1 : if (res > upper_limit)
3224 : res = upper_limit;
3225 :
3226 1 : if (res > MAX_LFS_FILESIZE)
3227 : res = MAX_LFS_FILESIZE;
3228 :
3229 1 : return res;
3230 : }
3231 :
3232 2 : static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3233 : ext4_fsblk_t logical_sb_block, int nr)
3234 : {
3235 2 : struct ext4_sb_info *sbi = EXT4_SB(sb);
3236 2 : ext4_group_t bg, first_meta_bg;
3237 2 : int has_super = 0;
3238 :
3239 2 : first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3240 :
3241 2 : if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3242 2 : return logical_sb_block + nr + 1;
3243 0 : bg = sbi->s_desc_per_block * nr;
3244 0 : if (ext4_bg_has_super(sb, bg))
3245 0 : has_super = 1;
3246 :
3247 : /*
3248 : * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3249 : * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3250 : * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3251 : * compensate.
3252 : */
3253 0 : if (sb->s_blocksize == 1024 && nr == 0 &&
3254 0 : le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3255 0 : has_super++;
3256 :
3257 0 : return (has_super + ext4_group_first_block_no(sb, bg));
3258 : }
3259 :
3260 : /**
3261 : * ext4_get_stripe_size: Get the stripe size.
3262 : * @sbi: In memory super block info
3263 : *
3264 : * If we have specified it via mount option, then
3265 : * use the mount option value. If the value specified at mount time is
3266 : * greater than the blocks per group use the super block value.
3267 : * If the super block value is greater than blocks per group return 0.
3268 : * Allocator needs it be less than blocks per group.
3269 : *
3270 : */
3271 1 : static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3272 : {
3273 1 : unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3274 1 : unsigned long stripe_width =
3275 1 : le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3276 1 : int ret;
3277 :
3278 1 : if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3279 0 : ret = sbi->s_stripe;
3280 1 : else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3281 0 : ret = stripe_width;
3282 1 : else if (stride && stride <= sbi->s_blocks_per_group)
3283 0 : ret = stride;
3284 : else
3285 : ret = 0;
3286 :
3287 : /*
3288 : * If the stripe width is 1, this makes no sense and
3289 : * we set it to 0 to turn off stripe handling code.
3290 : */
3291 0 : if (ret <= 1)
3292 1 : ret = 0;
3293 :
3294 1 : return ret;
3295 : }
3296 :
3297 : /*
3298 : * Check whether this filesystem can be mounted based on
3299 : * the features present and the RDONLY/RDWR mount requested.
3300 : * Returns 1 if this filesystem can be mounted as requested,
3301 : * 0 if it cannot be.
3302 : */
3303 3 : static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3304 : {
3305 3 : if (ext4_has_unknown_ext4_incompat_features(sb)) {
3306 0 : ext4_msg(sb, KERN_ERR,
3307 : "Couldn't mount because of "
3308 : "unsupported optional features (%x)",
3309 : (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3310 : ~EXT4_FEATURE_INCOMPAT_SUPP));
3311 0 : return 0;
3312 : }
3313 :
3314 : #ifndef CONFIG_UNICODE
3315 3 : if (ext4_has_feature_casefold(sb)) {
3316 0 : ext4_msg(sb, KERN_ERR,
3317 : "Filesystem with casefold feature cannot be "
3318 : "mounted without CONFIG_UNICODE");
3319 0 : return 0;
3320 : }
3321 : #endif
3322 :
3323 3 : if (readonly)
3324 : return 1;
3325 :
3326 1 : if (ext4_has_feature_readonly(sb)) {
3327 0 : ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3328 0 : sb->s_flags |= SB_RDONLY;
3329 0 : return 1;
3330 : }
3331 :
3332 : /* Check that feature set is OK for a read-write mount */
3333 1 : if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3334 0 : ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3335 : "unsupported optional features (%x)",
3336 : (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3337 : ~EXT4_FEATURE_RO_COMPAT_SUPP));
3338 0 : return 0;
3339 : }
3340 1 : if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3341 0 : ext4_msg(sb, KERN_ERR,
3342 : "Can't support bigalloc feature without "
3343 : "extents feature\n");
3344 0 : return 0;
3345 : }
3346 :
3347 : #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3348 1 : if (!readonly && (ext4_has_feature_quota(sb) ||
3349 1 : ext4_has_feature_project(sb))) {
3350 0 : ext4_msg(sb, KERN_ERR,
3351 : "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3352 0 : return 0;
3353 : }
3354 : #endif /* CONFIG_QUOTA */
3355 : return 1;
3356 : }
3357 :
3358 : /*
3359 : * This function is called once a day if we have errors logged
3360 : * on the file system
3361 : */
3362 0 : static void print_daily_error_info(struct timer_list *t)
3363 : {
3364 0 : struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3365 0 : struct super_block *sb = sbi->s_sb;
3366 0 : struct ext4_super_block *es = sbi->s_es;
3367 :
3368 0 : if (es->s_error_count)
3369 : /* fsck newer than v1.41.13 is needed to clean this condition. */
3370 0 : ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3371 : le32_to_cpu(es->s_error_count));
3372 0 : if (es->s_first_error_time) {
3373 0 : printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3374 0 : sb->s_id,
3375 : ext4_get_tstamp(es, s_first_error_time),
3376 : (int) sizeof(es->s_first_error_func),
3377 0 : es->s_first_error_func,
3378 0 : le32_to_cpu(es->s_first_error_line));
3379 0 : if (es->s_first_error_ino)
3380 0 : printk(KERN_CONT ": inode %u",
3381 : le32_to_cpu(es->s_first_error_ino));
3382 0 : if (es->s_first_error_block)
3383 0 : printk(KERN_CONT ": block %llu", (unsigned long long)
3384 : le64_to_cpu(es->s_first_error_block));
3385 0 : printk(KERN_CONT "\n");
3386 : }
3387 0 : if (es->s_last_error_time) {
3388 0 : printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3389 0 : sb->s_id,
3390 : ext4_get_tstamp(es, s_last_error_time),
3391 : (int) sizeof(es->s_last_error_func),
3392 0 : es->s_last_error_func,
3393 0 : le32_to_cpu(es->s_last_error_line));
3394 0 : if (es->s_last_error_ino)
3395 0 : printk(KERN_CONT ": inode %u",
3396 : le32_to_cpu(es->s_last_error_ino));
3397 0 : if (es->s_last_error_block)
3398 0 : printk(KERN_CONT ": block %llu", (unsigned long long)
3399 : le64_to_cpu(es->s_last_error_block));
3400 0 : printk(KERN_CONT "\n");
3401 : }
3402 0 : mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3403 0 : }
3404 :
3405 : /* Find next suitable group and run ext4_init_inode_table */
3406 0 : static int ext4_run_li_request(struct ext4_li_request *elr)
3407 : {
3408 0 : struct ext4_group_desc *gdp = NULL;
3409 0 : struct super_block *sb = elr->lr_super;
3410 0 : ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3411 0 : ext4_group_t group = elr->lr_next_group;
3412 0 : unsigned long timeout = 0;
3413 0 : unsigned int prefetch_ios = 0;
3414 0 : int ret = 0;
3415 :
3416 0 : if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3417 0 : elr->lr_next_group = ext4_mb_prefetch(sb, group,
3418 0 : EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3419 0 : if (prefetch_ios)
3420 0 : ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3421 : prefetch_ios);
3422 0 : trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3423 : prefetch_ios);
3424 0 : if (group >= elr->lr_next_group) {
3425 0 : ret = 1;
3426 0 : if (elr->lr_first_not_zeroed != ngroups &&
3427 0 : !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3428 0 : elr->lr_next_group = elr->lr_first_not_zeroed;
3429 0 : elr->lr_mode = EXT4_LI_MODE_ITABLE;
3430 0 : ret = 0;
3431 : }
3432 : }
3433 0 : return ret;
3434 : }
3435 :
3436 0 : for (; group < ngroups; group++) {
3437 0 : gdp = ext4_get_group_desc(sb, group, NULL);
3438 0 : if (!gdp) {
3439 : ret = 1;
3440 : break;
3441 : }
3442 :
3443 0 : if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3444 : break;
3445 : }
3446 :
3447 0 : if (group >= ngroups)
3448 : ret = 1;
3449 :
3450 0 : if (!ret) {
3451 0 : timeout = jiffies;
3452 0 : ret = ext4_init_inode_table(sb, group,
3453 0 : elr->lr_timeout ? 0 : 1);
3454 0 : trace_ext4_lazy_itable_init(sb, group);
3455 0 : if (elr->lr_timeout == 0) {
3456 0 : timeout = (jiffies - timeout) *
3457 0 : EXT4_SB(elr->lr_super)->s_li_wait_mult;
3458 0 : elr->lr_timeout = timeout;
3459 : }
3460 0 : elr->lr_next_sched = jiffies + elr->lr_timeout;
3461 0 : elr->lr_next_group = group + 1;
3462 : }
3463 : return ret;
3464 : }
3465 :
3466 : /*
3467 : * Remove lr_request from the list_request and free the
3468 : * request structure. Should be called with li_list_mtx held
3469 : */
3470 0 : static void ext4_remove_li_request(struct ext4_li_request *elr)
3471 : {
3472 0 : if (!elr)
3473 : return;
3474 :
3475 0 : list_del(&elr->lr_request);
3476 0 : EXT4_SB(elr->lr_super)->s_li_request = NULL;
3477 0 : kfree(elr);
3478 : }
3479 :
3480 0 : static void ext4_unregister_li_request(struct super_block *sb)
3481 : {
3482 0 : mutex_lock(&ext4_li_mtx);
3483 0 : if (!ext4_li_info) {
3484 0 : mutex_unlock(&ext4_li_mtx);
3485 0 : return;
3486 : }
3487 :
3488 0 : mutex_lock(&ext4_li_info->li_list_mtx);
3489 0 : ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3490 0 : mutex_unlock(&ext4_li_info->li_list_mtx);
3491 0 : mutex_unlock(&ext4_li_mtx);
3492 : }
3493 :
3494 : static struct task_struct *ext4_lazyinit_task;
3495 :
3496 : /*
3497 : * This is the function where ext4lazyinit thread lives. It walks
3498 : * through the request list searching for next scheduled filesystem.
3499 : * When such a fs is found, run the lazy initialization request
3500 : * (ext4_rn_li_request) and keep track of the time spend in this
3501 : * function. Based on that time we compute next schedule time of
3502 : * the request. When walking through the list is complete, compute
3503 : * next waking time and put itself into sleep.
3504 : */
3505 0 : static int ext4_lazyinit_thread(void *arg)
3506 : {
3507 0 : struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3508 0 : struct list_head *pos, *n;
3509 0 : struct ext4_li_request *elr;
3510 0 : unsigned long next_wakeup, cur;
3511 :
3512 0 : BUG_ON(NULL == eli);
3513 :
3514 0 : cont_thread:
3515 0 : while (true) {
3516 0 : next_wakeup = MAX_JIFFY_OFFSET;
3517 :
3518 0 : mutex_lock(&eli->li_list_mtx);
3519 0 : if (list_empty(&eli->li_request_list)) {
3520 0 : mutex_unlock(&eli->li_list_mtx);
3521 0 : goto exit_thread;
3522 : }
3523 0 : list_for_each_safe(pos, n, &eli->li_request_list) {
3524 0 : int err = 0;
3525 0 : int progress = 0;
3526 0 : elr = list_entry(pos, struct ext4_li_request,
3527 : lr_request);
3528 :
3529 0 : if (time_before(jiffies, elr->lr_next_sched)) {
3530 0 : if (time_before(elr->lr_next_sched, next_wakeup))
3531 0 : next_wakeup = elr->lr_next_sched;
3532 0 : continue;
3533 : }
3534 0 : if (down_read_trylock(&elr->lr_super->s_umount)) {
3535 0 : if (sb_start_write_trylock(elr->lr_super)) {
3536 0 : progress = 1;
3537 : /*
3538 : * We hold sb->s_umount, sb can not
3539 : * be removed from the list, it is
3540 : * now safe to drop li_list_mtx
3541 : */
3542 0 : mutex_unlock(&eli->li_list_mtx);
3543 0 : err = ext4_run_li_request(elr);
3544 0 : sb_end_write(elr->lr_super);
3545 0 : mutex_lock(&eli->li_list_mtx);
3546 0 : n = pos->next;
3547 : }
3548 0 : up_read((&elr->lr_super->s_umount));
3549 : }
3550 : /* error, remove the lazy_init job */
3551 0 : if (err) {
3552 0 : ext4_remove_li_request(elr);
3553 0 : continue;
3554 : }
3555 0 : if (!progress) {
3556 0 : elr->lr_next_sched = jiffies +
3557 0 : (prandom_u32()
3558 0 : % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3559 : }
3560 0 : if (time_before(elr->lr_next_sched, next_wakeup))
3561 0 : next_wakeup = elr->lr_next_sched;
3562 : }
3563 0 : mutex_unlock(&eli->li_list_mtx);
3564 :
3565 0 : try_to_freeze();
3566 :
3567 0 : cur = jiffies;
3568 0 : if ((time_after_eq(cur, next_wakeup)) ||
3569 : (MAX_JIFFY_OFFSET == next_wakeup)) {
3570 0 : cond_resched();
3571 0 : continue;
3572 : }
3573 :
3574 0 : schedule_timeout_interruptible(next_wakeup - cur);
3575 :
3576 0 : if (kthread_should_stop()) {
3577 0 : ext4_clear_request_list();
3578 0 : goto exit_thread;
3579 : }
3580 : }
3581 :
3582 0 : exit_thread:
3583 : /*
3584 : * It looks like the request list is empty, but we need
3585 : * to check it under the li_list_mtx lock, to prevent any
3586 : * additions into it, and of course we should lock ext4_li_mtx
3587 : * to atomically free the list and ext4_li_info, because at
3588 : * this point another ext4 filesystem could be registering
3589 : * new one.
3590 : */
3591 0 : mutex_lock(&ext4_li_mtx);
3592 0 : mutex_lock(&eli->li_list_mtx);
3593 0 : if (!list_empty(&eli->li_request_list)) {
3594 0 : mutex_unlock(&eli->li_list_mtx);
3595 0 : mutex_unlock(&ext4_li_mtx);
3596 0 : goto cont_thread;
3597 : }
3598 0 : mutex_unlock(&eli->li_list_mtx);
3599 0 : kfree(ext4_li_info);
3600 0 : ext4_li_info = NULL;
3601 0 : mutex_unlock(&ext4_li_mtx);
3602 :
3603 0 : return 0;
3604 : }
3605 :
3606 0 : static void ext4_clear_request_list(void)
3607 : {
3608 0 : struct list_head *pos, *n;
3609 0 : struct ext4_li_request *elr;
3610 :
3611 0 : mutex_lock(&ext4_li_info->li_list_mtx);
3612 0 : list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3613 0 : elr = list_entry(pos, struct ext4_li_request,
3614 : lr_request);
3615 0 : ext4_remove_li_request(elr);
3616 : }
3617 0 : mutex_unlock(&ext4_li_info->li_list_mtx);
3618 0 : }
3619 :
3620 0 : static int ext4_run_lazyinit_thread(void)
3621 : {
3622 0 : ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3623 : ext4_li_info, "ext4lazyinit");
3624 0 : if (IS_ERR(ext4_lazyinit_task)) {
3625 0 : int err = PTR_ERR(ext4_lazyinit_task);
3626 0 : ext4_clear_request_list();
3627 0 : kfree(ext4_li_info);
3628 0 : ext4_li_info = NULL;
3629 0 : printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3630 : "initialization thread\n",
3631 : err);
3632 0 : return err;
3633 : }
3634 0 : ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3635 0 : return 0;
3636 : }
3637 :
3638 : /*
3639 : * Check whether it make sense to run itable init. thread or not.
3640 : * If there is at least one uninitialized inode table, return
3641 : * corresponding group number, else the loop goes through all
3642 : * groups and return total number of groups.
3643 : */
3644 1 : static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3645 : {
3646 1 : ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3647 1 : struct ext4_group_desc *gdp = NULL;
3648 :
3649 1 : if (!ext4_has_group_desc_csum(sb))
3650 : return ngroups;
3651 :
3652 17 : for (group = 0; group < ngroups; group++) {
3653 16 : gdp = ext4_get_group_desc(sb, group, NULL);
3654 16 : if (!gdp)
3655 0 : continue;
3656 :
3657 16 : if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3658 : break;
3659 : }
3660 :
3661 : return group;
3662 : }
3663 :
3664 0 : static int ext4_li_info_new(void)
3665 : {
3666 0 : struct ext4_lazy_init *eli = NULL;
3667 :
3668 0 : eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3669 0 : if (!eli)
3670 : return -ENOMEM;
3671 :
3672 0 : INIT_LIST_HEAD(&eli->li_request_list);
3673 0 : mutex_init(&eli->li_list_mtx);
3674 :
3675 0 : eli->li_state |= EXT4_LAZYINIT_QUIT;
3676 :
3677 0 : ext4_li_info = eli;
3678 :
3679 0 : return 0;
3680 : }
3681 :
3682 0 : static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3683 : ext4_group_t start)
3684 : {
3685 0 : struct ext4_li_request *elr;
3686 :
3687 0 : elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3688 0 : if (!elr)
3689 : return NULL;
3690 :
3691 0 : elr->lr_super = sb;
3692 0 : elr->lr_first_not_zeroed = start;
3693 0 : if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3694 0 : elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3695 : else {
3696 0 : elr->lr_mode = EXT4_LI_MODE_ITABLE;
3697 0 : elr->lr_next_group = start;
3698 : }
3699 :
3700 : /*
3701 : * Randomize first schedule time of the request to
3702 : * spread the inode table initialization requests
3703 : * better.
3704 : */
3705 0 : elr->lr_next_sched = jiffies + (prandom_u32() %
3706 : (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3707 0 : return elr;
3708 : }
3709 :
3710 2 : int ext4_register_li_request(struct super_block *sb,
3711 : ext4_group_t first_not_zeroed)
3712 : {
3713 2 : struct ext4_sb_info *sbi = EXT4_SB(sb);
3714 2 : struct ext4_li_request *elr = NULL;
3715 2 : ext4_group_t ngroups = sbi->s_groups_count;
3716 2 : int ret = 0;
3717 :
3718 2 : mutex_lock(&ext4_li_mtx);
3719 2 : if (sbi->s_li_request != NULL) {
3720 : /*
3721 : * Reset timeout so it can be computed again, because
3722 : * s_li_wait_mult might have changed.
3723 : */
3724 0 : sbi->s_li_request->lr_timeout = 0;
3725 0 : goto out;
3726 : }
3727 :
3728 2 : if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3729 0 : (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3730 0 : !test_opt(sb, INIT_INODE_TABLE)))
3731 2 : goto out;
3732 :
3733 0 : elr = ext4_li_request_new(sb, first_not_zeroed);
3734 0 : if (!elr) {
3735 0 : ret = -ENOMEM;
3736 0 : goto out;
3737 : }
3738 :
3739 0 : if (NULL == ext4_li_info) {
3740 0 : ret = ext4_li_info_new();
3741 0 : if (ret)
3742 0 : goto out;
3743 : }
3744 :
3745 0 : mutex_lock(&ext4_li_info->li_list_mtx);
3746 0 : list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3747 0 : mutex_unlock(&ext4_li_info->li_list_mtx);
3748 :
3749 0 : sbi->s_li_request = elr;
3750 : /*
3751 : * set elr to NULL here since it has been inserted to
3752 : * the request_list and the removal and free of it is
3753 : * handled by ext4_clear_request_list from now on.
3754 : */
3755 0 : elr = NULL;
3756 :
3757 0 : if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3758 0 : ret = ext4_run_lazyinit_thread();
3759 0 : if (ret)
3760 0 : goto out;
3761 : }
3762 0 : out:
3763 2 : mutex_unlock(&ext4_li_mtx);
3764 2 : if (ret)
3765 0 : kfree(elr);
3766 2 : return ret;
3767 : }
3768 :
3769 : /*
3770 : * We do not need to lock anything since this is called on
3771 : * module unload.
3772 : */
3773 0 : static void ext4_destroy_lazyinit_thread(void)
3774 : {
3775 : /*
3776 : * If thread exited earlier
3777 : * there's nothing to be done.
3778 : */
3779 0 : if (!ext4_li_info || !ext4_lazyinit_task)
3780 : return;
3781 :
3782 0 : kthread_stop(ext4_lazyinit_task);
3783 : }
3784 :
3785 1 : static int set_journal_csum_feature_set(struct super_block *sb)
3786 : {
3787 1 : int ret = 1;
3788 1 : int compat, incompat;
3789 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
3790 :
3791 1 : if (ext4_has_metadata_csum(sb)) {
3792 : /* journal checksum v3 */
3793 : compat = 0;
3794 : incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3795 : } else {
3796 : /* journal checksum v1 */
3797 1 : compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3798 1 : incompat = 0;
3799 : }
3800 :
3801 1 : jbd2_journal_clear_features(sbi->s_journal,
3802 : JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3803 : JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3804 : JBD2_FEATURE_INCOMPAT_CSUM_V2);
3805 1 : if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3806 0 : ret = jbd2_journal_set_features(sbi->s_journal,
3807 : compat, 0,
3808 0 : JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3809 : incompat);
3810 1 : } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3811 0 : ret = jbd2_journal_set_features(sbi->s_journal,
3812 : compat, 0,
3813 : incompat);
3814 0 : jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3815 : JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3816 : } else {
3817 1 : jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3818 : JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3819 : }
3820 :
3821 1 : return ret;
3822 : }
3823 :
3824 : /*
3825 : * Note: calculating the overhead so we can be compatible with
3826 : * historical BSD practice is quite difficult in the face of
3827 : * clusters/bigalloc. This is because multiple metadata blocks from
3828 : * different block group can end up in the same allocation cluster.
3829 : * Calculating the exact overhead in the face of clustered allocation
3830 : * requires either O(all block bitmaps) in memory or O(number of block
3831 : * groups**2) in time. We will still calculate the superblock for
3832 : * older file systems --- and if we come across with a bigalloc file
3833 : * system with zero in s_overhead_clusters the estimate will be close to
3834 : * correct especially for very large cluster sizes --- but for newer
3835 : * file systems, it's better to calculate this figure once at mkfs
3836 : * time, and store it in the superblock. If the superblock value is
3837 : * present (even for non-bigalloc file systems), we will use it.
3838 : */
3839 16 : static int count_overhead(struct super_block *sb, ext4_group_t grp,
3840 : char *buf)
3841 : {
3842 16 : struct ext4_sb_info *sbi = EXT4_SB(sb);
3843 16 : struct ext4_group_desc *gdp;
3844 16 : ext4_fsblk_t first_block, last_block, b;
3845 16 : ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3846 16 : int s, j, count = 0;
3847 :
3848 16 : if (!ext4_has_feature_bigalloc(sb))
3849 16 : return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3850 16 : sbi->s_itb_per_group + 2);
3851 :
3852 0 : first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3853 0 : (grp * EXT4_BLOCKS_PER_GROUP(sb));
3854 0 : last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3855 0 : for (i = 0; i < ngroups; i++) {
3856 0 : gdp = ext4_get_group_desc(sb, i, NULL);
3857 0 : b = ext4_block_bitmap(sb, gdp);
3858 0 : if (b >= first_block && b <= last_block) {
3859 0 : ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3860 0 : count++;
3861 : }
3862 0 : b = ext4_inode_bitmap(sb, gdp);
3863 0 : if (b >= first_block && b <= last_block) {
3864 0 : ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3865 0 : count++;
3866 : }
3867 0 : b = ext4_inode_table(sb, gdp);
3868 0 : if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3869 0 : for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3870 0 : int c = EXT4_B2C(sbi, b - first_block);
3871 0 : ext4_set_bit(c, buf);
3872 0 : count++;
3873 : }
3874 0 : if (i != grp)
3875 0 : continue;
3876 0 : s = 0;
3877 0 : if (ext4_bg_has_super(sb, grp)) {
3878 0 : ext4_set_bit(s++, buf);
3879 0 : count++;
3880 : }
3881 0 : j = ext4_bg_num_gdb(sb, grp);
3882 0 : if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3883 0 : ext4_error(sb, "Invalid number of block group "
3884 : "descriptor blocks: %d", j);
3885 0 : j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3886 : }
3887 0 : count += j;
3888 0 : for (; j > 0; j--)
3889 0 : ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3890 : }
3891 0 : if (!count)
3892 : return 0;
3893 0 : return EXT4_CLUSTERS_PER_GROUP(sb) -
3894 0 : ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3895 : }
3896 :
3897 : /*
3898 : * Compute the overhead and stash it in sbi->s_overhead
3899 : */
3900 1 : int ext4_calculate_overhead(struct super_block *sb)
3901 : {
3902 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
3903 1 : struct ext4_super_block *es = sbi->s_es;
3904 1 : struct inode *j_inode;
3905 1 : unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3906 1 : ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3907 1 : ext4_fsblk_t overhead = 0;
3908 1 : char *buf = (char *) get_zeroed_page(GFP_NOFS);
3909 :
3910 1 : if (!buf)
3911 : return -ENOMEM;
3912 :
3913 : /*
3914 : * Compute the overhead (FS structures). This is constant
3915 : * for a given filesystem unless the number of block groups
3916 : * changes so we cache the previous value until it does.
3917 : */
3918 :
3919 : /*
3920 : * All of the blocks before first_data_block are overhead
3921 : */
3922 1 : overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3923 :
3924 : /*
3925 : * Add the overhead found in each block group
3926 : */
3927 17 : for (i = 0; i < ngroups; i++) {
3928 16 : int blks;
3929 :
3930 16 : blks = count_overhead(sb, i, buf);
3931 16 : overhead += blks;
3932 16 : if (blks)
3933 16 : memset(buf, 0, PAGE_SIZE);
3934 16 : cond_resched();
3935 : }
3936 :
3937 : /*
3938 : * Add the internal journal blocks whether the journal has been
3939 : * loaded or not
3940 : */
3941 1 : if (sbi->s_journal && !sbi->s_journal_bdev)
3942 1 : overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3943 0 : else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3944 : /* j_inum for internal journal is non-zero */
3945 0 : j_inode = ext4_get_journal_inode(sb, j_inum);
3946 0 : if (j_inode) {
3947 0 : j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3948 0 : overhead += EXT4_NUM_B2C(sbi, j_blocks);
3949 0 : iput(j_inode);
3950 : } else {
3951 0 : ext4_msg(sb, KERN_ERR, "can't get journal size");
3952 : }
3953 : }
3954 1 : sbi->s_overhead = overhead;
3955 1 : smp_wmb();
3956 1 : free_page((unsigned long) buf);
3957 1 : return 0;
3958 : }
3959 :
3960 1 : static void ext4_set_resv_clusters(struct super_block *sb)
3961 : {
3962 1 : ext4_fsblk_t resv_clusters;
3963 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
3964 :
3965 : /*
3966 : * There's no need to reserve anything when we aren't using extents.
3967 : * The space estimates are exact, there are no unwritten extents,
3968 : * hole punching doesn't need new metadata... This is needed especially
3969 : * to keep ext2/3 backward compatibility.
3970 : */
3971 1 : if (!ext4_has_feature_extents(sb))
3972 : return;
3973 : /*
3974 : * By default we reserve 2% or 4096 clusters, whichever is smaller.
3975 : * This should cover the situations where we can not afford to run
3976 : * out of space like for example punch hole, or converting
3977 : * unwritten extents in delalloc path. In most cases such
3978 : * allocation would require 1, or 2 blocks, higher numbers are
3979 : * very rare.
3980 : */
3981 1 : resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3982 1 : sbi->s_cluster_bits);
3983 :
3984 1 : do_div(resv_clusters, 50);
3985 1 : resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3986 :
3987 1 : atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3988 : }
3989 :
3990 2 : static const char *ext4_quota_mode(struct super_block *sb)
3991 : {
3992 : #ifdef CONFIG_QUOTA
3993 : if (!ext4_quota_capable(sb))
3994 : return "none";
3995 :
3996 : if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3997 : return "journalled";
3998 : else
3999 : return "writeback";
4000 : #else
4001 2 : return "disabled";
4002 : #endif
4003 : }
4004 :
4005 2 : static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4006 : {
4007 2 : struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4008 2 : char *orig_data = kstrdup(data, GFP_KERNEL);
4009 2 : struct buffer_head *bh, **group_desc;
4010 2 : struct ext4_super_block *es = NULL;
4011 2 : struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4012 2 : struct flex_groups **flex_groups;
4013 2 : ext4_fsblk_t block;
4014 2 : ext4_fsblk_t sb_block = get_sb_block(&data);
4015 2 : ext4_fsblk_t logical_sb_block;
4016 2 : unsigned long offset = 0;
4017 2 : unsigned long journal_devnum = 0;
4018 2 : unsigned long def_mount_opts;
4019 2 : struct inode *root;
4020 2 : const char *descr;
4021 2 : int ret = -ENOMEM;
4022 2 : int blocksize, clustersize;
4023 2 : unsigned int db_count;
4024 2 : unsigned int i;
4025 2 : int needs_recovery, has_huge_files;
4026 2 : __u64 blocks_count;
4027 2 : int err = 0;
4028 2 : unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4029 2 : ext4_group_t first_not_zeroed;
4030 :
4031 2 : if ((data && !orig_data) || !sbi)
4032 0 : goto out_free_base;
4033 :
4034 2 : sbi->s_daxdev = dax_dev;
4035 4 : sbi->s_blockgroup_lock =
4036 2 : kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4037 2 : if (!sbi->s_blockgroup_lock)
4038 0 : goto out_free_base;
4039 :
4040 2 : sb->s_fs_info = sbi;
4041 2 : sbi->s_sb = sb;
4042 2 : sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4043 2 : sbi->s_sb_block = sb_block;
4044 4 : sbi->s_sectors_written_start =
4045 10 : part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4046 :
4047 : /* Cleanup superblock name */
4048 2 : strreplace(sb->s_id, '/', '!');
4049 :
4050 : /* -EINVAL is default */
4051 2 : ret = -EINVAL;
4052 2 : blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4053 2 : if (!blocksize) {
4054 0 : ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4055 0 : goto out_fail;
4056 : }
4057 :
4058 : /*
4059 : * The ext4 superblock will not be buffer aligned for other than 1kB
4060 : * block sizes. We need to calculate the offset from buffer start.
4061 : */
4062 2 : if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4063 0 : logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4064 0 : offset = do_div(logical_sb_block, blocksize);
4065 : } else {
4066 : logical_sb_block = sb_block;
4067 : }
4068 :
4069 2 : bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4070 2 : if (IS_ERR(bh)) {
4071 0 : ext4_msg(sb, KERN_ERR, "unable to read superblock");
4072 0 : ret = PTR_ERR(bh);
4073 0 : goto out_fail;
4074 : }
4075 : /*
4076 : * Note: s_es must be initialized as soon as possible because
4077 : * some ext4 macro-instructions depend on its value
4078 : */
4079 2 : es = (struct ext4_super_block *) (bh->b_data + offset);
4080 2 : sbi->s_es = es;
4081 2 : sb->s_magic = le16_to_cpu(es->s_magic);
4082 2 : if (sb->s_magic != EXT4_SUPER_MAGIC)
4083 0 : goto cantfind_ext4;
4084 2 : sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4085 :
4086 : /* Warn if metadata_csum and gdt_csum are both set. */
4087 2 : if (ext4_has_feature_metadata_csum(sb) &&
4088 0 : ext4_has_feature_gdt_csum(sb))
4089 0 : ext4_warning(sb, "metadata_csum and uninit_bg are "
4090 : "redundant flags; please run fsck.");
4091 :
4092 : /* Check for a known checksum algorithm */
4093 2 : if (!ext4_verify_csum_type(sb, es)) {
4094 0 : ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4095 : "unknown checksum algorithm.");
4096 0 : silent = 1;
4097 0 : goto cantfind_ext4;
4098 : }
4099 :
4100 : /* Load the checksum driver */
4101 2 : sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4102 2 : if (IS_ERR(sbi->s_chksum_driver)) {
4103 0 : ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4104 0 : ret = PTR_ERR(sbi->s_chksum_driver);
4105 0 : sbi->s_chksum_driver = NULL;
4106 0 : goto failed_mount;
4107 : }
4108 :
4109 : /* Check superblock checksum */
4110 2 : if (!ext4_superblock_csum_verify(sb, es)) {
4111 0 : ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4112 : "invalid superblock checksum. Run e2fsck?");
4113 0 : silent = 1;
4114 0 : ret = -EFSBADCRC;
4115 0 : goto cantfind_ext4;
4116 : }
4117 :
4118 : /* Precompute checksum seed for all metadata */
4119 2 : if (ext4_has_feature_csum_seed(sb))
4120 0 : sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4121 2 : else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4122 0 : sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4123 : sizeof(es->s_uuid));
4124 :
4125 : /* Set defaults before we parse the mount options */
4126 2 : def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4127 2 : set_opt(sb, INIT_INODE_TABLE);
4128 2 : if (def_mount_opts & EXT4_DEFM_DEBUG)
4129 0 : set_opt(sb, DEBUG);
4130 2 : if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4131 0 : set_opt(sb, GRPID);
4132 2 : if (def_mount_opts & EXT4_DEFM_UID16)
4133 0 : set_opt(sb, NO_UID32);
4134 : /* xattr user namespace & acls are now defaulted on */
4135 2 : set_opt(sb, XATTR_USER);
4136 : #ifdef CONFIG_EXT4_FS_POSIX_ACL
4137 : set_opt(sb, POSIX_ACL);
4138 : #endif
4139 2 : if (ext4_has_feature_fast_commit(sb))
4140 0 : set_opt2(sb, JOURNAL_FAST_COMMIT);
4141 : /* don't forget to enable journal_csum when metadata_csum is enabled. */
4142 2 : if (ext4_has_metadata_csum(sb))
4143 0 : set_opt(sb, JOURNAL_CHECKSUM);
4144 :
4145 2 : if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4146 0 : set_opt(sb, JOURNAL_DATA);
4147 2 : else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4148 0 : set_opt(sb, ORDERED_DATA);
4149 2 : else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4150 0 : set_opt(sb, WRITEBACK_DATA);
4151 :
4152 2 : if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4153 0 : set_opt(sb, ERRORS_PANIC);
4154 2 : else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4155 2 : set_opt(sb, ERRORS_CONT);
4156 : else
4157 0 : set_opt(sb, ERRORS_RO);
4158 : /* block_validity enabled by default; disable with noblock_validity */
4159 2 : set_opt(sb, BLOCK_VALIDITY);
4160 2 : if (def_mount_opts & EXT4_DEFM_DISCARD)
4161 0 : set_opt(sb, DISCARD);
4162 :
4163 2 : sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4164 2 : sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4165 2 : sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4166 2 : sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4167 2 : sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4168 :
4169 2 : if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4170 2 : set_opt(sb, BARRIER);
4171 :
4172 : /*
4173 : * enable delayed allocation by default
4174 : * Use -o nodelalloc to turn it off
4175 : */
4176 2 : if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4177 : ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4178 1 : set_opt(sb, DELALLOC);
4179 :
4180 : /*
4181 : * set default s_li_wait_mult for lazyinit, for the case there is
4182 : * no mount option specified.
4183 : */
4184 2 : sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4185 :
4186 2 : if (le32_to_cpu(es->s_log_block_size) >
4187 : (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4188 0 : ext4_msg(sb, KERN_ERR,
4189 : "Invalid log block size: %u",
4190 : le32_to_cpu(es->s_log_block_size));
4191 0 : goto failed_mount;
4192 : }
4193 2 : if (le32_to_cpu(es->s_log_cluster_size) >
4194 : (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4195 0 : ext4_msg(sb, KERN_ERR,
4196 : "Invalid log cluster size: %u",
4197 : le32_to_cpu(es->s_log_cluster_size));
4198 0 : goto failed_mount;
4199 : }
4200 :
4201 2 : blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4202 :
4203 2 : if (blocksize == PAGE_SIZE)
4204 2 : set_opt(sb, DIOREAD_NOLOCK);
4205 :
4206 2 : if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4207 0 : sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4208 0 : sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4209 : } else {
4210 2 : sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4211 2 : sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4212 2 : if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4213 0 : ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4214 : sbi->s_first_ino);
4215 0 : goto failed_mount;
4216 : }
4217 2 : if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4218 2 : (!is_power_of_2(sbi->s_inode_size)) ||
4219 : (sbi->s_inode_size > blocksize)) {
4220 0 : ext4_msg(sb, KERN_ERR,
4221 : "unsupported inode size: %d",
4222 : sbi->s_inode_size);
4223 0 : ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4224 0 : goto failed_mount;
4225 : }
4226 : /*
4227 : * i_atime_extra is the last extra field available for
4228 : * [acm]times in struct ext4_inode. Checking for that
4229 : * field should suffice to ensure we have extra space
4230 : * for all three.
4231 : */
4232 2 : if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4233 : sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4234 2 : sb->s_time_gran = 1;
4235 2 : sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4236 : } else {
4237 0 : sb->s_time_gran = NSEC_PER_SEC;
4238 0 : sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4239 : }
4240 2 : sb->s_time_min = EXT4_TIMESTAMP_MIN;
4241 : }
4242 2 : if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4243 2 : sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4244 : EXT4_GOOD_OLD_INODE_SIZE;
4245 2 : if (ext4_has_feature_extra_isize(sb)) {
4246 2 : unsigned v, max = (sbi->s_inode_size -
4247 : EXT4_GOOD_OLD_INODE_SIZE);
4248 :
4249 2 : v = le16_to_cpu(es->s_want_extra_isize);
4250 2 : if (v > max) {
4251 0 : ext4_msg(sb, KERN_ERR,
4252 : "bad s_want_extra_isize: %d", v);
4253 0 : goto failed_mount;
4254 : }
4255 2 : if (sbi->s_want_extra_isize < v)
4256 0 : sbi->s_want_extra_isize = v;
4257 :
4258 2 : v = le16_to_cpu(es->s_min_extra_isize);
4259 2 : if (v > max) {
4260 0 : ext4_msg(sb, KERN_ERR,
4261 : "bad s_min_extra_isize: %d", v);
4262 0 : goto failed_mount;
4263 : }
4264 2 : if (sbi->s_want_extra_isize < v)
4265 0 : sbi->s_want_extra_isize = v;
4266 : }
4267 : }
4268 :
4269 2 : if (sbi->s_es->s_mount_opts[0]) {
4270 0 : char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4271 : sizeof(sbi->s_es->s_mount_opts),
4272 : GFP_KERNEL);
4273 0 : if (!s_mount_opts)
4274 0 : goto failed_mount;
4275 0 : if (!parse_options(s_mount_opts, sb, &journal_devnum,
4276 : &journal_ioprio, 0)) {
4277 0 : ext4_msg(sb, KERN_WARNING,
4278 : "failed to parse options in superblock: %s",
4279 : s_mount_opts);
4280 : }
4281 0 : kfree(s_mount_opts);
4282 : }
4283 2 : sbi->s_def_mount_opt = sbi->s_mount_opt;
4284 2 : if (!parse_options((char *) data, sb, &journal_devnum,
4285 : &journal_ioprio, 0))
4286 0 : goto failed_mount;
4287 :
4288 : #ifdef CONFIG_UNICODE
4289 : if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4290 : const struct ext4_sb_encodings *encoding_info;
4291 : struct unicode_map *encoding;
4292 : __u16 encoding_flags;
4293 :
4294 : if (ext4_has_feature_encrypt(sb)) {
4295 : ext4_msg(sb, KERN_ERR,
4296 : "Can't mount with encoding and encryption");
4297 : goto failed_mount;
4298 : }
4299 :
4300 : if (ext4_sb_read_encoding(es, &encoding_info,
4301 : &encoding_flags)) {
4302 : ext4_msg(sb, KERN_ERR,
4303 : "Encoding requested by superblock is unknown");
4304 : goto failed_mount;
4305 : }
4306 :
4307 : encoding = utf8_load(encoding_info->version);
4308 : if (IS_ERR(encoding)) {
4309 : ext4_msg(sb, KERN_ERR,
4310 : "can't mount with superblock charset: %s-%s "
4311 : "not supported by the kernel. flags: 0x%x.",
4312 : encoding_info->name, encoding_info->version,
4313 : encoding_flags);
4314 : goto failed_mount;
4315 : }
4316 : ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4317 : "%s-%s with flags 0x%hx", encoding_info->name,
4318 : encoding_info->version?:"\b", encoding_flags);
4319 :
4320 : sb->s_encoding = encoding;
4321 : sb->s_encoding_flags = encoding_flags;
4322 : }
4323 : #endif
4324 :
4325 2 : if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4326 0 : printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4327 : /* can't mount with both data=journal and dioread_nolock. */
4328 0 : clear_opt(sb, DIOREAD_NOLOCK);
4329 0 : clear_opt2(sb, JOURNAL_FAST_COMMIT);
4330 0 : if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4331 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
4332 : "both data=journal and delalloc");
4333 0 : goto failed_mount;
4334 : }
4335 0 : if (test_opt(sb, DAX_ALWAYS)) {
4336 : ext4_msg(sb, KERN_ERR, "can't mount with "
4337 : "both data=journal and dax");
4338 : goto failed_mount;
4339 : }
4340 0 : if (ext4_has_feature_encrypt(sb)) {
4341 0 : ext4_msg(sb, KERN_WARNING,
4342 : "encrypted files will use data=ordered "
4343 : "instead of data journaling mode");
4344 : }
4345 0 : if (test_opt(sb, DELALLOC))
4346 0 : clear_opt(sb, DELALLOC);
4347 : } else {
4348 2 : sb->s_iflags |= SB_I_CGROUPWB;
4349 : }
4350 :
4351 2 : sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4352 2 : (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4353 :
4354 2 : if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4355 0 : (ext4_has_compat_features(sb) ||
4356 0 : ext4_has_ro_compat_features(sb) ||
4357 0 : ext4_has_incompat_features(sb)))
4358 0 : ext4_msg(sb, KERN_WARNING,
4359 : "feature flags set on rev 0 fs, "
4360 : "running e2fsck is recommended");
4361 :
4362 2 : if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4363 0 : set_opt2(sb, HURD_COMPAT);
4364 0 : if (ext4_has_feature_64bit(sb)) {
4365 0 : ext4_msg(sb, KERN_ERR,
4366 : "The Hurd can't support 64-bit file systems");
4367 0 : goto failed_mount;
4368 : }
4369 :
4370 : /*
4371 : * ea_inode feature uses l_i_version field which is not
4372 : * available in HURD_COMPAT mode.
4373 : */
4374 0 : if (ext4_has_feature_ea_inode(sb)) {
4375 0 : ext4_msg(sb, KERN_ERR,
4376 : "ea_inode feature is not supported for Hurd");
4377 0 : goto failed_mount;
4378 : }
4379 : }
4380 :
4381 2 : if (IS_EXT2_SB(sb)) {
4382 : if (ext2_feature_set_ok(sb))
4383 : ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4384 : "using the ext4 subsystem");
4385 : else {
4386 : /*
4387 : * If we're probing be silent, if this looks like
4388 : * it's actually an ext[34] filesystem.
4389 : */
4390 : if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4391 : goto failed_mount;
4392 : ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4393 : "to feature incompatibilities");
4394 : goto failed_mount;
4395 : }
4396 : }
4397 :
4398 2 : if (IS_EXT3_SB(sb)) {
4399 1 : if (ext3_feature_set_ok(sb))
4400 0 : ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4401 : "using the ext4 subsystem");
4402 : else {
4403 : /*
4404 : * If we're probing be silent, if this looks like
4405 : * it's actually an ext4 filesystem.
4406 : */
4407 1 : if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4408 1 : goto failed_mount;
4409 0 : ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4410 : "to feature incompatibilities");
4411 0 : goto failed_mount;
4412 : }
4413 : }
4414 :
4415 : /*
4416 : * Check feature flags regardless of the revision level, since we
4417 : * previously didn't change the revision level when setting the flags,
4418 : * so there is a chance incompat flags are set on a rev 0 filesystem.
4419 : */
4420 1 : if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4421 0 : goto failed_mount;
4422 :
4423 1 : if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4424 0 : ext4_msg(sb, KERN_ERR,
4425 : "Number of reserved GDT blocks insanely large: %d",
4426 : le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4427 0 : goto failed_mount;
4428 : }
4429 :
4430 1 : if (bdev_dax_supported(sb->s_bdev, blocksize))
4431 : set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4432 :
4433 1 : if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4434 : if (ext4_has_feature_inline_data(sb)) {
4435 : ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4436 : " that may contain inline data");
4437 : goto failed_mount;
4438 : }
4439 : if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4440 : ext4_msg(sb, KERN_ERR,
4441 : "DAX unsupported by block device.");
4442 : goto failed_mount;
4443 : }
4444 : }
4445 :
4446 1 : if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4447 0 : ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4448 : es->s_encryption_level);
4449 0 : goto failed_mount;
4450 : }
4451 :
4452 1 : if (sb->s_blocksize != blocksize) {
4453 : /* Validate the filesystem blocksize */
4454 1 : if (!sb_set_blocksize(sb, blocksize)) {
4455 0 : ext4_msg(sb, KERN_ERR, "bad block size %d",
4456 : blocksize);
4457 0 : goto failed_mount;
4458 : }
4459 :
4460 1 : brelse(bh);
4461 1 : logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4462 1 : offset = do_div(logical_sb_block, blocksize);
4463 1 : bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4464 1 : if (IS_ERR(bh)) {
4465 0 : ext4_msg(sb, KERN_ERR,
4466 : "Can't read superblock on 2nd try");
4467 0 : ret = PTR_ERR(bh);
4468 0 : bh = NULL;
4469 0 : goto failed_mount;
4470 : }
4471 1 : es = (struct ext4_super_block *)(bh->b_data + offset);
4472 1 : sbi->s_es = es;
4473 1 : if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4474 0 : ext4_msg(sb, KERN_ERR,
4475 : "Magic mismatch, very weird!");
4476 0 : goto failed_mount;
4477 : }
4478 : }
4479 :
4480 1 : has_huge_files = ext4_has_feature_huge_file(sb);
4481 1 : sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4482 : has_huge_files);
4483 1 : sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4484 :
4485 1 : sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4486 1 : if (ext4_has_feature_64bit(sb)) {
4487 0 : if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4488 0 : sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4489 0 : !is_power_of_2(sbi->s_desc_size)) {
4490 0 : ext4_msg(sb, KERN_ERR,
4491 : "unsupported descriptor size %lu",
4492 : sbi->s_desc_size);
4493 0 : goto failed_mount;
4494 : }
4495 : } else
4496 1 : sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4497 :
4498 1 : sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4499 1 : sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4500 :
4501 1 : sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4502 1 : if (sbi->s_inodes_per_block == 0)
4503 0 : goto cantfind_ext4;
4504 1 : if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4505 1 : sbi->s_inodes_per_group > blocksize * 8) {
4506 0 : ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4507 : sbi->s_inodes_per_group);
4508 0 : goto failed_mount;
4509 : }
4510 1 : sbi->s_itb_per_group = sbi->s_inodes_per_group /
4511 : sbi->s_inodes_per_block;
4512 1 : sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4513 1 : sbi->s_sbh = bh;
4514 1 : sbi->s_mount_state = le16_to_cpu(es->s_state);
4515 1 : sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4516 1 : sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4517 :
4518 5 : for (i = 0; i < 4; i++)
4519 4 : sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4520 1 : sbi->s_def_hash_version = es->s_def_hash_version;
4521 1 : if (ext4_has_feature_dir_index(sb)) {
4522 1 : i = le32_to_cpu(es->s_flags);
4523 1 : if (i & EXT2_FLAGS_UNSIGNED_HASH)
4524 0 : sbi->s_hash_unsigned = 3;
4525 1 : else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4526 : #ifdef __CHAR_UNSIGNED__
4527 : if (!sb_rdonly(sb))
4528 : es->s_flags |=
4529 : cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4530 : sbi->s_hash_unsigned = 3;
4531 : #else
4532 0 : if (!sb_rdonly(sb))
4533 0 : es->s_flags |=
4534 : cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4535 : #endif
4536 : }
4537 : }
4538 :
4539 : /* Handle clustersize */
4540 1 : clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4541 1 : if (ext4_has_feature_bigalloc(sb)) {
4542 0 : if (clustersize < blocksize) {
4543 0 : ext4_msg(sb, KERN_ERR,
4544 : "cluster size (%d) smaller than "
4545 : "block size (%d)", clustersize, blocksize);
4546 0 : goto failed_mount;
4547 : }
4548 0 : sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4549 0 : le32_to_cpu(es->s_log_block_size);
4550 0 : sbi->s_clusters_per_group =
4551 0 : le32_to_cpu(es->s_clusters_per_group);
4552 0 : if (sbi->s_clusters_per_group > blocksize * 8) {
4553 0 : ext4_msg(sb, KERN_ERR,
4554 : "#clusters per group too big: %lu",
4555 : sbi->s_clusters_per_group);
4556 0 : goto failed_mount;
4557 : }
4558 0 : if (sbi->s_blocks_per_group !=
4559 0 : (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4560 0 : ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4561 : "clusters per group (%lu) inconsistent",
4562 : sbi->s_blocks_per_group,
4563 : sbi->s_clusters_per_group);
4564 0 : goto failed_mount;
4565 : }
4566 : } else {
4567 1 : if (clustersize != blocksize) {
4568 0 : ext4_msg(sb, KERN_ERR,
4569 : "fragment/cluster size (%d) != "
4570 : "block size (%d)", clustersize, blocksize);
4571 0 : goto failed_mount;
4572 : }
4573 1 : if (sbi->s_blocks_per_group > blocksize * 8) {
4574 0 : ext4_msg(sb, KERN_ERR,
4575 : "#blocks per group too big: %lu",
4576 : sbi->s_blocks_per_group);
4577 0 : goto failed_mount;
4578 : }
4579 1 : sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4580 1 : sbi->s_cluster_bits = 0;
4581 : }
4582 1 : sbi->s_cluster_ratio = clustersize / blocksize;
4583 :
4584 : /* Do we have standard group size of clustersize * 8 blocks ? */
4585 1 : if (sbi->s_blocks_per_group == clustersize << 3)
4586 1 : set_opt2(sb, STD_GROUP_SIZE);
4587 :
4588 : /*
4589 : * Test whether we have more sectors than will fit in sector_t,
4590 : * and whether the max offset is addressable by the page cache.
4591 : */
4592 1 : err = generic_check_addressable(sb->s_blocksize_bits,
4593 : ext4_blocks_count(es));
4594 1 : if (err) {
4595 0 : ext4_msg(sb, KERN_ERR, "filesystem"
4596 : " too large to mount safely on this system");
4597 0 : goto failed_mount;
4598 : }
4599 :
4600 1 : if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4601 0 : goto cantfind_ext4;
4602 :
4603 : /* check blocks count against device size */
4604 1 : blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4605 2 : if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4606 0 : ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4607 : "exceeds size of device (%llu blocks)",
4608 : ext4_blocks_count(es), blocks_count);
4609 0 : goto failed_mount;
4610 : }
4611 :
4612 : /*
4613 : * It makes no sense for the first data block to be beyond the end
4614 : * of the filesystem.
4615 : */
4616 1 : if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4617 0 : ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4618 : "block %u is beyond end of filesystem (%llu)",
4619 : le32_to_cpu(es->s_first_data_block),
4620 : ext4_blocks_count(es));
4621 0 : goto failed_mount;
4622 : }
4623 1 : if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4624 0 : (sbi->s_cluster_ratio == 1)) {
4625 0 : ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4626 : "block is 0 with a 1k block and cluster size");
4627 0 : goto failed_mount;
4628 : }
4629 :
4630 1 : blocks_count = (ext4_blocks_count(es) -
4631 1 : le32_to_cpu(es->s_first_data_block) +
4632 1 : EXT4_BLOCKS_PER_GROUP(sb) - 1);
4633 1 : do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4634 1 : if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4635 0 : ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4636 : "(block count %llu, first data block %u, "
4637 : "blocks per group %lu)", blocks_count,
4638 : ext4_blocks_count(es),
4639 : le32_to_cpu(es->s_first_data_block),
4640 : EXT4_BLOCKS_PER_GROUP(sb));
4641 0 : goto failed_mount;
4642 : }
4643 1 : sbi->s_groups_count = blocks_count;
4644 1 : sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4645 : (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4646 1 : if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4647 1 : le32_to_cpu(es->s_inodes_count)) {
4648 0 : ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4649 : le32_to_cpu(es->s_inodes_count),
4650 : ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4651 0 : ret = -EINVAL;
4652 0 : goto failed_mount;
4653 : }
4654 1 : db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4655 1 : EXT4_DESC_PER_BLOCK(sb);
4656 1 : if (ext4_has_feature_meta_bg(sb)) {
4657 0 : if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4658 0 : ext4_msg(sb, KERN_WARNING,
4659 : "first meta block group too large: %u "
4660 : "(group descriptor block count %u)",
4661 : le32_to_cpu(es->s_first_meta_bg), db_count);
4662 0 : goto failed_mount;
4663 : }
4664 : }
4665 1 : rcu_assign_pointer(sbi->s_group_desc,
4666 : kvmalloc_array(db_count,
4667 : sizeof(struct buffer_head *),
4668 : GFP_KERNEL));
4669 1 : if (sbi->s_group_desc == NULL) {
4670 0 : ext4_msg(sb, KERN_ERR, "not enough memory");
4671 0 : ret = -ENOMEM;
4672 0 : goto failed_mount;
4673 : }
4674 :
4675 1 : bgl_lock_init(sbi->s_blockgroup_lock);
4676 :
4677 : /* Pre-read the descriptors into the buffer cache */
4678 3 : for (i = 0; i < db_count; i++) {
4679 1 : block = descriptor_loc(sb, logical_sb_block, i);
4680 1 : ext4_sb_breadahead_unmovable(sb, block);
4681 : }
4682 :
4683 2 : for (i = 0; i < db_count; i++) {
4684 1 : struct buffer_head *bh;
4685 :
4686 1 : block = descriptor_loc(sb, logical_sb_block, i);
4687 1 : bh = ext4_sb_bread_unmovable(sb, block);
4688 1 : if (IS_ERR(bh)) {
4689 0 : ext4_msg(sb, KERN_ERR,
4690 : "can't read group descriptor %d", i);
4691 0 : db_count = i;
4692 0 : ret = PTR_ERR(bh);
4693 0 : goto failed_mount2;
4694 : }
4695 1 : rcu_read_lock();
4696 1 : rcu_dereference(sbi->s_group_desc)[i] = bh;
4697 1 : rcu_read_unlock();
4698 : }
4699 1 : sbi->s_gdb_count = db_count;
4700 1 : if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4701 0 : ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4702 0 : ret = -EFSCORRUPTED;
4703 0 : goto failed_mount2;
4704 : }
4705 :
4706 1 : timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4707 1 : spin_lock_init(&sbi->s_error_lock);
4708 1 : INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4709 :
4710 : /* Register extent status tree shrinker */
4711 1 : if (ext4_es_register_shrinker(sbi))
4712 0 : goto failed_mount3;
4713 :
4714 1 : sbi->s_stripe = ext4_get_stripe_size(sbi);
4715 1 : sbi->s_extent_max_zeroout_kb = 32;
4716 :
4717 : /*
4718 : * set up enough so that it can read an inode
4719 : */
4720 1 : sb->s_op = &ext4_sops;
4721 1 : sb->s_export_op = &ext4_export_ops;
4722 1 : sb->s_xattr = ext4_xattr_handlers;
4723 : #ifdef CONFIG_FS_ENCRYPTION
4724 : sb->s_cop = &ext4_cryptops;
4725 : #endif
4726 : #ifdef CONFIG_FS_VERITY
4727 : sb->s_vop = &ext4_verityops;
4728 : #endif
4729 : #ifdef CONFIG_QUOTA
4730 : sb->dq_op = &ext4_quota_operations;
4731 : if (ext4_has_feature_quota(sb))
4732 : sb->s_qcop = &dquot_quotactl_sysfile_ops;
4733 : else
4734 : sb->s_qcop = &ext4_qctl_operations;
4735 : sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4736 : #endif
4737 1 : memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4738 :
4739 1 : INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4740 1 : mutex_init(&sbi->s_orphan_lock);
4741 :
4742 : /* Initialize fast commit stuff */
4743 1 : atomic_set(&sbi->s_fc_subtid, 0);
4744 1 : atomic_set(&sbi->s_fc_ineligible_updates, 0);
4745 1 : INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4746 1 : INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4747 1 : INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4748 1 : INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4749 1 : sbi->s_fc_bytes = 0;
4750 1 : ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4751 1 : ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4752 1 : spin_lock_init(&sbi->s_fc_lock);
4753 1 : memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4754 1 : sbi->s_fc_replay_state.fc_regions = NULL;
4755 1 : sbi->s_fc_replay_state.fc_regions_size = 0;
4756 1 : sbi->s_fc_replay_state.fc_regions_used = 0;
4757 1 : sbi->s_fc_replay_state.fc_regions_valid = 0;
4758 1 : sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4759 1 : sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4760 1 : sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4761 :
4762 1 : sb->s_root = NULL;
4763 :
4764 1 : needs_recovery = (es->s_last_orphan != 0 ||
4765 1 : ext4_has_feature_journal_needs_recovery(sb));
4766 :
4767 1 : if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4768 0 : if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4769 0 : goto failed_mount3a;
4770 :
4771 : /*
4772 : * The first inode we look at is the journal inode. Don't try
4773 : * root first: it may be modified in the journal!
4774 : */
4775 1 : if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4776 1 : err = ext4_load_journal(sb, es, journal_devnum);
4777 1 : if (err)
4778 0 : goto failed_mount3a;
4779 0 : } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4780 0 : ext4_has_feature_journal_needs_recovery(sb)) {
4781 0 : ext4_msg(sb, KERN_ERR, "required journal recovery "
4782 : "suppressed and not mounted read-only");
4783 0 : goto failed_mount_wq;
4784 : } else {
4785 : /* Nojournal mode, all journal mount options are illegal */
4786 0 : if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4787 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
4788 : "journal_checksum, fs mounted w/o journal");
4789 0 : goto failed_mount_wq;
4790 : }
4791 0 : if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4792 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
4793 : "journal_async_commit, fs mounted w/o journal");
4794 0 : goto failed_mount_wq;
4795 : }
4796 0 : if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4797 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
4798 : "commit=%lu, fs mounted w/o journal",
4799 : sbi->s_commit_interval / HZ);
4800 0 : goto failed_mount_wq;
4801 : }
4802 0 : if (EXT4_MOUNT_DATA_FLAGS &
4803 0 : (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4804 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
4805 : "data=, fs mounted w/o journal");
4806 0 : goto failed_mount_wq;
4807 : }
4808 0 : sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4809 0 : clear_opt(sb, JOURNAL_CHECKSUM);
4810 0 : clear_opt(sb, DATA_FLAGS);
4811 0 : clear_opt2(sb, JOURNAL_FAST_COMMIT);
4812 0 : sbi->s_journal = NULL;
4813 0 : needs_recovery = 0;
4814 0 : goto no_journal;
4815 : }
4816 :
4817 1 : if (ext4_has_feature_64bit(sb) &&
4818 0 : !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4819 : JBD2_FEATURE_INCOMPAT_64BIT)) {
4820 0 : ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4821 0 : goto failed_mount_wq;
4822 : }
4823 :
4824 1 : if (!set_journal_csum_feature_set(sb)) {
4825 0 : ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4826 : "feature set");
4827 0 : goto failed_mount_wq;
4828 : }
4829 :
4830 1 : if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4831 0 : !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4832 : JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4833 0 : ext4_msg(sb, KERN_ERR,
4834 : "Failed to set fast commit journal feature");
4835 0 : goto failed_mount_wq;
4836 : }
4837 :
4838 : /* We have now updated the journal if required, so we can
4839 : * validate the data journaling mode. */
4840 1 : switch (test_opt(sb, DATA_FLAGS)) {
4841 1 : case 0:
4842 : /* No mode set, assume a default based on the journal
4843 : * capabilities: ORDERED_DATA if the journal can
4844 : * cope, else JOURNAL_DATA
4845 : */
4846 1 : if (jbd2_journal_check_available_features
4847 1 : (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4848 1 : set_opt(sb, ORDERED_DATA);
4849 1 : sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4850 : } else {
4851 0 : set_opt(sb, JOURNAL_DATA);
4852 0 : sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4853 : }
4854 : break;
4855 :
4856 0 : case EXT4_MOUNT_ORDERED_DATA:
4857 : case EXT4_MOUNT_WRITEBACK_DATA:
4858 0 : if (!jbd2_journal_check_available_features
4859 0 : (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4860 0 : ext4_msg(sb, KERN_ERR, "Journal does not support "
4861 : "requested data journaling mode");
4862 0 : goto failed_mount_wq;
4863 : }
4864 : break;
4865 : default:
4866 : break;
4867 : }
4868 :
4869 1 : if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4870 1 : test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4871 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
4872 : "journal_async_commit in data=ordered mode");
4873 0 : goto failed_mount_wq;
4874 : }
4875 :
4876 1 : set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4877 :
4878 1 : sbi->s_journal->j_submit_inode_data_buffers =
4879 : ext4_journal_submit_inode_data_buffers;
4880 1 : sbi->s_journal->j_finish_inode_data_buffers =
4881 : ext4_journal_finish_inode_data_buffers;
4882 :
4883 1 : no_journal:
4884 1 : if (!test_opt(sb, NO_MBCACHE)) {
4885 1 : sbi->s_ea_block_cache = ext4_xattr_create_cache();
4886 1 : if (!sbi->s_ea_block_cache) {
4887 0 : ext4_msg(sb, KERN_ERR,
4888 : "Failed to create ea_block_cache");
4889 0 : goto failed_mount_wq;
4890 : }
4891 :
4892 1 : if (ext4_has_feature_ea_inode(sb)) {
4893 0 : sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4894 0 : if (!sbi->s_ea_inode_cache) {
4895 0 : ext4_msg(sb, KERN_ERR,
4896 : "Failed to create ea_inode_cache");
4897 0 : goto failed_mount_wq;
4898 : }
4899 : }
4900 : }
4901 :
4902 1 : if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4903 0 : ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4904 0 : goto failed_mount_wq;
4905 : }
4906 :
4907 1 : if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4908 : !ext4_has_feature_encrypt(sb)) {
4909 : ext4_set_feature_encrypt(sb);
4910 : ext4_commit_super(sb);
4911 : }
4912 :
4913 : /*
4914 : * Get the # of file system overhead blocks from the
4915 : * superblock if present.
4916 : */
4917 1 : if (es->s_overhead_clusters)
4918 0 : sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4919 : else {
4920 1 : err = ext4_calculate_overhead(sb);
4921 1 : if (err)
4922 0 : goto failed_mount_wq;
4923 : }
4924 :
4925 : /*
4926 : * The maximum number of concurrent works can be high and
4927 : * concurrency isn't really necessary. Limit it to 1.
4928 : */
4929 1 : EXT4_SB(sb)->rsv_conversion_wq =
4930 1 : alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4931 1 : if (!EXT4_SB(sb)->rsv_conversion_wq) {
4932 0 : printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4933 0 : ret = -ENOMEM;
4934 0 : goto failed_mount4;
4935 : }
4936 :
4937 : /*
4938 : * The jbd2_journal_load will have done any necessary log recovery,
4939 : * so we can safely mount the rest of the filesystem now.
4940 : */
4941 :
4942 1 : root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4943 1 : if (IS_ERR(root)) {
4944 0 : ext4_msg(sb, KERN_ERR, "get root inode failed");
4945 0 : ret = PTR_ERR(root);
4946 0 : root = NULL;
4947 0 : goto failed_mount4;
4948 : }
4949 1 : if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4950 0 : ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4951 0 : iput(root);
4952 0 : goto failed_mount4;
4953 : }
4954 :
4955 1 : sb->s_root = d_make_root(root);
4956 1 : if (!sb->s_root) {
4957 0 : ext4_msg(sb, KERN_ERR, "get root dentry failed");
4958 0 : ret = -ENOMEM;
4959 0 : goto failed_mount4;
4960 : }
4961 :
4962 1 : ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4963 1 : if (ret == -EROFS) {
4964 0 : sb->s_flags |= SB_RDONLY;
4965 0 : ret = 0;
4966 1 : } else if (ret)
4967 0 : goto failed_mount4a;
4968 :
4969 1 : ext4_set_resv_clusters(sb);
4970 :
4971 1 : if (test_opt(sb, BLOCK_VALIDITY)) {
4972 1 : err = ext4_setup_system_zone(sb);
4973 1 : if (err) {
4974 0 : ext4_msg(sb, KERN_ERR, "failed to initialize system "
4975 : "zone (%d)", err);
4976 0 : goto failed_mount4a;
4977 : }
4978 : }
4979 1 : ext4_fc_replay_cleanup(sb);
4980 :
4981 1 : ext4_ext_init(sb);
4982 1 : err = ext4_mb_init(sb);
4983 1 : if (err) {
4984 0 : ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4985 : err);
4986 0 : goto failed_mount5;
4987 : }
4988 :
4989 : /*
4990 : * We can only set up the journal commit callback once
4991 : * mballoc is initialized
4992 : */
4993 1 : if (sbi->s_journal)
4994 1 : sbi->s_journal->j_commit_callback =
4995 : ext4_journal_commit_callback;
4996 :
4997 1 : block = ext4_count_free_clusters(sb);
4998 1 : ext4_free_blocks_count_set(sbi->s_es,
4999 1 : EXT4_C2B(sbi, block));
5000 1 : err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5001 : GFP_KERNEL);
5002 1 : if (!err) {
5003 1 : unsigned long freei = ext4_count_free_inodes(sb);
5004 1 : sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5005 1 : err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5006 : GFP_KERNEL);
5007 : }
5008 1 : if (!err)
5009 1 : err = percpu_counter_init(&sbi->s_dirs_counter,
5010 : ext4_count_dirs(sb), GFP_KERNEL);
5011 1 : if (!err)
5012 1 : err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5013 : GFP_KERNEL);
5014 1 : if (!err)
5015 1 : err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5016 :
5017 1 : if (err) {
5018 0 : ext4_msg(sb, KERN_ERR, "insufficient memory");
5019 0 : goto failed_mount6;
5020 : }
5021 :
5022 1 : if (ext4_has_feature_flex_bg(sb))
5023 1 : if (!ext4_fill_flex_info(sb)) {
5024 0 : ext4_msg(sb, KERN_ERR,
5025 : "unable to initialize "
5026 : "flex_bg meta info!");
5027 0 : goto failed_mount6;
5028 : }
5029 :
5030 1 : err = ext4_register_li_request(sb, first_not_zeroed);
5031 1 : if (err)
5032 0 : goto failed_mount6;
5033 :
5034 1 : err = ext4_register_sysfs(sb);
5035 1 : if (err)
5036 0 : goto failed_mount7;
5037 :
5038 : #ifdef CONFIG_QUOTA
5039 : /* Enable quota usage during mount. */
5040 : if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5041 : err = ext4_enable_quotas(sb);
5042 : if (err)
5043 : goto failed_mount8;
5044 : }
5045 : #endif /* CONFIG_QUOTA */
5046 :
5047 : /*
5048 : * Save the original bdev mapping's wb_err value which could be
5049 : * used to detect the metadata async write error.
5050 : */
5051 1 : spin_lock_init(&sbi->s_bdev_wb_lock);
5052 1 : errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5053 : &sbi->s_bdev_wb_err);
5054 1 : sb->s_bdev->bd_super = sb;
5055 1 : EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5056 1 : ext4_orphan_cleanup(sb, es);
5057 1 : EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5058 1 : if (needs_recovery) {
5059 0 : ext4_msg(sb, KERN_INFO, "recovery complete");
5060 0 : err = ext4_mark_recovery_complete(sb, es);
5061 0 : if (err)
5062 0 : goto failed_mount8;
5063 : }
5064 1 : if (EXT4_SB(sb)->s_journal) {
5065 1 : if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5066 : descr = " journalled data mode";
5067 1 : else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5068 : descr = " ordered data mode";
5069 : else
5070 0 : descr = " writeback data mode";
5071 : } else
5072 : descr = "out journal";
5073 :
5074 1 : if (test_opt(sb, DISCARD)) {
5075 0 : struct request_queue *q = bdev_get_queue(sb->s_bdev);
5076 0 : if (!blk_queue_discard(q))
5077 0 : ext4_msg(sb, KERN_WARNING,
5078 : "mounting with \"discard\" option, but "
5079 : "the device does not support discard");
5080 : }
5081 :
5082 1 : if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5083 2 : ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5084 : "Opts: %.*s%s%s. Quota mode: %s.", descr,
5085 : (int) sizeof(sbi->s_es->s_mount_opts),
5086 : sbi->s_es->s_mount_opts,
5087 : *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5088 : ext4_quota_mode(sb));
5089 :
5090 1 : if (es->s_error_count)
5091 0 : mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5092 :
5093 : /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5094 1 : ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5095 1 : ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5096 1 : ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5097 1 : atomic_set(&sbi->s_warning_count, 0);
5098 1 : atomic_set(&sbi->s_msg_count, 0);
5099 :
5100 1 : kfree(orig_data);
5101 1 : return 0;
5102 :
5103 0 : cantfind_ext4:
5104 0 : if (!silent)
5105 0 : ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5106 0 : goto failed_mount;
5107 :
5108 0 : failed_mount8:
5109 0 : ext4_unregister_sysfs(sb);
5110 0 : kobject_put(&sbi->s_kobj);
5111 0 : failed_mount7:
5112 0 : ext4_unregister_li_request(sb);
5113 0 : failed_mount6:
5114 0 : ext4_mb_release(sb);
5115 0 : rcu_read_lock();
5116 0 : flex_groups = rcu_dereference(sbi->s_flex_groups);
5117 0 : if (flex_groups) {
5118 0 : for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5119 0 : kvfree(flex_groups[i]);
5120 0 : kvfree(flex_groups);
5121 : }
5122 0 : rcu_read_unlock();
5123 0 : percpu_counter_destroy(&sbi->s_freeclusters_counter);
5124 0 : percpu_counter_destroy(&sbi->s_freeinodes_counter);
5125 0 : percpu_counter_destroy(&sbi->s_dirs_counter);
5126 0 : percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5127 0 : percpu_free_rwsem(&sbi->s_writepages_rwsem);
5128 0 : failed_mount5:
5129 0 : ext4_ext_release(sb);
5130 0 : ext4_release_system_zone(sb);
5131 0 : failed_mount4a:
5132 0 : dput(sb->s_root);
5133 0 : sb->s_root = NULL;
5134 0 : failed_mount4:
5135 0 : ext4_msg(sb, KERN_ERR, "mount failed");
5136 0 : if (EXT4_SB(sb)->rsv_conversion_wq)
5137 0 : destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5138 0 : failed_mount_wq:
5139 0 : ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5140 0 : sbi->s_ea_inode_cache = NULL;
5141 :
5142 0 : ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5143 0 : sbi->s_ea_block_cache = NULL;
5144 :
5145 0 : if (sbi->s_journal) {
5146 0 : jbd2_journal_destroy(sbi->s_journal);
5147 0 : sbi->s_journal = NULL;
5148 : }
5149 0 : failed_mount3a:
5150 0 : ext4_es_unregister_shrinker(sbi);
5151 0 : failed_mount3:
5152 0 : del_timer_sync(&sbi->s_err_report);
5153 0 : flush_work(&sbi->s_error_work);
5154 0 : if (sbi->s_mmp_tsk)
5155 0 : kthread_stop(sbi->s_mmp_tsk);
5156 0 : failed_mount2:
5157 0 : rcu_read_lock();
5158 0 : group_desc = rcu_dereference(sbi->s_group_desc);
5159 0 : for (i = 0; i < db_count; i++)
5160 0 : brelse(group_desc[i]);
5161 0 : kvfree(group_desc);
5162 0 : rcu_read_unlock();
5163 1 : failed_mount:
5164 1 : if (sbi->s_chksum_driver)
5165 1 : crypto_free_shash(sbi->s_chksum_driver);
5166 :
5167 : #ifdef CONFIG_UNICODE
5168 : utf8_unload(sb->s_encoding);
5169 : #endif
5170 :
5171 : #ifdef CONFIG_QUOTA
5172 : for (i = 0; i < EXT4_MAXQUOTAS; i++)
5173 : kfree(get_qf_name(sb, sbi, i));
5174 : #endif
5175 1 : fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5176 1 : ext4_blkdev_remove(sbi);
5177 1 : brelse(bh);
5178 1 : out_fail:
5179 1 : sb->s_fs_info = NULL;
5180 1 : kfree(sbi->s_blockgroup_lock);
5181 1 : out_free_base:
5182 1 : kfree(sbi);
5183 1 : kfree(orig_data);
5184 1 : fs_put_dax(dax_dev);
5185 1 : return err ? err : ret;
5186 : }
5187 :
5188 : /*
5189 : * Setup any per-fs journal parameters now. We'll do this both on
5190 : * initial mount, once the journal has been initialised but before we've
5191 : * done any recovery; and again on any subsequent remount.
5192 : */
5193 2 : static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5194 : {
5195 2 : struct ext4_sb_info *sbi = EXT4_SB(sb);
5196 :
5197 2 : journal->j_commit_interval = sbi->s_commit_interval;
5198 2 : journal->j_min_batch_time = sbi->s_min_batch_time;
5199 2 : journal->j_max_batch_time = sbi->s_max_batch_time;
5200 2 : ext4_fc_init(sb, journal);
5201 :
5202 2 : write_lock(&journal->j_state_lock);
5203 2 : if (test_opt(sb, BARRIER))
5204 2 : journal->j_flags |= JBD2_BARRIER;
5205 : else
5206 0 : journal->j_flags &= ~JBD2_BARRIER;
5207 2 : if (test_opt(sb, DATA_ERR_ABORT))
5208 0 : journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5209 : else
5210 2 : journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5211 2 : write_unlock(&journal->j_state_lock);
5212 2 : }
5213 :
5214 1 : static struct inode *ext4_get_journal_inode(struct super_block *sb,
5215 : unsigned int journal_inum)
5216 : {
5217 1 : struct inode *journal_inode;
5218 :
5219 : /*
5220 : * Test for the existence of a valid inode on disk. Bad things
5221 : * happen if we iget() an unused inode, as the subsequent iput()
5222 : * will try to delete it.
5223 : */
5224 1 : journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5225 1 : if (IS_ERR(journal_inode)) {
5226 0 : ext4_msg(sb, KERN_ERR, "no journal found");
5227 0 : return NULL;
5228 : }
5229 1 : if (!journal_inode->i_nlink) {
5230 0 : make_bad_inode(journal_inode);
5231 0 : iput(journal_inode);
5232 0 : ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5233 0 : return NULL;
5234 : }
5235 :
5236 : jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5237 1 : journal_inode, journal_inode->i_size);
5238 1 : if (!S_ISREG(journal_inode->i_mode)) {
5239 0 : ext4_msg(sb, KERN_ERR, "invalid journal inode");
5240 0 : iput(journal_inode);
5241 0 : return NULL;
5242 : }
5243 : return journal_inode;
5244 : }
5245 :
5246 1 : static journal_t *ext4_get_journal(struct super_block *sb,
5247 : unsigned int journal_inum)
5248 : {
5249 1 : struct inode *journal_inode;
5250 1 : journal_t *journal;
5251 :
5252 1 : if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5253 : return NULL;
5254 :
5255 1 : journal_inode = ext4_get_journal_inode(sb, journal_inum);
5256 1 : if (!journal_inode)
5257 : return NULL;
5258 :
5259 1 : journal = jbd2_journal_init_inode(journal_inode);
5260 1 : if (!journal) {
5261 0 : ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5262 0 : iput(journal_inode);
5263 0 : return NULL;
5264 : }
5265 1 : journal->j_private = sb;
5266 1 : ext4_init_journal_params(sb, journal);
5267 1 : return journal;
5268 : }
5269 :
5270 0 : static journal_t *ext4_get_dev_journal(struct super_block *sb,
5271 : dev_t j_dev)
5272 : {
5273 0 : struct buffer_head *bh;
5274 0 : journal_t *journal;
5275 0 : ext4_fsblk_t start;
5276 0 : ext4_fsblk_t len;
5277 0 : int hblock, blocksize;
5278 0 : ext4_fsblk_t sb_block;
5279 0 : unsigned long offset;
5280 0 : struct ext4_super_block *es;
5281 0 : struct block_device *bdev;
5282 :
5283 0 : if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5284 : return NULL;
5285 :
5286 0 : bdev = ext4_blkdev_get(j_dev, sb);
5287 0 : if (bdev == NULL)
5288 : return NULL;
5289 :
5290 0 : blocksize = sb->s_blocksize;
5291 0 : hblock = bdev_logical_block_size(bdev);
5292 0 : if (blocksize < hblock) {
5293 0 : ext4_msg(sb, KERN_ERR,
5294 : "blocksize too small for journal device");
5295 0 : goto out_bdev;
5296 : }
5297 :
5298 0 : sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5299 0 : offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5300 0 : set_blocksize(bdev, blocksize);
5301 0 : if (!(bh = __bread(bdev, sb_block, blocksize))) {
5302 0 : ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5303 : "external journal");
5304 0 : goto out_bdev;
5305 : }
5306 :
5307 0 : es = (struct ext4_super_block *) (bh->b_data + offset);
5308 0 : if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5309 0 : !(le32_to_cpu(es->s_feature_incompat) &
5310 : EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5311 0 : ext4_msg(sb, KERN_ERR, "external journal has "
5312 : "bad superblock");
5313 0 : brelse(bh);
5314 0 : goto out_bdev;
5315 : }
5316 :
5317 0 : if ((le32_to_cpu(es->s_feature_ro_compat) &
5318 0 : EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5319 0 : es->s_checksum != ext4_superblock_csum(sb, es)) {
5320 0 : ext4_msg(sb, KERN_ERR, "external journal has "
5321 : "corrupt superblock");
5322 0 : brelse(bh);
5323 0 : goto out_bdev;
5324 : }
5325 :
5326 0 : if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5327 0 : ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5328 0 : brelse(bh);
5329 0 : goto out_bdev;
5330 : }
5331 :
5332 0 : len = ext4_blocks_count(es);
5333 0 : start = sb_block + 1;
5334 0 : brelse(bh); /* we're done with the superblock */
5335 :
5336 0 : journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5337 : start, len, blocksize);
5338 0 : if (!journal) {
5339 0 : ext4_msg(sb, KERN_ERR, "failed to create device journal");
5340 0 : goto out_bdev;
5341 : }
5342 0 : journal->j_private = sb;
5343 0 : if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5344 0 : ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5345 0 : goto out_journal;
5346 : }
5347 0 : if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5348 0 : ext4_msg(sb, KERN_ERR, "External journal has more than one "
5349 : "user (unsupported) - %d",
5350 : be32_to_cpu(journal->j_superblock->s_nr_users));
5351 0 : goto out_journal;
5352 : }
5353 0 : EXT4_SB(sb)->s_journal_bdev = bdev;
5354 0 : ext4_init_journal_params(sb, journal);
5355 0 : return journal;
5356 :
5357 0 : out_journal:
5358 0 : jbd2_journal_destroy(journal);
5359 0 : out_bdev:
5360 0 : ext4_blkdev_put(bdev);
5361 0 : return NULL;
5362 : }
5363 :
5364 1 : static int ext4_load_journal(struct super_block *sb,
5365 : struct ext4_super_block *es,
5366 : unsigned long journal_devnum)
5367 : {
5368 1 : journal_t *journal;
5369 1 : unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5370 1 : dev_t journal_dev;
5371 1 : int err = 0;
5372 1 : int really_read_only;
5373 1 : int journal_dev_ro;
5374 :
5375 1 : if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5376 : return -EFSCORRUPTED;
5377 :
5378 1 : if (journal_devnum &&
5379 0 : journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5380 0 : ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5381 : "numbers have changed");
5382 0 : journal_dev = new_decode_dev(journal_devnum);
5383 : } else
5384 1 : journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5385 :
5386 1 : if (journal_inum && journal_dev) {
5387 0 : ext4_msg(sb, KERN_ERR,
5388 : "filesystem has both journal inode and journal device!");
5389 0 : return -EINVAL;
5390 : }
5391 :
5392 1 : if (journal_inum) {
5393 1 : journal = ext4_get_journal(sb, journal_inum);
5394 1 : if (!journal)
5395 : return -EINVAL;
5396 : } else {
5397 0 : journal = ext4_get_dev_journal(sb, journal_dev);
5398 0 : if (!journal)
5399 : return -EINVAL;
5400 : }
5401 :
5402 1 : journal_dev_ro = bdev_read_only(journal->j_dev);
5403 1 : really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5404 :
5405 1 : if (journal_dev_ro && !sb_rdonly(sb)) {
5406 0 : ext4_msg(sb, KERN_ERR,
5407 : "journal device read-only, try mounting with '-o ro'");
5408 0 : err = -EROFS;
5409 0 : goto err_out;
5410 : }
5411 :
5412 : /*
5413 : * Are we loading a blank journal or performing recovery after a
5414 : * crash? For recovery, we need to check in advance whether we
5415 : * can get read-write access to the device.
5416 : */
5417 1 : if (ext4_has_feature_journal_needs_recovery(sb)) {
5418 0 : if (sb_rdonly(sb)) {
5419 0 : ext4_msg(sb, KERN_INFO, "INFO: recovery "
5420 : "required on readonly filesystem");
5421 0 : if (really_read_only) {
5422 0 : ext4_msg(sb, KERN_ERR, "write access "
5423 : "unavailable, cannot proceed "
5424 : "(try mounting with noload)");
5425 0 : err = -EROFS;
5426 0 : goto err_out;
5427 : }
5428 0 : ext4_msg(sb, KERN_INFO, "write access will "
5429 : "be enabled during recovery");
5430 : }
5431 : }
5432 :
5433 1 : if (!(journal->j_flags & JBD2_BARRIER))
5434 0 : ext4_msg(sb, KERN_INFO, "barriers disabled");
5435 :
5436 1 : if (!ext4_has_feature_journal_needs_recovery(sb))
5437 1 : err = jbd2_journal_wipe(journal, !really_read_only);
5438 1 : if (!err) {
5439 1 : char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5440 1 : if (save)
5441 1 : memcpy(save, ((char *) es) +
5442 : EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5443 1 : err = jbd2_journal_load(journal);
5444 1 : if (save)
5445 1 : memcpy(((char *) es) + EXT4_S_ERR_START,
5446 : save, EXT4_S_ERR_LEN);
5447 1 : kfree(save);
5448 : }
5449 :
5450 1 : if (err) {
5451 0 : ext4_msg(sb, KERN_ERR, "error loading journal");
5452 0 : goto err_out;
5453 : }
5454 :
5455 1 : EXT4_SB(sb)->s_journal = journal;
5456 1 : err = ext4_clear_journal_err(sb, es);
5457 1 : if (err) {
5458 0 : EXT4_SB(sb)->s_journal = NULL;
5459 0 : jbd2_journal_destroy(journal);
5460 0 : return err;
5461 : }
5462 :
5463 1 : if (!really_read_only && journal_devnum &&
5464 0 : journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5465 0 : es->s_journal_dev = cpu_to_le32(journal_devnum);
5466 :
5467 : /* Make sure we flush the recovery flag to disk. */
5468 0 : ext4_commit_super(sb);
5469 : }
5470 :
5471 : return 0;
5472 :
5473 0 : err_out:
5474 0 : jbd2_journal_destroy(journal);
5475 0 : return err;
5476 : }
5477 :
5478 : /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5479 1 : static void ext4_update_super(struct super_block *sb)
5480 : {
5481 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
5482 1 : struct ext4_super_block *es = sbi->s_es;
5483 1 : struct buffer_head *sbh = sbi->s_sbh;
5484 :
5485 1 : lock_buffer(sbh);
5486 : /*
5487 : * If the file system is mounted read-only, don't update the
5488 : * superblock write time. This avoids updating the superblock
5489 : * write time when we are mounting the root file system
5490 : * read/only but we need to replay the journal; at that point,
5491 : * for people who are east of GMT and who make their clock
5492 : * tick in localtime for Windows bug-for-bug compatibility,
5493 : * the clock is set in the future, and this will cause e2fsck
5494 : * to complain and force a full file system check.
5495 : */
5496 1 : if (!(sb->s_flags & SB_RDONLY))
5497 0 : ext4_update_tstamp(es, s_wtime);
5498 2 : es->s_kbytes_written =
5499 5 : cpu_to_le64(sbi->s_kbytes_written +
5500 : ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5501 : sbi->s_sectors_written_start) >> 1));
5502 1 : if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5503 3 : ext4_free_blocks_count_set(es,
5504 1 : EXT4_C2B(sbi, percpu_counter_sum_positive(
5505 : &sbi->s_freeclusters_counter)));
5506 1 : if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5507 2 : es->s_free_inodes_count =
5508 1 : cpu_to_le32(percpu_counter_sum_positive(
5509 : &sbi->s_freeinodes_counter));
5510 : /* Copy error information to the on-disk superblock */
5511 1 : spin_lock(&sbi->s_error_lock);
5512 1 : if (sbi->s_add_error_count > 0) {
5513 0 : es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5514 0 : if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5515 0 : __ext4_update_tstamp(&es->s_first_error_time,
5516 : &es->s_first_error_time_hi,
5517 : sbi->s_first_error_time);
5518 0 : strncpy(es->s_first_error_func, sbi->s_first_error_func,
5519 : sizeof(es->s_first_error_func));
5520 0 : es->s_first_error_line =
5521 0 : cpu_to_le32(sbi->s_first_error_line);
5522 0 : es->s_first_error_ino =
5523 0 : cpu_to_le32(sbi->s_first_error_ino);
5524 0 : es->s_first_error_block =
5525 0 : cpu_to_le64(sbi->s_first_error_block);
5526 0 : es->s_first_error_errcode =
5527 0 : ext4_errno_to_code(sbi->s_first_error_code);
5528 : }
5529 0 : __ext4_update_tstamp(&es->s_last_error_time,
5530 : &es->s_last_error_time_hi,
5531 : sbi->s_last_error_time);
5532 0 : strncpy(es->s_last_error_func, sbi->s_last_error_func,
5533 : sizeof(es->s_last_error_func));
5534 0 : es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5535 0 : es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5536 0 : es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5537 0 : es->s_last_error_errcode =
5538 0 : ext4_errno_to_code(sbi->s_last_error_code);
5539 : /*
5540 : * Start the daily error reporting function if it hasn't been
5541 : * started already
5542 : */
5543 0 : if (!es->s_error_count)
5544 0 : mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5545 0 : le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5546 0 : sbi->s_add_error_count = 0;
5547 : }
5548 1 : spin_unlock(&sbi->s_error_lock);
5549 :
5550 1 : ext4_superblock_csum_set(sb);
5551 1 : unlock_buffer(sbh);
5552 1 : }
5553 :
5554 1 : static int ext4_commit_super(struct super_block *sb)
5555 : {
5556 1 : struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5557 1 : int error = 0;
5558 :
5559 1 : if (!sbh || block_device_ejected(sb))
5560 0 : return error;
5561 :
5562 1 : ext4_update_super(sb);
5563 :
5564 2 : if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5565 : /*
5566 : * Oh, dear. A previous attempt to write the
5567 : * superblock failed. This could happen because the
5568 : * USB device was yanked out. Or it could happen to
5569 : * be a transient write error and maybe the block will
5570 : * be remapped. Nothing we can do but to retry the
5571 : * write and hope for the best.
5572 : */
5573 0 : ext4_msg(sb, KERN_ERR, "previous I/O error to "
5574 : "superblock detected");
5575 0 : clear_buffer_write_io_error(sbh);
5576 0 : set_buffer_uptodate(sbh);
5577 : }
5578 1 : BUFFER_TRACE(sbh, "marking dirty");
5579 1 : mark_buffer_dirty(sbh);
5580 1 : error = __sync_dirty_buffer(sbh,
5581 1 : REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5582 1 : if (buffer_write_io_error(sbh)) {
5583 0 : ext4_msg(sb, KERN_ERR, "I/O error while writing "
5584 : "superblock");
5585 0 : clear_buffer_write_io_error(sbh);
5586 0 : set_buffer_uptodate(sbh);
5587 : }
5588 : return error;
5589 : }
5590 :
5591 : /*
5592 : * Have we just finished recovery? If so, and if we are mounting (or
5593 : * remounting) the filesystem readonly, then we will end up with a
5594 : * consistent fs on disk. Record that fact.
5595 : */
5596 0 : static int ext4_mark_recovery_complete(struct super_block *sb,
5597 : struct ext4_super_block *es)
5598 : {
5599 0 : int err;
5600 0 : journal_t *journal = EXT4_SB(sb)->s_journal;
5601 :
5602 0 : if (!ext4_has_feature_journal(sb)) {
5603 0 : if (journal != NULL) {
5604 0 : ext4_error(sb, "Journal got removed while the fs was "
5605 : "mounted!");
5606 0 : return -EFSCORRUPTED;
5607 : }
5608 : return 0;
5609 : }
5610 0 : jbd2_journal_lock_updates(journal);
5611 0 : err = jbd2_journal_flush(journal);
5612 0 : if (err < 0)
5613 0 : goto out;
5614 :
5615 0 : if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5616 0 : ext4_clear_feature_journal_needs_recovery(sb);
5617 0 : ext4_commit_super(sb);
5618 : }
5619 0 : out:
5620 0 : jbd2_journal_unlock_updates(journal);
5621 0 : return err;
5622 : }
5623 :
5624 : /*
5625 : * If we are mounting (or read-write remounting) a filesystem whose journal
5626 : * has recorded an error from a previous lifetime, move that error to the
5627 : * main filesystem now.
5628 : */
5629 2 : static int ext4_clear_journal_err(struct super_block *sb,
5630 : struct ext4_super_block *es)
5631 : {
5632 2 : journal_t *journal;
5633 2 : int j_errno;
5634 2 : const char *errstr;
5635 :
5636 2 : if (!ext4_has_feature_journal(sb)) {
5637 0 : ext4_error(sb, "Journal got removed while the fs was mounted!");
5638 0 : return -EFSCORRUPTED;
5639 : }
5640 :
5641 2 : journal = EXT4_SB(sb)->s_journal;
5642 :
5643 : /*
5644 : * Now check for any error status which may have been recorded in the
5645 : * journal by a prior ext4_error() or ext4_abort()
5646 : */
5647 :
5648 2 : j_errno = jbd2_journal_errno(journal);
5649 2 : if (j_errno) {
5650 0 : char nbuf[16];
5651 :
5652 0 : errstr = ext4_decode_error(sb, j_errno, nbuf);
5653 0 : ext4_warning(sb, "Filesystem error recorded "
5654 : "from previous mount: %s", errstr);
5655 0 : ext4_warning(sb, "Marking fs in need of filesystem check.");
5656 :
5657 0 : EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5658 0 : es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5659 0 : ext4_commit_super(sb);
5660 :
5661 0 : jbd2_journal_clear_err(journal);
5662 0 : jbd2_journal_update_sb_errno(journal);
5663 : }
5664 : return 0;
5665 : }
5666 :
5667 : /*
5668 : * Force the running and committing transactions to commit,
5669 : * and wait on the commit.
5670 : */
5671 0 : int ext4_force_commit(struct super_block *sb)
5672 : {
5673 0 : journal_t *journal;
5674 :
5675 0 : if (sb_rdonly(sb))
5676 : return 0;
5677 :
5678 0 : journal = EXT4_SB(sb)->s_journal;
5679 0 : return ext4_journal_force_commit(journal);
5680 : }
5681 :
5682 0 : static int ext4_sync_fs(struct super_block *sb, int wait)
5683 : {
5684 0 : int ret = 0;
5685 0 : tid_t target;
5686 0 : bool needs_barrier = false;
5687 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
5688 :
5689 0 : if (unlikely(ext4_forced_shutdown(sbi)))
5690 : return 0;
5691 :
5692 0 : trace_ext4_sync_fs(sb, wait);
5693 0 : flush_workqueue(sbi->rsv_conversion_wq);
5694 : /*
5695 : * Writeback quota in non-journalled quota case - journalled quota has
5696 : * no dirty dquots
5697 : */
5698 0 : dquot_writeback_dquots(sb, -1);
5699 : /*
5700 : * Data writeback is possible w/o journal transaction, so barrier must
5701 : * being sent at the end of the function. But we can skip it if
5702 : * transaction_commit will do it for us.
5703 : */
5704 0 : if (sbi->s_journal) {
5705 0 : target = jbd2_get_latest_transaction(sbi->s_journal);
5706 0 : if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5707 0 : !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5708 0 : needs_barrier = true;
5709 :
5710 0 : if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5711 0 : if (wait)
5712 0 : ret = jbd2_log_wait_commit(sbi->s_journal,
5713 : target);
5714 : }
5715 0 : } else if (wait && test_opt(sb, BARRIER))
5716 : needs_barrier = true;
5717 0 : if (needs_barrier) {
5718 0 : int err;
5719 0 : err = blkdev_issue_flush(sb->s_bdev);
5720 0 : if (!ret)
5721 0 : ret = err;
5722 : }
5723 :
5724 : return ret;
5725 : }
5726 :
5727 : /*
5728 : * LVM calls this function before a (read-only) snapshot is created. This
5729 : * gives us a chance to flush the journal completely and mark the fs clean.
5730 : *
5731 : * Note that only this function cannot bring a filesystem to be in a clean
5732 : * state independently. It relies on upper layer to stop all data & metadata
5733 : * modifications.
5734 : */
5735 0 : static int ext4_freeze(struct super_block *sb)
5736 : {
5737 0 : int error = 0;
5738 0 : journal_t *journal;
5739 :
5740 0 : if (sb_rdonly(sb))
5741 : return 0;
5742 :
5743 0 : journal = EXT4_SB(sb)->s_journal;
5744 :
5745 0 : if (journal) {
5746 : /* Now we set up the journal barrier. */
5747 0 : jbd2_journal_lock_updates(journal);
5748 :
5749 : /*
5750 : * Don't clear the needs_recovery flag if we failed to
5751 : * flush the journal.
5752 : */
5753 0 : error = jbd2_journal_flush(journal);
5754 0 : if (error < 0)
5755 0 : goto out;
5756 :
5757 : /* Journal blocked and flushed, clear needs_recovery flag. */
5758 0 : ext4_clear_feature_journal_needs_recovery(sb);
5759 : }
5760 :
5761 0 : error = ext4_commit_super(sb);
5762 0 : out:
5763 0 : if (journal)
5764 : /* we rely on upper layer to stop further updates */
5765 0 : jbd2_journal_unlock_updates(journal);
5766 : return error;
5767 : }
5768 :
5769 : /*
5770 : * Called by LVM after the snapshot is done. We need to reset the RECOVER
5771 : * flag here, even though the filesystem is not technically dirty yet.
5772 : */
5773 0 : static int ext4_unfreeze(struct super_block *sb)
5774 : {
5775 0 : if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5776 0 : return 0;
5777 :
5778 0 : if (EXT4_SB(sb)->s_journal) {
5779 : /* Reset the needs_recovery flag before the fs is unlocked. */
5780 0 : ext4_set_feature_journal_needs_recovery(sb);
5781 : }
5782 :
5783 0 : ext4_commit_super(sb);
5784 0 : return 0;
5785 : }
5786 :
5787 : /*
5788 : * Structure to save mount options for ext4_remount's benefit
5789 : */
5790 : struct ext4_mount_options {
5791 : unsigned long s_mount_opt;
5792 : unsigned long s_mount_opt2;
5793 : kuid_t s_resuid;
5794 : kgid_t s_resgid;
5795 : unsigned long s_commit_interval;
5796 : u32 s_min_batch_time, s_max_batch_time;
5797 : #ifdef CONFIG_QUOTA
5798 : int s_jquota_fmt;
5799 : char *s_qf_names[EXT4_MAXQUOTAS];
5800 : #endif
5801 : };
5802 :
5803 1 : static int ext4_remount(struct super_block *sb, int *flags, char *data)
5804 : {
5805 1 : struct ext4_super_block *es;
5806 1 : struct ext4_sb_info *sbi = EXT4_SB(sb);
5807 1 : unsigned long old_sb_flags, vfs_flags;
5808 1 : struct ext4_mount_options old_opts;
5809 1 : int enable_quota = 0;
5810 1 : ext4_group_t g;
5811 1 : unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5812 1 : int err = 0;
5813 : #ifdef CONFIG_QUOTA
5814 : int i, j;
5815 : char *to_free[EXT4_MAXQUOTAS];
5816 : #endif
5817 1 : char *orig_data = kstrdup(data, GFP_KERNEL);
5818 :
5819 1 : if (data && !orig_data)
5820 : return -ENOMEM;
5821 :
5822 : /* Store the original options */
5823 1 : old_sb_flags = sb->s_flags;
5824 1 : old_opts.s_mount_opt = sbi->s_mount_opt;
5825 1 : old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5826 1 : old_opts.s_resuid = sbi->s_resuid;
5827 1 : old_opts.s_resgid = sbi->s_resgid;
5828 1 : old_opts.s_commit_interval = sbi->s_commit_interval;
5829 1 : old_opts.s_min_batch_time = sbi->s_min_batch_time;
5830 1 : old_opts.s_max_batch_time = sbi->s_max_batch_time;
5831 : #ifdef CONFIG_QUOTA
5832 : old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5833 : for (i = 0; i < EXT4_MAXQUOTAS; i++)
5834 : if (sbi->s_qf_names[i]) {
5835 : char *qf_name = get_qf_name(sb, sbi, i);
5836 :
5837 : old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5838 : if (!old_opts.s_qf_names[i]) {
5839 : for (j = 0; j < i; j++)
5840 : kfree(old_opts.s_qf_names[j]);
5841 : kfree(orig_data);
5842 : return -ENOMEM;
5843 : }
5844 : } else
5845 : old_opts.s_qf_names[i] = NULL;
5846 : #endif
5847 1 : if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5848 1 : journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5849 :
5850 : /*
5851 : * Some options can be enabled by ext4 and/or by VFS mount flag
5852 : * either way we need to make sure it matches in both *flags and
5853 : * s_flags. Copy those selected flags from *flags to s_flags
5854 : */
5855 1 : vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5856 1 : sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5857 :
5858 1 : if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5859 0 : err = -EINVAL;
5860 0 : goto restore_opts;
5861 : }
5862 :
5863 1 : if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5864 1 : test_opt(sb, JOURNAL_CHECKSUM)) {
5865 0 : ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5866 : "during remount not supported; ignoring");
5867 0 : sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5868 : }
5869 :
5870 1 : if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5871 0 : if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5872 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
5873 : "both data=journal and delalloc");
5874 0 : err = -EINVAL;
5875 0 : goto restore_opts;
5876 : }
5877 0 : if (test_opt(sb, DIOREAD_NOLOCK)) {
5878 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
5879 : "both data=journal and dioread_nolock");
5880 0 : err = -EINVAL;
5881 0 : goto restore_opts;
5882 : }
5883 1 : } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5884 1 : if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5885 0 : ext4_msg(sb, KERN_ERR, "can't mount with "
5886 : "journal_async_commit in data=ordered mode");
5887 0 : err = -EINVAL;
5888 0 : goto restore_opts;
5889 : }
5890 : }
5891 :
5892 1 : if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5893 0 : ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5894 0 : err = -EINVAL;
5895 0 : goto restore_opts;
5896 : }
5897 :
5898 1 : if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5899 0 : ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5900 :
5901 1 : sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5902 1 : (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5903 :
5904 1 : es = sbi->s_es;
5905 :
5906 1 : if (sbi->s_journal) {
5907 1 : ext4_init_journal_params(sb, sbi->s_journal);
5908 1 : set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5909 : }
5910 :
5911 : /* Flush outstanding errors before changing fs state */
5912 1 : flush_work(&sbi->s_error_work);
5913 :
5914 1 : if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5915 1 : if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5916 0 : err = -EROFS;
5917 0 : goto restore_opts;
5918 : }
5919 :
5920 1 : if (*flags & SB_RDONLY) {
5921 0 : err = sync_filesystem(sb);
5922 0 : if (err < 0)
5923 0 : goto restore_opts;
5924 0 : err = dquot_suspend(sb, -1);
5925 0 : if (err < 0)
5926 : goto restore_opts;
5927 :
5928 : /*
5929 : * First of all, the unconditional stuff we have to do
5930 : * to disable replay of the journal when we next remount
5931 : */
5932 0 : sb->s_flags |= SB_RDONLY;
5933 :
5934 : /*
5935 : * OK, test if we are remounting a valid rw partition
5936 : * readonly, and if so set the rdonly flag and then
5937 : * mark the partition as valid again.
5938 : */
5939 0 : if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5940 0 : (sbi->s_mount_state & EXT4_VALID_FS))
5941 0 : es->s_state = cpu_to_le16(sbi->s_mount_state);
5942 :
5943 0 : if (sbi->s_journal) {
5944 : /*
5945 : * We let remount-ro finish even if marking fs
5946 : * as clean failed...
5947 : */
5948 0 : ext4_mark_recovery_complete(sb, es);
5949 : }
5950 0 : if (sbi->s_mmp_tsk)
5951 0 : kthread_stop(sbi->s_mmp_tsk);
5952 : } else {
5953 : /* Make sure we can mount this feature set readwrite */
5954 2 : if (ext4_has_feature_readonly(sb) ||
5955 1 : !ext4_feature_set_ok(sb, 0)) {
5956 0 : err = -EROFS;
5957 0 : goto restore_opts;
5958 : }
5959 : /*
5960 : * Make sure the group descriptor checksums
5961 : * are sane. If they aren't, refuse to remount r/w.
5962 : */
5963 17 : for (g = 0; g < sbi->s_groups_count; g++) {
5964 16 : struct ext4_group_desc *gdp =
5965 16 : ext4_get_group_desc(sb, g, NULL);
5966 :
5967 16 : if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5968 0 : ext4_msg(sb, KERN_ERR,
5969 : "ext4_remount: Checksum for group %u failed (%u!=%u)",
5970 : g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5971 : le16_to_cpu(gdp->bg_checksum));
5972 0 : err = -EFSBADCRC;
5973 0 : goto restore_opts;
5974 : }
5975 : }
5976 :
5977 : /*
5978 : * If we have an unprocessed orphan list hanging
5979 : * around from a previously readonly bdev mount,
5980 : * require a full umount/remount for now.
5981 : */
5982 1 : if (es->s_last_orphan) {
5983 0 : ext4_msg(sb, KERN_WARNING, "Couldn't "
5984 : "remount RDWR because of unprocessed "
5985 : "orphan inode list. Please "
5986 : "umount/remount instead");
5987 0 : err = -EINVAL;
5988 0 : goto restore_opts;
5989 : }
5990 :
5991 : /*
5992 : * Mounting a RDONLY partition read-write, so reread
5993 : * and store the current valid flag. (It may have
5994 : * been changed by e2fsck since we originally mounted
5995 : * the partition.)
5996 : */
5997 1 : if (sbi->s_journal) {
5998 1 : err = ext4_clear_journal_err(sb, es);
5999 1 : if (err)
6000 0 : goto restore_opts;
6001 : }
6002 1 : sbi->s_mount_state = le16_to_cpu(es->s_state);
6003 :
6004 1 : err = ext4_setup_super(sb, es, 0);
6005 1 : if (err)
6006 0 : goto restore_opts;
6007 :
6008 1 : sb->s_flags &= ~SB_RDONLY;
6009 1 : if (ext4_has_feature_mmp(sb))
6010 0 : if (ext4_multi_mount_protect(sb,
6011 0 : le64_to_cpu(es->s_mmp_block))) {
6012 0 : err = -EROFS;
6013 0 : goto restore_opts;
6014 : }
6015 1 : enable_quota = 1;
6016 : }
6017 : }
6018 :
6019 : /*
6020 : * Reinitialize lazy itable initialization thread based on
6021 : * current settings
6022 : */
6023 1 : if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6024 0 : ext4_unregister_li_request(sb);
6025 : else {
6026 1 : ext4_group_t first_not_zeroed;
6027 1 : first_not_zeroed = ext4_has_uninit_itable(sb);
6028 1 : ext4_register_li_request(sb, first_not_zeroed);
6029 : }
6030 :
6031 : /*
6032 : * Handle creation of system zone data early because it can fail.
6033 : * Releasing of existing data is done when we are sure remount will
6034 : * succeed.
6035 : */
6036 1 : if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6037 0 : err = ext4_setup_system_zone(sb);
6038 0 : if (err)
6039 0 : goto restore_opts;
6040 : }
6041 :
6042 1 : if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6043 0 : err = ext4_commit_super(sb);
6044 0 : if (err)
6045 0 : goto restore_opts;
6046 : }
6047 :
6048 : #ifdef CONFIG_QUOTA
6049 : /* Release old quota file names */
6050 : for (i = 0; i < EXT4_MAXQUOTAS; i++)
6051 : kfree(old_opts.s_qf_names[i]);
6052 : if (enable_quota) {
6053 : if (sb_any_quota_suspended(sb))
6054 : dquot_resume(sb, -1);
6055 : else if (ext4_has_feature_quota(sb)) {
6056 : err = ext4_enable_quotas(sb);
6057 : if (err)
6058 : goto restore_opts;
6059 : }
6060 : }
6061 : #endif
6062 1 : if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6063 0 : ext4_release_system_zone(sb);
6064 :
6065 : /*
6066 : * Some options can be enabled by ext4 and/or by VFS mount flag
6067 : * either way we need to make sure it matches in both *flags and
6068 : * s_flags. Copy those selected flags from s_flags to *flags
6069 : */
6070 1 : *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6071 :
6072 1 : ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6073 : orig_data, ext4_quota_mode(sb));
6074 1 : kfree(orig_data);
6075 1 : return 0;
6076 :
6077 0 : restore_opts:
6078 0 : sb->s_flags = old_sb_flags;
6079 0 : sbi->s_mount_opt = old_opts.s_mount_opt;
6080 0 : sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6081 0 : sbi->s_resuid = old_opts.s_resuid;
6082 0 : sbi->s_resgid = old_opts.s_resgid;
6083 0 : sbi->s_commit_interval = old_opts.s_commit_interval;
6084 0 : sbi->s_min_batch_time = old_opts.s_min_batch_time;
6085 0 : sbi->s_max_batch_time = old_opts.s_max_batch_time;
6086 0 : if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6087 0 : ext4_release_system_zone(sb);
6088 : #ifdef CONFIG_QUOTA
6089 : sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6090 : for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6091 : to_free[i] = get_qf_name(sb, sbi, i);
6092 : rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6093 : }
6094 : synchronize_rcu();
6095 : for (i = 0; i < EXT4_MAXQUOTAS; i++)
6096 : kfree(to_free[i]);
6097 : #endif
6098 0 : kfree(orig_data);
6099 0 : return err;
6100 : }
6101 :
6102 : #ifdef CONFIG_QUOTA
6103 : static int ext4_statfs_project(struct super_block *sb,
6104 : kprojid_t projid, struct kstatfs *buf)
6105 : {
6106 : struct kqid qid;
6107 : struct dquot *dquot;
6108 : u64 limit;
6109 : u64 curblock;
6110 :
6111 : qid = make_kqid_projid(projid);
6112 : dquot = dqget(sb, qid);
6113 : if (IS_ERR(dquot))
6114 : return PTR_ERR(dquot);
6115 : spin_lock(&dquot->dq_dqb_lock);
6116 :
6117 : limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6118 : dquot->dq_dqb.dqb_bhardlimit);
6119 : limit >>= sb->s_blocksize_bits;
6120 :
6121 : if (limit && buf->f_blocks > limit) {
6122 : curblock = (dquot->dq_dqb.dqb_curspace +
6123 : dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6124 : buf->f_blocks = limit;
6125 : buf->f_bfree = buf->f_bavail =
6126 : (buf->f_blocks > curblock) ?
6127 : (buf->f_blocks - curblock) : 0;
6128 : }
6129 :
6130 : limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6131 : dquot->dq_dqb.dqb_ihardlimit);
6132 : if (limit && buf->f_files > limit) {
6133 : buf->f_files = limit;
6134 : buf->f_ffree =
6135 : (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6136 : (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6137 : }
6138 :
6139 : spin_unlock(&dquot->dq_dqb_lock);
6140 : dqput(dquot);
6141 : return 0;
6142 : }
6143 : #endif
6144 :
6145 215 : static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6146 : {
6147 215 : struct super_block *sb = dentry->d_sb;
6148 215 : struct ext4_sb_info *sbi = EXT4_SB(sb);
6149 215 : struct ext4_super_block *es = sbi->s_es;
6150 215 : ext4_fsblk_t overhead = 0, resv_blocks;
6151 215 : u64 fsid;
6152 215 : s64 bfree;
6153 215 : resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6154 :
6155 215 : if (!test_opt(sb, MINIX_DF))
6156 215 : overhead = sbi->s_overhead;
6157 :
6158 215 : buf->f_type = EXT4_SUPER_MAGIC;
6159 215 : buf->f_bsize = sb->s_blocksize;
6160 215 : buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6161 215 : bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6162 215 : percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6163 : /* prevent underflow in case that few free space is available */
6164 215 : buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6165 215 : buf->f_bavail = buf->f_bfree -
6166 215 : (ext4_r_blocks_count(es) + resv_blocks);
6167 215 : if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6168 0 : buf->f_bavail = 0;
6169 215 : buf->f_files = le32_to_cpu(es->s_inodes_count);
6170 215 : buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6171 215 : buf->f_namelen = EXT4_NAME_LEN;
6172 215 : fsid = le64_to_cpup((void *)es->s_uuid) ^
6173 215 : le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6174 215 : buf->f_fsid = u64_to_fsid(fsid);
6175 :
6176 : #ifdef CONFIG_QUOTA
6177 : if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6178 : sb_has_quota_limits_enabled(sb, PRJQUOTA))
6179 : ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6180 : #endif
6181 215 : return 0;
6182 : }
6183 :
6184 :
6185 : #ifdef CONFIG_QUOTA
6186 :
6187 : /*
6188 : * Helper functions so that transaction is started before we acquire dqio_sem
6189 : * to keep correct lock ordering of transaction > dqio_sem
6190 : */
6191 : static inline struct inode *dquot_to_inode(struct dquot *dquot)
6192 : {
6193 : return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6194 : }
6195 :
6196 : static int ext4_write_dquot(struct dquot *dquot)
6197 : {
6198 : int ret, err;
6199 : handle_t *handle;
6200 : struct inode *inode;
6201 :
6202 : inode = dquot_to_inode(dquot);
6203 : handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6204 : EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6205 : if (IS_ERR(handle))
6206 : return PTR_ERR(handle);
6207 : ret = dquot_commit(dquot);
6208 : err = ext4_journal_stop(handle);
6209 : if (!ret)
6210 : ret = err;
6211 : return ret;
6212 : }
6213 :
6214 : static int ext4_acquire_dquot(struct dquot *dquot)
6215 : {
6216 : int ret, err;
6217 : handle_t *handle;
6218 :
6219 : handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6220 : EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6221 : if (IS_ERR(handle))
6222 : return PTR_ERR(handle);
6223 : ret = dquot_acquire(dquot);
6224 : err = ext4_journal_stop(handle);
6225 : if (!ret)
6226 : ret = err;
6227 : return ret;
6228 : }
6229 :
6230 : static int ext4_release_dquot(struct dquot *dquot)
6231 : {
6232 : int ret, err;
6233 : handle_t *handle;
6234 :
6235 : handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6236 : EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6237 : if (IS_ERR(handle)) {
6238 : /* Release dquot anyway to avoid endless cycle in dqput() */
6239 : dquot_release(dquot);
6240 : return PTR_ERR(handle);
6241 : }
6242 : ret = dquot_release(dquot);
6243 : err = ext4_journal_stop(handle);
6244 : if (!ret)
6245 : ret = err;
6246 : return ret;
6247 : }
6248 :
6249 : static int ext4_mark_dquot_dirty(struct dquot *dquot)
6250 : {
6251 : struct super_block *sb = dquot->dq_sb;
6252 :
6253 : if (ext4_is_quota_journalled(sb)) {
6254 : dquot_mark_dquot_dirty(dquot);
6255 : return ext4_write_dquot(dquot);
6256 : } else {
6257 : return dquot_mark_dquot_dirty(dquot);
6258 : }
6259 : }
6260 :
6261 : static int ext4_write_info(struct super_block *sb, int type)
6262 : {
6263 : int ret, err;
6264 : handle_t *handle;
6265 :
6266 : /* Data block + inode block */
6267 : handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6268 : if (IS_ERR(handle))
6269 : return PTR_ERR(handle);
6270 : ret = dquot_commit_info(sb, type);
6271 : err = ext4_journal_stop(handle);
6272 : if (!ret)
6273 : ret = err;
6274 : return ret;
6275 : }
6276 :
6277 : /*
6278 : * Turn on quotas during mount time - we need to find
6279 : * the quota file and such...
6280 : */
6281 : static int ext4_quota_on_mount(struct super_block *sb, int type)
6282 : {
6283 : return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6284 : EXT4_SB(sb)->s_jquota_fmt, type);
6285 : }
6286 :
6287 : static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6288 : {
6289 : struct ext4_inode_info *ei = EXT4_I(inode);
6290 :
6291 : /* The first argument of lockdep_set_subclass has to be
6292 : * *exactly* the same as the argument to init_rwsem() --- in
6293 : * this case, in init_once() --- or lockdep gets unhappy
6294 : * because the name of the lock is set using the
6295 : * stringification of the argument to init_rwsem().
6296 : */
6297 : (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6298 : lockdep_set_subclass(&ei->i_data_sem, subclass);
6299 : }
6300 :
6301 : /*
6302 : * Standard function to be called on quota_on
6303 : */
6304 : static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6305 : const struct path *path)
6306 : {
6307 : int err;
6308 :
6309 : if (!test_opt(sb, QUOTA))
6310 : return -EINVAL;
6311 :
6312 : /* Quotafile not on the same filesystem? */
6313 : if (path->dentry->d_sb != sb)
6314 : return -EXDEV;
6315 :
6316 : /* Quota already enabled for this file? */
6317 : if (IS_NOQUOTA(d_inode(path->dentry)))
6318 : return -EBUSY;
6319 :
6320 : /* Journaling quota? */
6321 : if (EXT4_SB(sb)->s_qf_names[type]) {
6322 : /* Quotafile not in fs root? */
6323 : if (path->dentry->d_parent != sb->s_root)
6324 : ext4_msg(sb, KERN_WARNING,
6325 : "Quota file not on filesystem root. "
6326 : "Journaled quota will not work");
6327 : sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6328 : } else {
6329 : /*
6330 : * Clear the flag just in case mount options changed since
6331 : * last time.
6332 : */
6333 : sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6334 : }
6335 :
6336 : /*
6337 : * When we journal data on quota file, we have to flush journal to see
6338 : * all updates to the file when we bypass pagecache...
6339 : */
6340 : if (EXT4_SB(sb)->s_journal &&
6341 : ext4_should_journal_data(d_inode(path->dentry))) {
6342 : /*
6343 : * We don't need to lock updates but journal_flush() could
6344 : * otherwise be livelocked...
6345 : */
6346 : jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6347 : err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6348 : jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6349 : if (err)
6350 : return err;
6351 : }
6352 :
6353 : lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6354 : err = dquot_quota_on(sb, type, format_id, path);
6355 : if (err) {
6356 : lockdep_set_quota_inode(path->dentry->d_inode,
6357 : I_DATA_SEM_NORMAL);
6358 : } else {
6359 : struct inode *inode = d_inode(path->dentry);
6360 : handle_t *handle;
6361 :
6362 : /*
6363 : * Set inode flags to prevent userspace from messing with quota
6364 : * files. If this fails, we return success anyway since quotas
6365 : * are already enabled and this is not a hard failure.
6366 : */
6367 : inode_lock(inode);
6368 : handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6369 : if (IS_ERR(handle))
6370 : goto unlock_inode;
6371 : EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6372 : inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6373 : S_NOATIME | S_IMMUTABLE);
6374 : err = ext4_mark_inode_dirty(handle, inode);
6375 : ext4_journal_stop(handle);
6376 : unlock_inode:
6377 : inode_unlock(inode);
6378 : }
6379 : return err;
6380 : }
6381 :
6382 : static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6383 : unsigned int flags)
6384 : {
6385 : int err;
6386 : struct inode *qf_inode;
6387 : unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6388 : le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6389 : le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6390 : le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6391 : };
6392 :
6393 : BUG_ON(!ext4_has_feature_quota(sb));
6394 :
6395 : if (!qf_inums[type])
6396 : return -EPERM;
6397 :
6398 : qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6399 : if (IS_ERR(qf_inode)) {
6400 : ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6401 : return PTR_ERR(qf_inode);
6402 : }
6403 :
6404 : /* Don't account quota for quota files to avoid recursion */
6405 : qf_inode->i_flags |= S_NOQUOTA;
6406 : lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6407 : err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6408 : if (err)
6409 : lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6410 : iput(qf_inode);
6411 :
6412 : return err;
6413 : }
6414 :
6415 : /* Enable usage tracking for all quota types. */
6416 : static int ext4_enable_quotas(struct super_block *sb)
6417 : {
6418 : int type, err = 0;
6419 : unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6420 : le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6421 : le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6422 : le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6423 : };
6424 : bool quota_mopt[EXT4_MAXQUOTAS] = {
6425 : test_opt(sb, USRQUOTA),
6426 : test_opt(sb, GRPQUOTA),
6427 : test_opt(sb, PRJQUOTA),
6428 : };
6429 :
6430 : sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6431 : for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6432 : if (qf_inums[type]) {
6433 : err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6434 : DQUOT_USAGE_ENABLED |
6435 : (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6436 : if (err) {
6437 : ext4_warning(sb,
6438 : "Failed to enable quota tracking "
6439 : "(type=%d, err=%d). Please run "
6440 : "e2fsck to fix.", type, err);
6441 : for (type--; type >= 0; type--)
6442 : dquot_quota_off(sb, type);
6443 :
6444 : return err;
6445 : }
6446 : }
6447 : }
6448 : return 0;
6449 : }
6450 :
6451 : static int ext4_quota_off(struct super_block *sb, int type)
6452 : {
6453 : struct inode *inode = sb_dqopt(sb)->files[type];
6454 : handle_t *handle;
6455 : int err;
6456 :
6457 : /* Force all delayed allocation blocks to be allocated.
6458 : * Caller already holds s_umount sem */
6459 : if (test_opt(sb, DELALLOC))
6460 : sync_filesystem(sb);
6461 :
6462 : if (!inode || !igrab(inode))
6463 : goto out;
6464 :
6465 : err = dquot_quota_off(sb, type);
6466 : if (err || ext4_has_feature_quota(sb))
6467 : goto out_put;
6468 :
6469 : inode_lock(inode);
6470 : /*
6471 : * Update modification times of quota files when userspace can
6472 : * start looking at them. If we fail, we return success anyway since
6473 : * this is not a hard failure and quotas are already disabled.
6474 : */
6475 : handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6476 : if (IS_ERR(handle)) {
6477 : err = PTR_ERR(handle);
6478 : goto out_unlock;
6479 : }
6480 : EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6481 : inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6482 : inode->i_mtime = inode->i_ctime = current_time(inode);
6483 : err = ext4_mark_inode_dirty(handle, inode);
6484 : ext4_journal_stop(handle);
6485 : out_unlock:
6486 : inode_unlock(inode);
6487 : out_put:
6488 : lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6489 : iput(inode);
6490 : return err;
6491 : out:
6492 : return dquot_quota_off(sb, type);
6493 : }
6494 :
6495 : /* Read data from quotafile - avoid pagecache and such because we cannot afford
6496 : * acquiring the locks... As quota files are never truncated and quota code
6497 : * itself serializes the operations (and no one else should touch the files)
6498 : * we don't have to be afraid of races */
6499 : static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6500 : size_t len, loff_t off)
6501 : {
6502 : struct inode *inode = sb_dqopt(sb)->files[type];
6503 : ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6504 : int offset = off & (sb->s_blocksize - 1);
6505 : int tocopy;
6506 : size_t toread;
6507 : struct buffer_head *bh;
6508 : loff_t i_size = i_size_read(inode);
6509 :
6510 : if (off > i_size)
6511 : return 0;
6512 : if (off+len > i_size)
6513 : len = i_size-off;
6514 : toread = len;
6515 : while (toread > 0) {
6516 : tocopy = sb->s_blocksize - offset < toread ?
6517 : sb->s_blocksize - offset : toread;
6518 : bh = ext4_bread(NULL, inode, blk, 0);
6519 : if (IS_ERR(bh))
6520 : return PTR_ERR(bh);
6521 : if (!bh) /* A hole? */
6522 : memset(data, 0, tocopy);
6523 : else
6524 : memcpy(data, bh->b_data+offset, tocopy);
6525 : brelse(bh);
6526 : offset = 0;
6527 : toread -= tocopy;
6528 : data += tocopy;
6529 : blk++;
6530 : }
6531 : return len;
6532 : }
6533 :
6534 : /* Write to quotafile (we know the transaction is already started and has
6535 : * enough credits) */
6536 : static ssize_t ext4_quota_write(struct super_block *sb, int type,
6537 : const char *data, size_t len, loff_t off)
6538 : {
6539 : struct inode *inode = sb_dqopt(sb)->files[type];
6540 : ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6541 : int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6542 : int retries = 0;
6543 : struct buffer_head *bh;
6544 : handle_t *handle = journal_current_handle();
6545 :
6546 : if (EXT4_SB(sb)->s_journal && !handle) {
6547 : ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6548 : " cancelled because transaction is not started",
6549 : (unsigned long long)off, (unsigned long long)len);
6550 : return -EIO;
6551 : }
6552 : /*
6553 : * Since we account only one data block in transaction credits,
6554 : * then it is impossible to cross a block boundary.
6555 : */
6556 : if (sb->s_blocksize - offset < len) {
6557 : ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6558 : " cancelled because not block aligned",
6559 : (unsigned long long)off, (unsigned long long)len);
6560 : return -EIO;
6561 : }
6562 :
6563 : do {
6564 : bh = ext4_bread(handle, inode, blk,
6565 : EXT4_GET_BLOCKS_CREATE |
6566 : EXT4_GET_BLOCKS_METADATA_NOFAIL);
6567 : } while (PTR_ERR(bh) == -ENOSPC &&
6568 : ext4_should_retry_alloc(inode->i_sb, &retries));
6569 : if (IS_ERR(bh))
6570 : return PTR_ERR(bh);
6571 : if (!bh)
6572 : goto out;
6573 : BUFFER_TRACE(bh, "get write access");
6574 : err = ext4_journal_get_write_access(handle, bh);
6575 : if (err) {
6576 : brelse(bh);
6577 : return err;
6578 : }
6579 : lock_buffer(bh);
6580 : memcpy(bh->b_data+offset, data, len);
6581 : flush_dcache_page(bh->b_page);
6582 : unlock_buffer(bh);
6583 : err = ext4_handle_dirty_metadata(handle, NULL, bh);
6584 : brelse(bh);
6585 : out:
6586 : if (inode->i_size < off + len) {
6587 : i_size_write(inode, off + len);
6588 : EXT4_I(inode)->i_disksize = inode->i_size;
6589 : err2 = ext4_mark_inode_dirty(handle, inode);
6590 : if (unlikely(err2 && !err))
6591 : err = err2;
6592 : }
6593 : return err ? err : len;
6594 : }
6595 : #endif
6596 :
6597 2 : static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6598 : const char *dev_name, void *data)
6599 : {
6600 2 : return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6601 : }
6602 :
6603 : #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6604 : static inline void register_as_ext2(void)
6605 : {
6606 : int err = register_filesystem(&ext2_fs_type);
6607 : if (err)
6608 : printk(KERN_WARNING
6609 : "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6610 : }
6611 :
6612 : static inline void unregister_as_ext2(void)
6613 : {
6614 : unregister_filesystem(&ext2_fs_type);
6615 : }
6616 :
6617 : static inline int ext2_feature_set_ok(struct super_block *sb)
6618 : {
6619 : if (ext4_has_unknown_ext2_incompat_features(sb))
6620 : return 0;
6621 : if (sb_rdonly(sb))
6622 : return 1;
6623 : if (ext4_has_unknown_ext2_ro_compat_features(sb))
6624 : return 0;
6625 : return 1;
6626 : }
6627 : #else
6628 1 : static inline void register_as_ext2(void) { }
6629 0 : static inline void unregister_as_ext2(void) { }
6630 : static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6631 : #endif
6632 :
6633 1 : static inline void register_as_ext3(void)
6634 : {
6635 1 : int err = register_filesystem(&ext3_fs_type);
6636 1 : if (err)
6637 0 : printk(KERN_WARNING
6638 : "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6639 1 : }
6640 :
6641 0 : static inline void unregister_as_ext3(void)
6642 : {
6643 0 : unregister_filesystem(&ext3_fs_type);
6644 0 : }
6645 :
6646 1 : static inline int ext3_feature_set_ok(struct super_block *sb)
6647 : {
6648 1 : if (ext4_has_unknown_ext3_incompat_features(sb))
6649 : return 0;
6650 0 : if (!ext4_has_feature_journal(sb))
6651 : return 0;
6652 0 : if (sb_rdonly(sb))
6653 : return 1;
6654 0 : if (ext4_has_unknown_ext3_ro_compat_features(sb))
6655 0 : return 0;
6656 : return 1;
6657 : }
6658 :
6659 : static struct file_system_type ext4_fs_type = {
6660 : .owner = THIS_MODULE,
6661 : .name = "ext4",
6662 : .mount = ext4_mount,
6663 : .kill_sb = kill_block_super,
6664 : .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6665 : };
6666 : MODULE_ALIAS_FS("ext4");
6667 :
6668 : /* Shared across all ext4 file systems */
6669 : wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6670 :
6671 1 : static int __init ext4_init_fs(void)
6672 : {
6673 1 : int i, err;
6674 :
6675 1 : ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6676 1 : ext4_li_info = NULL;
6677 :
6678 : /* Build-time check for flags consistency */
6679 1 : ext4_check_flag_values();
6680 :
6681 38 : for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6682 37 : init_waitqueue_head(&ext4__ioend_wq[i]);
6683 :
6684 1 : err = ext4_init_es();
6685 1 : if (err)
6686 : return err;
6687 :
6688 1 : err = ext4_init_pending();
6689 1 : if (err)
6690 0 : goto out7;
6691 :
6692 1 : err = ext4_init_post_read_processing();
6693 1 : if (err)
6694 0 : goto out6;
6695 :
6696 1 : err = ext4_init_pageio();
6697 1 : if (err)
6698 0 : goto out5;
6699 :
6700 1 : err = ext4_init_system_zone();
6701 1 : if (err)
6702 0 : goto out4;
6703 :
6704 1 : err = ext4_init_sysfs();
6705 1 : if (err)
6706 0 : goto out3;
6707 :
6708 1 : err = ext4_init_mballoc();
6709 1 : if (err)
6710 0 : goto out2;
6711 1 : err = init_inodecache();
6712 1 : if (err)
6713 0 : goto out1;
6714 :
6715 1 : err = ext4_fc_init_dentry_cache();
6716 1 : if (err)
6717 0 : goto out05;
6718 :
6719 1 : register_as_ext3();
6720 1 : register_as_ext2();
6721 1 : err = register_filesystem(&ext4_fs_type);
6722 1 : if (err)
6723 0 : goto out;
6724 :
6725 : return 0;
6726 0 : out:
6727 0 : unregister_as_ext2();
6728 0 : unregister_as_ext3();
6729 0 : out05:
6730 0 : destroy_inodecache();
6731 0 : out1:
6732 0 : ext4_exit_mballoc();
6733 0 : out2:
6734 0 : ext4_exit_sysfs();
6735 0 : out3:
6736 0 : ext4_exit_system_zone();
6737 0 : out4:
6738 0 : ext4_exit_pageio();
6739 0 : out5:
6740 0 : ext4_exit_post_read_processing();
6741 0 : out6:
6742 0 : ext4_exit_pending();
6743 0 : out7:
6744 0 : ext4_exit_es();
6745 :
6746 0 : return err;
6747 : }
6748 :
6749 0 : static void __exit ext4_exit_fs(void)
6750 : {
6751 0 : ext4_destroy_lazyinit_thread();
6752 0 : unregister_as_ext2();
6753 0 : unregister_as_ext3();
6754 0 : unregister_filesystem(&ext4_fs_type);
6755 0 : destroy_inodecache();
6756 0 : ext4_exit_mballoc();
6757 0 : ext4_exit_sysfs();
6758 0 : ext4_exit_system_zone();
6759 0 : ext4_exit_pageio();
6760 0 : ext4_exit_post_read_processing();
6761 0 : ext4_exit_es();
6762 0 : ext4_exit_pending();
6763 0 : }
6764 :
6765 : MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6766 : MODULE_DESCRIPTION("Fourth Extended Filesystem");
6767 : MODULE_LICENSE("GPL");
6768 : MODULE_SOFTDEP("pre: crc32c");
6769 : module_init(ext4_init_fs)
6770 : module_exit(ext4_exit_fs)
|