Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * fs/kernfs/file.c - kernfs file implementation
4 : *
5 : * Copyright (c) 2001-3 Patrick Mochel
6 : * Copyright (c) 2007 SUSE Linux Products GmbH
7 : * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 : */
9 :
10 : #include <linux/fs.h>
11 : #include <linux/seq_file.h>
12 : #include <linux/slab.h>
13 : #include <linux/poll.h>
14 : #include <linux/pagemap.h>
15 : #include <linux/sched/mm.h>
16 : #include <linux/fsnotify.h>
17 : #include <linux/uio.h>
18 :
19 : #include "kernfs-internal.h"
20 :
21 : /*
22 : * There's one kernfs_open_file for each open file and one kernfs_open_node
23 : * for each kernfs_node with one or more open files.
24 : *
25 : * kernfs_node->attr.open points to kernfs_open_node. attr.open is
26 : * protected by kernfs_open_node_lock.
27 : *
28 : * filp->private_data points to seq_file whose ->private points to
29 : * kernfs_open_file. kernfs_open_files are chained at
30 : * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31 : */
32 : static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 : static DEFINE_MUTEX(kernfs_open_file_mutex);
34 :
35 : struct kernfs_open_node {
36 : atomic_t refcnt;
37 : atomic_t event;
38 : wait_queue_head_t poll;
39 : struct list_head files; /* goes through kernfs_open_file.list */
40 : };
41 :
42 : /*
43 : * kernfs_notify() may be called from any context and bounces notifications
44 : * through a work item. To minimize space overhead in kernfs_node, the
45 : * pending queue is implemented as a singly linked list of kernfs_nodes.
46 : * The list is terminated with the self pointer so that whether a
47 : * kernfs_node is on the list or not can be determined by testing the next
48 : * pointer for NULL.
49 : */
50 : #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list)
51 :
52 : static DEFINE_SPINLOCK(kernfs_notify_lock);
53 : static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 :
55 2461 : static struct kernfs_open_file *kernfs_of(struct file *file)
56 : {
57 2461 : return ((struct seq_file *)file->private_data)->private;
58 : }
59 :
60 : /*
61 : * Determine the kernfs_ops for the given kernfs_node. This function must
62 : * be called while holding an active reference.
63 : */
64 4239 : static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 : {
66 4239 : if (kn->flags & KERNFS_LOCKDEP)
67 8478 : lockdep_assert_held(kn);
68 4239 : return kn->attr.ops;
69 : }
70 :
71 : /*
72 : * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73 : * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74 : * a seq_file iteration which is fully initialized with an active reference
75 : * or an aborted kernfs_seq_start() due to get_active failure. The
76 : * position pointer is the only context for each seq_file iteration and
77 : * thus the stop condition should be encoded in it. As the return value is
78 : * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79 : * choice to indicate get_active failure.
80 : *
81 : * Unfortunately, this is complicated due to the optional custom seq_file
82 : * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop()
83 : * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84 : * custom seq_file operations and thus can't decide whether put_active
85 : * should be performed or not only on ERR_PTR(-ENODEV).
86 : *
87 : * This is worked around by factoring out the custom seq_stop() and
88 : * put_active part into kernfs_seq_stop_active(), skipping it from
89 : * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90 : * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91 : * that kernfs_seq_stop_active() is skipped only after get_active failure.
92 : */
93 1108 : static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 : {
95 1108 : struct kernfs_open_file *of = sf->private;
96 1108 : const struct kernfs_ops *ops = kernfs_ops(of->kn);
97 :
98 1108 : if (ops->seq_stop)
99 35 : ops->seq_stop(sf, v);
100 1108 : kernfs_put_active(of->kn);
101 1108 : }
102 :
103 1108 : static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 : {
105 1108 : struct kernfs_open_file *of = sf->private;
106 1108 : const struct kernfs_ops *ops;
107 :
108 : /*
109 : * @of->mutex nests outside active ref and is primarily to ensure that
110 : * the ops aren't called concurrently for the same open file.
111 : */
112 1108 : mutex_lock(&of->mutex);
113 1108 : if (!kernfs_get_active(of->kn))
114 1108 : return ERR_PTR(-ENODEV);
115 :
116 1108 : ops = kernfs_ops(of->kn);
117 1108 : if (ops->seq_start) {
118 35 : void *next = ops->seq_start(sf, ppos);
119 : /* see the comment above kernfs_seq_stop_active() */
120 35 : if (next == ERR_PTR(-ENODEV))
121 0 : kernfs_seq_stop_active(sf, next);
122 35 : return next;
123 : } else {
124 : /*
125 : * The same behavior and code as single_open(). Returns
126 : * !NULL if pos is at the beginning; otherwise, NULL.
127 : */
128 1073 : return NULL + !*ppos;
129 : }
130 : }
131 :
132 623 : static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 : {
134 623 : struct kernfs_open_file *of = sf->private;
135 623 : const struct kernfs_ops *ops = kernfs_ops(of->kn);
136 :
137 623 : if (ops->seq_next) {
138 49 : void *next = ops->seq_next(sf, v, ppos);
139 : /* see the comment above kernfs_seq_stop_active() */
140 49 : if (next == ERR_PTR(-ENODEV))
141 0 : kernfs_seq_stop_active(sf, next);
142 49 : return next;
143 : } else {
144 : /*
145 : * The same behavior and code as single_open(), always
146 : * terminate after the initial read.
147 : */
148 574 : ++*ppos;
149 574 : return NULL;
150 : }
151 : }
152 :
153 1108 : static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 : {
155 1108 : struct kernfs_open_file *of = sf->private;
156 :
157 1108 : if (v != ERR_PTR(-ENODEV))
158 1108 : kernfs_seq_stop_active(sf, v);
159 1108 : mutex_unlock(&of->mutex);
160 1108 : }
161 :
162 625 : static int kernfs_seq_show(struct seq_file *sf, void *v)
163 : {
164 625 : struct kernfs_open_file *of = sf->private;
165 :
166 625 : of->event = atomic_read(&of->kn->attr.open->event);
167 :
168 625 : return of->kn->attr.ops->seq_show(sf, v);
169 : }
170 :
171 : static const struct seq_operations kernfs_seq_ops = {
172 : .start = kernfs_seq_start,
173 : .next = kernfs_seq_next,
174 : .stop = kernfs_seq_stop,
175 : .show = kernfs_seq_show,
176 : };
177 :
178 : /*
179 : * As reading a bin file can have side-effects, the exact offset and bytes
180 : * specified in read(2) call should be passed to the read callback making
181 : * it difficult to use seq_file. Implement simplistic custom buffering for
182 : * bin files.
183 : */
184 0 : static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
185 : {
186 0 : struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
187 0 : ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
188 0 : const struct kernfs_ops *ops;
189 0 : char *buf;
190 :
191 0 : buf = of->prealloc_buf;
192 0 : if (buf)
193 0 : mutex_lock(&of->prealloc_mutex);
194 : else
195 0 : buf = kmalloc(len, GFP_KERNEL);
196 0 : if (!buf)
197 : return -ENOMEM;
198 :
199 : /*
200 : * @of->mutex nests outside active ref and is used both to ensure that
201 : * the ops aren't called concurrently for the same open file.
202 : */
203 0 : mutex_lock(&of->mutex);
204 0 : if (!kernfs_get_active(of->kn)) {
205 0 : len = -ENODEV;
206 0 : mutex_unlock(&of->mutex);
207 0 : goto out_free;
208 : }
209 :
210 0 : of->event = atomic_read(&of->kn->attr.open->event);
211 0 : ops = kernfs_ops(of->kn);
212 0 : if (ops->read)
213 0 : len = ops->read(of, buf, len, iocb->ki_pos);
214 : else
215 : len = -EINVAL;
216 :
217 0 : kernfs_put_active(of->kn);
218 0 : mutex_unlock(&of->mutex);
219 :
220 0 : if (len < 0)
221 0 : goto out_free;
222 :
223 0 : if (copy_to_iter(buf, len, iter) != len) {
224 0 : len = -EFAULT;
225 0 : goto out_free;
226 : }
227 :
228 0 : iocb->ki_pos += len;
229 :
230 0 : out_free:
231 0 : if (buf == of->prealloc_buf)
232 0 : mutex_unlock(&of->prealloc_mutex);
233 : else
234 0 : kfree(buf);
235 : return len;
236 : }
237 :
238 1108 : static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
239 : {
240 1108 : if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
241 1108 : return seq_read_iter(iocb, iter);
242 0 : return kernfs_file_read_iter(iocb, iter);
243 : }
244 :
245 : /*
246 : * Copy data in from userland and pass it to the matching kernfs write
247 : * operation.
248 : *
249 : * There is no easy way for us to know if userspace is only doing a partial
250 : * write, so we don't support them. We expect the entire buffer to come on
251 : * the first write. Hint: if you're writing a value, first read the file,
252 : * modify only the the value you're changing, then write entire buffer
253 : * back.
254 : */
255 373 : static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
256 : {
257 373 : struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
258 373 : ssize_t len = iov_iter_count(iter);
259 373 : const struct kernfs_ops *ops;
260 373 : char *buf;
261 :
262 373 : if (of->atomic_write_len) {
263 202 : if (len > of->atomic_write_len)
264 : return -E2BIG;
265 : } else {
266 171 : len = min_t(size_t, len, PAGE_SIZE);
267 : }
268 :
269 373 : buf = of->prealloc_buf;
270 373 : if (buf)
271 0 : mutex_lock(&of->prealloc_mutex);
272 : else
273 373 : buf = kmalloc(len + 1, GFP_KERNEL);
274 373 : if (!buf)
275 : return -ENOMEM;
276 :
277 746 : if (copy_from_iter(buf, len, iter) != len) {
278 0 : len = -EFAULT;
279 0 : goto out_free;
280 : }
281 373 : buf[len] = '\0'; /* guarantee string termination */
282 :
283 : /*
284 : * @of->mutex nests outside active ref and is used both to ensure that
285 : * the ops aren't called concurrently for the same open file.
286 : */
287 373 : mutex_lock(&of->mutex);
288 373 : if (!kernfs_get_active(of->kn)) {
289 0 : mutex_unlock(&of->mutex);
290 0 : len = -ENODEV;
291 0 : goto out_free;
292 : }
293 :
294 373 : ops = kernfs_ops(of->kn);
295 373 : if (ops->write)
296 373 : len = ops->write(of, buf, len, iocb->ki_pos);
297 : else
298 : len = -EINVAL;
299 :
300 373 : kernfs_put_active(of->kn);
301 373 : mutex_unlock(&of->mutex);
302 :
303 373 : if (len > 0)
304 373 : iocb->ki_pos += len;
305 :
306 0 : out_free:
307 373 : if (buf == of->prealloc_buf)
308 0 : mutex_unlock(&of->prealloc_mutex);
309 : else
310 373 : kfree(buf);
311 : return len;
312 : }
313 :
314 0 : static void kernfs_vma_open(struct vm_area_struct *vma)
315 : {
316 0 : struct file *file = vma->vm_file;
317 0 : struct kernfs_open_file *of = kernfs_of(file);
318 :
319 0 : if (!of->vm_ops)
320 : return;
321 :
322 0 : if (!kernfs_get_active(of->kn))
323 : return;
324 :
325 0 : if (of->vm_ops->open)
326 0 : of->vm_ops->open(vma);
327 :
328 0 : kernfs_put_active(of->kn);
329 : }
330 :
331 0 : static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
332 : {
333 0 : struct file *file = vmf->vma->vm_file;
334 0 : struct kernfs_open_file *of = kernfs_of(file);
335 0 : vm_fault_t ret;
336 :
337 0 : if (!of->vm_ops)
338 : return VM_FAULT_SIGBUS;
339 :
340 0 : if (!kernfs_get_active(of->kn))
341 : return VM_FAULT_SIGBUS;
342 :
343 0 : ret = VM_FAULT_SIGBUS;
344 0 : if (of->vm_ops->fault)
345 0 : ret = of->vm_ops->fault(vmf);
346 :
347 0 : kernfs_put_active(of->kn);
348 0 : return ret;
349 : }
350 :
351 0 : static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
352 : {
353 0 : struct file *file = vmf->vma->vm_file;
354 0 : struct kernfs_open_file *of = kernfs_of(file);
355 0 : vm_fault_t ret;
356 :
357 0 : if (!of->vm_ops)
358 : return VM_FAULT_SIGBUS;
359 :
360 0 : if (!kernfs_get_active(of->kn))
361 : return VM_FAULT_SIGBUS;
362 :
363 0 : ret = 0;
364 0 : if (of->vm_ops->page_mkwrite)
365 0 : ret = of->vm_ops->page_mkwrite(vmf);
366 : else
367 0 : file_update_time(file);
368 :
369 0 : kernfs_put_active(of->kn);
370 0 : return ret;
371 : }
372 :
373 0 : static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
374 : void *buf, int len, int write)
375 : {
376 0 : struct file *file = vma->vm_file;
377 0 : struct kernfs_open_file *of = kernfs_of(file);
378 0 : int ret;
379 :
380 0 : if (!of->vm_ops)
381 : return -EINVAL;
382 :
383 0 : if (!kernfs_get_active(of->kn))
384 : return -EINVAL;
385 :
386 0 : ret = -EINVAL;
387 0 : if (of->vm_ops->access)
388 0 : ret = of->vm_ops->access(vma, addr, buf, len, write);
389 :
390 0 : kernfs_put_active(of->kn);
391 0 : return ret;
392 : }
393 :
394 : #ifdef CONFIG_NUMA
395 0 : static int kernfs_vma_set_policy(struct vm_area_struct *vma,
396 : struct mempolicy *new)
397 : {
398 0 : struct file *file = vma->vm_file;
399 0 : struct kernfs_open_file *of = kernfs_of(file);
400 0 : int ret;
401 :
402 0 : if (!of->vm_ops)
403 : return 0;
404 :
405 0 : if (!kernfs_get_active(of->kn))
406 : return -EINVAL;
407 :
408 0 : ret = 0;
409 0 : if (of->vm_ops->set_policy)
410 0 : ret = of->vm_ops->set_policy(vma, new);
411 :
412 0 : kernfs_put_active(of->kn);
413 0 : return ret;
414 : }
415 :
416 0 : static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
417 : unsigned long addr)
418 : {
419 0 : struct file *file = vma->vm_file;
420 0 : struct kernfs_open_file *of = kernfs_of(file);
421 0 : struct mempolicy *pol;
422 :
423 0 : if (!of->vm_ops)
424 0 : return vma->vm_policy;
425 :
426 0 : if (!kernfs_get_active(of->kn))
427 0 : return vma->vm_policy;
428 :
429 0 : pol = vma->vm_policy;
430 0 : if (of->vm_ops->get_policy)
431 0 : pol = of->vm_ops->get_policy(vma, addr);
432 :
433 0 : kernfs_put_active(of->kn);
434 0 : return pol;
435 : }
436 :
437 : #endif
438 :
439 : static const struct vm_operations_struct kernfs_vm_ops = {
440 : .open = kernfs_vma_open,
441 : .fault = kernfs_vma_fault,
442 : .page_mkwrite = kernfs_vma_page_mkwrite,
443 : .access = kernfs_vma_access,
444 : #ifdef CONFIG_NUMA
445 : .set_policy = kernfs_vma_set_policy,
446 : .get_policy = kernfs_vma_get_policy,
447 : #endif
448 : };
449 :
450 0 : static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
451 : {
452 0 : struct kernfs_open_file *of = kernfs_of(file);
453 0 : const struct kernfs_ops *ops;
454 0 : int rc;
455 :
456 : /*
457 : * mmap path and of->mutex are prone to triggering spurious lockdep
458 : * warnings and we don't want to add spurious locking dependency
459 : * between the two. Check whether mmap is actually implemented
460 : * without grabbing @of->mutex by testing HAS_MMAP flag. See the
461 : * comment in kernfs_file_open() for more details.
462 : */
463 0 : if (!(of->kn->flags & KERNFS_HAS_MMAP))
464 : return -ENODEV;
465 :
466 0 : mutex_lock(&of->mutex);
467 :
468 0 : rc = -ENODEV;
469 0 : if (!kernfs_get_active(of->kn))
470 0 : goto out_unlock;
471 :
472 0 : ops = kernfs_ops(of->kn);
473 0 : rc = ops->mmap(of, vma);
474 0 : if (rc)
475 0 : goto out_put;
476 :
477 : /*
478 : * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
479 : * to satisfy versions of X which crash if the mmap fails: that
480 : * substitutes a new vm_file, and we don't then want bin_vm_ops.
481 : */
482 0 : if (vma->vm_file != file)
483 0 : goto out_put;
484 :
485 0 : rc = -EINVAL;
486 0 : if (of->mmapped && of->vm_ops != vma->vm_ops)
487 0 : goto out_put;
488 :
489 : /*
490 : * It is not possible to successfully wrap close.
491 : * So error if someone is trying to use close.
492 : */
493 0 : rc = -EINVAL;
494 0 : if (vma->vm_ops && vma->vm_ops->close)
495 0 : goto out_put;
496 :
497 0 : rc = 0;
498 0 : of->mmapped = true;
499 0 : of->vm_ops = vma->vm_ops;
500 0 : vma->vm_ops = &kernfs_vm_ops;
501 0 : out_put:
502 0 : kernfs_put_active(of->kn);
503 0 : out_unlock:
504 0 : mutex_unlock(&of->mutex);
505 :
506 0 : return rc;
507 : }
508 :
509 : /**
510 : * kernfs_get_open_node - get or create kernfs_open_node
511 : * @kn: target kernfs_node
512 : * @of: kernfs_open_file for this instance of open
513 : *
514 : * If @kn->attr.open exists, increment its reference count; otherwise,
515 : * create one. @of is chained to the files list.
516 : *
517 : * LOCKING:
518 : * Kernel thread context (may sleep).
519 : *
520 : * RETURNS:
521 : * 0 on success, -errno on failure.
522 : */
523 979 : static int kernfs_get_open_node(struct kernfs_node *kn,
524 : struct kernfs_open_file *of)
525 : {
526 979 : struct kernfs_open_node *on, *new_on = NULL;
527 :
528 1953 : retry:
529 1953 : mutex_lock(&kernfs_open_file_mutex);
530 1953 : spin_lock_irq(&kernfs_open_node_lock);
531 :
532 1953 : if (!kn->attr.open && new_on) {
533 972 : kn->attr.open = new_on;
534 972 : new_on = NULL;
535 : }
536 :
537 1953 : on = kn->attr.open;
538 1953 : if (on) {
539 979 : atomic_inc(&on->refcnt);
540 979 : list_add_tail(&of->list, &on->files);
541 : }
542 :
543 1953 : spin_unlock_irq(&kernfs_open_node_lock);
544 1953 : mutex_unlock(&kernfs_open_file_mutex);
545 :
546 1953 : if (on) {
547 979 : kfree(new_on);
548 979 : return 0;
549 : }
550 :
551 : /* not there, initialize a new one and retry */
552 974 : new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
553 974 : if (!new_on)
554 : return -ENOMEM;
555 :
556 974 : atomic_set(&new_on->refcnt, 0);
557 974 : atomic_set(&new_on->event, 1);
558 974 : init_waitqueue_head(&new_on->poll);
559 974 : INIT_LIST_HEAD(&new_on->files);
560 974 : goto retry;
561 : }
562 :
563 : /**
564 : * kernfs_put_open_node - put kernfs_open_node
565 : * @kn: target kernfs_nodet
566 : * @of: associated kernfs_open_file
567 : *
568 : * Put @kn->attr.open and unlink @of from the files list. If
569 : * reference count reaches zero, disassociate and free it.
570 : *
571 : * LOCKING:
572 : * None.
573 : */
574 978 : static void kernfs_put_open_node(struct kernfs_node *kn,
575 : struct kernfs_open_file *of)
576 : {
577 978 : struct kernfs_open_node *on = kn->attr.open;
578 978 : unsigned long flags;
579 :
580 978 : mutex_lock(&kernfs_open_file_mutex);
581 978 : spin_lock_irqsave(&kernfs_open_node_lock, flags);
582 :
583 978 : if (of)
584 978 : list_del(&of->list);
585 :
586 1956 : if (atomic_dec_and_test(&on->refcnt))
587 971 : kn->attr.open = NULL;
588 : else
589 : on = NULL;
590 :
591 978 : spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
592 978 : mutex_unlock(&kernfs_open_file_mutex);
593 :
594 978 : kfree(on);
595 978 : }
596 :
597 1027 : static int kernfs_fop_open(struct inode *inode, struct file *file)
598 : {
599 1027 : struct kernfs_node *kn = inode->i_private;
600 1027 : struct kernfs_root *root = kernfs_root(kn);
601 1027 : const struct kernfs_ops *ops;
602 1027 : struct kernfs_open_file *of;
603 1027 : bool has_read, has_write, has_mmap;
604 1027 : int error = -EACCES;
605 :
606 1027 : if (!kernfs_get_active(kn))
607 : return -ENODEV;
608 :
609 1027 : ops = kernfs_ops(kn);
610 :
611 1027 : has_read = ops->seq_show || ops->read || ops->mmap;
612 1027 : has_write = ops->write || ops->mmap;
613 1027 : has_mmap = ops->mmap;
614 :
615 : /* see the flag definition for details */
616 1027 : if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
617 729 : if ((file->f_mode & FMODE_WRITE) &&
618 171 : (!(inode->i_mode & S_IWUGO) || !has_write))
619 0 : goto err_out;
620 :
621 729 : if ((file->f_mode & FMODE_READ) &&
622 558 : (!(inode->i_mode & S_IRUGO) || !has_read))
623 48 : goto err_out;
624 : }
625 :
626 : /* allocate a kernfs_open_file for the file */
627 979 : error = -ENOMEM;
628 979 : of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
629 979 : if (!of)
630 0 : goto err_out;
631 :
632 : /*
633 : * The following is done to give a different lockdep key to
634 : * @of->mutex for files which implement mmap. This is a rather
635 : * crude way to avoid false positive lockdep warning around
636 : * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
637 : * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
638 : * which mm->mmap_lock nests, while holding @of->mutex. As each
639 : * open file has a separate mutex, it's okay as long as those don't
640 : * happen on the same file. At this point, we can't easily give
641 : * each file a separate locking class. Let's differentiate on
642 : * whether the file has mmap or not for now.
643 : *
644 : * Both paths of the branch look the same. They're supposed to
645 : * look that way and give @of->mutex different static lockdep keys.
646 : */
647 979 : if (has_mmap)
648 0 : mutex_init(&of->mutex);
649 : else
650 979 : mutex_init(&of->mutex);
651 :
652 979 : of->kn = kn;
653 979 : of->file = file;
654 :
655 : /*
656 : * Write path needs to atomic_write_len outside active reference.
657 : * Cache it in open_file. See kernfs_fop_write_iter() for details.
658 : */
659 979 : of->atomic_write_len = ops->atomic_write_len;
660 :
661 979 : error = -EINVAL;
662 : /*
663 : * ->seq_show is incompatible with ->prealloc,
664 : * as seq_read does its own allocation.
665 : * ->read must be used instead.
666 : */
667 979 : if (ops->prealloc && ops->seq_show)
668 0 : goto err_free;
669 979 : if (ops->prealloc) {
670 0 : int len = of->atomic_write_len ?: PAGE_SIZE;
671 0 : of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
672 0 : error = -ENOMEM;
673 0 : if (!of->prealloc_buf)
674 0 : goto err_free;
675 0 : mutex_init(&of->prealloc_mutex);
676 : }
677 :
678 : /*
679 : * Always instantiate seq_file even if read access doesn't use
680 : * seq_file or is not requested. This unifies private data access
681 : * and readable regular files are the vast majority anyway.
682 : */
683 979 : if (ops->seq_show)
684 979 : error = seq_open(file, &kernfs_seq_ops);
685 : else
686 0 : error = seq_open(file, NULL);
687 979 : if (error)
688 0 : goto err_free;
689 :
690 979 : of->seq_file = file->private_data;
691 979 : of->seq_file->private = of;
692 :
693 : /* seq_file clears PWRITE unconditionally, restore it if WRITE */
694 979 : if (file->f_mode & FMODE_WRITE)
695 373 : file->f_mode |= FMODE_PWRITE;
696 :
697 : /* make sure we have open node struct */
698 979 : error = kernfs_get_open_node(kn, of);
699 979 : if (error)
700 0 : goto err_seq_release;
701 :
702 979 : if (ops->open) {
703 : /* nobody has access to @of yet, skip @of->mutex */
704 298 : error = ops->open(of);
705 298 : if (error)
706 0 : goto err_put_node;
707 : }
708 :
709 : /* open succeeded, put active references */
710 979 : kernfs_put_active(kn);
711 979 : return 0;
712 :
713 0 : err_put_node:
714 0 : kernfs_put_open_node(kn, of);
715 0 : err_seq_release:
716 0 : seq_release(inode, file);
717 0 : err_free:
718 0 : kfree(of->prealloc_buf);
719 0 : kfree(of);
720 48 : err_out:
721 48 : kernfs_put_active(kn);
722 48 : return error;
723 : }
724 :
725 : /* used from release/drain to ensure that ->release() is called exactly once */
726 298 : static void kernfs_release_file(struct kernfs_node *kn,
727 : struct kernfs_open_file *of)
728 : {
729 : /*
730 : * @of is guaranteed to have no other file operations in flight and
731 : * we just want to synchronize release and drain paths.
732 : * @kernfs_open_file_mutex is enough. @of->mutex can't be used
733 : * here because drain path may be called from places which can
734 : * cause circular dependency.
735 : */
736 894 : lockdep_assert_held(&kernfs_open_file_mutex);
737 :
738 298 : if (!of->released) {
739 : /*
740 : * A file is never detached without being released and we
741 : * need to be able to release files which are deactivated
742 : * and being drained. Don't use kernfs_ops().
743 : */
744 298 : kn->attr.ops->release(of);
745 298 : of->released = true;
746 : }
747 298 : }
748 :
749 978 : static int kernfs_fop_release(struct inode *inode, struct file *filp)
750 : {
751 978 : struct kernfs_node *kn = inode->i_private;
752 978 : struct kernfs_open_file *of = kernfs_of(filp);
753 :
754 978 : if (kn->flags & KERNFS_HAS_RELEASE) {
755 298 : mutex_lock(&kernfs_open_file_mutex);
756 298 : kernfs_release_file(kn, of);
757 298 : mutex_unlock(&kernfs_open_file_mutex);
758 : }
759 :
760 978 : kernfs_put_open_node(kn, of);
761 978 : seq_release(inode, filp);
762 978 : kfree(of->prealloc_buf);
763 978 : kfree(of);
764 :
765 978 : return 0;
766 : }
767 :
768 971 : void kernfs_drain_open_files(struct kernfs_node *kn)
769 : {
770 971 : struct kernfs_open_node *on;
771 971 : struct kernfs_open_file *of;
772 :
773 971 : if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
774 : return;
775 :
776 405 : spin_lock_irq(&kernfs_open_node_lock);
777 405 : on = kn->attr.open;
778 405 : if (on)
779 0 : atomic_inc(&on->refcnt);
780 405 : spin_unlock_irq(&kernfs_open_node_lock);
781 405 : if (!on)
782 : return;
783 :
784 0 : mutex_lock(&kernfs_open_file_mutex);
785 :
786 0 : list_for_each_entry(of, &on->files, list) {
787 0 : struct inode *inode = file_inode(of->file);
788 :
789 0 : if (kn->flags & KERNFS_HAS_MMAP)
790 0 : unmap_mapping_range(inode->i_mapping, 0, 0, 1);
791 :
792 0 : if (kn->flags & KERNFS_HAS_RELEASE)
793 0 : kernfs_release_file(kn, of);
794 : }
795 :
796 0 : mutex_unlock(&kernfs_open_file_mutex);
797 :
798 0 : kernfs_put_open_node(kn, NULL);
799 : }
800 :
801 : /*
802 : * Kernfs attribute files are pollable. The idea is that you read
803 : * the content and then you use 'poll' or 'select' to wait for
804 : * the content to change. When the content changes (assuming the
805 : * manager for the kobject supports notification), poll will
806 : * return EPOLLERR|EPOLLPRI, and select will return the fd whether
807 : * it is waiting for read, write, or exceptions.
808 : * Once poll/select indicates that the value has changed, you
809 : * need to close and re-open the file, or seek to 0 and read again.
810 : * Reminder: this only works for attributes which actively support
811 : * it, and it is not possible to test an attribute from userspace
812 : * to see if it supports poll (Neither 'poll' nor 'select' return
813 : * an appropriate error code). When in doubt, set a suitable timeout value.
814 : */
815 2 : __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
816 : {
817 2 : struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
818 2 : struct kernfs_open_node *on = kn->attr.open;
819 :
820 2 : poll_wait(of->file, &on->poll, wait);
821 :
822 2 : if (of->event != atomic_read(&on->event))
823 1 : return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
824 :
825 : return DEFAULT_POLLMASK;
826 : }
827 :
828 2 : static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
829 : {
830 2 : struct kernfs_open_file *of = kernfs_of(filp);
831 2 : struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
832 2 : __poll_t ret;
833 :
834 2 : if (!kernfs_get_active(kn))
835 : return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
836 :
837 2 : if (kn->attr.ops->poll)
838 0 : ret = kn->attr.ops->poll(of, wait);
839 : else
840 2 : ret = kernfs_generic_poll(of, wait);
841 :
842 2 : kernfs_put_active(kn);
843 2 : return ret;
844 : }
845 :
846 89 : static void kernfs_notify_workfn(struct work_struct *work)
847 : {
848 186 : struct kernfs_node *kn;
849 186 : struct kernfs_super_info *info;
850 186 : repeat:
851 : /* pop one off the notify_list */
852 186 : spin_lock_irq(&kernfs_notify_lock);
853 186 : kn = kernfs_notify_list;
854 186 : if (kn == KERNFS_NOTIFY_EOL) {
855 89 : spin_unlock_irq(&kernfs_notify_lock);
856 89 : return;
857 : }
858 97 : kernfs_notify_list = kn->attr.notify_next;
859 97 : kn->attr.notify_next = NULL;
860 97 : spin_unlock_irq(&kernfs_notify_lock);
861 :
862 : /* kick fsnotify */
863 97 : mutex_lock(&kernfs_mutex);
864 :
865 485 : list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
866 97 : struct kernfs_node *parent;
867 97 : struct inode *p_inode = NULL;
868 97 : struct inode *inode;
869 97 : struct qstr name;
870 :
871 : /*
872 : * We want fsnotify_modify() on @kn but as the
873 : * modifications aren't originating from userland don't
874 : * have the matching @file available. Look up the inodes
875 : * and generate the events manually.
876 : */
877 97 : inode = ilookup(info->sb, kernfs_ino(kn));
878 97 : if (!inode)
879 2 : continue;
880 :
881 95 : name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
882 95 : parent = kernfs_get_parent(kn);
883 95 : if (parent) {
884 95 : p_inode = ilookup(info->sb, kernfs_ino(parent));
885 95 : if (p_inode) {
886 95 : fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
887 : inode, FSNOTIFY_EVENT_INODE,
888 : p_inode, &name, inode, 0);
889 95 : iput(p_inode);
890 : }
891 :
892 95 : kernfs_put(parent);
893 : }
894 :
895 95 : if (!p_inode)
896 0 : fsnotify_inode(inode, FS_MODIFY);
897 :
898 95 : iput(inode);
899 : }
900 :
901 97 : mutex_unlock(&kernfs_mutex);
902 97 : kernfs_put(kn);
903 97 : goto repeat;
904 : }
905 :
906 : /**
907 : * kernfs_notify - notify a kernfs file
908 : * @kn: file to notify
909 : *
910 : * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any
911 : * context.
912 : */
913 97 : void kernfs_notify(struct kernfs_node *kn)
914 : {
915 97 : static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
916 97 : unsigned long flags;
917 97 : struct kernfs_open_node *on;
918 :
919 97 : if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
920 : return;
921 :
922 : /* kick poll immediately */
923 97 : spin_lock_irqsave(&kernfs_open_node_lock, flags);
924 97 : on = kn->attr.open;
925 97 : if (on) {
926 0 : atomic_inc(&on->event);
927 0 : wake_up_interruptible(&on->poll);
928 : }
929 97 : spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
930 :
931 : /* schedule work to kick fsnotify */
932 97 : spin_lock_irqsave(&kernfs_notify_lock, flags);
933 97 : if (!kn->attr.notify_next) {
934 97 : kernfs_get(kn);
935 97 : kn->attr.notify_next = kernfs_notify_list;
936 97 : kernfs_notify_list = kn;
937 97 : schedule_work(&kernfs_notify_work);
938 : }
939 97 : spin_unlock_irqrestore(&kernfs_notify_lock, flags);
940 : }
941 : EXPORT_SYMBOL_GPL(kernfs_notify);
942 :
943 : const struct file_operations kernfs_file_fops = {
944 : .read_iter = kernfs_fop_read_iter,
945 : .write_iter = kernfs_fop_write_iter,
946 : .llseek = generic_file_llseek,
947 : .mmap = kernfs_fop_mmap,
948 : .open = kernfs_fop_open,
949 : .release = kernfs_fop_release,
950 : .poll = kernfs_fop_poll,
951 : .fsync = noop_fsync,
952 : .splice_read = generic_file_splice_read,
953 : .splice_write = iter_file_splice_write,
954 : };
955 :
956 : /**
957 : * __kernfs_create_file - kernfs internal function to create a file
958 : * @parent: directory to create the file in
959 : * @name: name of the file
960 : * @mode: mode of the file
961 : * @uid: uid of the file
962 : * @gid: gid of the file
963 : * @size: size of the file
964 : * @ops: kernfs operations for the file
965 : * @priv: private data for the file
966 : * @ns: optional namespace tag of the file
967 : * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
968 : *
969 : * Returns the created node on success, ERR_PTR() value on error.
970 : */
971 7279 : struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
972 : const char *name,
973 : umode_t mode, kuid_t uid, kgid_t gid,
974 : loff_t size,
975 : const struct kernfs_ops *ops,
976 : void *priv, const void *ns,
977 : struct lock_class_key *key)
978 : {
979 7279 : struct kernfs_node *kn;
980 7279 : unsigned flags;
981 7279 : int rc;
982 :
983 7279 : flags = KERNFS_FILE;
984 :
985 7279 : kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
986 : uid, gid, flags);
987 7279 : if (!kn)
988 7279 : return ERR_PTR(-ENOMEM);
989 :
990 7279 : kn->attr.ops = ops;
991 7279 : kn->attr.size = size;
992 7279 : kn->ns = ns;
993 7279 : kn->priv = priv;
994 :
995 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
996 7279 : if (key) {
997 7251 : lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
998 7251 : kn->flags |= KERNFS_LOCKDEP;
999 : }
1000 : #endif
1001 :
1002 : /*
1003 : * kn->attr.ops is accesible only while holding active ref. We
1004 : * need to know whether some ops are implemented outside active
1005 : * ref. Cache their existence in flags.
1006 : */
1007 7279 : if (ops->seq_show)
1008 7277 : kn->flags |= KERNFS_HAS_SEQ_SHOW;
1009 7279 : if (ops->mmap)
1010 0 : kn->flags |= KERNFS_HAS_MMAP;
1011 7279 : if (ops->release)
1012 764 : kn->flags |= KERNFS_HAS_RELEASE;
1013 :
1014 7279 : rc = kernfs_add_one(kn);
1015 7279 : if (rc) {
1016 0 : kernfs_put(kn);
1017 0 : return ERR_PTR(rc);
1018 : }
1019 : return kn;
1020 : }
|