LCOV - code coverage report
Current view: top level - fs - mpage.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 120 340 35.3 %
Date: 2021-04-22 12:43:58 Functions: 4 11 36.4 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * fs/mpage.c
       4             :  *
       5             :  * Copyright (C) 2002, Linus Torvalds.
       6             :  *
       7             :  * Contains functions related to preparing and submitting BIOs which contain
       8             :  * multiple pagecache pages.
       9             :  *
      10             :  * 15May2002    Andrew Morton
      11             :  *              Initial version
      12             :  * 27Jun2002    axboe@suse.de
      13             :  *              use bio_add_page() to build bio's just the right size
      14             :  */
      15             : 
      16             : #include <linux/kernel.h>
      17             : #include <linux/export.h>
      18             : #include <linux/mm.h>
      19             : #include <linux/kdev_t.h>
      20             : #include <linux/gfp.h>
      21             : #include <linux/bio.h>
      22             : #include <linux/fs.h>
      23             : #include <linux/buffer_head.h>
      24             : #include <linux/blkdev.h>
      25             : #include <linux/highmem.h>
      26             : #include <linux/prefetch.h>
      27             : #include <linux/mpage.h>
      28             : #include <linux/mm_inline.h>
      29             : #include <linux/writeback.h>
      30             : #include <linux/backing-dev.h>
      31             : #include <linux/pagevec.h>
      32             : #include <linux/cleancache.h>
      33             : #include "internal.h"
      34             : 
      35             : /*
      36             :  * I/O completion handler for multipage BIOs.
      37             :  *
      38             :  * The mpage code never puts partial pages into a BIO (except for end-of-file).
      39             :  * If a page does not map to a contiguous run of blocks then it simply falls
      40             :  * back to block_read_full_page().
      41             :  *
      42             :  * Why is this?  If a page's completion depends on a number of different BIOs
      43             :  * which can complete in any order (or at the same time) then determining the
      44             :  * status of that page is hard.  See end_buffer_async_read() for the details.
      45             :  * There is no point in duplicating all that complexity.
      46             :  */
      47          72 : static void mpage_end_io(struct bio *bio)
      48             : {
      49          72 :         struct bio_vec *bv;
      50          72 :         struct bvec_iter_all iter_all;
      51             : 
      52         589 :         bio_for_each_segment_all(bv, bio, iter_all) {
      53         517 :                 struct page *page = bv->bv_page;
      54         517 :                 page_endio(page, bio_op(bio),
      55         517 :                            blk_status_to_errno(bio->bi_status));
      56             :         }
      57             : 
      58          72 :         bio_put(bio);
      59          72 : }
      60             : 
      61          72 : static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
      62             : {
      63          72 :         bio->bi_end_io = mpage_end_io;
      64          72 :         bio_set_op_attrs(bio, op, op_flags);
      65          72 :         guard_bio_eod(bio);
      66           0 :         submit_bio(bio);
      67          72 :         return NULL;
      68             : }
      69             : 
      70             : static struct bio *
      71          72 : mpage_alloc(struct block_device *bdev,
      72             :                 sector_t first_sector, int nr_vecs,
      73             :                 gfp_t gfp_flags)
      74             : {
      75          72 :         struct bio *bio;
      76             : 
      77             :         /* Restrict the given (page cache) mask for slab allocations */
      78          72 :         gfp_flags &= GFP_KERNEL;
      79          72 :         bio = bio_alloc(gfp_flags, nr_vecs);
      80             : 
      81          72 :         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
      82           0 :                 while (!bio && (nr_vecs /= 2))
      83           0 :                         bio = bio_alloc(gfp_flags, nr_vecs);
      84             :         }
      85             : 
      86          72 :         if (bio) {
      87          72 :                 bio_set_dev(bio, bdev);
      88          72 :                 bio->bi_iter.bi_sector = first_sector;
      89             :         }
      90          72 :         return bio;
      91             : }
      92             : 
      93             : /*
      94             :  * support function for mpage_readahead.  The fs supplied get_block might
      95             :  * return an up to date buffer.  This is used to map that buffer into
      96             :  * the page, which allows readpage to avoid triggering a duplicate call
      97             :  * to get_block.
      98             :  *
      99             :  * The idea is to avoid adding buffers to pages that don't already have
     100             :  * them.  So when the buffer is up to date and the page size == block size,
     101             :  * this marks the page up to date instead of adding new buffers.
     102             :  */
     103             : static void 
     104           0 : map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
     105             : {
     106           0 :         struct inode *inode = page->mapping->host;
     107           0 :         struct buffer_head *page_bh, *head;
     108           0 :         int block = 0;
     109             : 
     110           0 :         if (!page_has_buffers(page)) {
     111             :                 /*
     112             :                  * don't make any buffers if there is only one buffer on
     113             :                  * the page and the page just needs to be set up to date
     114             :                  */
     115           0 :                 if (inode->i_blkbits == PAGE_SHIFT &&
     116           0 :                     buffer_uptodate(bh)) {
     117           0 :                         SetPageUptodate(page);    
     118           0 :                         return;
     119             :                 }
     120           0 :                 create_empty_buffers(page, i_blocksize(inode), 0);
     121             :         }
     122           0 :         head = page_buffers(page);
     123           0 :         page_bh = head;
     124           0 :         do {
     125           0 :                 if (block == page_block) {
     126           0 :                         page_bh->b_state = bh->b_state;
     127           0 :                         page_bh->b_bdev = bh->b_bdev;
     128           0 :                         page_bh->b_blocknr = bh->b_blocknr;
     129           0 :                         break;
     130             :                 }
     131           0 :                 page_bh = page_bh->b_this_page;
     132           0 :                 block++;
     133           0 :         } while (page_bh != head);
     134             : }
     135             : 
     136             : struct mpage_readpage_args {
     137             :         struct bio *bio;
     138             :         struct page *page;
     139             :         unsigned int nr_pages;
     140             :         bool is_readahead;
     141             :         sector_t last_block_in_bio;
     142             :         struct buffer_head map_bh;
     143             :         unsigned long first_logical_block;
     144             :         get_block_t *get_block;
     145             : };
     146             : 
     147             : /*
     148             :  * This is the worker routine which does all the work of mapping the disk
     149             :  * blocks and constructs largest possible bios, submits them for IO if the
     150             :  * blocks are not contiguous on the disk.
     151             :  *
     152             :  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
     153             :  * represent the validity of its disk mapping and to decide when to do the next
     154             :  * get_block() call.
     155             :  */
     156         517 : static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
     157             : {
     158         517 :         struct page *page = args->page;
     159         517 :         struct inode *inode = page->mapping->host;
     160         517 :         const unsigned blkbits = inode->i_blkbits;
     161         517 :         const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
     162         517 :         const unsigned blocksize = 1 << blkbits;
     163         517 :         struct buffer_head *map_bh = &args->map_bh;
     164         517 :         sector_t block_in_file;
     165         517 :         sector_t last_block;
     166         517 :         sector_t last_block_in_file;
     167         517 :         sector_t blocks[MAX_BUF_PER_PAGE];
     168         517 :         unsigned page_block;
     169         517 :         unsigned first_hole = blocks_per_page;
     170         517 :         struct block_device *bdev = NULL;
     171         517 :         int length;
     172         517 :         int fully_mapped = 1;
     173         517 :         int op_flags;
     174         517 :         unsigned nblocks;
     175         517 :         unsigned relative_block;
     176         517 :         gfp_t gfp;
     177             : 
     178         517 :         if (args->is_readahead) {
     179         517 :                 op_flags = REQ_RAHEAD;
     180         517 :                 gfp = readahead_gfp_mask(page->mapping);
     181             :         } else {
     182           0 :                 op_flags = 0;
     183           0 :                 gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
     184             :         }
     185             : 
     186         517 :         if (page_has_buffers(page))
     187           0 :                 goto confused;
     188             : 
     189         517 :         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
     190         517 :         last_block = block_in_file + args->nr_pages * blocks_per_page;
     191         517 :         last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
     192         517 :         if (last_block > last_block_in_file)
     193             :                 last_block = last_block_in_file;
     194         517 :         page_block = 0;
     195             : 
     196             :         /*
     197             :          * Map blocks using the result from the previous get_blocks call first.
     198             :          */
     199         517 :         nblocks = map_bh->b_size >> blkbits;
     200         517 :         if (buffer_mapped(map_bh) &&
     201         445 :                         block_in_file > args->first_logical_block &&
     202         445 :                         block_in_file < (args->first_logical_block + nblocks)) {
     203         445 :                 unsigned map_offset = block_in_file - args->first_logical_block;
     204         445 :                 unsigned last = nblocks - map_offset;
     205             : 
     206         445 :                 for (relative_block = 0; ; relative_block++) {
     207         890 :                         if (relative_block == last) {
     208          26 :                                 clear_buffer_mapped(map_bh);
     209             :                                 break;
     210             :                         }
     211         864 :                         if (page_block == blocks_per_page)
     212             :                                 break;
     213         445 :                         blocks[page_block] = map_bh->b_blocknr + map_offset +
     214             :                                                 relative_block;
     215         445 :                         page_block++;
     216         445 :                         block_in_file++;
     217             :                 }
     218         445 :                 bdev = map_bh->b_bdev;
     219             :         }
     220             : 
     221             :         /*
     222             :          * Then do more get_blocks calls until we are done with this page.
     223             :          */
     224         517 :         map_bh->b_page = page;
     225         589 :         while (page_block < blocks_per_page) {
     226          72 :                 map_bh->b_state = 0;
     227          72 :                 map_bh->b_size = 0;
     228             : 
     229          72 :                 if (block_in_file < last_block) {
     230          72 :                         map_bh->b_size = (last_block-block_in_file) << blkbits;
     231          72 :                         if (args->get_block(inode, block_in_file, map_bh, 0))
     232           0 :                                 goto confused;
     233          72 :                         args->first_logical_block = block_in_file;
     234             :                 }
     235             : 
     236          72 :                 if (!buffer_mapped(map_bh)) {
     237           0 :                         fully_mapped = 0;
     238           0 :                         if (first_hole == blocks_per_page)
     239           0 :                                 first_hole = page_block;
     240           0 :                         page_block++;
     241           0 :                         block_in_file++;
     242           0 :                         continue;
     243             :                 }
     244             : 
     245             :                 /* some filesystems will copy data into the page during
     246             :                  * the get_block call, in which case we don't want to
     247             :                  * read it again.  map_buffer_to_page copies the data
     248             :                  * we just collected from get_block into the page's buffers
     249             :                  * so readpage doesn't have to repeat the get_block call
     250             :                  */
     251          72 :                 if (buffer_uptodate(map_bh)) {
     252           0 :                         map_buffer_to_page(page, map_bh, page_block);
     253           0 :                         goto confused;
     254             :                 }
     255             :         
     256          72 :                 if (first_hole != blocks_per_page)
     257           0 :                         goto confused;          /* hole -> non-hole */
     258             : 
     259             :                 /* Contiguous blocks? */
     260          72 :                 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
     261           0 :                         goto confused;
     262          72 :                 nblocks = map_bh->b_size >> blkbits;
     263          72 :                 for (relative_block = 0; ; relative_block++) {
     264         144 :                         if (relative_block == nblocks) {
     265          46 :                                 clear_buffer_mapped(map_bh);
     266             :                                 break;
     267          98 :                         } else if (page_block == blocks_per_page)
     268             :                                 break;
     269          72 :                         blocks[page_block] = map_bh->b_blocknr+relative_block;
     270          72 :                         page_block++;
     271          72 :                         block_in_file++;
     272             :                 }
     273          72 :                 bdev = map_bh->b_bdev;
     274             :         }
     275             : 
     276         517 :         if (first_hole != blocks_per_page) {
     277           0 :                 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
     278           0 :                 if (first_hole == 0) {
     279           0 :                         SetPageUptodate(page);
     280           0 :                         unlock_page(page);
     281           0 :                         goto out;
     282             :                 }
     283         517 :         } else if (fully_mapped) {
     284         517 :                 SetPageMappedToDisk(page);
     285             :         }
     286             : 
     287        1034 :         if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
     288         517 :             cleancache_get_page(page) == 0) {
     289           0 :                 SetPageUptodate(page);
     290           0 :                 goto confused;
     291             :         }
     292             : 
     293             :         /*
     294             :          * This page will go to BIO.  Do we need to send this BIO off first?
     295             :          */
     296         517 :         if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
     297           0 :                 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
     298             : 
     299         517 : alloc_new:
     300         517 :         if (args->bio == NULL) {
     301          72 :                 if (first_hole == blocks_per_page) {
     302          72 :                         if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
     303             :                                                                 page))
     304           0 :                                 goto out;
     305             :                 }
     306         144 :                 args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
     307          72 :                                         bio_max_segs(args->nr_pages), gfp);
     308          72 :                 if (args->bio == NULL)
     309           0 :                         goto confused;
     310             :         }
     311             : 
     312         517 :         length = first_hole << blkbits;
     313         517 :         if (bio_add_page(args->bio, page, length, 0) < length) {
     314           0 :                 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
     315           0 :                 goto alloc_new;
     316             :         }
     317             : 
     318         517 :         relative_block = block_in_file - args->first_logical_block;
     319         517 :         nblocks = map_bh->b_size >> blkbits;
     320         517 :         if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
     321             :             (first_hole != blocks_per_page))
     322           0 :                 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
     323             :         else
     324         517 :                 args->last_block_in_bio = blocks[blocks_per_page - 1];
     325         517 : out:
     326         517 :         return args->bio;
     327             : 
     328           0 : confused:
     329           0 :         if (args->bio)
     330           0 :                 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
     331           0 :         if (!PageUptodate(page))
     332           0 :                 block_read_full_page(page, args->get_block);
     333             :         else
     334           0 :                 unlock_page(page);
     335           0 :         goto out;
     336             : }
     337             : 
     338             : /**
     339             :  * mpage_readahead - start reads against pages
     340             :  * @rac: Describes which pages to read.
     341             :  * @get_block: The filesystem's block mapper function.
     342             :  *
     343             :  * This function walks the pages and the blocks within each page, building and
     344             :  * emitting large BIOs.
     345             :  *
     346             :  * If anything unusual happens, such as:
     347             :  *
     348             :  * - encountering a page which has buffers
     349             :  * - encountering a page which has a non-hole after a hole
     350             :  * - encountering a page with non-contiguous blocks
     351             :  *
     352             :  * then this code just gives up and calls the buffer_head-based read function.
     353             :  * It does handle a page which has holes at the end - that is a common case:
     354             :  * the end-of-file on blocksize < PAGE_SIZE setups.
     355             :  *
     356             :  * BH_Boundary explanation:
     357             :  *
     358             :  * There is a problem.  The mpage read code assembles several pages, gets all
     359             :  * their disk mappings, and then submits them all.  That's fine, but obtaining
     360             :  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
     361             :  *
     362             :  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
     363             :  * submitted in the following order:
     364             :  *
     365             :  *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
     366             :  *
     367             :  * because the indirect block has to be read to get the mappings of blocks
     368             :  * 13,14,15,16.  Obviously, this impacts performance.
     369             :  *
     370             :  * So what we do it to allow the filesystem's get_block() function to set
     371             :  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
     372             :  * after this one will require I/O against a block which is probably close to
     373             :  * this one.  So you should push what I/O you have currently accumulated.
     374             :  *
     375             :  * This all causes the disk requests to be issued in the correct order.
     376             :  */
     377          72 : void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
     378             : {
     379          72 :         struct page *page;
     380          72 :         struct mpage_readpage_args args = {
     381             :                 .get_block = get_block,
     382             :                 .is_readahead = true,
     383             :         };
     384             : 
     385         589 :         while ((page = readahead_page(rac))) {
     386         517 :                 prefetchw(&page->flags);
     387         517 :                 args.page = page;
     388         517 :                 args.nr_pages = readahead_count(rac);
     389         517 :                 args.bio = do_mpage_readpage(&args);
     390         517 :                 put_page(page);
     391             :         }
     392          72 :         if (args.bio)
     393          72 :                 mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
     394          72 : }
     395             : EXPORT_SYMBOL(mpage_readahead);
     396             : 
     397             : /*
     398             :  * This isn't called much at all
     399             :  */
     400           0 : int mpage_readpage(struct page *page, get_block_t get_block)
     401             : {
     402           0 :         struct mpage_readpage_args args = {
     403             :                 .page = page,
     404             :                 .nr_pages = 1,
     405             :                 .get_block = get_block,
     406             :         };
     407             : 
     408           0 :         args.bio = do_mpage_readpage(&args);
     409           0 :         if (args.bio)
     410           0 :                 mpage_bio_submit(REQ_OP_READ, 0, args.bio);
     411           0 :         return 0;
     412             : }
     413             : EXPORT_SYMBOL(mpage_readpage);
     414             : 
     415             : /*
     416             :  * Writing is not so simple.
     417             :  *
     418             :  * If the page has buffers then they will be used for obtaining the disk
     419             :  * mapping.  We only support pages which are fully mapped-and-dirty, with a
     420             :  * special case for pages which are unmapped at the end: end-of-file.
     421             :  *
     422             :  * If the page has no buffers (preferred) then the page is mapped here.
     423             :  *
     424             :  * If all blocks are found to be contiguous then the page can go into the
     425             :  * BIO.  Otherwise fall back to the mapping's writepage().
     426             :  * 
     427             :  * FIXME: This code wants an estimate of how many pages are still to be
     428             :  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
     429             :  * just allocate full-size (16-page) BIOs.
     430             :  */
     431             : 
     432             : struct mpage_data {
     433             :         struct bio *bio;
     434             :         sector_t last_block_in_bio;
     435             :         get_block_t *get_block;
     436             :         unsigned use_writepage;
     437             : };
     438             : 
     439             : /*
     440             :  * We have our BIO, so we can now mark the buffers clean.  Make
     441             :  * sure to only clean buffers which we know we'll be writing.
     442             :  */
     443           0 : static void clean_buffers(struct page *page, unsigned first_unmapped)
     444             : {
     445           0 :         unsigned buffer_counter = 0;
     446           0 :         struct buffer_head *bh, *head;
     447           0 :         if (!page_has_buffers(page))
     448             :                 return;
     449           0 :         head = page_buffers(page);
     450           0 :         bh = head;
     451             : 
     452           0 :         do {
     453           0 :                 if (buffer_counter++ == first_unmapped)
     454             :                         break;
     455           0 :                 clear_buffer_dirty(bh);
     456           0 :                 bh = bh->b_this_page;
     457           0 :         } while (bh != head);
     458             : 
     459             :         /*
     460             :          * we cannot drop the bh if the page is not uptodate or a concurrent
     461             :          * readpage would fail to serialize with the bh and it would read from
     462             :          * disk before we reach the platter.
     463             :          */
     464           0 :         if (buffer_heads_over_limit && PageUptodate(page))
     465           0 :                 try_to_free_buffers(page);
     466             : }
     467             : 
     468             : /*
     469             :  * For situations where we want to clean all buffers attached to a page.
     470             :  * We don't need to calculate how many buffers are attached to the page,
     471             :  * we just need to specify a number larger than the maximum number of buffers.
     472             :  */
     473           0 : void clean_page_buffers(struct page *page)
     474             : {
     475           0 :         clean_buffers(page, ~0U);
     476           0 : }
     477             : 
     478           0 : static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
     479             :                       void *data)
     480             : {
     481           0 :         struct mpage_data *mpd = data;
     482           0 :         struct bio *bio = mpd->bio;
     483           0 :         struct address_space *mapping = page->mapping;
     484           0 :         struct inode *inode = page->mapping->host;
     485           0 :         const unsigned blkbits = inode->i_blkbits;
     486           0 :         unsigned long end_index;
     487           0 :         const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
     488           0 :         sector_t last_block;
     489           0 :         sector_t block_in_file;
     490           0 :         sector_t blocks[MAX_BUF_PER_PAGE];
     491           0 :         unsigned page_block;
     492           0 :         unsigned first_unmapped = blocks_per_page;
     493           0 :         struct block_device *bdev = NULL;
     494           0 :         int boundary = 0;
     495           0 :         sector_t boundary_block = 0;
     496           0 :         struct block_device *boundary_bdev = NULL;
     497           0 :         int length;
     498           0 :         struct buffer_head map_bh;
     499           0 :         loff_t i_size = i_size_read(inode);
     500           0 :         int ret = 0;
     501           0 :         int op_flags = wbc_to_write_flags(wbc);
     502             : 
     503           0 :         if (page_has_buffers(page)) {
     504           0 :                 struct buffer_head *head = page_buffers(page);
     505           0 :                 struct buffer_head *bh = head;
     506             : 
     507             :                 /* If they're all mapped and dirty, do it */
     508           0 :                 page_block = 0;
     509           0 :                 do {
     510           0 :                         BUG_ON(buffer_locked(bh));
     511           0 :                         if (!buffer_mapped(bh)) {
     512             :                                 /*
     513             :                                  * unmapped dirty buffers are created by
     514             :                                  * __set_page_dirty_buffers -> mmapped data
     515             :                                  */
     516           0 :                                 if (buffer_dirty(bh))
     517           0 :                                         goto confused;
     518           0 :                                 if (first_unmapped == blocks_per_page)
     519           0 :                                         first_unmapped = page_block;
     520           0 :                                 continue;
     521             :                         }
     522             : 
     523           0 :                         if (first_unmapped != blocks_per_page)
     524           0 :                                 goto confused;  /* hole -> non-hole */
     525             : 
     526           0 :                         if (!buffer_dirty(bh) || !buffer_uptodate(bh))
     527           0 :                                 goto confused;
     528           0 :                         if (page_block) {
     529           0 :                                 if (bh->b_blocknr != blocks[page_block-1] + 1)
     530           0 :                                         goto confused;
     531             :                         }
     532           0 :                         blocks[page_block++] = bh->b_blocknr;
     533           0 :                         boundary = buffer_boundary(bh);
     534           0 :                         if (boundary) {
     535           0 :                                 boundary_block = bh->b_blocknr;
     536           0 :                                 boundary_bdev = bh->b_bdev;
     537             :                         }
     538           0 :                         bdev = bh->b_bdev;
     539           0 :                 } while ((bh = bh->b_this_page) != head);
     540             : 
     541           0 :                 if (first_unmapped)
     542           0 :                         goto page_is_mapped;
     543             : 
     544             :                 /*
     545             :                  * Page has buffers, but they are all unmapped. The page was
     546             :                  * created by pagein or read over a hole which was handled by
     547             :                  * block_read_full_page().  If this address_space is also
     548             :                  * using mpage_readahead then this can rarely happen.
     549             :                  */
     550           0 :                 goto confused;
     551             :         }
     552             : 
     553             :         /*
     554             :          * The page has no buffers: map it to disk
     555             :          */
     556           0 :         BUG_ON(!PageUptodate(page));
     557           0 :         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
     558           0 :         last_block = (i_size - 1) >> blkbits;
     559           0 :         map_bh.b_page = page;
     560           0 :         for (page_block = 0; page_block < blocks_per_page; ) {
     561             : 
     562           0 :                 map_bh.b_state = 0;
     563           0 :                 map_bh.b_size = 1 << blkbits;
     564           0 :                 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
     565           0 :                         goto confused;
     566           0 :                 if (buffer_new(&map_bh))
     567           0 :                         clean_bdev_bh_alias(&map_bh);
     568           0 :                 if (buffer_boundary(&map_bh)) {
     569           0 :                         boundary_block = map_bh.b_blocknr;
     570           0 :                         boundary_bdev = map_bh.b_bdev;
     571             :                 }
     572           0 :                 if (page_block) {
     573           0 :                         if (map_bh.b_blocknr != blocks[page_block-1] + 1)
     574           0 :                                 goto confused;
     575             :                 }
     576           0 :                 blocks[page_block++] = map_bh.b_blocknr;
     577           0 :                 boundary = buffer_boundary(&map_bh);
     578           0 :                 bdev = map_bh.b_bdev;
     579           0 :                 if (block_in_file == last_block)
     580             :                         break;
     581           0 :                 block_in_file++;
     582             :         }
     583           0 :         BUG_ON(page_block == 0);
     584             : 
     585             :         first_unmapped = page_block;
     586             : 
     587           0 : page_is_mapped:
     588           0 :         end_index = i_size >> PAGE_SHIFT;
     589           0 :         if (page->index >= end_index) {
     590             :                 /*
     591             :                  * The page straddles i_size.  It must be zeroed out on each
     592             :                  * and every writepage invocation because it may be mmapped.
     593             :                  * "A file is mapped in multiples of the page size.  For a file
     594             :                  * that is not a multiple of the page size, the remaining memory
     595             :                  * is zeroed when mapped, and writes to that region are not
     596             :                  * written out to the file."
     597             :                  */
     598           0 :                 unsigned offset = i_size & (PAGE_SIZE - 1);
     599             : 
     600           0 :                 if (page->index > end_index || !offset)
     601           0 :                         goto confused;
     602           0 :                 zero_user_segment(page, offset, PAGE_SIZE);
     603             :         }
     604             : 
     605             :         /*
     606             :          * This page will go to BIO.  Do we need to send this BIO off first?
     607             :          */
     608           0 :         if (bio && mpd->last_block_in_bio != blocks[0] - 1)
     609           0 :                 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
     610             : 
     611           0 : alloc_new:
     612           0 :         if (bio == NULL) {
     613           0 :                 if (first_unmapped == blocks_per_page) {
     614           0 :                         if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
     615             :                                                                 page, wbc))
     616           0 :                                 goto out;
     617             :                 }
     618           0 :                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
     619             :                                 BIO_MAX_VECS, GFP_NOFS|__GFP_HIGH);
     620           0 :                 if (bio == NULL)
     621           0 :                         goto confused;
     622             : 
     623           0 :                 wbc_init_bio(wbc, bio);
     624           0 :                 bio->bi_write_hint = inode->i_write_hint;
     625             :         }
     626             : 
     627             :         /*
     628             :          * Must try to add the page before marking the buffer clean or
     629             :          * the confused fail path above (OOM) will be very confused when
     630             :          * it finds all bh marked clean (i.e. it will not write anything)
     631             :          */
     632           0 :         wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
     633           0 :         length = first_unmapped << blkbits;
     634           0 :         if (bio_add_page(bio, page, length, 0) < length) {
     635           0 :                 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
     636           0 :                 goto alloc_new;
     637             :         }
     638             : 
     639           0 :         clean_buffers(page, first_unmapped);
     640             : 
     641           0 :         BUG_ON(PageWriteback(page));
     642           0 :         set_page_writeback(page);
     643           0 :         unlock_page(page);
     644           0 :         if (boundary || (first_unmapped != blocks_per_page)) {
     645           0 :                 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
     646           0 :                 if (boundary_block) {
     647           0 :                         write_boundary_block(boundary_bdev,
     648           0 :                                         boundary_block, 1 << blkbits);
     649             :                 }
     650             :         } else {
     651           0 :                 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
     652             :         }
     653           0 :         goto out;
     654             : 
     655           0 : confused:
     656           0 :         if (bio)
     657           0 :                 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
     658             : 
     659           0 :         if (mpd->use_writepage) {
     660           0 :                 ret = mapping->a_ops->writepage(page, wbc);
     661             :         } else {
     662           0 :                 ret = -EAGAIN;
     663           0 :                 goto out;
     664             :         }
     665             :         /*
     666             :          * The caller has a ref on the inode, so *mapping is stable
     667             :          */
     668           0 :         mapping_set_error(mapping, ret);
     669           0 : out:
     670           0 :         mpd->bio = bio;
     671           0 :         return ret;
     672             : }
     673             : 
     674             : /**
     675             :  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
     676             :  * @mapping: address space structure to write
     677             :  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
     678             :  * @get_block: the filesystem's block mapper function.
     679             :  *             If this is NULL then use a_ops->writepage.  Otherwise, go
     680             :  *             direct-to-BIO.
     681             :  *
     682             :  * This is a library function, which implements the writepages()
     683             :  * address_space_operation.
     684             :  *
     685             :  * If a page is already under I/O, generic_writepages() skips it, even
     686             :  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
     687             :  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
     688             :  * and msync() need to guarantee that all the data which was dirty at the time
     689             :  * the call was made get new I/O started against them.  If wbc->sync_mode is
     690             :  * WB_SYNC_ALL then we were called for data integrity and we must wait for
     691             :  * existing IO to complete.
     692             :  */
     693             : int
     694           0 : mpage_writepages(struct address_space *mapping,
     695             :                 struct writeback_control *wbc, get_block_t get_block)
     696             : {
     697           0 :         struct blk_plug plug;
     698           0 :         int ret;
     699             : 
     700           0 :         blk_start_plug(&plug);
     701             : 
     702           0 :         if (!get_block)
     703           0 :                 ret = generic_writepages(mapping, wbc);
     704             :         else {
     705           0 :                 struct mpage_data mpd = {
     706             :                         .bio = NULL,
     707             :                         .last_block_in_bio = 0,
     708             :                         .get_block = get_block,
     709             :                         .use_writepage = 1,
     710             :                 };
     711             : 
     712           0 :                 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
     713           0 :                 if (mpd.bio) {
     714           0 :                         int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
     715             :                                   REQ_SYNC : 0);
     716           0 :                         mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
     717             :                 }
     718             :         }
     719           0 :         blk_finish_plug(&plug);
     720           0 :         return ret;
     721             : }
     722             : EXPORT_SYMBOL(mpage_writepages);
     723             : 
     724           0 : int mpage_writepage(struct page *page, get_block_t get_block,
     725             :         struct writeback_control *wbc)
     726             : {
     727           0 :         struct mpage_data mpd = {
     728             :                 .bio = NULL,
     729             :                 .last_block_in_bio = 0,
     730             :                 .get_block = get_block,
     731             :                 .use_writepage = 0,
     732             :         };
     733           0 :         int ret = __mpage_writepage(page, wbc, &mpd);
     734           0 :         if (mpd.bio) {
     735           0 :                 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
     736             :                           REQ_SYNC : 0);
     737           0 :                 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
     738             :         }
     739           0 :         return ret;
     740             : }
     741             : EXPORT_SYMBOL(mpage_writepage);

Generated by: LCOV version 1.14