Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/fs/pipe.c
4 : *
5 : * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 : */
7 :
8 : #include <linux/mm.h>
9 : #include <linux/file.h>
10 : #include <linux/poll.h>
11 : #include <linux/slab.h>
12 : #include <linux/module.h>
13 : #include <linux/init.h>
14 : #include <linux/fs.h>
15 : #include <linux/log2.h>
16 : #include <linux/mount.h>
17 : #include <linux/pseudo_fs.h>
18 : #include <linux/magic.h>
19 : #include <linux/pipe_fs_i.h>
20 : #include <linux/uio.h>
21 : #include <linux/highmem.h>
22 : #include <linux/pagemap.h>
23 : #include <linux/audit.h>
24 : #include <linux/syscalls.h>
25 : #include <linux/fcntl.h>
26 : #include <linux/memcontrol.h>
27 : #include <linux/watch_queue.h>
28 :
29 : #include <linux/uaccess.h>
30 : #include <asm/ioctls.h>
31 :
32 : #include "internal.h"
33 :
34 : /*
35 : * The max size that a non-root user is allowed to grow the pipe. Can
36 : * be set by root in /proc/sys/fs/pipe-max-size
37 : */
38 : unsigned int pipe_max_size = 1048576;
39 :
40 : /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41 : * matches default values.
42 : */
43 : unsigned long pipe_user_pages_hard;
44 : unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
45 :
46 : /*
47 : * We use head and tail indices that aren't masked off, except at the point of
48 : * dereference, but rather they're allowed to wrap naturally. This means there
49 : * isn't a dead spot in the buffer, but the ring has to be a power of two and
50 : * <= 2^31.
51 : * -- David Howells 2019-09-23.
52 : *
53 : * Reads with count = 0 should always return 0.
54 : * -- Julian Bradfield 1999-06-07.
55 : *
56 : * FIFOs and Pipes now generate SIGIO for both readers and writers.
57 : * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58 : *
59 : * pipe_read & write cleanup
60 : * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
61 : */
62 :
63 36 : static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64 : {
65 36 : if (pipe->files)
66 0 : mutex_lock_nested(&pipe->mutex, subclass);
67 : }
68 :
69 36 : void pipe_lock(struct pipe_inode_info *pipe)
70 : {
71 : /*
72 : * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 : */
74 36 : pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 36 : }
76 : EXPORT_SYMBOL(pipe_lock);
77 :
78 36 : void pipe_unlock(struct pipe_inode_info *pipe)
79 : {
80 36 : if (pipe->files)
81 0 : mutex_unlock(&pipe->mutex);
82 36 : }
83 : EXPORT_SYMBOL(pipe_unlock);
84 :
85 19131 : static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 : {
87 19131 : mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
88 : }
89 :
90 19132 : static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 : {
92 19132 : mutex_unlock(&pipe->mutex);
93 : }
94 :
95 0 : void pipe_double_lock(struct pipe_inode_info *pipe1,
96 : struct pipe_inode_info *pipe2)
97 : {
98 0 : BUG_ON(pipe1 == pipe2);
99 :
100 0 : if (pipe1 < pipe2) {
101 0 : pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102 0 : pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 : } else {
104 0 : pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105 0 : pipe_lock_nested(pipe1, I_MUTEX_CHILD);
106 : }
107 0 : }
108 :
109 1076 : static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
110 : struct pipe_buffer *buf)
111 : {
112 1076 : struct page *page = buf->page;
113 :
114 : /*
115 : * If nobody else uses this page, and we don't already have a
116 : * temporary page, let's keep track of it as a one-deep
117 : * allocation cache. (Otherwise just release our reference to it)
118 : */
119 1076 : if (page_count(page) == 1 && !pipe->tmp_page)
120 776 : pipe->tmp_page = page;
121 : else
122 300 : put_page(page);
123 1076 : }
124 :
125 0 : static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
126 : struct pipe_buffer *buf)
127 : {
128 0 : struct page *page = buf->page;
129 :
130 0 : if (page_count(page) != 1)
131 : return false;
132 0 : memcg_kmem_uncharge_page(page, 0);
133 0 : __SetPageLocked(page);
134 0 : return true;
135 : }
136 :
137 : /**
138 : * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
139 : * @pipe: the pipe that the buffer belongs to
140 : * @buf: the buffer to attempt to steal
141 : *
142 : * Description:
143 : * This function attempts to steal the &struct page attached to
144 : * @buf. If successful, this function returns 0 and returns with
145 : * the page locked. The caller may then reuse the page for whatever
146 : * he wishes; the typical use is insertion into a different file
147 : * page cache.
148 : */
149 0 : bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
150 : struct pipe_buffer *buf)
151 : {
152 0 : struct page *page = buf->page;
153 :
154 : /*
155 : * A reference of one is golden, that means that the owner of this
156 : * page is the only one holding a reference to it. lock the page
157 : * and return OK.
158 : */
159 0 : if (page_count(page) == 1) {
160 0 : lock_page(page);
161 0 : return true;
162 : }
163 : return false;
164 : }
165 : EXPORT_SYMBOL(generic_pipe_buf_try_steal);
166 :
167 : /**
168 : * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
169 : * @pipe: the pipe that the buffer belongs to
170 : * @buf: the buffer to get a reference to
171 : *
172 : * Description:
173 : * This function grabs an extra reference to @buf. It's used in
174 : * the tee() system call, when we duplicate the buffers in one
175 : * pipe into another.
176 : */
177 0 : bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
178 : {
179 0 : return try_get_page(buf->page);
180 : }
181 : EXPORT_SYMBOL(generic_pipe_buf_get);
182 :
183 : /**
184 : * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
185 : * @pipe: the pipe that the buffer belongs to
186 : * @buf: the buffer to put a reference to
187 : *
188 : * Description:
189 : * This function releases a reference to @buf.
190 : */
191 0 : void generic_pipe_buf_release(struct pipe_inode_info *pipe,
192 : struct pipe_buffer *buf)
193 : {
194 0 : put_page(buf->page);
195 0 : }
196 : EXPORT_SYMBOL(generic_pipe_buf_release);
197 :
198 : static const struct pipe_buf_operations anon_pipe_buf_ops = {
199 : .release = anon_pipe_buf_release,
200 : .try_steal = anon_pipe_buf_try_steal,
201 : .get = generic_pipe_buf_get,
202 : };
203 :
204 : /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
205 1236 : static inline bool pipe_readable(const struct pipe_inode_info *pipe)
206 : {
207 1236 : unsigned int head = READ_ONCE(pipe->head);
208 1236 : unsigned int tail = READ_ONCE(pipe->tail);
209 1236 : unsigned int writers = READ_ONCE(pipe->writers);
210 :
211 1034 : return !pipe_empty(head, tail) || !writers;
212 : }
213 :
214 : static ssize_t
215 9266 : pipe_read(struct kiocb *iocb, struct iov_iter *to)
216 : {
217 9266 : size_t total_len = iov_iter_count(to);
218 9266 : struct file *filp = iocb->ki_filp;
219 9266 : struct pipe_inode_info *pipe = filp->private_data;
220 9266 : bool was_full, wake_next_reader = false;
221 9266 : ssize_t ret;
222 :
223 : /* Null read succeeds. */
224 9266 : if (unlikely(total_len == 0))
225 : return 0;
226 :
227 9266 : ret = 0;
228 9266 : __pipe_lock(pipe);
229 :
230 : /*
231 : * We only wake up writers if the pipe was full when we started
232 : * reading in order to avoid unnecessary wakeups.
233 : *
234 : * But when we do wake up writers, we do so using a sync wakeup
235 : * (WF_SYNC), because we want them to get going and generate more
236 : * data for us.
237 : */
238 9267 : was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
239 9978 : for (;;) {
240 9978 : unsigned int head = pipe->head;
241 9978 : unsigned int tail = pipe->tail;
242 9978 : unsigned int mask = pipe->ring_size - 1;
243 :
244 : #ifdef CONFIG_WATCH_QUEUE
245 : if (pipe->note_loss) {
246 : struct watch_notification n;
247 :
248 : if (total_len < 8) {
249 : if (ret == 0)
250 : ret = -ENOBUFS;
251 : break;
252 : }
253 :
254 : n.type = WATCH_TYPE_META;
255 : n.subtype = WATCH_META_LOSS_NOTIFICATION;
256 : n.info = watch_sizeof(n);
257 : if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
258 : if (ret == 0)
259 : ret = -EFAULT;
260 : break;
261 : }
262 : ret += sizeof(n);
263 : total_len -= sizeof(n);
264 : pipe->note_loss = false;
265 : }
266 : #endif
267 :
268 9978 : if (!pipe_empty(head, tail)) {
269 9210 : struct pipe_buffer *buf = &pipe->bufs[tail & mask];
270 9210 : size_t chars = buf->len;
271 9210 : size_t written;
272 9210 : int error;
273 :
274 9210 : if (chars > total_len) {
275 8135 : if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
276 0 : if (ret == 0)
277 0 : ret = -ENOBUFS;
278 : break;
279 : }
280 : chars = total_len;
281 : }
282 :
283 9210 : error = pipe_buf_confirm(pipe, buf);
284 0 : if (error) {
285 0 : if (!ret)
286 0 : ret = error;
287 : break;
288 : }
289 :
290 9210 : written = copy_page_to_iter(buf->page, buf->offset, chars, to);
291 9210 : if (unlikely(written < chars)) {
292 0 : if (!ret)
293 0 : ret = -EFAULT;
294 : break;
295 : }
296 9210 : ret += chars;
297 9210 : buf->offset += chars;
298 9210 : buf->len -= chars;
299 :
300 : /* Was it a packet buffer? Clean up and exit */
301 9210 : if (buf->flags & PIPE_BUF_FLAG_PACKET) {
302 0 : total_len = chars;
303 0 : buf->len = 0;
304 : }
305 :
306 9210 : if (!buf->len) {
307 1075 : pipe_buf_release(pipe, buf);
308 1075 : spin_lock_irq(&pipe->rd_wait.lock);
309 : #ifdef CONFIG_WATCH_QUEUE
310 : if (buf->flags & PIPE_BUF_FLAG_LOSS)
311 : pipe->note_loss = true;
312 : #endif
313 1075 : tail++;
314 1075 : pipe->tail = tail;
315 1075 : spin_unlock_irq(&pipe->rd_wait.lock);
316 : }
317 9210 : total_len -= chars;
318 9210 : if (!total_len)
319 : break; /* common path: read succeeded */
320 863 : if (!pipe_empty(head, tail)) /* More to do? */
321 307 : continue;
322 : }
323 :
324 1324 : if (!pipe->writers)
325 : break;
326 907 : if (ret)
327 : break;
328 430 : if (filp->f_flags & O_NONBLOCK) {
329 : ret = -EAGAIN;
330 : break;
331 : }
332 412 : __pipe_unlock(pipe);
333 :
334 : /*
335 : * We only get here if we didn't actually read anything.
336 : *
337 : * However, we could have seen (and removed) a zero-sized
338 : * pipe buffer, and might have made space in the buffers
339 : * that way.
340 : *
341 : * You can't make zero-sized pipe buffers by doing an empty
342 : * write (not even in packet mode), but they can happen if
343 : * the writer gets an EFAULT when trying to fill a buffer
344 : * that already got allocated and inserted in the buffer
345 : * array.
346 : *
347 : * So we still need to wake up any pending writers in the
348 : * _very_ unlikely case that the pipe was full, but we got
349 : * no data.
350 : */
351 412 : if (unlikely(was_full)) {
352 0 : wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
353 0 : kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
354 : }
355 :
356 : /*
357 : * But because we didn't read anything, at this point we can
358 : * just return directly with -ERESTARTSYS if we're interrupted,
359 : * since we've done any required wakeups and there's no need
360 : * to mark anything accessed. And we've dropped the lock.
361 : */
362 1648 : if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
363 : return -ERESTARTSYS;
364 :
365 404 : __pipe_lock(pipe);
366 404 : was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
367 404 : wake_next_reader = true;
368 : }
369 9259 : if (pipe_empty(pipe->head, pipe->tail))
370 1029 : wake_next_reader = false;
371 9259 : __pipe_unlock(pipe);
372 :
373 9258 : if (was_full) {
374 90 : wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
375 90 : kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
376 : }
377 9258 : if (wake_next_reader)
378 64 : wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
379 9258 : if (ret > 0)
380 8903 : file_accessed(filp);
381 : return ret;
382 : }
383 :
384 1076 : static inline int is_packetized(struct file *file)
385 : {
386 1076 : return (file->f_flags & O_DIRECT) != 0;
387 : }
388 :
389 : /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
390 240 : static inline bool pipe_writable(const struct pipe_inode_info *pipe)
391 : {
392 240 : unsigned int head = READ_ONCE(pipe->head);
393 240 : unsigned int tail = READ_ONCE(pipe->tail);
394 240 : unsigned int max_usage = READ_ONCE(pipe->max_usage);
395 :
396 640 : return !pipe_full(head, tail, max_usage) ||
397 160 : !READ_ONCE(pipe->readers);
398 : }
399 :
400 : static ssize_t
401 8683 : pipe_write(struct kiocb *iocb, struct iov_iter *from)
402 : {
403 8683 : struct file *filp = iocb->ki_filp;
404 8683 : struct pipe_inode_info *pipe = filp->private_data;
405 8683 : unsigned int head;
406 8683 : ssize_t ret = 0;
407 8683 : size_t total_len = iov_iter_count(from);
408 8683 : ssize_t chars;
409 8683 : bool was_empty = false;
410 8683 : bool wake_next_writer = false;
411 :
412 : /* Null write succeeds. */
413 8683 : if (unlikely(total_len == 0))
414 : return 0;
415 :
416 8683 : __pipe_lock(pipe);
417 :
418 8683 : if (!pipe->readers) {
419 0 : send_sig(SIGPIPE, current, 0);
420 0 : ret = -EPIPE;
421 0 : goto out;
422 : }
423 :
424 : #ifdef CONFIG_WATCH_QUEUE
425 : if (pipe->watch_queue) {
426 : ret = -EXDEV;
427 : goto out;
428 : }
429 : #endif
430 :
431 : /*
432 : * Only wake up if the pipe started out empty, since
433 : * otherwise there should be no readers waiting.
434 : *
435 : * If it wasn't empty we try to merge new data into
436 : * the last buffer.
437 : *
438 : * That naturally merges small writes, but it also
439 : * page-aligs the rest of the writes for large writes
440 : * spanning multiple pages.
441 : */
442 8683 : head = pipe->head;
443 8683 : was_empty = pipe_empty(head, pipe->tail);
444 8683 : chars = total_len & (PAGE_SIZE-1);
445 8683 : if (chars && !was_empty) {
446 7968 : unsigned int mask = pipe->ring_size - 1;
447 7968 : struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
448 7968 : int offset = buf->offset + buf->len;
449 :
450 7968 : if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
451 7968 : offset + chars <= PAGE_SIZE) {
452 7964 : ret = pipe_buf_confirm(pipe, buf);
453 7964 : if (ret)
454 0 : goto out;
455 :
456 7964 : ret = copy_page_from_iter(buf->page, offset, chars, from);
457 7964 : if (unlikely(ret < chars)) {
458 0 : ret = -EFAULT;
459 0 : goto out;
460 : }
461 :
462 7964 : buf->len += ret;
463 7964 : if (!iov_iter_count(from))
464 7964 : goto out;
465 : }
466 : }
467 :
468 1156 : for (;;) {
469 1156 : if (!pipe->readers) {
470 0 : send_sig(SIGPIPE, current, 0);
471 0 : if (!ret)
472 0 : ret = -EPIPE;
473 : break;
474 : }
475 :
476 1156 : head = pipe->head;
477 1156 : if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
478 1076 : unsigned int mask = pipe->ring_size - 1;
479 1076 : struct pipe_buffer *buf = &pipe->bufs[head & mask];
480 1076 : struct page *page = pipe->tmp_page;
481 1076 : int copied;
482 :
483 1076 : if (!page) {
484 531 : page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
485 531 : if (unlikely(!page)) {
486 0 : ret = ret ? : -ENOMEM;
487 : break;
488 : }
489 531 : pipe->tmp_page = page;
490 : }
491 :
492 : /* Allocate a slot in the ring in advance and attach an
493 : * empty buffer. If we fault or otherwise fail to use
494 : * it, either the reader will consume it or it'll still
495 : * be there for the next write.
496 : */
497 1076 : spin_lock_irq(&pipe->rd_wait.lock);
498 :
499 1076 : head = pipe->head;
500 1076 : if (pipe_full(head, pipe->tail, pipe->max_usage)) {
501 0 : spin_unlock_irq(&pipe->rd_wait.lock);
502 0 : continue;
503 : }
504 :
505 1076 : pipe->head = head + 1;
506 1076 : spin_unlock_irq(&pipe->rd_wait.lock);
507 :
508 : /* Insert it into the buffer array */
509 1076 : buf = &pipe->bufs[head & mask];
510 1076 : buf->page = page;
511 1076 : buf->ops = &anon_pipe_buf_ops;
512 1076 : buf->offset = 0;
513 1076 : buf->len = 0;
514 1076 : if (is_packetized(filp))
515 0 : buf->flags = PIPE_BUF_FLAG_PACKET;
516 : else
517 1076 : buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
518 1076 : pipe->tmp_page = NULL;
519 :
520 1076 : copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
521 1076 : if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
522 0 : if (!ret)
523 0 : ret = -EFAULT;
524 : break;
525 : }
526 1076 : ret += copied;
527 1076 : buf->offset = 0;
528 1076 : buf->len = copied;
529 :
530 1076 : if (!iov_iter_count(from))
531 : break;
532 : }
533 :
534 437 : if (!pipe_full(head, pipe->tail, pipe->max_usage))
535 357 : continue;
536 :
537 : /* Wait for buffer space to become available. */
538 80 : if (filp->f_flags & O_NONBLOCK) {
539 0 : if (!ret)
540 0 : ret = -EAGAIN;
541 : break;
542 : }
543 80 : if (signal_pending(current)) {
544 0 : if (!ret)
545 0 : ret = -ERESTARTSYS;
546 : break;
547 : }
548 :
549 : /*
550 : * We're going to release the pipe lock and wait for more
551 : * space. We wake up any readers if necessary, and then
552 : * after waiting we need to re-check whether the pipe
553 : * become empty while we dropped the lock.
554 : */
555 80 : __pipe_unlock(pipe);
556 80 : if (was_empty) {
557 1 : wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
558 1 : kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
559 : }
560 320 : wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
561 80 : __pipe_lock(pipe);
562 80 : was_empty = pipe_empty(pipe->head, pipe->tail);
563 80 : wake_next_writer = true;
564 : }
565 719 : out:
566 8683 : if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
567 13 : wake_next_writer = false;
568 8683 : __pipe_unlock(pipe);
569 :
570 : /*
571 : * If we do do a wakeup event, we do a 'sync' wakeup, because we
572 : * want the reader to start processing things asap, rather than
573 : * leave the data pending.
574 : *
575 : * This is particularly important for small writes, because of
576 : * how (for example) the GNU make jobserver uses small writes to
577 : * wake up pending jobs
578 : */
579 8683 : if (was_empty) {
580 673 : wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
581 673 : kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
582 : }
583 8683 : if (wake_next_writer)
584 21 : wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
585 8683 : if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
586 8683 : int err = file_update_time(filp);
587 8683 : if (err)
588 0 : ret = err;
589 8683 : sb_end_write(file_inode(filp)->i_sb);
590 : }
591 : return ret;
592 : }
593 :
594 91 : static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
595 : {
596 91 : struct pipe_inode_info *pipe = filp->private_data;
597 91 : int count, head, tail, mask;
598 :
599 91 : switch (cmd) {
600 : case FIONREAD:
601 0 : __pipe_lock(pipe);
602 0 : count = 0;
603 0 : head = pipe->head;
604 0 : tail = pipe->tail;
605 0 : mask = pipe->ring_size - 1;
606 :
607 0 : while (tail != head) {
608 0 : count += pipe->bufs[tail & mask].len;
609 0 : tail++;
610 : }
611 0 : __pipe_unlock(pipe);
612 :
613 0 : return put_user(count, (int __user *)arg);
614 :
615 : #ifdef CONFIG_WATCH_QUEUE
616 : case IOC_WATCH_QUEUE_SET_SIZE: {
617 : int ret;
618 : __pipe_lock(pipe);
619 : ret = watch_queue_set_size(pipe, arg);
620 : __pipe_unlock(pipe);
621 : return ret;
622 : }
623 :
624 : case IOC_WATCH_QUEUE_SET_FILTER:
625 : return watch_queue_set_filter(
626 : pipe, (struct watch_notification_filter __user *)arg);
627 : #endif
628 :
629 : default:
630 : return -ENOIOCTLCMD;
631 : }
632 : }
633 :
634 : /* No kernel lock held - fine */
635 : static __poll_t
636 2134 : pipe_poll(struct file *filp, poll_table *wait)
637 : {
638 2134 : __poll_t mask;
639 2134 : struct pipe_inode_info *pipe = filp->private_data;
640 2134 : unsigned int head, tail;
641 :
642 : /*
643 : * Reading pipe state only -- no need for acquiring the semaphore.
644 : *
645 : * But because this is racy, the code has to add the
646 : * entry to the poll table _first_ ..
647 : */
648 2134 : if (filp->f_mode & FMODE_READ)
649 2106 : poll_wait(filp, &pipe->rd_wait, wait);
650 2134 : if (filp->f_mode & FMODE_WRITE)
651 29 : poll_wait(filp, &pipe->wr_wait, wait);
652 :
653 : /*
654 : * .. and only then can you do the racy tests. That way,
655 : * if something changes and you got it wrong, the poll
656 : * table entry will wake you up and fix it.
657 : */
658 2134 : head = READ_ONCE(pipe->head);
659 2134 : tail = READ_ONCE(pipe->tail);
660 :
661 2134 : mask = 0;
662 2134 : if (filp->f_mode & FMODE_READ) {
663 2106 : if (!pipe_empty(head, tail))
664 380 : mask |= EPOLLIN | EPOLLRDNORM;
665 2106 : if (!pipe->writers && filp->f_version != pipe->w_counter)
666 122 : mask |= EPOLLHUP;
667 : }
668 :
669 2134 : if (filp->f_mode & FMODE_WRITE) {
670 29 : if (!pipe_full(head, tail, pipe->max_usage))
671 29 : mask |= EPOLLOUT | EPOLLWRNORM;
672 : /*
673 : * Most Unices do not set EPOLLERR for FIFOs but on Linux they
674 : * behave exactly like pipes for poll().
675 : */
676 29 : if (!pipe->readers)
677 0 : mask |= EPOLLERR;
678 : }
679 :
680 2134 : return mask;
681 : }
682 :
683 684 : static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
684 : {
685 684 : int kill = 0;
686 :
687 684 : spin_lock(&inode->i_lock);
688 684 : if (!--pipe->files) {
689 339 : inode->i_pipe = NULL;
690 339 : kill = 1;
691 : }
692 684 : spin_unlock(&inode->i_lock);
693 :
694 684 : if (kill)
695 339 : free_pipe_info(pipe);
696 684 : }
697 :
698 : static int
699 684 : pipe_release(struct inode *inode, struct file *file)
700 : {
701 684 : struct pipe_inode_info *pipe = file->private_data;
702 :
703 684 : __pipe_lock(pipe);
704 684 : if (file->f_mode & FMODE_READ)
705 341 : pipe->readers--;
706 684 : if (file->f_mode & FMODE_WRITE)
707 343 : pipe->writers--;
708 :
709 : /* Was that the last reader or writer, but not the other side? */
710 684 : if (!pipe->readers != !pipe->writers) {
711 340 : wake_up_interruptible_all(&pipe->rd_wait);
712 340 : wake_up_interruptible_all(&pipe->wr_wait);
713 340 : kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
714 340 : kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
715 : }
716 684 : __pipe_unlock(pipe);
717 :
718 684 : put_pipe_info(inode, pipe);
719 684 : return 0;
720 : }
721 :
722 : static int
723 0 : pipe_fasync(int fd, struct file *filp, int on)
724 : {
725 0 : struct pipe_inode_info *pipe = filp->private_data;
726 0 : int retval = 0;
727 :
728 0 : __pipe_lock(pipe);
729 0 : if (filp->f_mode & FMODE_READ)
730 0 : retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
731 0 : if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
732 0 : retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
733 0 : if (retval < 0 && (filp->f_mode & FMODE_READ))
734 : /* this can happen only if on == T */
735 0 : fasync_helper(-1, filp, 0, &pipe->fasync_readers);
736 : }
737 0 : __pipe_unlock(pipe);
738 0 : return retval;
739 : }
740 :
741 687 : unsigned long account_pipe_buffers(struct user_struct *user,
742 : unsigned long old, unsigned long new)
743 : {
744 687 : return atomic_long_add_return(new - old, &user->pipe_bufs);
745 : }
746 :
747 347 : bool too_many_pipe_buffers_soft(unsigned long user_bufs)
748 : {
749 347 : unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
750 :
751 347 : return soft_limit && user_bufs > soft_limit;
752 : }
753 :
754 347 : bool too_many_pipe_buffers_hard(unsigned long user_bufs)
755 : {
756 347 : unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
757 :
758 347 : return hard_limit && user_bufs > hard_limit;
759 : }
760 :
761 0 : bool pipe_is_unprivileged_user(void)
762 : {
763 0 : return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
764 : }
765 :
766 347 : struct pipe_inode_info *alloc_pipe_info(void)
767 : {
768 347 : struct pipe_inode_info *pipe;
769 347 : unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
770 347 : struct user_struct *user = get_current_user();
771 347 : unsigned long user_bufs;
772 347 : unsigned int max_size = READ_ONCE(pipe_max_size);
773 :
774 347 : pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
775 347 : if (pipe == NULL)
776 0 : goto out_free_uid;
777 :
778 347 : if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
779 0 : pipe_bufs = max_size >> PAGE_SHIFT;
780 :
781 347 : user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
782 :
783 347 : if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
784 0 : user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
785 0 : pipe_bufs = 1;
786 : }
787 :
788 347 : if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
789 0 : goto out_revert_acct;
790 :
791 347 : pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
792 : GFP_KERNEL_ACCOUNT);
793 :
794 347 : if (pipe->bufs) {
795 347 : init_waitqueue_head(&pipe->rd_wait);
796 347 : init_waitqueue_head(&pipe->wr_wait);
797 347 : pipe->r_counter = pipe->w_counter = 1;
798 347 : pipe->max_usage = pipe_bufs;
799 347 : pipe->ring_size = pipe_bufs;
800 347 : pipe->nr_accounted = pipe_bufs;
801 347 : pipe->user = user;
802 347 : mutex_init(&pipe->mutex);
803 347 : return pipe;
804 : }
805 :
806 0 : out_revert_acct:
807 0 : (void) account_pipe_buffers(user, pipe_bufs, 0);
808 0 : kfree(pipe);
809 0 : out_free_uid:
810 0 : free_uid(user);
811 0 : return NULL;
812 : }
813 :
814 340 : void free_pipe_info(struct pipe_inode_info *pipe)
815 : {
816 340 : int i;
817 :
818 : #ifdef CONFIG_WATCH_QUEUE
819 : if (pipe->watch_queue) {
820 : watch_queue_clear(pipe->watch_queue);
821 : put_watch_queue(pipe->watch_queue);
822 : }
823 : #endif
824 :
825 340 : (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
826 340 : free_uid(pipe->user);
827 6120 : for (i = 0; i < pipe->ring_size; i++) {
828 5440 : struct pipe_buffer *buf = pipe->bufs + i;
829 5440 : if (buf->ops)
830 5441 : pipe_buf_release(pipe, buf);
831 : }
832 340 : if (pipe->tmp_page)
833 230 : __free_page(pipe->tmp_page);
834 340 : kfree(pipe->bufs);
835 340 : kfree(pipe);
836 340 : }
837 :
838 : static struct vfsmount *pipe_mnt __read_mostly;
839 :
840 : /*
841 : * pipefs_dname() is called from d_path().
842 : */
843 0 : static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
844 : {
845 0 : return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
846 0 : d_inode(dentry)->i_ino);
847 : }
848 :
849 : static const struct dentry_operations pipefs_dentry_operations = {
850 : .d_dname = pipefs_dname,
851 : };
852 :
853 341 : static struct inode * get_pipe_inode(void)
854 : {
855 341 : struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
856 341 : struct pipe_inode_info *pipe;
857 :
858 341 : if (!inode)
859 0 : goto fail_inode;
860 :
861 341 : inode->i_ino = get_next_ino();
862 :
863 341 : pipe = alloc_pipe_info();
864 341 : if (!pipe)
865 0 : goto fail_iput;
866 :
867 341 : inode->i_pipe = pipe;
868 341 : pipe->files = 2;
869 341 : pipe->readers = pipe->writers = 1;
870 341 : inode->i_fop = &pipefifo_fops;
871 :
872 : /*
873 : * Mark the inode dirty from the very beginning,
874 : * that way it will never be moved to the dirty
875 : * list because "mark_inode_dirty()" will think
876 : * that it already _is_ on the dirty list.
877 : */
878 341 : inode->i_state = I_DIRTY;
879 341 : inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
880 341 : inode->i_uid = current_fsuid();
881 341 : inode->i_gid = current_fsgid();
882 341 : inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
883 :
884 341 : return inode;
885 :
886 0 : fail_iput:
887 0 : iput(inode);
888 :
889 : fail_inode:
890 : return NULL;
891 : }
892 :
893 341 : int create_pipe_files(struct file **res, int flags)
894 : {
895 341 : struct inode *inode = get_pipe_inode();
896 341 : struct file *f;
897 341 : int error;
898 :
899 341 : if (!inode)
900 : return -ENFILE;
901 :
902 341 : if (flags & O_NOTIFICATION_PIPE) {
903 0 : error = watch_queue_init(inode->i_pipe);
904 0 : if (error) {
905 0 : free_pipe_info(inode->i_pipe);
906 0 : iput(inode);
907 0 : return error;
908 : }
909 : }
910 :
911 682 : f = alloc_file_pseudo(inode, pipe_mnt, "",
912 341 : O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
913 : &pipefifo_fops);
914 341 : if (IS_ERR(f)) {
915 0 : free_pipe_info(inode->i_pipe);
916 0 : iput(inode);
917 0 : return PTR_ERR(f);
918 : }
919 :
920 341 : f->private_data = inode->i_pipe;
921 :
922 341 : res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
923 : &pipefifo_fops);
924 341 : if (IS_ERR(res[0])) {
925 0 : put_pipe_info(inode, inode->i_pipe);
926 0 : fput(f);
927 0 : return PTR_ERR(res[0]);
928 : }
929 341 : res[0]->private_data = inode->i_pipe;
930 341 : res[1] = f;
931 341 : stream_open(inode, res[0]);
932 341 : stream_open(inode, res[1]);
933 341 : return 0;
934 : }
935 :
936 341 : static int __do_pipe_flags(int *fd, struct file **files, int flags)
937 : {
938 341 : int error;
939 341 : int fdw, fdr;
940 :
941 341 : if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
942 : return -EINVAL;
943 :
944 341 : error = create_pipe_files(files, flags);
945 341 : if (error)
946 : return error;
947 :
948 341 : error = get_unused_fd_flags(flags);
949 341 : if (error < 0)
950 0 : goto err_read_pipe;
951 341 : fdr = error;
952 :
953 341 : error = get_unused_fd_flags(flags);
954 341 : if (error < 0)
955 0 : goto err_fdr;
956 341 : fdw = error;
957 :
958 341 : audit_fd_pair(fdr, fdw);
959 341 : fd[0] = fdr;
960 341 : fd[1] = fdw;
961 341 : return 0;
962 :
963 0 : err_fdr:
964 0 : put_unused_fd(fdr);
965 0 : err_read_pipe:
966 0 : fput(files[0]);
967 0 : fput(files[1]);
968 0 : return error;
969 : }
970 :
971 0 : int do_pipe_flags(int *fd, int flags)
972 : {
973 0 : struct file *files[2];
974 0 : int error = __do_pipe_flags(fd, files, flags);
975 0 : if (!error) {
976 0 : fd_install(fd[0], files[0]);
977 0 : fd_install(fd[1], files[1]);
978 : }
979 0 : return error;
980 : }
981 :
982 : /*
983 : * sys_pipe() is the normal C calling standard for creating
984 : * a pipe. It's not the way Unix traditionally does this, though.
985 : */
986 341 : static int do_pipe2(int __user *fildes, int flags)
987 : {
988 341 : struct file *files[2];
989 341 : int fd[2];
990 341 : int error;
991 :
992 341 : error = __do_pipe_flags(fd, files, flags);
993 341 : if (!error) {
994 341 : if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
995 0 : fput(files[0]);
996 0 : fput(files[1]);
997 0 : put_unused_fd(fd[0]);
998 0 : put_unused_fd(fd[1]);
999 0 : error = -EFAULT;
1000 : } else {
1001 341 : fd_install(fd[0], files[0]);
1002 341 : fd_install(fd[1], files[1]);
1003 : }
1004 : }
1005 341 : return error;
1006 : }
1007 :
1008 68 : SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1009 : {
1010 34 : return do_pipe2(fildes, flags);
1011 : }
1012 :
1013 614 : SYSCALL_DEFINE1(pipe, int __user *, fildes)
1014 : {
1015 307 : return do_pipe2(fildes, 0);
1016 : }
1017 :
1018 : /*
1019 : * This is the stupid "wait for pipe to be readable or writable"
1020 : * model.
1021 : *
1022 : * See pipe_read/write() for the proper kind of exclusive wait,
1023 : * but that requires that we wake up any other readers/writers
1024 : * if we then do not end up reading everything (ie the whole
1025 : * "wake_next_reader/writer" logic in pipe_read/write()).
1026 : */
1027 0 : void pipe_wait_readable(struct pipe_inode_info *pipe)
1028 : {
1029 0 : pipe_unlock(pipe);
1030 0 : wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1031 0 : pipe_lock(pipe);
1032 0 : }
1033 :
1034 0 : void pipe_wait_writable(struct pipe_inode_info *pipe)
1035 : {
1036 0 : pipe_unlock(pipe);
1037 0 : wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1038 0 : pipe_lock(pipe);
1039 0 : }
1040 :
1041 : /*
1042 : * This depends on both the wait (here) and the wakeup (wake_up_partner)
1043 : * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1044 : * race with the count check and waitqueue prep.
1045 : *
1046 : * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1047 : * then check the condition you're waiting for, and only then sleep. But
1048 : * because of the pipe lock, we can check the condition before being on
1049 : * the wait queue.
1050 : *
1051 : * We use the 'rd_wait' waitqueue for pipe partner waiting.
1052 : */
1053 0 : static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1054 : {
1055 0 : DEFINE_WAIT(rdwait);
1056 0 : int cur = *cnt;
1057 :
1058 0 : while (cur == *cnt) {
1059 0 : prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1060 0 : pipe_unlock(pipe);
1061 0 : schedule();
1062 0 : finish_wait(&pipe->rd_wait, &rdwait);
1063 0 : pipe_lock(pipe);
1064 0 : if (signal_pending(current))
1065 : break;
1066 : }
1067 0 : return cur == *cnt ? -ERESTARTSYS : 0;
1068 : }
1069 :
1070 9 : static void wake_up_partner(struct pipe_inode_info *pipe)
1071 : {
1072 9 : wake_up_interruptible_all(&pipe->rd_wait);
1073 9 : }
1074 :
1075 14 : static int fifo_open(struct inode *inode, struct file *filp)
1076 : {
1077 14 : struct pipe_inode_info *pipe;
1078 14 : bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1079 14 : int ret;
1080 :
1081 14 : filp->f_version = 0;
1082 :
1083 14 : spin_lock(&inode->i_lock);
1084 14 : if (inode->i_pipe) {
1085 9 : pipe = inode->i_pipe;
1086 9 : pipe->files++;
1087 9 : spin_unlock(&inode->i_lock);
1088 : } else {
1089 5 : spin_unlock(&inode->i_lock);
1090 5 : pipe = alloc_pipe_info();
1091 5 : if (!pipe)
1092 : return -ENOMEM;
1093 5 : pipe->files = 1;
1094 5 : spin_lock(&inode->i_lock);
1095 5 : if (unlikely(inode->i_pipe)) {
1096 0 : inode->i_pipe->files++;
1097 0 : spin_unlock(&inode->i_lock);
1098 0 : free_pipe_info(pipe);
1099 0 : pipe = inode->i_pipe;
1100 : } else {
1101 5 : inode->i_pipe = pipe;
1102 5 : spin_unlock(&inode->i_lock);
1103 : }
1104 : }
1105 14 : filp->private_data = pipe;
1106 : /* OK, we have a pipe and it's pinned down */
1107 :
1108 14 : __pipe_lock(pipe);
1109 :
1110 : /* We can only do regular read/write on fifos */
1111 14 : stream_open(inode, filp);
1112 :
1113 14 : switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1114 5 : case FMODE_READ:
1115 : /*
1116 : * O_RDONLY
1117 : * POSIX.1 says that O_NONBLOCK means return with the FIFO
1118 : * opened, even when there is no process writing the FIFO.
1119 : */
1120 5 : pipe->r_counter++;
1121 5 : if (pipe->readers++ == 0)
1122 4 : wake_up_partner(pipe);
1123 :
1124 5 : if (!is_pipe && !pipe->writers) {
1125 4 : if ((filp->f_flags & O_NONBLOCK)) {
1126 : /* suppress EPOLLHUP until we have
1127 : * seen a writer */
1128 4 : filp->f_version = pipe->w_counter;
1129 : } else {
1130 0 : if (wait_for_partner(pipe, &pipe->w_counter))
1131 0 : goto err_rd;
1132 : }
1133 : }
1134 : break;
1135 :
1136 8 : case FMODE_WRITE:
1137 : /*
1138 : * O_WRONLY
1139 : * POSIX.1 says that O_NONBLOCK means return -1 with
1140 : * errno=ENXIO when there is no process reading the FIFO.
1141 : */
1142 8 : ret = -ENXIO;
1143 8 : if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1144 0 : goto err;
1145 :
1146 8 : pipe->w_counter++;
1147 8 : if (!pipe->writers++)
1148 4 : wake_up_partner(pipe);
1149 :
1150 8 : if (!is_pipe && !pipe->readers) {
1151 0 : if (wait_for_partner(pipe, &pipe->r_counter))
1152 0 : goto err_wr;
1153 : }
1154 : break;
1155 :
1156 1 : case FMODE_READ | FMODE_WRITE:
1157 : /*
1158 : * O_RDWR
1159 : * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1160 : * This implementation will NEVER block on a O_RDWR open, since
1161 : * the process can at least talk to itself.
1162 : */
1163 :
1164 1 : pipe->readers++;
1165 1 : pipe->writers++;
1166 1 : pipe->r_counter++;
1167 1 : pipe->w_counter++;
1168 1 : if (pipe->readers == 1 || pipe->writers == 1)
1169 1 : wake_up_partner(pipe);
1170 : break;
1171 :
1172 0 : default:
1173 0 : ret = -EINVAL;
1174 0 : goto err;
1175 : }
1176 :
1177 : /* Ok! */
1178 14 : __pipe_unlock(pipe);
1179 14 : return 0;
1180 :
1181 0 : err_rd:
1182 0 : if (!--pipe->readers)
1183 0 : wake_up_interruptible(&pipe->wr_wait);
1184 0 : ret = -ERESTARTSYS;
1185 0 : goto err;
1186 :
1187 0 : err_wr:
1188 0 : if (!--pipe->writers)
1189 0 : wake_up_interruptible_all(&pipe->rd_wait);
1190 0 : ret = -ERESTARTSYS;
1191 0 : goto err;
1192 :
1193 0 : err:
1194 0 : __pipe_unlock(pipe);
1195 :
1196 0 : put_pipe_info(inode, pipe);
1197 0 : return ret;
1198 : }
1199 :
1200 : const struct file_operations pipefifo_fops = {
1201 : .open = fifo_open,
1202 : .llseek = no_llseek,
1203 : .read_iter = pipe_read,
1204 : .write_iter = pipe_write,
1205 : .poll = pipe_poll,
1206 : .unlocked_ioctl = pipe_ioctl,
1207 : .release = pipe_release,
1208 : .fasync = pipe_fasync,
1209 : .splice_write = iter_file_splice_write,
1210 : };
1211 :
1212 : /*
1213 : * Currently we rely on the pipe array holding a power-of-2 number
1214 : * of pages. Returns 0 on error.
1215 : */
1216 0 : unsigned int round_pipe_size(unsigned long size)
1217 : {
1218 0 : if (size > (1U << 31))
1219 : return 0;
1220 :
1221 : /* Minimum pipe size, as required by POSIX */
1222 0 : if (size < PAGE_SIZE)
1223 : return PAGE_SIZE;
1224 :
1225 0 : return roundup_pow_of_two(size);
1226 : }
1227 :
1228 : /*
1229 : * Resize the pipe ring to a number of slots.
1230 : */
1231 0 : int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1232 : {
1233 0 : struct pipe_buffer *bufs;
1234 0 : unsigned int head, tail, mask, n;
1235 :
1236 : /*
1237 : * We can shrink the pipe, if arg is greater than the ring occupancy.
1238 : * Since we don't expect a lot of shrink+grow operations, just free and
1239 : * allocate again like we would do for growing. If the pipe currently
1240 : * contains more buffers than arg, then return busy.
1241 : */
1242 0 : mask = pipe->ring_size - 1;
1243 0 : head = pipe->head;
1244 0 : tail = pipe->tail;
1245 0 : n = pipe_occupancy(pipe->head, pipe->tail);
1246 0 : if (nr_slots < n)
1247 : return -EBUSY;
1248 :
1249 0 : bufs = kcalloc(nr_slots, sizeof(*bufs),
1250 : GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1251 0 : if (unlikely(!bufs))
1252 : return -ENOMEM;
1253 :
1254 : /*
1255 : * The pipe array wraps around, so just start the new one at zero
1256 : * and adjust the indices.
1257 : */
1258 0 : if (n > 0) {
1259 0 : unsigned int h = head & mask;
1260 0 : unsigned int t = tail & mask;
1261 0 : if (h > t) {
1262 0 : memcpy(bufs, pipe->bufs + t,
1263 : n * sizeof(struct pipe_buffer));
1264 : } else {
1265 0 : unsigned int tsize = pipe->ring_size - t;
1266 0 : if (h > 0)
1267 0 : memcpy(bufs + tsize, pipe->bufs,
1268 : h * sizeof(struct pipe_buffer));
1269 0 : memcpy(bufs, pipe->bufs + t,
1270 : tsize * sizeof(struct pipe_buffer));
1271 : }
1272 : }
1273 :
1274 0 : head = n;
1275 0 : tail = 0;
1276 :
1277 0 : kfree(pipe->bufs);
1278 0 : pipe->bufs = bufs;
1279 0 : pipe->ring_size = nr_slots;
1280 0 : if (pipe->max_usage > nr_slots)
1281 0 : pipe->max_usage = nr_slots;
1282 0 : pipe->tail = tail;
1283 0 : pipe->head = head;
1284 :
1285 : /* This might have made more room for writers */
1286 0 : wake_up_interruptible(&pipe->wr_wait);
1287 0 : return 0;
1288 : }
1289 :
1290 : /*
1291 : * Allocate a new array of pipe buffers and copy the info over. Returns the
1292 : * pipe size if successful, or return -ERROR on error.
1293 : */
1294 0 : static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1295 : {
1296 0 : unsigned long user_bufs;
1297 0 : unsigned int nr_slots, size;
1298 0 : long ret = 0;
1299 :
1300 : #ifdef CONFIG_WATCH_QUEUE
1301 : if (pipe->watch_queue)
1302 : return -EBUSY;
1303 : #endif
1304 :
1305 0 : size = round_pipe_size(arg);
1306 0 : nr_slots = size >> PAGE_SHIFT;
1307 :
1308 0 : if (!nr_slots)
1309 : return -EINVAL;
1310 :
1311 : /*
1312 : * If trying to increase the pipe capacity, check that an
1313 : * unprivileged user is not trying to exceed various limits
1314 : * (soft limit check here, hard limit check just below).
1315 : * Decreasing the pipe capacity is always permitted, even
1316 : * if the user is currently over a limit.
1317 : */
1318 0 : if (nr_slots > pipe->max_usage &&
1319 0 : size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1320 : return -EPERM;
1321 :
1322 0 : user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1323 :
1324 0 : if (nr_slots > pipe->max_usage &&
1325 0 : (too_many_pipe_buffers_hard(user_bufs) ||
1326 0 : too_many_pipe_buffers_soft(user_bufs)) &&
1327 0 : pipe_is_unprivileged_user()) {
1328 0 : ret = -EPERM;
1329 0 : goto out_revert_acct;
1330 : }
1331 :
1332 0 : ret = pipe_resize_ring(pipe, nr_slots);
1333 0 : if (ret < 0)
1334 0 : goto out_revert_acct;
1335 :
1336 0 : pipe->max_usage = nr_slots;
1337 0 : pipe->nr_accounted = nr_slots;
1338 0 : return pipe->max_usage * PAGE_SIZE;
1339 :
1340 0 : out_revert_acct:
1341 0 : (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1342 0 : return ret;
1343 : }
1344 :
1345 : /*
1346 : * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1347 : * not enough to verify that this is a pipe.
1348 : */
1349 3 : struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1350 : {
1351 3 : struct pipe_inode_info *pipe = file->private_data;
1352 :
1353 3 : if (file->f_op != &pipefifo_fops || !pipe)
1354 3 : return NULL;
1355 : #ifdef CONFIG_WATCH_QUEUE
1356 : if (for_splice && pipe->watch_queue)
1357 : return NULL;
1358 : #endif
1359 : return pipe;
1360 : }
1361 :
1362 0 : long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1363 : {
1364 0 : struct pipe_inode_info *pipe;
1365 0 : long ret;
1366 :
1367 0 : pipe = get_pipe_info(file, false);
1368 0 : if (!pipe)
1369 : return -EBADF;
1370 :
1371 0 : __pipe_lock(pipe);
1372 :
1373 0 : switch (cmd) {
1374 0 : case F_SETPIPE_SZ:
1375 0 : ret = pipe_set_size(pipe, arg);
1376 0 : break;
1377 0 : case F_GETPIPE_SZ:
1378 0 : ret = pipe->max_usage * PAGE_SIZE;
1379 0 : break;
1380 : default:
1381 : ret = -EINVAL;
1382 : break;
1383 : }
1384 :
1385 0 : __pipe_unlock(pipe);
1386 0 : return ret;
1387 : }
1388 :
1389 : static const struct super_operations pipefs_ops = {
1390 : .destroy_inode = free_inode_nonrcu,
1391 : .statfs = simple_statfs,
1392 : };
1393 :
1394 : /*
1395 : * pipefs should _never_ be mounted by userland - too much of security hassle,
1396 : * no real gain from having the whole whorehouse mounted. So we don't need
1397 : * any operations on the root directory. However, we need a non-trivial
1398 : * d_name - pipe: will go nicely and kill the special-casing in procfs.
1399 : */
1400 :
1401 1 : static int pipefs_init_fs_context(struct fs_context *fc)
1402 : {
1403 1 : struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1404 1 : if (!ctx)
1405 : return -ENOMEM;
1406 1 : ctx->ops = &pipefs_ops;
1407 1 : ctx->dops = &pipefs_dentry_operations;
1408 1 : return 0;
1409 : }
1410 :
1411 : static struct file_system_type pipe_fs_type = {
1412 : .name = "pipefs",
1413 : .init_fs_context = pipefs_init_fs_context,
1414 : .kill_sb = kill_anon_super,
1415 : };
1416 :
1417 1 : static int __init init_pipe_fs(void)
1418 : {
1419 1 : int err = register_filesystem(&pipe_fs_type);
1420 :
1421 1 : if (!err) {
1422 1 : pipe_mnt = kern_mount(&pipe_fs_type);
1423 1 : if (IS_ERR(pipe_mnt)) {
1424 0 : err = PTR_ERR(pipe_mnt);
1425 0 : unregister_filesystem(&pipe_fs_type);
1426 : }
1427 : }
1428 1 : return err;
1429 : }
1430 :
1431 : fs_initcall(init_pipe_fs);
|