LCOV - code coverage report
Current view: top level - fs - super.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 357 813 43.9 %
Date: 2021-04-22 12:43:58 Functions: 33 64 51.6 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *  linux/fs/super.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992  Linus Torvalds
       6             :  *
       7             :  *  super.c contains code to handle: - mount structures
       8             :  *                                   - super-block tables
       9             :  *                                   - filesystem drivers list
      10             :  *                                   - mount system call
      11             :  *                                   - umount system call
      12             :  *                                   - ustat system call
      13             :  *
      14             :  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
      15             :  *
      16             :  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
      17             :  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
      18             :  *  Added options to /proc/mounts:
      19             :  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
      20             :  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
      21             :  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
      22             :  */
      23             : 
      24             : #include <linux/export.h>
      25             : #include <linux/slab.h>
      26             : #include <linux/blkdev.h>
      27             : #include <linux/mount.h>
      28             : #include <linux/security.h>
      29             : #include <linux/writeback.h>              /* for the emergency remount stuff */
      30             : #include <linux/idr.h>
      31             : #include <linux/mutex.h>
      32             : #include <linux/backing-dev.h>
      33             : #include <linux/rculist_bl.h>
      34             : #include <linux/cleancache.h>
      35             : #include <linux/fscrypt.h>
      36             : #include <linux/fsnotify.h>
      37             : #include <linux/lockdep.h>
      38             : #include <linux/user_namespace.h>
      39             : #include <linux/fs_context.h>
      40             : #include <uapi/linux/mount.h>
      41             : #include "internal.h"
      42             : 
      43             : static int thaw_super_locked(struct super_block *sb);
      44             : 
      45             : static LIST_HEAD(super_blocks);
      46             : static DEFINE_SPINLOCK(sb_lock);
      47             : 
      48             : static char *sb_writers_name[SB_FREEZE_LEVELS] = {
      49             :         "sb_writers",
      50             :         "sb_pagefaults",
      51             :         "sb_internal",
      52             : };
      53             : 
      54             : /*
      55             :  * One thing we have to be careful of with a per-sb shrinker is that we don't
      56             :  * drop the last active reference to the superblock from within the shrinker.
      57             :  * If that happens we could trigger unregistering the shrinker from within the
      58             :  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
      59             :  * take a passive reference to the superblock to avoid this from occurring.
      60             :  */
      61           0 : static unsigned long super_cache_scan(struct shrinker *shrink,
      62             :                                       struct shrink_control *sc)
      63             : {
      64           0 :         struct super_block *sb;
      65           0 :         long    fs_objects = 0;
      66           0 :         long    total_objects;
      67           0 :         long    freed = 0;
      68           0 :         long    dentries;
      69           0 :         long    inodes;
      70             : 
      71           0 :         sb = container_of(shrink, struct super_block, s_shrink);
      72             : 
      73             :         /*
      74             :          * Deadlock avoidance.  We may hold various FS locks, and we don't want
      75             :          * to recurse into the FS that called us in clear_inode() and friends..
      76             :          */
      77           0 :         if (!(sc->gfp_mask & __GFP_FS))
      78             :                 return SHRINK_STOP;
      79             : 
      80           0 :         if (!trylock_super(sb))
      81             :                 return SHRINK_STOP;
      82             : 
      83           0 :         if (sb->s_op->nr_cached_objects)
      84           0 :                 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
      85             : 
      86           0 :         inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
      87           0 :         dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
      88           0 :         total_objects = dentries + inodes + fs_objects + 1;
      89           0 :         if (!total_objects)
      90           0 :                 total_objects = 1;
      91             : 
      92             :         /* proportion the scan between the caches */
      93           0 :         dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
      94           0 :         inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
      95           0 :         fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
      96             : 
      97             :         /*
      98             :          * prune the dcache first as the icache is pinned by it, then
      99             :          * prune the icache, followed by the filesystem specific caches
     100             :          *
     101             :          * Ensure that we always scan at least one object - memcg kmem
     102             :          * accounting uses this to fully empty the caches.
     103             :          */
     104           0 :         sc->nr_to_scan = dentries + 1;
     105           0 :         freed = prune_dcache_sb(sb, sc);
     106           0 :         sc->nr_to_scan = inodes + 1;
     107           0 :         freed += prune_icache_sb(sb, sc);
     108             : 
     109           0 :         if (fs_objects) {
     110           0 :                 sc->nr_to_scan = fs_objects + 1;
     111           0 :                 freed += sb->s_op->free_cached_objects(sb, sc);
     112             :         }
     113             : 
     114           0 :         up_read(&sb->s_umount);
     115           0 :         return freed;
     116             : }
     117             : 
     118           0 : static unsigned long super_cache_count(struct shrinker *shrink,
     119             :                                        struct shrink_control *sc)
     120             : {
     121           0 :         struct super_block *sb;
     122           0 :         long    total_objects = 0;
     123             : 
     124           0 :         sb = container_of(shrink, struct super_block, s_shrink);
     125             : 
     126             :         /*
     127             :          * We don't call trylock_super() here as it is a scalability bottleneck,
     128             :          * so we're exposed to partial setup state. The shrinker rwsem does not
     129             :          * protect filesystem operations backing list_lru_shrink_count() or
     130             :          * s_op->nr_cached_objects(). Counts can change between
     131             :          * super_cache_count and super_cache_scan, so we really don't need locks
     132             :          * here.
     133             :          *
     134             :          * However, if we are currently mounting the superblock, the underlying
     135             :          * filesystem might be in a state of partial construction and hence it
     136             :          * is dangerous to access it.  trylock_super() uses a SB_BORN check to
     137             :          * avoid this situation, so do the same here. The memory barrier is
     138             :          * matched with the one in mount_fs() as we don't hold locks here.
     139             :          */
     140           0 :         if (!(sb->s_flags & SB_BORN))
     141             :                 return 0;
     142           0 :         smp_rmb();
     143             : 
     144           0 :         if (sb->s_op && sb->s_op->nr_cached_objects)
     145           0 :                 total_objects = sb->s_op->nr_cached_objects(sb, sc);
     146             : 
     147           0 :         total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
     148           0 :         total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
     149             : 
     150           0 :         if (!total_objects)
     151             :                 return SHRINK_EMPTY;
     152             : 
     153           0 :         total_objects = vfs_pressure_ratio(total_objects);
     154           0 :         return total_objects;
     155             : }
     156             : 
     157          99 : static void destroy_super_work(struct work_struct *work)
     158             : {
     159          99 :         struct super_block *s = container_of(work, struct super_block,
     160             :                                                         destroy_work);
     161          99 :         int i;
     162             : 
     163         396 :         for (i = 0; i < SB_FREEZE_LEVELS; i++)
     164         297 :                 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
     165          99 :         kfree(s);
     166          99 : }
     167             : 
     168          99 : static void destroy_super_rcu(struct rcu_head *head)
     169             : {
     170          99 :         struct super_block *s = container_of(head, struct super_block, rcu);
     171          99 :         INIT_WORK(&s->destroy_work, destroy_super_work);
     172          99 :         schedule_work(&s->destroy_work);
     173          99 : }
     174             : 
     175             : /* Free a superblock that has never been seen by anyone */
     176           3 : static void destroy_unused_super(struct super_block *s)
     177             : {
     178           3 :         if (!s)
     179             :                 return;
     180           0 :         up_write(&s->s_umount);
     181           0 :         list_lru_destroy(&s->s_dentry_lru);
     182           0 :         list_lru_destroy(&s->s_inode_lru);
     183           0 :         security_sb_free(s);
     184           0 :         put_user_ns(s->s_user_ns);
     185           0 :         kfree(s->s_subtype);
     186           0 :         free_prealloced_shrinker(&s->s_shrink);
     187             :         /* no delays needed */
     188           0 :         destroy_super_work(&s->destroy_work);
     189             : }
     190             : 
     191             : /**
     192             :  *      alloc_super     -       create new superblock
     193             :  *      @type:  filesystem type superblock should belong to
     194             :  *      @flags: the mount flags
     195             :  *      @user_ns: User namespace for the super_block
     196             :  *
     197             :  *      Allocates and initializes a new &struct super_block.  alloc_super()
     198             :  *      returns a pointer new superblock or %NULL if allocation had failed.
     199             :  */
     200         123 : static struct super_block *alloc_super(struct file_system_type *type, int flags,
     201             :                                        struct user_namespace *user_ns)
     202             : {
     203         123 :         struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
     204         123 :         static const struct super_operations default_op;
     205         123 :         int i;
     206             : 
     207         123 :         if (!s)
     208             :                 return NULL;
     209             : 
     210         123 :         INIT_LIST_HEAD(&s->s_mounts);
     211         123 :         s->s_user_ns = get_user_ns(user_ns);
     212         123 :         init_rwsem(&s->s_umount);
     213         123 :         lockdep_set_class(&s->s_umount, &type->s_umount_key);
     214             :         /*
     215             :          * sget() can have s_umount recursion.
     216             :          *
     217             :          * When it cannot find a suitable sb, it allocates a new
     218             :          * one (this one), and tries again to find a suitable old
     219             :          * one.
     220             :          *
     221             :          * In case that succeeds, it will acquire the s_umount
     222             :          * lock of the old one. Since these are clearly distrinct
     223             :          * locks, and this object isn't exposed yet, there's no
     224             :          * risk of deadlocks.
     225             :          *
     226             :          * Annotate this by putting this lock in a different
     227             :          * subclass.
     228             :          */
     229         123 :         down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
     230             : 
     231         123 :         if (security_sb_alloc(s))
     232           0 :                 goto fail;
     233             : 
     234         492 :         for (i = 0; i < SB_FREEZE_LEVELS; i++) {
     235         369 :                 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
     236         369 :                                         sb_writers_name[i],
     237             :                                         &type->s_writers_key[i]))
     238           0 :                         goto fail;
     239             :         }
     240         123 :         init_waitqueue_head(&s->s_writers.wait_unfrozen);
     241         123 :         s->s_bdi = &noop_backing_dev_info;
     242         123 :         s->s_flags = flags;
     243         123 :         if (s->s_user_ns != &init_user_ns)
     244           0 :                 s->s_iflags |= SB_I_NODEV;
     245         123 :         INIT_HLIST_NODE(&s->s_instances);
     246         123 :         INIT_HLIST_BL_HEAD(&s->s_roots);
     247         123 :         mutex_init(&s->s_sync_lock);
     248         123 :         INIT_LIST_HEAD(&s->s_inodes);
     249         123 :         spin_lock_init(&s->s_inode_list_lock);
     250         123 :         INIT_LIST_HEAD(&s->s_inodes_wb);
     251         123 :         spin_lock_init(&s->s_inode_wblist_lock);
     252             : 
     253         123 :         s->s_count = 1;
     254         123 :         atomic_set(&s->s_active, 1);
     255         123 :         mutex_init(&s->s_vfs_rename_mutex);
     256         123 :         lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
     257         123 :         init_rwsem(&s->s_dquot.dqio_sem);
     258         123 :         s->s_maxbytes = MAX_NON_LFS;
     259         123 :         s->s_op = &default_op;
     260         123 :         s->s_time_gran = 1000000000;
     261         123 :         s->s_time_min = TIME64_MIN;
     262         123 :         s->s_time_max = TIME64_MAX;
     263         123 :         s->cleancache_poolid = CLEANCACHE_NO_POOL;
     264             : 
     265         123 :         s->s_shrink.seeks = DEFAULT_SEEKS;
     266         123 :         s->s_shrink.scan_objects = super_cache_scan;
     267         123 :         s->s_shrink.count_objects = super_cache_count;
     268         123 :         s->s_shrink.batch = 1024;
     269         123 :         s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
     270         123 :         if (prealloc_shrinker(&s->s_shrink))
     271           0 :                 goto fail;
     272         123 :         if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
     273           0 :                 goto fail;
     274         123 :         if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
     275           0 :                 goto fail;
     276             :         return s;
     277             : 
     278           0 : fail:
     279           0 :         destroy_unused_super(s);
     280           0 :         return NULL;
     281             : }
     282             : 
     283             : /* Superblock refcounting  */
     284             : 
     285             : /*
     286             :  * Drop a superblock's refcount.  The caller must hold sb_lock.
     287             :  */
     288         102 : static void __put_super(struct super_block *s)
     289             : {
     290         102 :         if (!--s->s_count) {
     291          99 :                 list_del_init(&s->s_list);
     292          99 :                 WARN_ON(s->s_dentry_lru.node);
     293          99 :                 WARN_ON(s->s_inode_lru.node);
     294          99 :                 WARN_ON(!list_empty(&s->s_mounts));
     295          99 :                 security_sb_free(s);
     296          99 :                 fscrypt_sb_free(s);
     297          99 :                 put_user_ns(s->s_user_ns);
     298          99 :                 kfree(s->s_subtype);
     299          99 :                 call_rcu(&s->rcu, destroy_super_rcu);
     300             :         }
     301         102 : }
     302             : 
     303             : /**
     304             :  *      put_super       -       drop a temporary reference to superblock
     305             :  *      @sb: superblock in question
     306             :  *
     307             :  *      Drops a temporary reference, frees superblock if there's no
     308             :  *      references left.
     309             :  */
     310         102 : void put_super(struct super_block *sb)
     311             : {
     312         102 :         spin_lock(&sb_lock);
     313         102 :         __put_super(sb);
     314         102 :         spin_unlock(&sb_lock);
     315         102 : }
     316             : 
     317             : 
     318             : /**
     319             :  *      deactivate_locked_super -       drop an active reference to superblock
     320             :  *      @s: superblock to deactivate
     321             :  *
     322             :  *      Drops an active reference to superblock, converting it into a temporary
     323             :  *      one if there is no other active references left.  In that case we
     324             :  *      tell fs driver to shut it down and drop the temporary reference we
     325             :  *      had just acquired.
     326             :  *
     327             :  *      Caller holds exclusive lock on superblock; that lock is released.
     328             :  */
     329          99 : void deactivate_locked_super(struct super_block *s)
     330             : {
     331          99 :         struct file_system_type *fs = s->s_type;
     332         198 :         if (atomic_dec_and_test(&s->s_active)) {
     333          99 :                 cleancache_invalidate_fs(s);
     334          99 :                 unregister_shrinker(&s->s_shrink);
     335          99 :                 fs->kill_sb(s);
     336             : 
     337             :                 /*
     338             :                  * Since list_lru_destroy() may sleep, we cannot call it from
     339             :                  * put_super(), where we hold the sb_lock. Therefore we destroy
     340             :                  * the lru lists right now.
     341             :                  */
     342          99 :                 list_lru_destroy(&s->s_dentry_lru);
     343          99 :                 list_lru_destroy(&s->s_inode_lru);
     344             : 
     345          99 :                 put_filesystem(fs);
     346          99 :                 put_super(s);
     347             :         } else {
     348           0 :                 up_write(&s->s_umount);
     349             :         }
     350          99 : }
     351             : 
     352             : EXPORT_SYMBOL(deactivate_locked_super);
     353             : 
     354             : /**
     355             :  *      deactivate_super        -       drop an active reference to superblock
     356             :  *      @s: superblock to deactivate
     357             :  *
     358             :  *      Variant of deactivate_locked_super(), except that superblock is *not*
     359             :  *      locked by caller.  If we are going to drop the final active reference,
     360             :  *      lock will be acquired prior to that.
     361             :  */
     362        1363 : void deactivate_super(struct super_block *s)
     363             : {
     364        2726 :         if (!atomic_add_unless(&s->s_active, -1, 1)) {
     365          98 :                 down_write(&s->s_umount);
     366          98 :                 deactivate_locked_super(s);
     367             :         }
     368        1363 : }
     369             : 
     370             : EXPORT_SYMBOL(deactivate_super);
     371             : 
     372             : /**
     373             :  *      grab_super - acquire an active reference
     374             :  *      @s: reference we are trying to make active
     375             :  *
     376             :  *      Tries to acquire an active reference.  grab_super() is used when we
     377             :  *      had just found a superblock in super_blocks or fs_type->fs_supers
     378             :  *      and want to turn it into a full-blown active reference.  grab_super()
     379             :  *      is called with sb_lock held and drops it.  Returns 1 in case of
     380             :  *      success, 0 if we had failed (superblock contents was already dead or
     381             :  *      dying when grab_super() had been called).  Note that this is only
     382             :  *      called for superblocks not in rundown mode (== ones still on ->fs_supers
     383             :  *      of their type), so increment of ->s_count is OK here.
     384             :  */
     385           3 : static int grab_super(struct super_block *s) __releases(sb_lock)
     386             : {
     387           3 :         s->s_count++;
     388           3 :         spin_unlock(&sb_lock);
     389           3 :         down_write(&s->s_umount);
     390           6 :         if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
     391           3 :                 put_super(s);
     392           3 :                 return 1;
     393             :         }
     394           0 :         up_write(&s->s_umount);
     395           0 :         put_super(s);
     396           0 :         return 0;
     397             : }
     398             : 
     399             : /*
     400             :  *      trylock_super - try to grab ->s_umount shared
     401             :  *      @sb: reference we are trying to grab
     402             :  *
     403             :  *      Try to prevent fs shutdown.  This is used in places where we
     404             :  *      cannot take an active reference but we need to ensure that the
     405             :  *      filesystem is not shut down while we are working on it. It returns
     406             :  *      false if we cannot acquire s_umount or if we lose the race and
     407             :  *      filesystem already got into shutdown, and returns true with the s_umount
     408             :  *      lock held in read mode in case of success. On successful return,
     409             :  *      the caller must drop the s_umount lock when done.
     410             :  *
     411             :  *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
     412             :  *      The reason why it's safe is that we are OK with doing trylock instead
     413             :  *      of down_read().  There's a couple of places that are OK with that, but
     414             :  *      it's very much not a general-purpose interface.
     415             :  */
     416           7 : bool trylock_super(struct super_block *sb)
     417             : {
     418           7 :         if (down_read_trylock(&sb->s_umount)) {
     419           7 :                 if (!hlist_unhashed(&sb->s_instances) &&
     420           7 :                     sb->s_root && (sb->s_flags & SB_BORN))
     421             :                         return true;
     422           0 :                 up_read(&sb->s_umount);
     423             :         }
     424             : 
     425             :         return false;
     426             : }
     427             : 
     428             : /**
     429             :  *      generic_shutdown_super  -       common helper for ->kill_sb()
     430             :  *      @sb: superblock to kill
     431             :  *
     432             :  *      generic_shutdown_super() does all fs-independent work on superblock
     433             :  *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
     434             :  *      that need destruction out of superblock, call generic_shutdown_super()
     435             :  *      and release aforementioned objects.  Note: dentries and inodes _are_
     436             :  *      taken care of and do not need specific handling.
     437             :  *
     438             :  *      Upon calling this function, the filesystem may no longer alter or
     439             :  *      rearrange the set of dentries belonging to this super_block, nor may it
     440             :  *      change the attachments of dentries to inodes.
     441             :  */
     442          99 : void generic_shutdown_super(struct super_block *sb)
     443             : {
     444          99 :         const struct super_operations *sop = sb->s_op;
     445             : 
     446          99 :         if (sb->s_root) {
     447          98 :                 shrink_dcache_for_umount(sb);
     448          98 :                 sync_filesystem(sb);
     449          98 :                 sb->s_flags &= ~SB_ACTIVE;
     450             : 
     451          98 :                 cgroup_writeback_umount();
     452             : 
     453             :                 /* evict all inodes with zero refcount */
     454          98 :                 evict_inodes(sb);
     455             :                 /* only nonzero refcount inodes can have marks */
     456          98 :                 fsnotify_sb_delete(sb);
     457          98 :                 security_sb_delete(sb);
     458             : 
     459          98 :                 if (sb->s_dio_done_wq) {
     460           0 :                         destroy_workqueue(sb->s_dio_done_wq);
     461           0 :                         sb->s_dio_done_wq = NULL;
     462             :                 }
     463             : 
     464          98 :                 if (sop->put_super)
     465          97 :                         sop->put_super(sb);
     466             : 
     467          98 :                 if (!list_empty(&sb->s_inodes)) {
     468           0 :                         printk("VFS: Busy inodes after unmount of %s. "
     469             :                            "Self-destruct in 5 seconds.  Have a nice day...\n",
     470           0 :                            sb->s_id);
     471             :                 }
     472             :         }
     473          99 :         spin_lock(&sb_lock);
     474             :         /* should be initialized for __put_super_and_need_restart() */
     475          99 :         hlist_del_init(&sb->s_instances);
     476          99 :         spin_unlock(&sb_lock);
     477          99 :         up_write(&sb->s_umount);
     478          99 :         if (sb->s_bdi != &noop_backing_dev_info) {
     479           1 :                 bdi_put(sb->s_bdi);
     480           1 :                 sb->s_bdi = &noop_backing_dev_info;
     481             :         }
     482          99 : }
     483             : 
     484             : EXPORT_SYMBOL(generic_shutdown_super);
     485             : 
     486         116 : bool mount_capable(struct fs_context *fc)
     487             : {
     488         116 :         if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
     489           5 :                 return capable(CAP_SYS_ADMIN);
     490             :         else
     491         111 :                 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
     492             : }
     493             : 
     494             : /**
     495             :  * sget_fc - Find or create a superblock
     496             :  * @fc: Filesystem context.
     497             :  * @test: Comparison callback
     498             :  * @set: Setup callback
     499             :  *
     500             :  * Find or create a superblock using the parameters stored in the filesystem
     501             :  * context and the two callback functions.
     502             :  *
     503             :  * If an extant superblock is matched, then that will be returned with an
     504             :  * elevated reference count that the caller must transfer or discard.
     505             :  *
     506             :  * If no match is made, a new superblock will be allocated and basic
     507             :  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
     508             :  * the set() callback will be invoked), the superblock will be published and it
     509             :  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
     510             :  * as yet unset.
     511             :  */
     512         118 : struct super_block *sget_fc(struct fs_context *fc,
     513             :                             int (*test)(struct super_block *, struct fs_context *),
     514             :                             int (*set)(struct super_block *, struct fs_context *))
     515             : {
     516         118 :         struct super_block *s = NULL;
     517         118 :         struct super_block *old;
     518         118 :         struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
     519         234 :         int err;
     520             : 
     521             : retry:
     522         234 :         spin_lock(&sb_lock);
     523         234 :         if (test) {
     524          20 :                 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
     525           2 :                         if (test(old, fc))
     526           2 :                                 goto share_extant_sb;
     527             :                 }
     528             :         }
     529         232 :         if (!s) {
     530         116 :                 spin_unlock(&sb_lock);
     531         116 :                 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
     532         116 :                 if (!s)
     533         118 :                         return ERR_PTR(-ENOMEM);
     534         116 :                 goto retry;
     535             :         }
     536             : 
     537         116 :         s->s_fs_info = fc->s_fs_info;
     538         116 :         err = set(s, fc);
     539         116 :         if (err) {
     540           0 :                 s->s_fs_info = NULL;
     541           0 :                 spin_unlock(&sb_lock);
     542           0 :                 destroy_unused_super(s);
     543           0 :                 return ERR_PTR(err);
     544             :         }
     545         116 :         fc->s_fs_info = NULL;
     546         116 :         s->s_type = fc->fs_type;
     547         116 :         s->s_iflags |= fc->s_iflags;
     548         116 :         strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
     549         116 :         list_add_tail(&s->s_list, &super_blocks);
     550         116 :         hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
     551         116 :         spin_unlock(&sb_lock);
     552         116 :         get_filesystem(s->s_type);
     553         116 :         register_shrinker_prepared(&s->s_shrink);
     554         116 :         return s;
     555             : 
     556           2 : share_extant_sb:
     557           2 :         if (user_ns != old->s_user_ns) {
     558           0 :                 spin_unlock(&sb_lock);
     559           0 :                 destroy_unused_super(s);
     560           0 :                 return ERR_PTR(-EBUSY);
     561             :         }
     562           2 :         if (!grab_super(old))
     563           0 :                 goto retry;
     564           2 :         destroy_unused_super(s);
     565           2 :         return old;
     566             : }
     567             : EXPORT_SYMBOL(sget_fc);
     568             : 
     569             : /**
     570             :  *      sget    -       find or create a superblock
     571             :  *      @type:    filesystem type superblock should belong to
     572             :  *      @test:    comparison callback
     573             :  *      @set:     setup callback
     574             :  *      @flags:   mount flags
     575             :  *      @data:    argument to each of them
     576             :  */
     577           8 : struct super_block *sget(struct file_system_type *type,
     578             :                         int (*test)(struct super_block *,void *),
     579             :                         int (*set)(struct super_block *,void *),
     580             :                         int flags,
     581             :                         void *data)
     582             : {
     583           8 :         struct user_namespace *user_ns = current_user_ns();
     584           8 :         struct super_block *s = NULL;
     585           8 :         struct super_block *old;
     586           8 :         int err;
     587             : 
     588             :         /* We don't yet pass the user namespace of the parent
     589             :          * mount through to here so always use &init_user_ns
     590             :          * until that changes.
     591             :          */
     592           8 :         if (flags & SB_SUBMOUNT)
     593           8 :                 user_ns = &init_user_ns;
     594             : 
     595           8 : retry:
     596          15 :         spin_lock(&sb_lock);
     597          15 :         if (test) {
     598          18 :                 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
     599           1 :                         if (!test(old, data))
     600           0 :                                 continue;
     601           1 :                         if (user_ns != old->s_user_ns) {
     602           0 :                                 spin_unlock(&sb_lock);
     603           0 :                                 destroy_unused_super(s);
     604           0 :                                 return ERR_PTR(-EBUSY);
     605             :                         }
     606           1 :                         if (!grab_super(old))
     607           0 :                                 goto retry;
     608           1 :                         destroy_unused_super(s);
     609           1 :                         return old;
     610             :                 }
     611             :         }
     612          14 :         if (!s) {
     613           7 :                 spin_unlock(&sb_lock);
     614           7 :                 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
     615           7 :                 if (!s)
     616           8 :                         return ERR_PTR(-ENOMEM);
     617           7 :                 goto retry;
     618             :         }
     619             : 
     620           7 :         err = set(s, data);
     621           7 :         if (err) {
     622           0 :                 spin_unlock(&sb_lock);
     623           0 :                 destroy_unused_super(s);
     624           0 :                 return ERR_PTR(err);
     625             :         }
     626           7 :         s->s_type = type;
     627           7 :         strlcpy(s->s_id, type->name, sizeof(s->s_id));
     628           7 :         list_add_tail(&s->s_list, &super_blocks);
     629           7 :         hlist_add_head(&s->s_instances, &type->fs_supers);
     630           7 :         spin_unlock(&sb_lock);
     631           7 :         get_filesystem(type);
     632           7 :         register_shrinker_prepared(&s->s_shrink);
     633           7 :         return s;
     634             : }
     635             : EXPORT_SYMBOL(sget);
     636             : 
     637           0 : void drop_super(struct super_block *sb)
     638             : {
     639           0 :         up_read(&sb->s_umount);
     640           0 :         put_super(sb);
     641           0 : }
     642             : 
     643             : EXPORT_SYMBOL(drop_super);
     644             : 
     645           0 : void drop_super_exclusive(struct super_block *sb)
     646             : {
     647           0 :         up_write(&sb->s_umount);
     648           0 :         put_super(sb);
     649           0 : }
     650             : EXPORT_SYMBOL(drop_super_exclusive);
     651             : 
     652           0 : static void __iterate_supers(void (*f)(struct super_block *))
     653             : {
     654           0 :         struct super_block *sb, *p = NULL;
     655             : 
     656           0 :         spin_lock(&sb_lock);
     657           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     658           0 :                 if (hlist_unhashed(&sb->s_instances))
     659           0 :                         continue;
     660           0 :                 sb->s_count++;
     661           0 :                 spin_unlock(&sb_lock);
     662             : 
     663           0 :                 f(sb);
     664             : 
     665           0 :                 spin_lock(&sb_lock);
     666           0 :                 if (p)
     667           0 :                         __put_super(p);
     668             :                 p = sb;
     669             :         }
     670           0 :         if (p)
     671           0 :                 __put_super(p);
     672           0 :         spin_unlock(&sb_lock);
     673           0 : }
     674             : /**
     675             :  *      iterate_supers - call function for all active superblocks
     676             :  *      @f: function to call
     677             :  *      @arg: argument to pass to it
     678             :  *
     679             :  *      Scans the superblock list and calls given function, passing it
     680             :  *      locked superblock and given argument.
     681             :  */
     682           0 : void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
     683             : {
     684           0 :         struct super_block *sb, *p = NULL;
     685             : 
     686           0 :         spin_lock(&sb_lock);
     687           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     688           0 :                 if (hlist_unhashed(&sb->s_instances))
     689           0 :                         continue;
     690           0 :                 sb->s_count++;
     691           0 :                 spin_unlock(&sb_lock);
     692             : 
     693           0 :                 down_read(&sb->s_umount);
     694           0 :                 if (sb->s_root && (sb->s_flags & SB_BORN))
     695           0 :                         f(sb, arg);
     696           0 :                 up_read(&sb->s_umount);
     697             : 
     698           0 :                 spin_lock(&sb_lock);
     699           0 :                 if (p)
     700           0 :                         __put_super(p);
     701             :                 p = sb;
     702             :         }
     703           0 :         if (p)
     704           0 :                 __put_super(p);
     705           0 :         spin_unlock(&sb_lock);
     706           0 : }
     707             : 
     708             : /**
     709             :  *      iterate_supers_type - call function for superblocks of given type
     710             :  *      @type: fs type
     711             :  *      @f: function to call
     712             :  *      @arg: argument to pass to it
     713             :  *
     714             :  *      Scans the superblock list and calls given function, passing it
     715             :  *      locked superblock and given argument.
     716             :  */
     717           0 : void iterate_supers_type(struct file_system_type *type,
     718             :         void (*f)(struct super_block *, void *), void *arg)
     719             : {
     720           0 :         struct super_block *sb, *p = NULL;
     721             : 
     722           0 :         spin_lock(&sb_lock);
     723           0 :         hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
     724           0 :                 sb->s_count++;
     725           0 :                 spin_unlock(&sb_lock);
     726             : 
     727           0 :                 down_read(&sb->s_umount);
     728           0 :                 if (sb->s_root && (sb->s_flags & SB_BORN))
     729           0 :                         f(sb, arg);
     730           0 :                 up_read(&sb->s_umount);
     731             : 
     732           0 :                 spin_lock(&sb_lock);
     733           0 :                 if (p)
     734           0 :                         __put_super(p);
     735           0 :                 p = sb;
     736             :         }
     737           0 :         if (p)
     738           0 :                 __put_super(p);
     739           0 :         spin_unlock(&sb_lock);
     740           0 : }
     741             : 
     742             : EXPORT_SYMBOL(iterate_supers_type);
     743             : 
     744             : /**
     745             :  * get_super - get the superblock of a device
     746             :  * @bdev: device to get the superblock for
     747             :  *
     748             :  * Scans the superblock list and finds the superblock of the file system
     749             :  * mounted on the device given. %NULL is returned if no match is found.
     750             :  */
     751           0 : struct super_block *get_super(struct block_device *bdev)
     752             : {
     753           0 :         struct super_block *sb;
     754             : 
     755           0 :         if (!bdev)
     756             :                 return NULL;
     757             : 
     758           0 :         spin_lock(&sb_lock);
     759           0 : rescan:
     760           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     761           0 :                 if (hlist_unhashed(&sb->s_instances))
     762           0 :                         continue;
     763           0 :                 if (sb->s_bdev == bdev) {
     764           0 :                         sb->s_count++;
     765           0 :                         spin_unlock(&sb_lock);
     766           0 :                         down_read(&sb->s_umount);
     767             :                         /* still alive? */
     768           0 :                         if (sb->s_root && (sb->s_flags & SB_BORN))
     769           0 :                                 return sb;
     770           0 :                         up_read(&sb->s_umount);
     771             :                         /* nope, got unmounted */
     772           0 :                         spin_lock(&sb_lock);
     773           0 :                         __put_super(sb);
     774           0 :                         goto rescan;
     775             :                 }
     776             :         }
     777           0 :         spin_unlock(&sb_lock);
     778           0 :         return NULL;
     779             : }
     780             : 
     781             : /**
     782             :  * get_active_super - get an active reference to the superblock of a device
     783             :  * @bdev: device to get the superblock for
     784             :  *
     785             :  * Scans the superblock list and finds the superblock of the file system
     786             :  * mounted on the device given.  Returns the superblock with an active
     787             :  * reference or %NULL if none was found.
     788             :  */
     789           0 : struct super_block *get_active_super(struct block_device *bdev)
     790             : {
     791           0 :         struct super_block *sb;
     792             : 
     793           0 :         if (!bdev)
     794             :                 return NULL;
     795             : 
     796           0 : restart:
     797           0 :         spin_lock(&sb_lock);
     798           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     799           0 :                 if (hlist_unhashed(&sb->s_instances))
     800           0 :                         continue;
     801           0 :                 if (sb->s_bdev == bdev) {
     802           0 :                         if (!grab_super(sb))
     803           0 :                                 goto restart;
     804           0 :                         up_write(&sb->s_umount);
     805           0 :                         return sb;
     806             :                 }
     807             :         }
     808           0 :         spin_unlock(&sb_lock);
     809           0 :         return NULL;
     810             : }
     811             : 
     812           0 : struct super_block *user_get_super(dev_t dev, bool excl)
     813             : {
     814           0 :         struct super_block *sb;
     815             : 
     816           0 :         spin_lock(&sb_lock);
     817           0 : rescan:
     818           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     819           0 :                 if (hlist_unhashed(&sb->s_instances))
     820           0 :                         continue;
     821           0 :                 if (sb->s_dev ==  dev) {
     822           0 :                         sb->s_count++;
     823           0 :                         spin_unlock(&sb_lock);
     824           0 :                         if (excl)
     825           0 :                                 down_write(&sb->s_umount);
     826             :                         else
     827           0 :                                 down_read(&sb->s_umount);
     828             :                         /* still alive? */
     829           0 :                         if (sb->s_root && (sb->s_flags & SB_BORN))
     830           0 :                                 return sb;
     831           0 :                         if (excl)
     832           0 :                                 up_write(&sb->s_umount);
     833             :                         else
     834           0 :                                 up_read(&sb->s_umount);
     835             :                         /* nope, got unmounted */
     836           0 :                         spin_lock(&sb_lock);
     837           0 :                         __put_super(sb);
     838           0 :                         goto rescan;
     839             :                 }
     840             :         }
     841           0 :         spin_unlock(&sb_lock);
     842           0 :         return NULL;
     843             : }
     844             : 
     845             : /**
     846             :  * reconfigure_super - asks filesystem to change superblock parameters
     847             :  * @fc: The superblock and configuration
     848             :  *
     849             :  * Alters the configuration parameters of a live superblock.
     850             :  */
     851           3 : int reconfigure_super(struct fs_context *fc)
     852             : {
     853           3 :         struct super_block *sb = fc->root->d_sb;
     854           3 :         int retval;
     855           3 :         bool remount_ro = false;
     856           3 :         bool force = fc->sb_flags & SB_FORCE;
     857             : 
     858           3 :         if (fc->sb_flags_mask & ~MS_RMT_MASK)
     859             :                 return -EINVAL;
     860           3 :         if (sb->s_writers.frozen != SB_UNFROZEN)
     861             :                 return -EBUSY;
     862             : 
     863           3 :         retval = security_sb_remount(sb, fc->security);
     864           3 :         if (retval)
     865             :                 return retval;
     866             : 
     867           3 :         if (fc->sb_flags_mask & SB_RDONLY) {
     868             : #ifdef CONFIG_BLOCK
     869           4 :                 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
     870           1 :                     bdev_read_only(sb->s_bdev))
     871             :                         return -EACCES;
     872             : #endif
     873             : 
     874           3 :                 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
     875             :         }
     876             : 
     877           3 :         if (remount_ro) {
     878           1 :                 if (!hlist_empty(&sb->s_pins)) {
     879           0 :                         up_write(&sb->s_umount);
     880           0 :                         group_pin_kill(&sb->s_pins);
     881           0 :                         down_write(&sb->s_umount);
     882           0 :                         if (!sb->s_root)
     883             :                                 return 0;
     884           0 :                         if (sb->s_writers.frozen != SB_UNFROZEN)
     885             :                                 return -EBUSY;
     886           0 :                         remount_ro = !sb_rdonly(sb);
     887             :                 }
     888             :         }
     889           3 :         shrink_dcache_sb(sb);
     890             : 
     891             :         /* If we are reconfiguring to RDONLY and current sb is read/write,
     892             :          * make sure there are no files open for writing.
     893             :          */
     894           3 :         if (remount_ro) {
     895           1 :                 if (force) {
     896           0 :                         sb->s_readonly_remount = 1;
     897           0 :                         smp_wmb();
     898             :                 } else {
     899           1 :                         retval = sb_prepare_remount_readonly(sb);
     900           1 :                         if (retval)
     901             :                                 return retval;
     902             :                 }
     903             :         }
     904             : 
     905           3 :         if (fc->ops->reconfigure) {
     906           3 :                 retval = fc->ops->reconfigure(fc);
     907           3 :                 if (retval) {
     908           0 :                         if (!force)
     909           0 :                                 goto cancel_readonly;
     910             :                         /* If forced remount, go ahead despite any errors */
     911           0 :                         WARN(1, "forced remount of a %s fs returned %i\n",
     912             :                              sb->s_type->name, retval);
     913             :                 }
     914             :         }
     915             : 
     916           3 :         WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
     917             :                                  (fc->sb_flags & fc->sb_flags_mask)));
     918             :         /* Needs to be ordered wrt mnt_is_readonly() */
     919           3 :         smp_wmb();
     920           3 :         sb->s_readonly_remount = 0;
     921             : 
     922             :         /*
     923             :          * Some filesystems modify their metadata via some other path than the
     924             :          * bdev buffer cache (eg. use a private mapping, or directories in
     925             :          * pagecache, etc). Also file data modifications go via their own
     926             :          * mappings. So If we try to mount readonly then copy the filesystem
     927             :          * from bdev, we could get stale data, so invalidate it to give a best
     928             :          * effort at coherency.
     929             :          */
     930           3 :         if (remount_ro && sb->s_bdev)
     931           0 :                 invalidate_bdev(sb->s_bdev);
     932             :         return 0;
     933             : 
     934           0 : cancel_readonly:
     935           0 :         sb->s_readonly_remount = 0;
     936           0 :         return retval;
     937             : }
     938             : 
     939           0 : static void do_emergency_remount_callback(struct super_block *sb)
     940             : {
     941           0 :         down_write(&sb->s_umount);
     942           0 :         if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
     943           0 :             !sb_rdonly(sb)) {
     944           0 :                 struct fs_context *fc;
     945             : 
     946           0 :                 fc = fs_context_for_reconfigure(sb->s_root,
     947             :                                         SB_RDONLY | SB_FORCE, SB_RDONLY);
     948           0 :                 if (!IS_ERR(fc)) {
     949           0 :                         if (parse_monolithic_mount_data(fc, NULL) == 0)
     950           0 :                                 (void)reconfigure_super(fc);
     951           0 :                         put_fs_context(fc);
     952             :                 }
     953             :         }
     954           0 :         up_write(&sb->s_umount);
     955           0 : }
     956             : 
     957           0 : static void do_emergency_remount(struct work_struct *work)
     958             : {
     959           0 :         __iterate_supers(do_emergency_remount_callback);
     960           0 :         kfree(work);
     961           0 :         printk("Emergency Remount complete\n");
     962           0 : }
     963             : 
     964           0 : void emergency_remount(void)
     965             : {
     966           0 :         struct work_struct *work;
     967             : 
     968           0 :         work = kmalloc(sizeof(*work), GFP_ATOMIC);
     969           0 :         if (work) {
     970           0 :                 INIT_WORK(work, do_emergency_remount);
     971           0 :                 schedule_work(work);
     972             :         }
     973           0 : }
     974             : 
     975           0 : static void do_thaw_all_callback(struct super_block *sb)
     976             : {
     977           0 :         down_write(&sb->s_umount);
     978           0 :         if (sb->s_root && sb->s_flags & SB_BORN) {
     979           0 :                 emergency_thaw_bdev(sb);
     980           0 :                 thaw_super_locked(sb);
     981             :         } else {
     982           0 :                 up_write(&sb->s_umount);
     983             :         }
     984           0 : }
     985             : 
     986           0 : static void do_thaw_all(struct work_struct *work)
     987             : {
     988           0 :         __iterate_supers(do_thaw_all_callback);
     989           0 :         kfree(work);
     990           0 :         printk(KERN_WARNING "Emergency Thaw complete\n");
     991           0 : }
     992             : 
     993             : /**
     994             :  * emergency_thaw_all -- forcibly thaw every frozen filesystem
     995             :  *
     996             :  * Used for emergency unfreeze of all filesystems via SysRq
     997             :  */
     998           0 : void emergency_thaw_all(void)
     999             : {
    1000           0 :         struct work_struct *work;
    1001             : 
    1002           0 :         work = kmalloc(sizeof(*work), GFP_ATOMIC);
    1003           0 :         if (work) {
    1004           0 :                 INIT_WORK(work, do_thaw_all);
    1005           0 :                 schedule_work(work);
    1006             :         }
    1007           0 : }
    1008             : 
    1009             : static DEFINE_IDA(unnamed_dev_ida);
    1010             : 
    1011             : /**
    1012             :  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
    1013             :  * @p: Pointer to a dev_t.
    1014             :  *
    1015             :  * Filesystems which don't use real block devices can call this function
    1016             :  * to allocate a virtual block device.
    1017             :  *
    1018             :  * Context: Any context.  Frequently called while holding sb_lock.
    1019             :  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
    1020             :  * or -ENOMEM if memory allocation failed.
    1021             :  */
    1022         125 : int get_anon_bdev(dev_t *p)
    1023             : {
    1024         125 :         int dev;
    1025             : 
    1026             :         /*
    1027             :          * Many userspace utilities consider an FSID of 0 invalid.
    1028             :          * Always return at least 1 from get_anon_bdev.
    1029             :          */
    1030         125 :         dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
    1031             :                         GFP_ATOMIC);
    1032         125 :         if (dev == -ENOSPC)
    1033             :                 dev = -EMFILE;
    1034         125 :         if (dev < 0)
    1035           0 :                 return dev;
    1036             : 
    1037         125 :         *p = MKDEV(0, dev);
    1038         125 :         return 0;
    1039             : }
    1040             : EXPORT_SYMBOL(get_anon_bdev);
    1041             : 
    1042         102 : void free_anon_bdev(dev_t dev)
    1043             : {
    1044           4 :         ida_free(&unnamed_dev_ida, MINOR(dev));
    1045           4 : }
    1046             : EXPORT_SYMBOL(free_anon_bdev);
    1047             : 
    1048         121 : int set_anon_super(struct super_block *s, void *data)
    1049             : {
    1050           5 :         return get_anon_bdev(&s->s_dev);
    1051             : }
    1052             : EXPORT_SYMBOL(set_anon_super);
    1053             : 
    1054          98 : void kill_anon_super(struct super_block *sb)
    1055             : {
    1056          98 :         dev_t dev = sb->s_dev;
    1057          98 :         generic_shutdown_super(sb);
    1058          98 :         free_anon_bdev(dev);
    1059          98 : }
    1060             : EXPORT_SYMBOL(kill_anon_super);
    1061             : 
    1062          95 : void kill_litter_super(struct super_block *sb)
    1063             : {
    1064          95 :         if (sb->s_root)
    1065          95 :                 d_genocide(sb->s_root);
    1066          95 :         kill_anon_super(sb);
    1067          95 : }
    1068             : EXPORT_SYMBOL(kill_litter_super);
    1069             : 
    1070         116 : int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
    1071             : {
    1072         116 :         return set_anon_super(sb, NULL);
    1073             : }
    1074             : EXPORT_SYMBOL(set_anon_super_fc);
    1075             : 
    1076           1 : static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
    1077             : {
    1078           1 :         return sb->s_fs_info == fc->s_fs_info;
    1079             : }
    1080             : 
    1081           0 : static int test_single_super(struct super_block *s, struct fs_context *fc)
    1082             : {
    1083           0 :         return 1;
    1084             : }
    1085             : 
    1086             : /**
    1087             :  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
    1088             :  * @fc: The filesystem context holding the parameters
    1089             :  * @keying: How to distinguish superblocks
    1090             :  * @fill_super: Helper to initialise a new superblock
    1091             :  *
    1092             :  * Search for a superblock and create a new one if not found.  The search
    1093             :  * criterion is controlled by @keying.  If the search fails, a new superblock
    1094             :  * is created and @fill_super() is called to initialise it.
    1095             :  *
    1096             :  * @keying can take one of a number of values:
    1097             :  *
    1098             :  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
    1099             :  *     system.  This is typically used for special system filesystems.
    1100             :  *
    1101             :  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
    1102             :  *     distinct keys (where the key is in s_fs_info).  Searching for the same
    1103             :  *     key again will turn up the superblock for that key.
    1104             :  *
    1105             :  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
    1106             :  *     unkeyed.  Each call will get a new superblock.
    1107             :  *
    1108             :  * A permissions check is made by sget_fc() unless we're getting a superblock
    1109             :  * for a kernel-internal mount or a submount.
    1110             :  */
    1111         114 : int vfs_get_super(struct fs_context *fc,
    1112             :                   enum vfs_get_super_keying keying,
    1113             :                   int (*fill_super)(struct super_block *sb,
    1114             :                                     struct fs_context *fc))
    1115             : {
    1116         114 :         int (*test)(struct super_block *, struct fs_context *);
    1117         114 :         struct super_block *sb;
    1118         114 :         int err;
    1119             : 
    1120         114 :         switch (keying) {
    1121             :         case vfs_get_single_super:
    1122             :         case vfs_get_single_reconf_super:
    1123             :                 test = test_single_super;
    1124             :                 break;
    1125             :         case vfs_get_keyed_super:
    1126             :                 test = test_keyed_super;
    1127             :                 break;
    1128             :         case vfs_get_independent_super:
    1129             :                 test = NULL;
    1130             :                 break;
    1131           0 :         default:
    1132           0 :                 BUG();
    1133             :         }
    1134             : 
    1135         114 :         sb = sget_fc(fc, test, set_anon_super_fc);
    1136         114 :         if (IS_ERR(sb))
    1137           0 :                 return PTR_ERR(sb);
    1138             : 
    1139         114 :         if (!sb->s_root) {
    1140         113 :                 err = fill_super(sb, fc);
    1141         113 :                 if (err)
    1142           0 :                         goto error;
    1143             : 
    1144         113 :                 sb->s_flags |= SB_ACTIVE;
    1145         226 :                 fc->root = dget(sb->s_root);
    1146             :         } else {
    1147           1 :                 fc->root = dget(sb->s_root);
    1148           1 :                 if (keying == vfs_get_single_reconf_super) {
    1149           0 :                         err = reconfigure_super(fc);
    1150           0 :                         if (err < 0) {
    1151           0 :                                 dput(fc->root);
    1152           0 :                                 fc->root = NULL;
    1153           0 :                                 goto error;
    1154             :                         }
    1155             :                 }
    1156             :         }
    1157             : 
    1158             :         return 0;
    1159             : 
    1160           0 : error:
    1161           0 :         deactivate_locked_super(sb);
    1162           0 :         return err;
    1163             : }
    1164             : EXPORT_SYMBOL(vfs_get_super);
    1165             : 
    1166         112 : int get_tree_nodev(struct fs_context *fc,
    1167             :                   int (*fill_super)(struct super_block *sb,
    1168             :                                     struct fs_context *fc))
    1169             : {
    1170         112 :         return vfs_get_super(fc, vfs_get_independent_super, fill_super);
    1171             : }
    1172             : EXPORT_SYMBOL(get_tree_nodev);
    1173             : 
    1174           0 : int get_tree_single(struct fs_context *fc,
    1175             :                   int (*fill_super)(struct super_block *sb,
    1176             :                                     struct fs_context *fc))
    1177             : {
    1178           0 :         return vfs_get_super(fc, vfs_get_single_super, fill_super);
    1179             : }
    1180             : EXPORT_SYMBOL(get_tree_single);
    1181             : 
    1182           0 : int get_tree_single_reconf(struct fs_context *fc,
    1183             :                   int (*fill_super)(struct super_block *sb,
    1184             :                                     struct fs_context *fc))
    1185             : {
    1186           0 :         return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
    1187             : }
    1188             : EXPORT_SYMBOL(get_tree_single_reconf);
    1189             : 
    1190           2 : int get_tree_keyed(struct fs_context *fc,
    1191             :                   int (*fill_super)(struct super_block *sb,
    1192             :                                     struct fs_context *fc),
    1193             :                 void *key)
    1194             : {
    1195           2 :         fc->s_fs_info = key;
    1196           2 :         return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
    1197             : }
    1198             : EXPORT_SYMBOL(get_tree_keyed);
    1199             : 
    1200             : #ifdef CONFIG_BLOCK
    1201             : 
    1202           2 : static int set_bdev_super(struct super_block *s, void *data)
    1203             : {
    1204           2 :         s->s_bdev = data;
    1205           2 :         s->s_dev = s->s_bdev->bd_dev;
    1206           2 :         s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
    1207             : 
    1208           2 :         if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
    1209           0 :                 s->s_iflags |= SB_I_STABLE_WRITES;
    1210           2 :         return 0;
    1211             : }
    1212             : 
    1213           0 : static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
    1214             : {
    1215           0 :         return set_bdev_super(s, fc->sget_key);
    1216             : }
    1217             : 
    1218           0 : static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
    1219             : {
    1220           0 :         return s->s_bdev == fc->sget_key;
    1221             : }
    1222             : 
    1223             : /**
    1224             :  * get_tree_bdev - Get a superblock based on a single block device
    1225             :  * @fc: The filesystem context holding the parameters
    1226             :  * @fill_super: Helper to initialise a new superblock
    1227             :  */
    1228           0 : int get_tree_bdev(struct fs_context *fc,
    1229             :                 int (*fill_super)(struct super_block *,
    1230             :                                   struct fs_context *))
    1231             : {
    1232           0 :         struct block_device *bdev;
    1233           0 :         struct super_block *s;
    1234           0 :         fmode_t mode = FMODE_READ | FMODE_EXCL;
    1235           0 :         int error = 0;
    1236             : 
    1237           0 :         if (!(fc->sb_flags & SB_RDONLY))
    1238           0 :                 mode |= FMODE_WRITE;
    1239             : 
    1240           0 :         if (!fc->source)
    1241           0 :                 return invalf(fc, "No source specified");
    1242             : 
    1243           0 :         bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
    1244           0 :         if (IS_ERR(bdev)) {
    1245           0 :                 errorf(fc, "%s: Can't open blockdev", fc->source);
    1246           0 :                 return PTR_ERR(bdev);
    1247             :         }
    1248             : 
    1249             :         /* Once the superblock is inserted into the list by sget_fc(), s_umount
    1250             :          * will protect the lockfs code from trying to start a snapshot while
    1251             :          * we are mounting
    1252             :          */
    1253           0 :         mutex_lock(&bdev->bd_fsfreeze_mutex);
    1254           0 :         if (bdev->bd_fsfreeze_count > 0) {
    1255           0 :                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
    1256           0 :                 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
    1257           0 :                 blkdev_put(bdev, mode);
    1258           0 :                 return -EBUSY;
    1259             :         }
    1260             : 
    1261           0 :         fc->sb_flags |= SB_NOSEC;
    1262           0 :         fc->sget_key = bdev;
    1263           0 :         s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
    1264           0 :         mutex_unlock(&bdev->bd_fsfreeze_mutex);
    1265           0 :         if (IS_ERR(s)) {
    1266           0 :                 blkdev_put(bdev, mode);
    1267           0 :                 return PTR_ERR(s);
    1268             :         }
    1269             : 
    1270           0 :         if (s->s_root) {
    1271             :                 /* Don't summarily change the RO/RW state. */
    1272           0 :                 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
    1273           0 :                         warnf(fc, "%pg: Can't mount, would change RO state", bdev);
    1274           0 :                         deactivate_locked_super(s);
    1275           0 :                         blkdev_put(bdev, mode);
    1276           0 :                         return -EBUSY;
    1277             :                 }
    1278             : 
    1279             :                 /*
    1280             :                  * s_umount nests inside bd_mutex during
    1281             :                  * __invalidate_device().  blkdev_put() acquires
    1282             :                  * bd_mutex and can't be called under s_umount.  Drop
    1283             :                  * s_umount temporarily.  This is safe as we're
    1284             :                  * holding an active reference.
    1285             :                  */
    1286           0 :                 up_write(&s->s_umount);
    1287           0 :                 blkdev_put(bdev, mode);
    1288           0 :                 down_write(&s->s_umount);
    1289             :         } else {
    1290           0 :                 s->s_mode = mode;
    1291           0 :                 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
    1292           0 :                 sb_set_blocksize(s, block_size(bdev));
    1293           0 :                 error = fill_super(s, fc);
    1294           0 :                 if (error) {
    1295           0 :                         deactivate_locked_super(s);
    1296           0 :                         return error;
    1297             :                 }
    1298             : 
    1299           0 :                 s->s_flags |= SB_ACTIVE;
    1300           0 :                 bdev->bd_super = s;
    1301             :         }
    1302             : 
    1303           0 :         BUG_ON(fc->root);
    1304           0 :         fc->root = dget(s->s_root);
    1305           0 :         return 0;
    1306             : }
    1307             : EXPORT_SYMBOL(get_tree_bdev);
    1308             : 
    1309           0 : static int test_bdev_super(struct super_block *s, void *data)
    1310             : {
    1311           0 :         return (void *)s->s_bdev == data;
    1312             : }
    1313             : 
    1314           2 : struct dentry *mount_bdev(struct file_system_type *fs_type,
    1315             :         int flags, const char *dev_name, void *data,
    1316             :         int (*fill_super)(struct super_block *, void *, int))
    1317             : {
    1318           2 :         struct block_device *bdev;
    1319           2 :         struct super_block *s;
    1320           2 :         fmode_t mode = FMODE_READ | FMODE_EXCL;
    1321           2 :         int error = 0;
    1322             : 
    1323           2 :         if (!(flags & SB_RDONLY))
    1324           0 :                 mode |= FMODE_WRITE;
    1325             : 
    1326           2 :         bdev = blkdev_get_by_path(dev_name, mode, fs_type);
    1327           2 :         if (IS_ERR(bdev))
    1328           2 :                 return ERR_CAST(bdev);
    1329             : 
    1330             :         /*
    1331             :          * once the super is inserted into the list by sget, s_umount
    1332             :          * will protect the lockfs code from trying to start a snapshot
    1333             :          * while we are mounting
    1334             :          */
    1335           2 :         mutex_lock(&bdev->bd_fsfreeze_mutex);
    1336           2 :         if (bdev->bd_fsfreeze_count > 0) {
    1337           0 :                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
    1338           0 :                 error = -EBUSY;
    1339           0 :                 goto error_bdev;
    1340             :         }
    1341           2 :         s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
    1342             :                  bdev);
    1343           2 :         mutex_unlock(&bdev->bd_fsfreeze_mutex);
    1344           2 :         if (IS_ERR(s))
    1345           0 :                 goto error_s;
    1346             : 
    1347           2 :         if (s->s_root) {
    1348           0 :                 if ((flags ^ s->s_flags) & SB_RDONLY) {
    1349           0 :                         deactivate_locked_super(s);
    1350           0 :                         error = -EBUSY;
    1351           0 :                         goto error_bdev;
    1352             :                 }
    1353             : 
    1354             :                 /*
    1355             :                  * s_umount nests inside bd_mutex during
    1356             :                  * __invalidate_device().  blkdev_put() acquires
    1357             :                  * bd_mutex and can't be called under s_umount.  Drop
    1358             :                  * s_umount temporarily.  This is safe as we're
    1359             :                  * holding an active reference.
    1360             :                  */
    1361           0 :                 up_write(&s->s_umount);
    1362           0 :                 blkdev_put(bdev, mode);
    1363           0 :                 down_write(&s->s_umount);
    1364             :         } else {
    1365           2 :                 s->s_mode = mode;
    1366           2 :                 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
    1367           2 :                 sb_set_blocksize(s, block_size(bdev));
    1368           2 :                 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
    1369           2 :                 if (error) {
    1370           1 :                         deactivate_locked_super(s);
    1371           1 :                         goto error;
    1372             :                 }
    1373             : 
    1374           1 :                 s->s_flags |= SB_ACTIVE;
    1375           1 :                 bdev->bd_super = s;
    1376             :         }
    1377             : 
    1378           1 :         return dget(s->s_root);
    1379             : 
    1380           0 : error_s:
    1381           0 :         error = PTR_ERR(s);
    1382           0 : error_bdev:
    1383           0 :         blkdev_put(bdev, mode);
    1384           1 : error:
    1385           1 :         return ERR_PTR(error);
    1386             : }
    1387             : EXPORT_SYMBOL(mount_bdev);
    1388             : 
    1389           1 : void kill_block_super(struct super_block *sb)
    1390             : {
    1391           1 :         struct block_device *bdev = sb->s_bdev;
    1392           1 :         fmode_t mode = sb->s_mode;
    1393             : 
    1394           1 :         bdev->bd_super = NULL;
    1395           1 :         generic_shutdown_super(sb);
    1396           1 :         sync_blockdev(bdev);
    1397           1 :         WARN_ON_ONCE(!(mode & FMODE_EXCL));
    1398           1 :         blkdev_put(bdev, mode | FMODE_EXCL);
    1399           1 : }
    1400             : 
    1401             : EXPORT_SYMBOL(kill_block_super);
    1402             : #endif
    1403             : 
    1404           3 : struct dentry *mount_nodev(struct file_system_type *fs_type,
    1405             :         int flags, void *data,
    1406             :         int (*fill_super)(struct super_block *, void *, int))
    1407             : {
    1408           3 :         int error;
    1409           3 :         struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
    1410             : 
    1411           3 :         if (IS_ERR(s))
    1412           3 :                 return ERR_CAST(s);
    1413             : 
    1414           3 :         error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
    1415           3 :         if (error) {
    1416           0 :                 deactivate_locked_super(s);
    1417           0 :                 return ERR_PTR(error);
    1418             :         }
    1419           3 :         s->s_flags |= SB_ACTIVE;
    1420           3 :         return dget(s->s_root);
    1421             : }
    1422             : EXPORT_SYMBOL(mount_nodev);
    1423             : 
    1424           1 : static int reconfigure_single(struct super_block *s,
    1425             :                               int flags, void *data)
    1426             : {
    1427           1 :         struct fs_context *fc;
    1428           1 :         int ret;
    1429             : 
    1430             :         /* The caller really need to be passing fc down into mount_single(),
    1431             :          * then a chunk of this can be removed.  [Bollocks -- AV]
    1432             :          * Better yet, reconfiguration shouldn't happen, but rather the second
    1433             :          * mount should be rejected if the parameters are not compatible.
    1434             :          */
    1435           1 :         fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
    1436           1 :         if (IS_ERR(fc))
    1437           0 :                 return PTR_ERR(fc);
    1438             : 
    1439           1 :         ret = parse_monolithic_mount_data(fc, data);
    1440           1 :         if (ret < 0)
    1441           0 :                 goto out;
    1442             : 
    1443           1 :         ret = reconfigure_super(fc);
    1444           1 : out:
    1445           1 :         put_fs_context(fc);
    1446           1 :         return ret;
    1447             : }
    1448             : 
    1449           1 : static int compare_single(struct super_block *s, void *p)
    1450             : {
    1451           1 :         return 1;
    1452             : }
    1453             : 
    1454           3 : struct dentry *mount_single(struct file_system_type *fs_type,
    1455             :         int flags, void *data,
    1456             :         int (*fill_super)(struct super_block *, void *, int))
    1457             : {
    1458           3 :         struct super_block *s;
    1459           3 :         int error;
    1460             : 
    1461           3 :         s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
    1462           3 :         if (IS_ERR(s))
    1463           3 :                 return ERR_CAST(s);
    1464           3 :         if (!s->s_root) {
    1465           2 :                 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
    1466           2 :                 if (!error)
    1467           2 :                         s->s_flags |= SB_ACTIVE;
    1468             :         } else {
    1469           1 :                 error = reconfigure_single(s, flags, data);
    1470             :         }
    1471           3 :         if (unlikely(error)) {
    1472           0 :                 deactivate_locked_super(s);
    1473           0 :                 return ERR_PTR(error);
    1474             :         }
    1475           3 :         return dget(s->s_root);
    1476             : }
    1477             : EXPORT_SYMBOL(mount_single);
    1478             : 
    1479             : /**
    1480             :  * vfs_get_tree - Get the mountable root
    1481             :  * @fc: The superblock configuration context.
    1482             :  *
    1483             :  * The filesystem is invoked to get or create a superblock which can then later
    1484             :  * be used for mounting.  The filesystem places a pointer to the root to be
    1485             :  * used for mounting in @fc->root.
    1486             :  */
    1487         128 : int vfs_get_tree(struct fs_context *fc)
    1488             : {
    1489         128 :         struct super_block *sb;
    1490         128 :         int error;
    1491             : 
    1492         128 :         if (fc->root)
    1493             :                 return -EBUSY;
    1494             : 
    1495             :         /* Get the mountable root in fc->root, with a ref on the root and a ref
    1496             :          * on the superblock.
    1497             :          */
    1498         128 :         error = fc->ops->get_tree(fc);
    1499         128 :         if (error < 0)
    1500             :                 return error;
    1501             : 
    1502         127 :         if (!fc->root) {
    1503           0 :                 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
    1504             :                        fc->fs_type->name);
    1505             :                 /* We don't know what the locking state of the superblock is -
    1506             :                  * if there is a superblock.
    1507             :                  */
    1508           0 :                 BUG();
    1509             :         }
    1510             : 
    1511         127 :         sb = fc->root->d_sb;
    1512         127 :         WARN_ON(!sb->s_bdi);
    1513             : 
    1514             :         /*
    1515             :          * Write barrier is for super_cache_count(). We place it before setting
    1516             :          * SB_BORN as the data dependency between the two functions is the
    1517             :          * superblock structure contents that we just set up, not the SB_BORN
    1518             :          * flag.
    1519             :          */
    1520         127 :         smp_wmb();
    1521         127 :         sb->s_flags |= SB_BORN;
    1522             : 
    1523         127 :         error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
    1524         127 :         if (unlikely(error)) {
    1525           0 :                 fc_drop_locked(fc);
    1526           0 :                 return error;
    1527             :         }
    1528             : 
    1529             :         /*
    1530             :          * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
    1531             :          * but s_maxbytes was an unsigned long long for many releases. Throw
    1532             :          * this warning for a little while to try and catch filesystems that
    1533             :          * violate this rule.
    1534             :          */
    1535         127 :         WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
    1536             :                 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
    1537             : 
    1538             :         return 0;
    1539             : }
    1540             : EXPORT_SYMBOL(vfs_get_tree);
    1541             : 
    1542             : /*
    1543             :  * Setup private BDI for given superblock. It gets automatically cleaned up
    1544             :  * in generic_shutdown_super().
    1545             :  */
    1546           0 : int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
    1547             : {
    1548           0 :         struct backing_dev_info *bdi;
    1549           0 :         int err;
    1550           0 :         va_list args;
    1551             : 
    1552           0 :         bdi = bdi_alloc(NUMA_NO_NODE);
    1553           0 :         if (!bdi)
    1554             :                 return -ENOMEM;
    1555             : 
    1556           0 :         va_start(args, fmt);
    1557           0 :         err = bdi_register_va(bdi, fmt, args);
    1558           0 :         va_end(args);
    1559           0 :         if (err) {
    1560           0 :                 bdi_put(bdi);
    1561           0 :                 return err;
    1562             :         }
    1563           0 :         WARN_ON(sb->s_bdi != &noop_backing_dev_info);
    1564           0 :         sb->s_bdi = bdi;
    1565             : 
    1566           0 :         return 0;
    1567             : }
    1568             : EXPORT_SYMBOL(super_setup_bdi_name);
    1569             : 
    1570             : /*
    1571             :  * Setup private BDI for given superblock. I gets automatically cleaned up
    1572             :  * in generic_shutdown_super().
    1573             :  */
    1574           0 : int super_setup_bdi(struct super_block *sb)
    1575             : {
    1576           0 :         static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
    1577             : 
    1578           0 :         return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
    1579             :                                     atomic_long_inc_return(&bdi_seq));
    1580             : }
    1581             : EXPORT_SYMBOL(super_setup_bdi);
    1582             : 
    1583             : /**
    1584             :  * sb_wait_write - wait until all writers to given file system finish
    1585             :  * @sb: the super for which we wait
    1586             :  * @level: type of writers we wait for (normal vs page fault)
    1587             :  *
    1588             :  * This function waits until there are no writers of given type to given file
    1589             :  * system.
    1590             :  */
    1591           0 : static void sb_wait_write(struct super_block *sb, int level)
    1592             : {
    1593           0 :         percpu_down_write(sb->s_writers.rw_sem + level-1);
    1594             : }
    1595             : 
    1596             : /*
    1597             :  * We are going to return to userspace and forget about these locks, the
    1598             :  * ownership goes to the caller of thaw_super() which does unlock().
    1599             :  */
    1600           0 : static void lockdep_sb_freeze_release(struct super_block *sb)
    1601             : {
    1602           0 :         int level;
    1603             : 
    1604           0 :         for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
    1605           0 :                 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
    1606           0 : }
    1607             : 
    1608             : /*
    1609             :  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
    1610             :  */
    1611           0 : static void lockdep_sb_freeze_acquire(struct super_block *sb)
    1612             : {
    1613           0 :         int level;
    1614             : 
    1615           0 :         for (level = 0; level < SB_FREEZE_LEVELS; ++level)
    1616           0 :                 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
    1617           0 : }
    1618             : 
    1619           0 : static void sb_freeze_unlock(struct super_block *sb)
    1620             : {
    1621           0 :         int level;
    1622             : 
    1623           0 :         for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
    1624           0 :                 percpu_up_write(sb->s_writers.rw_sem + level);
    1625           0 : }
    1626             : 
    1627             : /**
    1628             :  * freeze_super - lock the filesystem and force it into a consistent state
    1629             :  * @sb: the super to lock
    1630             :  *
    1631             :  * Syncs the super to make sure the filesystem is consistent and calls the fs's
    1632             :  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
    1633             :  * -EBUSY.
    1634             :  *
    1635             :  * During this function, sb->s_writers.frozen goes through these values:
    1636             :  *
    1637             :  * SB_UNFROZEN: File system is normal, all writes progress as usual.
    1638             :  *
    1639             :  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
    1640             :  * writes should be blocked, though page faults are still allowed. We wait for
    1641             :  * all writes to complete and then proceed to the next stage.
    1642             :  *
    1643             :  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
    1644             :  * but internal fs threads can still modify the filesystem (although they
    1645             :  * should not dirty new pages or inodes), writeback can run etc. After waiting
    1646             :  * for all running page faults we sync the filesystem which will clean all
    1647             :  * dirty pages and inodes (no new dirty pages or inodes can be created when
    1648             :  * sync is running).
    1649             :  *
    1650             :  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
    1651             :  * modification are blocked (e.g. XFS preallocation truncation on inode
    1652             :  * reclaim). This is usually implemented by blocking new transactions for
    1653             :  * filesystems that have them and need this additional guard. After all
    1654             :  * internal writers are finished we call ->freeze_fs() to finish filesystem
    1655             :  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
    1656             :  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
    1657             :  *
    1658             :  * sb->s_writers.frozen is protected by sb->s_umount.
    1659             :  */
    1660           0 : int freeze_super(struct super_block *sb)
    1661             : {
    1662           0 :         int ret;
    1663             : 
    1664           0 :         atomic_inc(&sb->s_active);
    1665           0 :         down_write(&sb->s_umount);
    1666           0 :         if (sb->s_writers.frozen != SB_UNFROZEN) {
    1667           0 :                 deactivate_locked_super(sb);
    1668           0 :                 return -EBUSY;
    1669             :         }
    1670             : 
    1671           0 :         if (!(sb->s_flags & SB_BORN)) {
    1672           0 :                 up_write(&sb->s_umount);
    1673           0 :                 return 0;       /* sic - it's "nothing to do" */
    1674             :         }
    1675             : 
    1676           0 :         if (sb_rdonly(sb)) {
    1677             :                 /* Nothing to do really... */
    1678           0 :                 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
    1679           0 :                 up_write(&sb->s_umount);
    1680           0 :                 return 0;
    1681             :         }
    1682             : 
    1683           0 :         sb->s_writers.frozen = SB_FREEZE_WRITE;
    1684             :         /* Release s_umount to preserve sb_start_write -> s_umount ordering */
    1685           0 :         up_write(&sb->s_umount);
    1686           0 :         sb_wait_write(sb, SB_FREEZE_WRITE);
    1687           0 :         down_write(&sb->s_umount);
    1688             : 
    1689             :         /* Now we go and block page faults... */
    1690           0 :         sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
    1691           0 :         sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
    1692             : 
    1693             :         /* All writers are done so after syncing there won't be dirty data */
    1694           0 :         sync_filesystem(sb);
    1695             : 
    1696             :         /* Now wait for internal filesystem counter */
    1697           0 :         sb->s_writers.frozen = SB_FREEZE_FS;
    1698           0 :         sb_wait_write(sb, SB_FREEZE_FS);
    1699             : 
    1700           0 :         if (sb->s_op->freeze_fs) {
    1701           0 :                 ret = sb->s_op->freeze_fs(sb);
    1702           0 :                 if (ret) {
    1703           0 :                         printk(KERN_ERR
    1704             :                                 "VFS:Filesystem freeze failed\n");
    1705           0 :                         sb->s_writers.frozen = SB_UNFROZEN;
    1706           0 :                         sb_freeze_unlock(sb);
    1707           0 :                         wake_up(&sb->s_writers.wait_unfrozen);
    1708           0 :                         deactivate_locked_super(sb);
    1709           0 :                         return ret;
    1710             :                 }
    1711             :         }
    1712             :         /*
    1713             :          * For debugging purposes so that fs can warn if it sees write activity
    1714             :          * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
    1715             :          */
    1716           0 :         sb->s_writers.frozen = SB_FREEZE_COMPLETE;
    1717           0 :         lockdep_sb_freeze_release(sb);
    1718           0 :         up_write(&sb->s_umount);
    1719           0 :         return 0;
    1720             : }
    1721             : EXPORT_SYMBOL(freeze_super);
    1722             : 
    1723           0 : static int thaw_super_locked(struct super_block *sb)
    1724             : {
    1725           0 :         int error;
    1726             : 
    1727           0 :         if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
    1728           0 :                 up_write(&sb->s_umount);
    1729           0 :                 return -EINVAL;
    1730             :         }
    1731             : 
    1732           0 :         if (sb_rdonly(sb)) {
    1733           0 :                 sb->s_writers.frozen = SB_UNFROZEN;
    1734           0 :                 goto out;
    1735             :         }
    1736             : 
    1737           0 :         lockdep_sb_freeze_acquire(sb);
    1738             : 
    1739           0 :         if (sb->s_op->unfreeze_fs) {
    1740           0 :                 error = sb->s_op->unfreeze_fs(sb);
    1741           0 :                 if (error) {
    1742           0 :                         printk(KERN_ERR
    1743             :                                 "VFS:Filesystem thaw failed\n");
    1744           0 :                         lockdep_sb_freeze_release(sb);
    1745           0 :                         up_write(&sb->s_umount);
    1746           0 :                         return error;
    1747             :                 }
    1748             :         }
    1749             : 
    1750           0 :         sb->s_writers.frozen = SB_UNFROZEN;
    1751           0 :         sb_freeze_unlock(sb);
    1752           0 : out:
    1753           0 :         wake_up(&sb->s_writers.wait_unfrozen);
    1754           0 :         deactivate_locked_super(sb);
    1755           0 :         return 0;
    1756             : }
    1757             : 
    1758             : /**
    1759             :  * thaw_super -- unlock filesystem
    1760             :  * @sb: the super to thaw
    1761             :  *
    1762             :  * Unlocks the filesystem and marks it writeable again after freeze_super().
    1763             :  */
    1764           0 : int thaw_super(struct super_block *sb)
    1765             : {
    1766           0 :         down_write(&sb->s_umount);
    1767           0 :         return thaw_super_locked(sb);
    1768             : }
    1769             : EXPORT_SYMBOL(thaw_super);

Generated by: LCOV version 1.14