Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : /* include/asm-generic/tlb.h
3 : *
4 : * Generic TLB shootdown code
5 : *
6 : * Copyright 2001 Red Hat, Inc.
7 : * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 : *
9 : * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 : */
11 : #ifndef _ASM_GENERIC__TLB_H
12 : #define _ASM_GENERIC__TLB_H
13 :
14 : #include <linux/mmu_notifier.h>
15 : #include <linux/swap.h>
16 : #include <linux/hugetlb_inline.h>
17 : #include <asm/tlbflush.h>
18 : #include <asm/cacheflush.h>
19 :
20 : /*
21 : * Blindly accessing user memory from NMI context can be dangerous
22 : * if we're in the middle of switching the current user task or switching
23 : * the loaded mm.
24 : */
25 : #ifndef nmi_uaccess_okay
26 : # define nmi_uaccess_okay() true
27 : #endif
28 :
29 : #ifdef CONFIG_MMU
30 :
31 : /*
32 : * Generic MMU-gather implementation.
33 : *
34 : * The mmu_gather data structure is used by the mm code to implement the
35 : * correct and efficient ordering of freeing pages and TLB invalidations.
36 : *
37 : * This correct ordering is:
38 : *
39 : * 1) unhook page
40 : * 2) TLB invalidate page
41 : * 3) free page
42 : *
43 : * That is, we must never free a page before we have ensured there are no live
44 : * translations left to it. Otherwise it might be possible to observe (or
45 : * worse, change) the page content after it has been reused.
46 : *
47 : * The mmu_gather API consists of:
48 : *
49 : * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
50 : *
51 : * start and finish a mmu_gather
52 : *
53 : * Finish in particular will issue a (final) TLB invalidate and free
54 : * all (remaining) queued pages.
55 : *
56 : * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
57 : *
58 : * Defaults to flushing at tlb_end_vma() to reset the range; helps when
59 : * there's large holes between the VMAs.
60 : *
61 : * - tlb_remove_table()
62 : *
63 : * tlb_remove_table() is the basic primitive to free page-table directories
64 : * (__p*_free_tlb()). In it's most primitive form it is an alias for
65 : * tlb_remove_page() below, for when page directories are pages and have no
66 : * additional constraints.
67 : *
68 : * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
69 : *
70 : * - tlb_remove_page() / __tlb_remove_page()
71 : * - tlb_remove_page_size() / __tlb_remove_page_size()
72 : *
73 : * __tlb_remove_page_size() is the basic primitive that queues a page for
74 : * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
75 : * boolean indicating if the queue is (now) full and a call to
76 : * tlb_flush_mmu() is required.
77 : *
78 : * tlb_remove_page() and tlb_remove_page_size() imply the call to
79 : * tlb_flush_mmu() when required and has no return value.
80 : *
81 : * - tlb_change_page_size()
82 : *
83 : * call before __tlb_remove_page*() to set the current page-size; implies a
84 : * possible tlb_flush_mmu() call.
85 : *
86 : * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
87 : *
88 : * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
89 : * related state, like the range)
90 : *
91 : * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
92 : * whatever pages are still batched.
93 : *
94 : * - mmu_gather::fullmm
95 : *
96 : * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
97 : * the entire mm; this allows a number of optimizations.
98 : *
99 : * - We can ignore tlb_{start,end}_vma(); because we don't
100 : * care about ranges. Everything will be shot down.
101 : *
102 : * - (RISC) architectures that use ASIDs can cycle to a new ASID
103 : * and delay the invalidation until ASID space runs out.
104 : *
105 : * - mmu_gather::need_flush_all
106 : *
107 : * A flag that can be set by the arch code if it wants to force
108 : * flush the entire TLB irrespective of the range. For instance
109 : * x86-PAE needs this when changing top-level entries.
110 : *
111 : * And allows the architecture to provide and implement tlb_flush():
112 : *
113 : * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
114 : * use of:
115 : *
116 : * - mmu_gather::start / mmu_gather::end
117 : *
118 : * which provides the range that needs to be flushed to cover the pages to
119 : * be freed.
120 : *
121 : * - mmu_gather::freed_tables
122 : *
123 : * set when we freed page table pages
124 : *
125 : * - tlb_get_unmap_shift() / tlb_get_unmap_size()
126 : *
127 : * returns the smallest TLB entry size unmapped in this range.
128 : *
129 : * If an architecture does not provide tlb_flush() a default implementation
130 : * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
131 : * specified, in which case we'll default to flush_tlb_mm().
132 : *
133 : * Additionally there are a few opt-in features:
134 : *
135 : * MMU_GATHER_PAGE_SIZE
136 : *
137 : * This ensures we call tlb_flush() every time tlb_change_page_size() actually
138 : * changes the size and provides mmu_gather::page_size to tlb_flush().
139 : *
140 : * This might be useful if your architecture has size specific TLB
141 : * invalidation instructions.
142 : *
143 : * MMU_GATHER_TABLE_FREE
144 : *
145 : * This provides tlb_remove_table(), to be used instead of tlb_remove_page()
146 : * for page directores (__p*_free_tlb()).
147 : *
148 : * Useful if your architecture has non-page page directories.
149 : *
150 : * When used, an architecture is expected to provide __tlb_remove_table()
151 : * which does the actual freeing of these pages.
152 : *
153 : * MMU_GATHER_RCU_TABLE_FREE
154 : *
155 : * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
156 : * comment below).
157 : *
158 : * Useful if your architecture doesn't use IPIs for remote TLB invalidates
159 : * and therefore doesn't naturally serialize with software page-table walkers.
160 : *
161 : * MMU_GATHER_NO_RANGE
162 : *
163 : * Use this if your architecture lacks an efficient flush_tlb_range().
164 : *
165 : * MMU_GATHER_NO_GATHER
166 : *
167 : * If the option is set the mmu_gather will not track individual pages for
168 : * delayed page free anymore. A platform that enables the option needs to
169 : * provide its own implementation of the __tlb_remove_page_size() function to
170 : * free pages.
171 : *
172 : * This is useful if your architecture already flushes TLB entries in the
173 : * various ptep_get_and_clear() functions.
174 : */
175 :
176 : #ifdef CONFIG_MMU_GATHER_TABLE_FREE
177 :
178 : struct mmu_table_batch {
179 : #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
180 : struct rcu_head rcu;
181 : #endif
182 : unsigned int nr;
183 : void *tables[0];
184 : };
185 :
186 : #define MAX_TABLE_BATCH \
187 : ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
188 :
189 : extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
190 :
191 : #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
192 :
193 : /*
194 : * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
195 : * page directories and we can use the normal page batching to free them.
196 : */
197 : #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
198 :
199 : #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
200 :
201 : #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
202 : /*
203 : * This allows an architecture that does not use the linux page-tables for
204 : * hardware to skip the TLBI when freeing page tables.
205 : */
206 : #ifndef tlb_needs_table_invalidate
207 : #define tlb_needs_table_invalidate() (true)
208 : #endif
209 :
210 : #else
211 :
212 : #ifdef tlb_needs_table_invalidate
213 : #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
214 : #endif
215 :
216 : #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
217 :
218 :
219 : #ifndef CONFIG_MMU_GATHER_NO_GATHER
220 : /*
221 : * If we can't allocate a page to make a big batch of page pointers
222 : * to work on, then just handle a few from the on-stack structure.
223 : */
224 : #define MMU_GATHER_BUNDLE 8
225 :
226 : struct mmu_gather_batch {
227 : struct mmu_gather_batch *next;
228 : unsigned int nr;
229 : unsigned int max;
230 : struct page *pages[0];
231 : };
232 :
233 : #define MAX_GATHER_BATCH \
234 : ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
235 :
236 : /*
237 : * Limit the maximum number of mmu_gather batches to reduce a risk of soft
238 : * lockups for non-preemptible kernels on huge machines when a lot of memory
239 : * is zapped during unmapping.
240 : * 10K pages freed at once should be safe even without a preemption point.
241 : */
242 : #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
243 :
244 : extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
245 : int page_size);
246 : #endif
247 :
248 : /*
249 : * struct mmu_gather is an opaque type used by the mm code for passing around
250 : * any data needed by arch specific code for tlb_remove_page.
251 : */
252 : struct mmu_gather {
253 : struct mm_struct *mm;
254 :
255 : #ifdef CONFIG_MMU_GATHER_TABLE_FREE
256 : struct mmu_table_batch *batch;
257 : #endif
258 :
259 : unsigned long start;
260 : unsigned long end;
261 : /*
262 : * we are in the middle of an operation to clear
263 : * a full mm and can make some optimizations
264 : */
265 : unsigned int fullmm : 1;
266 :
267 : /*
268 : * we have performed an operation which
269 : * requires a complete flush of the tlb
270 : */
271 : unsigned int need_flush_all : 1;
272 :
273 : /*
274 : * we have removed page directories
275 : */
276 : unsigned int freed_tables : 1;
277 :
278 : /*
279 : * at which levels have we cleared entries?
280 : */
281 : unsigned int cleared_ptes : 1;
282 : unsigned int cleared_pmds : 1;
283 : unsigned int cleared_puds : 1;
284 : unsigned int cleared_p4ds : 1;
285 :
286 : /*
287 : * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
288 : */
289 : unsigned int vma_exec : 1;
290 : unsigned int vma_huge : 1;
291 :
292 : unsigned int batch_count;
293 :
294 : #ifndef CONFIG_MMU_GATHER_NO_GATHER
295 : struct mmu_gather_batch *active;
296 : struct mmu_gather_batch local;
297 : struct page *__pages[MMU_GATHER_BUNDLE];
298 :
299 : #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
300 : unsigned int page_size;
301 : #endif
302 : #endif
303 : };
304 :
305 : void tlb_flush_mmu(struct mmu_gather *tlb);
306 :
307 925778 : static inline void __tlb_adjust_range(struct mmu_gather *tlb,
308 : unsigned long address,
309 : unsigned int range_size)
310 : {
311 925778 : tlb->start = min(tlb->start, address);
312 925778 : tlb->end = max(tlb->end, address + range_size);
313 : }
314 :
315 27656 : static inline void __tlb_reset_range(struct mmu_gather *tlb)
316 : {
317 27656 : if (tlb->fullmm) {
318 7474 : tlb->start = tlb->end = ~0;
319 : } else {
320 20182 : tlb->start = TASK_SIZE;
321 20182 : tlb->end = 0;
322 : }
323 27656 : tlb->freed_tables = 0;
324 27656 : tlb->cleared_ptes = 0;
325 27656 : tlb->cleared_pmds = 0;
326 27656 : tlb->cleared_puds = 0;
327 27656 : tlb->cleared_p4ds = 0;
328 : /*
329 : * Do not reset mmu_gather::vma_* fields here, we do not
330 : * call into tlb_start_vma() again to set them if there is an
331 : * intermediate flush.
332 : */
333 27656 : }
334 :
335 : #ifdef CONFIG_MMU_GATHER_NO_RANGE
336 :
337 : #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
338 : #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
339 : #endif
340 :
341 : /*
342 : * When an architecture does not have efficient means of range flushing TLBs
343 : * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
344 : * range small. We equally don't have to worry about page granularity or other
345 : * things.
346 : *
347 : * All we need to do is issue a full flush for any !0 range.
348 : */
349 : static inline void tlb_flush(struct mmu_gather *tlb)
350 : {
351 : if (tlb->end)
352 : flush_tlb_mm(tlb->mm);
353 : }
354 :
355 : static inline void
356 : tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
357 :
358 : #define tlb_end_vma tlb_end_vma
359 : static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
360 :
361 : #else /* CONFIG_MMU_GATHER_NO_RANGE */
362 :
363 : #ifndef tlb_flush
364 :
365 : #if defined(tlb_start_vma) || defined(tlb_end_vma)
366 : #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
367 : #endif
368 :
369 : /*
370 : * When an architecture does not provide its own tlb_flush() implementation
371 : * but does have a reasonably efficient flush_vma_range() implementation
372 : * use that.
373 : */
374 : static inline void tlb_flush(struct mmu_gather *tlb)
375 : {
376 : if (tlb->fullmm || tlb->need_flush_all) {
377 : flush_tlb_mm(tlb->mm);
378 : } else if (tlb->end) {
379 : struct vm_area_struct vma = {
380 : .vm_mm = tlb->mm,
381 : .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) |
382 : (tlb->vma_huge ? VM_HUGETLB : 0),
383 : };
384 :
385 : flush_tlb_range(&vma, tlb->start, tlb->end);
386 : }
387 : }
388 :
389 : static inline void
390 : tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
391 : {
392 : /*
393 : * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
394 : * mips-4k) flush only large pages.
395 : *
396 : * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
397 : * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
398 : * range.
399 : *
400 : * We rely on tlb_end_vma() to issue a flush, such that when we reset
401 : * these values the batch is empty.
402 : */
403 : tlb->vma_huge = is_vm_hugetlb_page(vma);
404 : tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
405 : }
406 :
407 : #else
408 :
409 : static inline void
410 : tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
411 :
412 : #endif
413 :
414 : #endif /* CONFIG_MMU_GATHER_NO_RANGE */
415 :
416 26360 : static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
417 : {
418 : /*
419 : * Anything calling __tlb_adjust_range() also sets at least one of
420 : * these bits.
421 : */
422 26360 : if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
423 : tlb->cleared_puds || tlb->cleared_p4ds))
424 : return;
425 :
426 6182 : tlb_flush(tlb);
427 6182 : mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
428 6182 : __tlb_reset_range(tlb);
429 : }
430 :
431 17 : static inline void tlb_remove_page_size(struct mmu_gather *tlb,
432 : struct page *page, int page_size)
433 : {
434 17 : if (__tlb_remove_page_size(tlb, page, page_size))
435 0 : tlb_flush_mmu(tlb);
436 17 : }
437 :
438 878584 : static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
439 : {
440 878584 : return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
441 : }
442 :
443 : /* tlb_remove_page
444 : * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
445 : * required.
446 : */
447 0 : static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
448 : {
449 0 : return tlb_remove_page_size(tlb, page, PAGE_SIZE);
450 : }
451 :
452 128544 : static inline void tlb_change_page_size(struct mmu_gather *tlb,
453 : unsigned int page_size)
454 : {
455 : #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
456 : if (tlb->page_size && tlb->page_size != page_size) {
457 : if (!tlb->fullmm && !tlb->need_flush_all)
458 : tlb_flush_mmu(tlb);
459 : }
460 :
461 : tlb->page_size = page_size;
462 : #endif
463 128544 : }
464 :
465 6182 : static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
466 : {
467 6182 : if (tlb->cleared_ptes)
468 : return PAGE_SHIFT;
469 951 : if (tlb->cleared_pmds)
470 : return PMD_SHIFT;
471 0 : if (tlb->cleared_puds)
472 : return PUD_SHIFT;
473 0 : if (tlb->cleared_p4ds)
474 0 : return P4D_SHIFT;
475 :
476 : return PAGE_SHIFT;
477 : }
478 :
479 : static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
480 : {
481 : return 1UL << tlb_get_unmap_shift(tlb);
482 : }
483 :
484 : /*
485 : * In the case of tlb vma handling, we can optimise these away in the
486 : * case where we're doing a full MM flush. When we're doing a munmap,
487 : * the vmas are adjusted to only cover the region to be torn down.
488 : */
489 : #ifndef tlb_start_vma
490 : static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
491 : {
492 : if (tlb->fullmm)
493 : return;
494 :
495 : tlb_update_vma_flags(tlb, vma);
496 : flush_cache_range(vma, vma->vm_start, vma->vm_end);
497 : }
498 : #endif
499 :
500 : #ifndef tlb_end_vma
501 : static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
502 : {
503 : if (tlb->fullmm)
504 : return;
505 :
506 : /*
507 : * Do a TLB flush and reset the range at VMA boundaries; this avoids
508 : * the ranges growing with the unused space between consecutive VMAs,
509 : * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
510 : * this.
511 : */
512 : tlb_flush_mmu_tlbonly(tlb);
513 : }
514 : #endif
515 :
516 : /*
517 : * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
518 : * and set corresponding cleared_*.
519 : */
520 892932 : static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
521 : unsigned long address, unsigned long size)
522 : {
523 892932 : __tlb_adjust_range(tlb, address, size);
524 892932 : tlb->cleared_ptes = 1;
525 0 : }
526 :
527 16942 : static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
528 : unsigned long address, unsigned long size)
529 : {
530 16942 : __tlb_adjust_range(tlb, address, size);
531 16942 : tlb->cleared_pmds = 1;
532 0 : }
533 :
534 8893 : static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
535 : unsigned long address, unsigned long size)
536 : {
537 8893 : __tlb_adjust_range(tlb, address, size);
538 8893 : tlb->cleared_puds = 1;
539 : }
540 :
541 7011 : static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
542 : unsigned long address, unsigned long size)
543 : {
544 7011 : __tlb_adjust_range(tlb, address, size);
545 7011 : tlb->cleared_p4ds = 1;
546 : }
547 :
548 : #ifndef __tlb_remove_tlb_entry
549 : #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
550 : #endif
551 :
552 : /**
553 : * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
554 : *
555 : * Record the fact that pte's were really unmapped by updating the range,
556 : * so we can later optimise away the tlb invalidate. This helps when
557 : * userspace is unmapping already-unmapped pages, which happens quite a lot.
558 : */
559 : #define tlb_remove_tlb_entry(tlb, ptep, address) \
560 : do { \
561 : tlb_flush_pte_range(tlb, address, PAGE_SIZE); \
562 : __tlb_remove_tlb_entry(tlb, ptep, address); \
563 : } while (0)
564 :
565 : #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
566 : do { \
567 : unsigned long _sz = huge_page_size(h); \
568 : if (_sz == PMD_SIZE) \
569 : tlb_flush_pmd_range(tlb, address, _sz); \
570 : else if (_sz == PUD_SIZE) \
571 : tlb_flush_pud_range(tlb, address, _sz); \
572 : __tlb_remove_tlb_entry(tlb, ptep, address); \
573 : } while (0)
574 :
575 : /**
576 : * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
577 : * This is a nop so far, because only x86 needs it.
578 : */
579 : #ifndef __tlb_remove_pmd_tlb_entry
580 : #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
581 : #endif
582 :
583 : #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
584 : do { \
585 : tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \
586 : __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
587 : } while (0)
588 :
589 : /**
590 : * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
591 : * invalidation. This is a nop so far, because only x86 needs it.
592 : */
593 : #ifndef __tlb_remove_pud_tlb_entry
594 : #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
595 : #endif
596 :
597 : #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
598 : do { \
599 : tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \
600 : __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
601 : } while (0)
602 :
603 : /*
604 : * For things like page tables caches (ie caching addresses "inside" the
605 : * page tables, like x86 does), for legacy reasons, flushing an
606 : * individual page had better flush the page table caches behind it. This
607 : * is definitely how x86 works, for example. And if you have an
608 : * architected non-legacy page table cache (which I'm not aware of
609 : * anybody actually doing), you're going to have some architecturally
610 : * explicit flushing for that, likely *separate* from a regular TLB entry
611 : * flush, and thus you'd need more than just some range expansion..
612 : *
613 : * So if we ever find an architecture
614 : * that would want something that odd, I think it is up to that
615 : * architecture to do its own odd thing, not cause pain for others
616 : * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
617 : *
618 : * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
619 : */
620 :
621 : #ifndef pte_free_tlb
622 : #define pte_free_tlb(tlb, ptep, address) \
623 : do { \
624 : tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \
625 : tlb->freed_tables = 1; \
626 : __pte_free_tlb(tlb, ptep, address); \
627 : } while (0)
628 : #endif
629 :
630 : #ifndef pmd_free_tlb
631 : #define pmd_free_tlb(tlb, pmdp, address) \
632 : do { \
633 : tlb_flush_pud_range(tlb, address, PAGE_SIZE); \
634 : tlb->freed_tables = 1; \
635 : __pmd_free_tlb(tlb, pmdp, address); \
636 : } while (0)
637 : #endif
638 :
639 : #ifndef pud_free_tlb
640 : #define pud_free_tlb(tlb, pudp, address) \
641 : do { \
642 : tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \
643 : tlb->freed_tables = 1; \
644 : __pud_free_tlb(tlb, pudp, address); \
645 : } while (0)
646 : #endif
647 :
648 : #ifndef p4d_free_tlb
649 : #define p4d_free_tlb(tlb, pudp, address) \
650 : do { \
651 : __tlb_adjust_range(tlb, address, PAGE_SIZE); \
652 : tlb->freed_tables = 1; \
653 : __p4d_free_tlb(tlb, pudp, address); \
654 : } while (0)
655 : #endif
656 :
657 : #endif /* CONFIG_MMU */
658 :
659 : #endif /* _ASM_GENERIC__TLB_H */
|