LCOV - code coverage report
Current view: top level - include/crypto - aead.h (source / functions) Hit Total Coverage
Test: landlock.info Lines: 0 32 0.0 %
Date: 2021-04-22 12:43:58 Functions: 0 0 -

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0-or-later */
       2             : /*
       3             :  * AEAD: Authenticated Encryption with Associated Data
       4             :  * 
       5             :  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
       6             :  */
       7             : 
       8             : #ifndef _CRYPTO_AEAD_H
       9             : #define _CRYPTO_AEAD_H
      10             : 
      11             : #include <linux/crypto.h>
      12             : #include <linux/kernel.h>
      13             : #include <linux/slab.h>
      14             : 
      15             : /**
      16             :  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
      17             :  *
      18             :  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
      19             :  * (listed as type "aead" in /proc/crypto)
      20             :  *
      21             :  * The most prominent examples for this type of encryption is GCM and CCM.
      22             :  * However, the kernel supports other types of AEAD ciphers which are defined
      23             :  * with the following cipher string:
      24             :  *
      25             :  *      authenc(keyed message digest, block cipher)
      26             :  *
      27             :  * For example: authenc(hmac(sha256), cbc(aes))
      28             :  *
      29             :  * The example code provided for the symmetric key cipher operation
      30             :  * applies here as well. Naturally all *skcipher* symbols must be exchanged
      31             :  * the *aead* pendants discussed in the following. In addition, for the AEAD
      32             :  * operation, the aead_request_set_ad function must be used to set the
      33             :  * pointer to the associated data memory location before performing the
      34             :  * encryption or decryption operation. In case of an encryption, the associated
      35             :  * data memory is filled during the encryption operation. For decryption, the
      36             :  * associated data memory must contain data that is used to verify the integrity
      37             :  * of the decrypted data. Another deviation from the asynchronous block cipher
      38             :  * operation is that the caller should explicitly check for -EBADMSG of the
      39             :  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
      40             :  * a breach in the integrity of the message. In essence, that -EBADMSG error
      41             :  * code is the key bonus an AEAD cipher has over "standard" block chaining
      42             :  * modes.
      43             :  *
      44             :  * Memory Structure:
      45             :  *
      46             :  * The source scatterlist must contain the concatenation of
      47             :  * associated data || plaintext or ciphertext.
      48             :  *
      49             :  * The destination scatterlist has the same layout, except that the plaintext
      50             :  * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
      51             :  * during encryption (resp. decryption).
      52             :  *
      53             :  * In-place encryption/decryption is enabled by using the same scatterlist
      54             :  * pointer for both the source and destination.
      55             :  *
      56             :  * Even in the out-of-place case, space must be reserved in the destination for
      57             :  * the associated data, even though it won't be written to.  This makes the
      58             :  * in-place and out-of-place cases more consistent.  It is permissible for the
      59             :  * "destination" associated data to alias the "source" associated data.
      60             :  *
      61             :  * As with the other scatterlist crypto APIs, zero-length scatterlist elements
      62             :  * are not allowed in the used part of the scatterlist.  Thus, if there is no
      63             :  * associated data, the first element must point to the plaintext/ciphertext.
      64             :  *
      65             :  * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
      66             :  * rfc4543, and rfc7539esp ciphers.  For these ciphers, the final 'ivsize' bytes
      67             :  * of the associated data buffer must contain a second copy of the IV.  This is
      68             :  * in addition to the copy passed to aead_request_set_crypt().  These two IV
      69             :  * copies must not differ; different implementations of the same algorithm may
      70             :  * behave differently in that case.  Note that the algorithm might not actually
      71             :  * treat the IV as associated data; nevertheless the length passed to
      72             :  * aead_request_set_ad() must include it.
      73             :  */
      74             : 
      75             : struct crypto_aead;
      76             : 
      77             : /**
      78             :  *      struct aead_request - AEAD request
      79             :  *      @base: Common attributes for async crypto requests
      80             :  *      @assoclen: Length in bytes of associated data for authentication
      81             :  *      @cryptlen: Length of data to be encrypted or decrypted
      82             :  *      @iv: Initialisation vector
      83             :  *      @src: Source data
      84             :  *      @dst: Destination data
      85             :  *      @__ctx: Start of private context data
      86             :  */
      87             : struct aead_request {
      88             :         struct crypto_async_request base;
      89             : 
      90             :         unsigned int assoclen;
      91             :         unsigned int cryptlen;
      92             : 
      93             :         u8 *iv;
      94             : 
      95             :         struct scatterlist *src;
      96             :         struct scatterlist *dst;
      97             : 
      98             :         void *__ctx[] CRYPTO_MINALIGN_ATTR;
      99             : };
     100             : 
     101             : /**
     102             :  * struct aead_alg - AEAD cipher definition
     103             :  * @maxauthsize: Set the maximum authentication tag size supported by the
     104             :  *               transformation. A transformation may support smaller tag sizes.
     105             :  *               As the authentication tag is a message digest to ensure the
     106             :  *               integrity of the encrypted data, a consumer typically wants the
     107             :  *               largest authentication tag possible as defined by this
     108             :  *               variable.
     109             :  * @setauthsize: Set authentication size for the AEAD transformation. This
     110             :  *               function is used to specify the consumer requested size of the
     111             :  *               authentication tag to be either generated by the transformation
     112             :  *               during encryption or the size of the authentication tag to be
     113             :  *               supplied during the decryption operation. This function is also
     114             :  *               responsible for checking the authentication tag size for
     115             :  *               validity.
     116             :  * @setkey: see struct skcipher_alg
     117             :  * @encrypt: see struct skcipher_alg
     118             :  * @decrypt: see struct skcipher_alg
     119             :  * @ivsize: see struct skcipher_alg
     120             :  * @chunksize: see struct skcipher_alg
     121             :  * @init: Initialize the cryptographic transformation object. This function
     122             :  *        is used to initialize the cryptographic transformation object.
     123             :  *        This function is called only once at the instantiation time, right
     124             :  *        after the transformation context was allocated. In case the
     125             :  *        cryptographic hardware has some special requirements which need to
     126             :  *        be handled by software, this function shall check for the precise
     127             :  *        requirement of the transformation and put any software fallbacks
     128             :  *        in place.
     129             :  * @exit: Deinitialize the cryptographic transformation object. This is a
     130             :  *        counterpart to @init, used to remove various changes set in
     131             :  *        @init.
     132             :  * @base: Definition of a generic crypto cipher algorithm.
     133             :  *
     134             :  * All fields except @ivsize is mandatory and must be filled.
     135             :  */
     136             : struct aead_alg {
     137             :         int (*setkey)(struct crypto_aead *tfm, const u8 *key,
     138             :                       unsigned int keylen);
     139             :         int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
     140             :         int (*encrypt)(struct aead_request *req);
     141             :         int (*decrypt)(struct aead_request *req);
     142             :         int (*init)(struct crypto_aead *tfm);
     143             :         void (*exit)(struct crypto_aead *tfm);
     144             : 
     145             :         unsigned int ivsize;
     146             :         unsigned int maxauthsize;
     147             :         unsigned int chunksize;
     148             : 
     149             :         struct crypto_alg base;
     150             : };
     151             : 
     152             : struct crypto_aead {
     153             :         unsigned int authsize;
     154             :         unsigned int reqsize;
     155             : 
     156             :         struct crypto_tfm base;
     157             : };
     158             : 
     159           0 : static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
     160             : {
     161           0 :         return container_of(tfm, struct crypto_aead, base);
     162             : }
     163             : 
     164             : /**
     165             :  * crypto_alloc_aead() - allocate AEAD cipher handle
     166             :  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
     167             :  *           AEAD cipher
     168             :  * @type: specifies the type of the cipher
     169             :  * @mask: specifies the mask for the cipher
     170             :  *
     171             :  * Allocate a cipher handle for an AEAD. The returned struct
     172             :  * crypto_aead is the cipher handle that is required for any subsequent
     173             :  * API invocation for that AEAD.
     174             :  *
     175             :  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
     176             :  *         of an error, PTR_ERR() returns the error code.
     177             :  */
     178             : struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
     179             : 
     180           0 : static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
     181             : {
     182           0 :         return &tfm->base;
     183             : }
     184             : 
     185             : /**
     186             :  * crypto_free_aead() - zeroize and free aead handle
     187             :  * @tfm: cipher handle to be freed
     188             :  */
     189           0 : static inline void crypto_free_aead(struct crypto_aead *tfm)
     190             : {
     191           0 :         crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
     192             : }
     193             : 
     194             : static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
     195             : {
     196             :         return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
     197             : }
     198             : 
     199           0 : static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
     200             : {
     201           0 :         return container_of(crypto_aead_tfm(tfm)->__crt_alg,
     202             :                             struct aead_alg, base);
     203             : }
     204             : 
     205           0 : static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
     206             : {
     207           0 :         return alg->ivsize;
     208             : }
     209             : 
     210             : /**
     211             :  * crypto_aead_ivsize() - obtain IV size
     212             :  * @tfm: cipher handle
     213             :  *
     214             :  * The size of the IV for the aead referenced by the cipher handle is
     215             :  * returned. This IV size may be zero if the cipher does not need an IV.
     216             :  *
     217             :  * Return: IV size in bytes
     218             :  */
     219           0 : static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
     220             : {
     221           0 :         return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
     222             : }
     223             : 
     224             : /**
     225             :  * crypto_aead_authsize() - obtain maximum authentication data size
     226             :  * @tfm: cipher handle
     227             :  *
     228             :  * The maximum size of the authentication data for the AEAD cipher referenced
     229             :  * by the AEAD cipher handle is returned. The authentication data size may be
     230             :  * zero if the cipher implements a hard-coded maximum.
     231             :  *
     232             :  * The authentication data may also be known as "tag value".
     233             :  *
     234             :  * Return: authentication data size / tag size in bytes
     235             :  */
     236           0 : static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
     237             : {
     238           0 :         return tfm->authsize;
     239             : }
     240             : 
     241           0 : static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
     242             : {
     243           0 :         return alg->maxauthsize;
     244             : }
     245             : 
     246           0 : static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
     247             : {
     248           0 :         return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
     249             : }
     250             : 
     251             : /**
     252             :  * crypto_aead_blocksize() - obtain block size of cipher
     253             :  * @tfm: cipher handle
     254             :  *
     255             :  * The block size for the AEAD referenced with the cipher handle is returned.
     256             :  * The caller may use that information to allocate appropriate memory for the
     257             :  * data returned by the encryption or decryption operation
     258             :  *
     259             :  * Return: block size of cipher
     260             :  */
     261           0 : static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
     262             : {
     263           0 :         return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
     264             : }
     265             : 
     266           0 : static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
     267             : {
     268           0 :         return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
     269             : }
     270             : 
     271           0 : static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
     272             : {
     273           0 :         return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
     274             : }
     275             : 
     276           0 : static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
     277             : {
     278           0 :         crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
     279             : }
     280             : 
     281           0 : static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
     282             : {
     283           0 :         crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
     284             : }
     285             : 
     286             : /**
     287             :  * crypto_aead_setkey() - set key for cipher
     288             :  * @tfm: cipher handle
     289             :  * @key: buffer holding the key
     290             :  * @keylen: length of the key in bytes
     291             :  *
     292             :  * The caller provided key is set for the AEAD referenced by the cipher
     293             :  * handle.
     294             :  *
     295             :  * Note, the key length determines the cipher type. Many block ciphers implement
     296             :  * different cipher modes depending on the key size, such as AES-128 vs AES-192
     297             :  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
     298             :  * is performed.
     299             :  *
     300             :  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
     301             :  */
     302             : int crypto_aead_setkey(struct crypto_aead *tfm,
     303             :                        const u8 *key, unsigned int keylen);
     304             : 
     305             : /**
     306             :  * crypto_aead_setauthsize() - set authentication data size
     307             :  * @tfm: cipher handle
     308             :  * @authsize: size of the authentication data / tag in bytes
     309             :  *
     310             :  * Set the authentication data size / tag size. AEAD requires an authentication
     311             :  * tag (or MAC) in addition to the associated data.
     312             :  *
     313             :  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
     314             :  */
     315             : int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
     316             : 
     317           0 : static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
     318             : {
     319           0 :         return __crypto_aead_cast(req->base.tfm);
     320             : }
     321             : 
     322             : /**
     323             :  * crypto_aead_encrypt() - encrypt plaintext
     324             :  * @req: reference to the aead_request handle that holds all information
     325             :  *       needed to perform the cipher operation
     326             :  *
     327             :  * Encrypt plaintext data using the aead_request handle. That data structure
     328             :  * and how it is filled with data is discussed with the aead_request_*
     329             :  * functions.
     330             :  *
     331             :  * IMPORTANT NOTE The encryption operation creates the authentication data /
     332             :  *                tag. That data is concatenated with the created ciphertext.
     333             :  *                The ciphertext memory size is therefore the given number of
     334             :  *                block cipher blocks + the size defined by the
     335             :  *                crypto_aead_setauthsize invocation. The caller must ensure
     336             :  *                that sufficient memory is available for the ciphertext and
     337             :  *                the authentication tag.
     338             :  *
     339             :  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
     340             :  */
     341             : int crypto_aead_encrypt(struct aead_request *req);
     342             : 
     343             : /**
     344             :  * crypto_aead_decrypt() - decrypt ciphertext
     345             :  * @req: reference to the aead_request handle that holds all information
     346             :  *       needed to perform the cipher operation
     347             :  *
     348             :  * Decrypt ciphertext data using the aead_request handle. That data structure
     349             :  * and how it is filled with data is discussed with the aead_request_*
     350             :  * functions.
     351             :  *
     352             :  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
     353             :  *                authentication data / tag. That authentication data / tag
     354             :  *                must have the size defined by the crypto_aead_setauthsize
     355             :  *                invocation.
     356             :  *
     357             :  *
     358             :  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
     359             :  *         cipher operation performs the authentication of the data during the
     360             :  *         decryption operation. Therefore, the function returns this error if
     361             :  *         the authentication of the ciphertext was unsuccessful (i.e. the
     362             :  *         integrity of the ciphertext or the associated data was violated);
     363             :  *         < 0 if an error occurred.
     364             :  */
     365             : int crypto_aead_decrypt(struct aead_request *req);
     366             : 
     367             : /**
     368             :  * DOC: Asynchronous AEAD Request Handle
     369             :  *
     370             :  * The aead_request data structure contains all pointers to data required for
     371             :  * the AEAD cipher operation. This includes the cipher handle (which can be
     372             :  * used by multiple aead_request instances), pointer to plaintext and
     373             :  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
     374             :  * aead_request_* API calls in a similar way as AEAD handle to the
     375             :  * crypto_aead_* API calls.
     376             :  */
     377             : 
     378             : /**
     379             :  * crypto_aead_reqsize() - obtain size of the request data structure
     380             :  * @tfm: cipher handle
     381             :  *
     382             :  * Return: number of bytes
     383             :  */
     384           0 : static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
     385             : {
     386           0 :         return tfm->reqsize;
     387             : }
     388             : 
     389             : /**
     390             :  * aead_request_set_tfm() - update cipher handle reference in request
     391             :  * @req: request handle to be modified
     392             :  * @tfm: cipher handle that shall be added to the request handle
     393             :  *
     394             :  * Allow the caller to replace the existing aead handle in the request
     395             :  * data structure with a different one.
     396             :  */
     397             : static inline void aead_request_set_tfm(struct aead_request *req,
     398             :                                         struct crypto_aead *tfm)
     399             : {
     400             :         req->base.tfm = crypto_aead_tfm(tfm);
     401             : }
     402             : 
     403             : /**
     404             :  * aead_request_alloc() - allocate request data structure
     405             :  * @tfm: cipher handle to be registered with the request
     406             :  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
     407             :  *
     408             :  * Allocate the request data structure that must be used with the AEAD
     409             :  * encrypt and decrypt API calls. During the allocation, the provided aead
     410             :  * handle is registered in the request data structure.
     411             :  *
     412             :  * Return: allocated request handle in case of success, or NULL if out of memory
     413             :  */
     414             : static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
     415             :                                                       gfp_t gfp)
     416             : {
     417             :         struct aead_request *req;
     418             : 
     419             :         req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
     420             : 
     421             :         if (likely(req))
     422             :                 aead_request_set_tfm(req, tfm);
     423             : 
     424             :         return req;
     425             : }
     426             : 
     427             : /**
     428             :  * aead_request_free() - zeroize and free request data structure
     429             :  * @req: request data structure cipher handle to be freed
     430             :  */
     431             : static inline void aead_request_free(struct aead_request *req)
     432             : {
     433             :         kfree_sensitive(req);
     434             : }
     435             : 
     436             : /**
     437             :  * aead_request_set_callback() - set asynchronous callback function
     438             :  * @req: request handle
     439             :  * @flags: specify zero or an ORing of the flags
     440             :  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
     441             :  *         increase the wait queue beyond the initial maximum size;
     442             :  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
     443             :  * @compl: callback function pointer to be registered with the request handle
     444             :  * @data: The data pointer refers to memory that is not used by the kernel
     445             :  *        crypto API, but provided to the callback function for it to use. Here,
     446             :  *        the caller can provide a reference to memory the callback function can
     447             :  *        operate on. As the callback function is invoked asynchronously to the
     448             :  *        related functionality, it may need to access data structures of the
     449             :  *        related functionality which can be referenced using this pointer. The
     450             :  *        callback function can access the memory via the "data" field in the
     451             :  *        crypto_async_request data structure provided to the callback function.
     452             :  *
     453             :  * Setting the callback function that is triggered once the cipher operation
     454             :  * completes
     455             :  *
     456             :  * The callback function is registered with the aead_request handle and
     457             :  * must comply with the following template::
     458             :  *
     459             :  *      void callback_function(struct crypto_async_request *req, int error)
     460             :  */
     461             : static inline void aead_request_set_callback(struct aead_request *req,
     462             :                                              u32 flags,
     463             :                                              crypto_completion_t compl,
     464             :                                              void *data)
     465             : {
     466             :         req->base.complete = compl;
     467             :         req->base.data = data;
     468             :         req->base.flags = flags;
     469             : }
     470             : 
     471             : /**
     472             :  * aead_request_set_crypt - set data buffers
     473             :  * @req: request handle
     474             :  * @src: source scatter / gather list
     475             :  * @dst: destination scatter / gather list
     476             :  * @cryptlen: number of bytes to process from @src
     477             :  * @iv: IV for the cipher operation which must comply with the IV size defined
     478             :  *      by crypto_aead_ivsize()
     479             :  *
     480             :  * Setting the source data and destination data scatter / gather lists which
     481             :  * hold the associated data concatenated with the plaintext or ciphertext. See
     482             :  * below for the authentication tag.
     483             :  *
     484             :  * For encryption, the source is treated as the plaintext and the
     485             :  * destination is the ciphertext. For a decryption operation, the use is
     486             :  * reversed - the source is the ciphertext and the destination is the plaintext.
     487             :  *
     488             :  * The memory structure for cipher operation has the following structure:
     489             :  *
     490             :  * - AEAD encryption input:  assoc data || plaintext
     491             :  * - AEAD encryption output: assoc data || cipherntext || auth tag
     492             :  * - AEAD decryption input:  assoc data || ciphertext || auth tag
     493             :  * - AEAD decryption output: assoc data || plaintext
     494             :  *
     495             :  * Albeit the kernel requires the presence of the AAD buffer, however,
     496             :  * the kernel does not fill the AAD buffer in the output case. If the
     497             :  * caller wants to have that data buffer filled, the caller must either
     498             :  * use an in-place cipher operation (i.e. same memory location for
     499             :  * input/output memory location).
     500             :  */
     501             : static inline void aead_request_set_crypt(struct aead_request *req,
     502             :                                           struct scatterlist *src,
     503             :                                           struct scatterlist *dst,
     504             :                                           unsigned int cryptlen, u8 *iv)
     505             : {
     506             :         req->src = src;
     507             :         req->dst = dst;
     508             :         req->cryptlen = cryptlen;
     509             :         req->iv = iv;
     510             : }
     511             : 
     512             : /**
     513             :  * aead_request_set_ad - set associated data information
     514             :  * @req: request handle
     515             :  * @assoclen: number of bytes in associated data
     516             :  *
     517             :  * Setting the AD information.  This function sets the length of
     518             :  * the associated data.
     519             :  */
     520             : static inline void aead_request_set_ad(struct aead_request *req,
     521             :                                        unsigned int assoclen)
     522             : {
     523             :         req->assoclen = assoclen;
     524             : }
     525             : 
     526             : #endif  /* _CRYPTO_AEAD_H */

Generated by: LCOV version 1.14