Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : /* memcontrol.h - Memory Controller
3 : *
4 : * Copyright IBM Corporation, 2007
5 : * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 : *
7 : * Copyright 2007 OpenVZ SWsoft Inc
8 : * Author: Pavel Emelianov <xemul@openvz.org>
9 : */
10 :
11 : #ifndef _LINUX_MEMCONTROL_H
12 : #define _LINUX_MEMCONTROL_H
13 : #include <linux/cgroup.h>
14 : #include <linux/vm_event_item.h>
15 : #include <linux/hardirq.h>
16 : #include <linux/jump_label.h>
17 : #include <linux/page_counter.h>
18 : #include <linux/vmpressure.h>
19 : #include <linux/eventfd.h>
20 : #include <linux/mm.h>
21 : #include <linux/vmstat.h>
22 : #include <linux/writeback.h>
23 : #include <linux/page-flags.h>
24 :
25 : struct mem_cgroup;
26 : struct obj_cgroup;
27 : struct page;
28 : struct mm_struct;
29 : struct kmem_cache;
30 :
31 : /* Cgroup-specific page state, on top of universal node page state */
32 : enum memcg_stat_item {
33 : MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 : MEMCG_SOCK,
35 : MEMCG_PERCPU_B,
36 : MEMCG_NR_STAT,
37 : };
38 :
39 : enum memcg_memory_event {
40 : MEMCG_LOW,
41 : MEMCG_HIGH,
42 : MEMCG_MAX,
43 : MEMCG_OOM,
44 : MEMCG_OOM_KILL,
45 : MEMCG_SWAP_HIGH,
46 : MEMCG_SWAP_MAX,
47 : MEMCG_SWAP_FAIL,
48 : MEMCG_NR_MEMORY_EVENTS,
49 : };
50 :
51 : struct mem_cgroup_reclaim_cookie {
52 : pg_data_t *pgdat;
53 : unsigned int generation;
54 : };
55 :
56 : #ifdef CONFIG_MEMCG
57 :
58 : #define MEM_CGROUP_ID_SHIFT 16
59 : #define MEM_CGROUP_ID_MAX USHRT_MAX
60 :
61 : struct mem_cgroup_id {
62 : int id;
63 : refcount_t ref;
64 : };
65 :
66 : /*
67 : * Per memcg event counter is incremented at every pagein/pageout. With THP,
68 : * it will be incremented by the number of pages. This counter is used
69 : * to trigger some periodic events. This is straightforward and better
70 : * than using jiffies etc. to handle periodic memcg event.
71 : */
72 : enum mem_cgroup_events_target {
73 : MEM_CGROUP_TARGET_THRESH,
74 : MEM_CGROUP_TARGET_SOFTLIMIT,
75 : MEM_CGROUP_NTARGETS,
76 : };
77 :
78 : struct memcg_vmstats_percpu {
79 : long stat[MEMCG_NR_STAT];
80 : unsigned long events[NR_VM_EVENT_ITEMS];
81 : unsigned long nr_page_events;
82 : unsigned long targets[MEM_CGROUP_NTARGETS];
83 : };
84 :
85 : struct mem_cgroup_reclaim_iter {
86 : struct mem_cgroup *position;
87 : /* scan generation, increased every round-trip */
88 : unsigned int generation;
89 : };
90 :
91 : struct lruvec_stat {
92 : long count[NR_VM_NODE_STAT_ITEMS];
93 : };
94 :
95 : struct batched_lruvec_stat {
96 : s32 count[NR_VM_NODE_STAT_ITEMS];
97 : };
98 :
99 : /*
100 : * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
101 : * which have elements charged to this memcg.
102 : */
103 : struct memcg_shrinker_map {
104 : struct rcu_head rcu;
105 : unsigned long map[];
106 : };
107 :
108 : /*
109 : * per-node information in memory controller.
110 : */
111 : struct mem_cgroup_per_node {
112 : struct lruvec lruvec;
113 :
114 : /*
115 : * Legacy local VM stats. This should be struct lruvec_stat and
116 : * cannot be optimized to struct batched_lruvec_stat. Because
117 : * the threshold of the lruvec_stat_cpu can be as big as
118 : * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
119 : * filed has no upper limit.
120 : */
121 : struct lruvec_stat __percpu *lruvec_stat_local;
122 :
123 : /* Subtree VM stats (batched updates) */
124 : struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
125 : atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126 :
127 : unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128 :
129 : struct mem_cgroup_reclaim_iter iter;
130 :
131 : struct memcg_shrinker_map __rcu *shrinker_map;
132 :
133 : struct rb_node tree_node; /* RB tree node */
134 : unsigned long usage_in_excess;/* Set to the value by which */
135 : /* the soft limit is exceeded*/
136 : bool on_tree;
137 : struct mem_cgroup *memcg; /* Back pointer, we cannot */
138 : /* use container_of */
139 : };
140 :
141 : struct mem_cgroup_threshold {
142 : struct eventfd_ctx *eventfd;
143 : unsigned long threshold;
144 : };
145 :
146 : /* For threshold */
147 : struct mem_cgroup_threshold_ary {
148 : /* An array index points to threshold just below or equal to usage. */
149 : int current_threshold;
150 : /* Size of entries[] */
151 : unsigned int size;
152 : /* Array of thresholds */
153 : struct mem_cgroup_threshold entries[];
154 : };
155 :
156 : struct mem_cgroup_thresholds {
157 : /* Primary thresholds array */
158 : struct mem_cgroup_threshold_ary *primary;
159 : /*
160 : * Spare threshold array.
161 : * This is needed to make mem_cgroup_unregister_event() "never fail".
162 : * It must be able to store at least primary->size - 1 entries.
163 : */
164 : struct mem_cgroup_threshold_ary *spare;
165 : };
166 :
167 : enum memcg_kmem_state {
168 : KMEM_NONE,
169 : KMEM_ALLOCATED,
170 : KMEM_ONLINE,
171 : };
172 :
173 : #if defined(CONFIG_SMP)
174 : struct memcg_padding {
175 : char x[0];
176 : } ____cacheline_internodealigned_in_smp;
177 : #define MEMCG_PADDING(name) struct memcg_padding name;
178 : #else
179 : #define MEMCG_PADDING(name)
180 : #endif
181 :
182 : /*
183 : * Remember four most recent foreign writebacks with dirty pages in this
184 : * cgroup. Inode sharing is expected to be uncommon and, even if we miss
185 : * one in a given round, we're likely to catch it later if it keeps
186 : * foreign-dirtying, so a fairly low count should be enough.
187 : *
188 : * See mem_cgroup_track_foreign_dirty_slowpath() for details.
189 : */
190 : #define MEMCG_CGWB_FRN_CNT 4
191 :
192 : struct memcg_cgwb_frn {
193 : u64 bdi_id; /* bdi->id of the foreign inode */
194 : int memcg_id; /* memcg->css.id of foreign inode */
195 : u64 at; /* jiffies_64 at the time of dirtying */
196 : struct wb_completion done; /* tracks in-flight foreign writebacks */
197 : };
198 :
199 : /*
200 : * Bucket for arbitrarily byte-sized objects charged to a memory
201 : * cgroup. The bucket can be reparented in one piece when the cgroup
202 : * is destroyed, without having to round up the individual references
203 : * of all live memory objects in the wild.
204 : */
205 : struct obj_cgroup {
206 : struct percpu_ref refcnt;
207 : struct mem_cgroup *memcg;
208 : atomic_t nr_charged_bytes;
209 : union {
210 : struct list_head list;
211 : struct rcu_head rcu;
212 : };
213 : };
214 :
215 : /*
216 : * The memory controller data structure. The memory controller controls both
217 : * page cache and RSS per cgroup. We would eventually like to provide
218 : * statistics based on the statistics developed by Rik Van Riel for clock-pro,
219 : * to help the administrator determine what knobs to tune.
220 : */
221 : struct mem_cgroup {
222 : struct cgroup_subsys_state css;
223 :
224 : /* Private memcg ID. Used to ID objects that outlive the cgroup */
225 : struct mem_cgroup_id id;
226 :
227 : /* Accounted resources */
228 : struct page_counter memory; /* Both v1 & v2 */
229 :
230 : union {
231 : struct page_counter swap; /* v2 only */
232 : struct page_counter memsw; /* v1 only */
233 : };
234 :
235 : /* Legacy consumer-oriented counters */
236 : struct page_counter kmem; /* v1 only */
237 : struct page_counter tcpmem; /* v1 only */
238 :
239 : /* Range enforcement for interrupt charges */
240 : struct work_struct high_work;
241 :
242 : unsigned long soft_limit;
243 :
244 : /* vmpressure notifications */
245 : struct vmpressure vmpressure;
246 :
247 : /*
248 : * Should the OOM killer kill all belonging tasks, had it kill one?
249 : */
250 : bool oom_group;
251 :
252 : /* protected by memcg_oom_lock */
253 : bool oom_lock;
254 : int under_oom;
255 :
256 : int swappiness;
257 : /* OOM-Killer disable */
258 : int oom_kill_disable;
259 :
260 : /* memory.events and memory.events.local */
261 : struct cgroup_file events_file;
262 : struct cgroup_file events_local_file;
263 :
264 : /* handle for "memory.swap.events" */
265 : struct cgroup_file swap_events_file;
266 :
267 : /* protect arrays of thresholds */
268 : struct mutex thresholds_lock;
269 :
270 : /* thresholds for memory usage. RCU-protected */
271 : struct mem_cgroup_thresholds thresholds;
272 :
273 : /* thresholds for mem+swap usage. RCU-protected */
274 : struct mem_cgroup_thresholds memsw_thresholds;
275 :
276 : /* For oom notifier event fd */
277 : struct list_head oom_notify;
278 :
279 : /*
280 : * Should we move charges of a task when a task is moved into this
281 : * mem_cgroup ? And what type of charges should we move ?
282 : */
283 : unsigned long move_charge_at_immigrate;
284 : /* taken only while moving_account > 0 */
285 : spinlock_t move_lock;
286 : unsigned long move_lock_flags;
287 :
288 : MEMCG_PADDING(_pad1_);
289 :
290 : atomic_long_t vmstats[MEMCG_NR_STAT];
291 : atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
292 :
293 : /* memory.events */
294 : atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
295 : atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
296 :
297 : unsigned long socket_pressure;
298 :
299 : /* Legacy tcp memory accounting */
300 : bool tcpmem_active;
301 : int tcpmem_pressure;
302 :
303 : #ifdef CONFIG_MEMCG_KMEM
304 : int kmemcg_id;
305 : enum memcg_kmem_state kmem_state;
306 : struct obj_cgroup __rcu *objcg;
307 : struct list_head objcg_list; /* list of inherited objcgs */
308 : #endif
309 :
310 : MEMCG_PADDING(_pad2_);
311 :
312 : /*
313 : * set > 0 if pages under this cgroup are moving to other cgroup.
314 : */
315 : atomic_t moving_account;
316 : struct task_struct *move_lock_task;
317 :
318 : /* Legacy local VM stats and events */
319 : struct memcg_vmstats_percpu __percpu *vmstats_local;
320 :
321 : /* Subtree VM stats and events (batched updates) */
322 : struct memcg_vmstats_percpu __percpu *vmstats_percpu;
323 :
324 : #ifdef CONFIG_CGROUP_WRITEBACK
325 : struct list_head cgwb_list;
326 : struct wb_domain cgwb_domain;
327 : struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
328 : #endif
329 :
330 : /* List of events which userspace want to receive */
331 : struct list_head event_list;
332 : spinlock_t event_list_lock;
333 :
334 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 : struct deferred_split deferred_split_queue;
336 : #endif
337 :
338 : struct mem_cgroup_per_node *nodeinfo[0];
339 : /* WARNING: nodeinfo must be the last member here */
340 : };
341 :
342 : /*
343 : * size of first charge trial. "32" comes from vmscan.c's magic value.
344 : * TODO: maybe necessary to use big numbers in big irons.
345 : */
346 : #define MEMCG_CHARGE_BATCH 32U
347 :
348 : extern struct mem_cgroup *root_mem_cgroup;
349 :
350 : enum page_memcg_data_flags {
351 : /* page->memcg_data is a pointer to an objcgs vector */
352 : MEMCG_DATA_OBJCGS = (1UL << 0),
353 : /* page has been accounted as a non-slab kernel page */
354 : MEMCG_DATA_KMEM = (1UL << 1),
355 : /* the next bit after the last actual flag */
356 : __NR_MEMCG_DATA_FLAGS = (1UL << 2),
357 : };
358 :
359 : #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
360 :
361 : /*
362 : * page_memcg - get the memory cgroup associated with a page
363 : * @page: a pointer to the page struct
364 : *
365 : * Returns a pointer to the memory cgroup associated with the page,
366 : * or NULL. This function assumes that the page is known to have a
367 : * proper memory cgroup pointer. It's not safe to call this function
368 : * against some type of pages, e.g. slab pages or ex-slab pages.
369 : *
370 : * Any of the following ensures page and memcg binding stability:
371 : * - the page lock
372 : * - LRU isolation
373 : * - lock_page_memcg()
374 : * - exclusive reference
375 : */
376 : static inline struct mem_cgroup *page_memcg(struct page *page)
377 : {
378 : unsigned long memcg_data = page->memcg_data;
379 :
380 : VM_BUG_ON_PAGE(PageSlab(page), page);
381 : VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
382 :
383 : return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 : }
385 :
386 : /*
387 : * page_memcg_rcu - locklessly get the memory cgroup associated with a page
388 : * @page: a pointer to the page struct
389 : *
390 : * Returns a pointer to the memory cgroup associated with the page,
391 : * or NULL. This function assumes that the page is known to have a
392 : * proper memory cgroup pointer. It's not safe to call this function
393 : * against some type of pages, e.g. slab pages or ex-slab pages.
394 : */
395 : static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
396 : {
397 : VM_BUG_ON_PAGE(PageSlab(page), page);
398 : WARN_ON_ONCE(!rcu_read_lock_held());
399 :
400 : return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) &
401 : ~MEMCG_DATA_FLAGS_MASK);
402 : }
403 :
404 : /*
405 : * page_memcg_check - get the memory cgroup associated with a page
406 : * @page: a pointer to the page struct
407 : *
408 : * Returns a pointer to the memory cgroup associated with the page,
409 : * or NULL. This function unlike page_memcg() can take any page
410 : * as an argument. It has to be used in cases when it's not known if a page
411 : * has an associated memory cgroup pointer or an object cgroups vector.
412 : *
413 : * Any of the following ensures page and memcg binding stability:
414 : * - the page lock
415 : * - LRU isolation
416 : * - lock_page_memcg()
417 : * - exclusive reference
418 : */
419 : static inline struct mem_cgroup *page_memcg_check(struct page *page)
420 : {
421 : /*
422 : * Because page->memcg_data might be changed asynchronously
423 : * for slab pages, READ_ONCE() should be used here.
424 : */
425 : unsigned long memcg_data = READ_ONCE(page->memcg_data);
426 :
427 : if (memcg_data & MEMCG_DATA_OBJCGS)
428 : return NULL;
429 :
430 : return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
431 : }
432 :
433 : /*
434 : * PageMemcgKmem - check if the page has MemcgKmem flag set
435 : * @page: a pointer to the page struct
436 : *
437 : * Checks if the page has MemcgKmem flag set. The caller must ensure that
438 : * the page has an associated memory cgroup. It's not safe to call this function
439 : * against some types of pages, e.g. slab pages.
440 : */
441 : static inline bool PageMemcgKmem(struct page *page)
442 : {
443 : VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
444 : return page->memcg_data & MEMCG_DATA_KMEM;
445 : }
446 :
447 : #ifdef CONFIG_MEMCG_KMEM
448 : /*
449 : * page_objcgs - get the object cgroups vector associated with a page
450 : * @page: a pointer to the page struct
451 : *
452 : * Returns a pointer to the object cgroups vector associated with the page,
453 : * or NULL. This function assumes that the page is known to have an
454 : * associated object cgroups vector. It's not safe to call this function
455 : * against pages, which might have an associated memory cgroup: e.g.
456 : * kernel stack pages.
457 : */
458 : static inline struct obj_cgroup **page_objcgs(struct page *page)
459 : {
460 : unsigned long memcg_data = READ_ONCE(page->memcg_data);
461 :
462 : VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
463 : VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
464 :
465 : return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 : }
467 :
468 : /*
469 : * page_objcgs_check - get the object cgroups vector associated with a page
470 : * @page: a pointer to the page struct
471 : *
472 : * Returns a pointer to the object cgroups vector associated with the page,
473 : * or NULL. This function is safe to use if the page can be directly associated
474 : * with a memory cgroup.
475 : */
476 : static inline struct obj_cgroup **page_objcgs_check(struct page *page)
477 : {
478 : unsigned long memcg_data = READ_ONCE(page->memcg_data);
479 :
480 : if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
481 : return NULL;
482 :
483 : VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
484 :
485 : return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
486 : }
487 :
488 : #else
489 : static inline struct obj_cgroup **page_objcgs(struct page *page)
490 : {
491 : return NULL;
492 : }
493 :
494 : static inline struct obj_cgroup **page_objcgs_check(struct page *page)
495 : {
496 : return NULL;
497 : }
498 : #endif
499 :
500 : static __always_inline bool memcg_stat_item_in_bytes(int idx)
501 : {
502 : if (idx == MEMCG_PERCPU_B)
503 : return true;
504 : return vmstat_item_in_bytes(idx);
505 : }
506 :
507 : static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
508 : {
509 : return (memcg == root_mem_cgroup);
510 : }
511 :
512 : static inline bool mem_cgroup_disabled(void)
513 : {
514 : return !cgroup_subsys_enabled(memory_cgrp_subsys);
515 : }
516 :
517 : static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
518 : struct mem_cgroup *memcg,
519 : bool in_low_reclaim)
520 : {
521 : if (mem_cgroup_disabled())
522 : return 0;
523 :
524 : /*
525 : * There is no reclaim protection applied to a targeted reclaim.
526 : * We are special casing this specific case here because
527 : * mem_cgroup_protected calculation is not robust enough to keep
528 : * the protection invariant for calculated effective values for
529 : * parallel reclaimers with different reclaim target. This is
530 : * especially a problem for tail memcgs (as they have pages on LRU)
531 : * which would want to have effective values 0 for targeted reclaim
532 : * but a different value for external reclaim.
533 : *
534 : * Example
535 : * Let's have global and A's reclaim in parallel:
536 : * |
537 : * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
538 : * |\
539 : * | C (low = 1G, usage = 2.5G)
540 : * B (low = 1G, usage = 0.5G)
541 : *
542 : * For the global reclaim
543 : * A.elow = A.low
544 : * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
545 : * C.elow = min(C.usage, C.low)
546 : *
547 : * With the effective values resetting we have A reclaim
548 : * A.elow = 0
549 : * B.elow = B.low
550 : * C.elow = C.low
551 : *
552 : * If the global reclaim races with A's reclaim then
553 : * B.elow = C.elow = 0 because children_low_usage > A.elow)
554 : * is possible and reclaiming B would be violating the protection.
555 : *
556 : */
557 : if (root == memcg)
558 : return 0;
559 :
560 : if (in_low_reclaim)
561 : return READ_ONCE(memcg->memory.emin);
562 :
563 : return max(READ_ONCE(memcg->memory.emin),
564 : READ_ONCE(memcg->memory.elow));
565 : }
566 :
567 : void mem_cgroup_calculate_protection(struct mem_cgroup *root,
568 : struct mem_cgroup *memcg);
569 :
570 : static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
571 : {
572 : /*
573 : * The root memcg doesn't account charges, and doesn't support
574 : * protection.
575 : */
576 : return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
577 :
578 : }
579 :
580 : static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
581 : {
582 : if (!mem_cgroup_supports_protection(memcg))
583 : return false;
584 :
585 : return READ_ONCE(memcg->memory.elow) >=
586 : page_counter_read(&memcg->memory);
587 : }
588 :
589 : static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
590 : {
591 : if (!mem_cgroup_supports_protection(memcg))
592 : return false;
593 :
594 : return READ_ONCE(memcg->memory.emin) >=
595 : page_counter_read(&memcg->memory);
596 : }
597 :
598 : int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
599 :
600 : void mem_cgroup_uncharge(struct page *page);
601 : void mem_cgroup_uncharge_list(struct list_head *page_list);
602 :
603 : void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
604 :
605 : static struct mem_cgroup_per_node *
606 : mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
607 : {
608 : return memcg->nodeinfo[nid];
609 : }
610 :
611 : /**
612 : * mem_cgroup_lruvec - get the lru list vector for a memcg & node
613 : * @memcg: memcg of the wanted lruvec
614 : * @pgdat: pglist_data
615 : *
616 : * Returns the lru list vector holding pages for a given @memcg &
617 : * @pgdat combination. This can be the node lruvec, if the memory
618 : * controller is disabled.
619 : */
620 : static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
621 : struct pglist_data *pgdat)
622 : {
623 : struct mem_cgroup_per_node *mz;
624 : struct lruvec *lruvec;
625 :
626 : if (mem_cgroup_disabled()) {
627 : lruvec = &pgdat->__lruvec;
628 : goto out;
629 : }
630 :
631 : if (!memcg)
632 : memcg = root_mem_cgroup;
633 :
634 : mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
635 : lruvec = &mz->lruvec;
636 : out:
637 : /*
638 : * Since a node can be onlined after the mem_cgroup was created,
639 : * we have to be prepared to initialize lruvec->pgdat here;
640 : * and if offlined then reonlined, we need to reinitialize it.
641 : */
642 : if (unlikely(lruvec->pgdat != pgdat))
643 : lruvec->pgdat = pgdat;
644 : return lruvec;
645 : }
646 :
647 : /**
648 : * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
649 : * @page: the page
650 : * @pgdat: pgdat of the page
651 : *
652 : * This function relies on page->mem_cgroup being stable.
653 : */
654 : static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
655 : struct pglist_data *pgdat)
656 : {
657 : struct mem_cgroup *memcg = page_memcg(page);
658 :
659 : VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
660 : return mem_cgroup_lruvec(memcg, pgdat);
661 : }
662 :
663 : static inline bool lruvec_holds_page_lru_lock(struct page *page,
664 : struct lruvec *lruvec)
665 : {
666 : pg_data_t *pgdat = page_pgdat(page);
667 : const struct mem_cgroup *memcg;
668 : struct mem_cgroup_per_node *mz;
669 :
670 : if (mem_cgroup_disabled())
671 : return lruvec == &pgdat->__lruvec;
672 :
673 : mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
674 : memcg = page_memcg(page) ? : root_mem_cgroup;
675 :
676 : return lruvec->pgdat == pgdat && mz->memcg == memcg;
677 : }
678 :
679 : struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
680 :
681 : struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
682 :
683 : struct lruvec *lock_page_lruvec(struct page *page);
684 : struct lruvec *lock_page_lruvec_irq(struct page *page);
685 : struct lruvec *lock_page_lruvec_irqsave(struct page *page,
686 : unsigned long *flags);
687 :
688 : #ifdef CONFIG_DEBUG_VM
689 : void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
690 : #else
691 : static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
692 : {
693 : }
694 : #endif
695 :
696 : static inline
697 : struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
698 : return css ? container_of(css, struct mem_cgroup, css) : NULL;
699 : }
700 :
701 : static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
702 : {
703 : return percpu_ref_tryget(&objcg->refcnt);
704 : }
705 :
706 : static inline void obj_cgroup_get(struct obj_cgroup *objcg)
707 : {
708 : percpu_ref_get(&objcg->refcnt);
709 : }
710 :
711 : static inline void obj_cgroup_put(struct obj_cgroup *objcg)
712 : {
713 : percpu_ref_put(&objcg->refcnt);
714 : }
715 :
716 : /*
717 : * After the initialization objcg->memcg is always pointing at
718 : * a valid memcg, but can be atomically swapped to the parent memcg.
719 : *
720 : * The caller must ensure that the returned memcg won't be released:
721 : * e.g. acquire the rcu_read_lock or css_set_lock.
722 : */
723 : static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
724 : {
725 : return READ_ONCE(objcg->memcg);
726 : }
727 :
728 : static inline void mem_cgroup_put(struct mem_cgroup *memcg)
729 : {
730 : if (memcg)
731 : css_put(&memcg->css);
732 : }
733 :
734 : #define mem_cgroup_from_counter(counter, member) \
735 : container_of(counter, struct mem_cgroup, member)
736 :
737 : struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
738 : struct mem_cgroup *,
739 : struct mem_cgroup_reclaim_cookie *);
740 : void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
741 : int mem_cgroup_scan_tasks(struct mem_cgroup *,
742 : int (*)(struct task_struct *, void *), void *);
743 :
744 : static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
745 : {
746 : if (mem_cgroup_disabled())
747 : return 0;
748 :
749 : return memcg->id.id;
750 : }
751 : struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
752 :
753 : static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
754 : {
755 : return mem_cgroup_from_css(seq_css(m));
756 : }
757 :
758 : static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
759 : {
760 : struct mem_cgroup_per_node *mz;
761 :
762 : if (mem_cgroup_disabled())
763 : return NULL;
764 :
765 : mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
766 : return mz->memcg;
767 : }
768 :
769 : /**
770 : * parent_mem_cgroup - find the accounting parent of a memcg
771 : * @memcg: memcg whose parent to find
772 : *
773 : * Returns the parent memcg, or NULL if this is the root or the memory
774 : * controller is in legacy no-hierarchy mode.
775 : */
776 : static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
777 : {
778 : if (!memcg->memory.parent)
779 : return NULL;
780 : return mem_cgroup_from_counter(memcg->memory.parent, memory);
781 : }
782 :
783 : static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
784 : struct mem_cgroup *root)
785 : {
786 : if (root == memcg)
787 : return true;
788 : return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
789 : }
790 :
791 : static inline bool mm_match_cgroup(struct mm_struct *mm,
792 : struct mem_cgroup *memcg)
793 : {
794 : struct mem_cgroup *task_memcg;
795 : bool match = false;
796 :
797 : rcu_read_lock();
798 : task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 : if (task_memcg)
800 : match = mem_cgroup_is_descendant(task_memcg, memcg);
801 : rcu_read_unlock();
802 : return match;
803 : }
804 :
805 : struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
806 : ino_t page_cgroup_ino(struct page *page);
807 :
808 : static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
809 : {
810 : if (mem_cgroup_disabled())
811 : return true;
812 : return !!(memcg->css.flags & CSS_ONLINE);
813 : }
814 :
815 : /*
816 : * For memory reclaim.
817 : */
818 : int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
819 :
820 : void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
821 : int zid, int nr_pages);
822 :
823 : static inline
824 : unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
825 : enum lru_list lru, int zone_idx)
826 : {
827 : struct mem_cgroup_per_node *mz;
828 :
829 : mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
830 : return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
831 : }
832 :
833 : void mem_cgroup_handle_over_high(void);
834 :
835 : unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
836 :
837 : unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
838 :
839 : void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
840 : struct task_struct *p);
841 :
842 : void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
843 :
844 : static inline void mem_cgroup_enter_user_fault(void)
845 : {
846 : WARN_ON(current->in_user_fault);
847 : current->in_user_fault = 1;
848 : }
849 :
850 : static inline void mem_cgroup_exit_user_fault(void)
851 : {
852 : WARN_ON(!current->in_user_fault);
853 : current->in_user_fault = 0;
854 : }
855 :
856 : static inline bool task_in_memcg_oom(struct task_struct *p)
857 : {
858 : return p->memcg_in_oom;
859 : }
860 :
861 : bool mem_cgroup_oom_synchronize(bool wait);
862 : struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
863 : struct mem_cgroup *oom_domain);
864 : void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
865 :
866 : #ifdef CONFIG_MEMCG_SWAP
867 : extern bool cgroup_memory_noswap;
868 : #endif
869 :
870 : struct mem_cgroup *lock_page_memcg(struct page *page);
871 : void __unlock_page_memcg(struct mem_cgroup *memcg);
872 : void unlock_page_memcg(struct page *page);
873 :
874 : /*
875 : * idx can be of type enum memcg_stat_item or node_stat_item.
876 : * Keep in sync with memcg_exact_page_state().
877 : */
878 : static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
879 : {
880 : long x = atomic_long_read(&memcg->vmstats[idx]);
881 : #ifdef CONFIG_SMP
882 : if (x < 0)
883 : x = 0;
884 : #endif
885 : return x;
886 : }
887 :
888 : /*
889 : * idx can be of type enum memcg_stat_item or node_stat_item.
890 : * Keep in sync with memcg_exact_page_state().
891 : */
892 : static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
893 : int idx)
894 : {
895 : long x = 0;
896 : int cpu;
897 :
898 : for_each_possible_cpu(cpu)
899 : x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
900 : #ifdef CONFIG_SMP
901 : if (x < 0)
902 : x = 0;
903 : #endif
904 : return x;
905 : }
906 :
907 : void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
908 :
909 : /* idx can be of type enum memcg_stat_item or node_stat_item */
910 : static inline void mod_memcg_state(struct mem_cgroup *memcg,
911 : int idx, int val)
912 : {
913 : unsigned long flags;
914 :
915 : local_irq_save(flags);
916 : __mod_memcg_state(memcg, idx, val);
917 : local_irq_restore(flags);
918 : }
919 :
920 : static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
921 : enum node_stat_item idx)
922 : {
923 : struct mem_cgroup_per_node *pn;
924 : long x;
925 :
926 : if (mem_cgroup_disabled())
927 : return node_page_state(lruvec_pgdat(lruvec), idx);
928 :
929 : pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
930 : x = atomic_long_read(&pn->lruvec_stat[idx]);
931 : #ifdef CONFIG_SMP
932 : if (x < 0)
933 : x = 0;
934 : #endif
935 : return x;
936 : }
937 :
938 : static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
939 : enum node_stat_item idx)
940 : {
941 : struct mem_cgroup_per_node *pn;
942 : long x = 0;
943 : int cpu;
944 :
945 : if (mem_cgroup_disabled())
946 : return node_page_state(lruvec_pgdat(lruvec), idx);
947 :
948 : pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
949 : for_each_possible_cpu(cpu)
950 : x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
951 : #ifdef CONFIG_SMP
952 : if (x < 0)
953 : x = 0;
954 : #endif
955 : return x;
956 : }
957 :
958 : void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
959 : int val);
960 : void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
961 :
962 : static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
963 : int val)
964 : {
965 : unsigned long flags;
966 :
967 : local_irq_save(flags);
968 : __mod_lruvec_kmem_state(p, idx, val);
969 : local_irq_restore(flags);
970 : }
971 :
972 : static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
973 : enum node_stat_item idx, int val)
974 : {
975 : unsigned long flags;
976 :
977 : local_irq_save(flags);
978 : __mod_memcg_lruvec_state(lruvec, idx, val);
979 : local_irq_restore(flags);
980 : }
981 :
982 : unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
983 : gfp_t gfp_mask,
984 : unsigned long *total_scanned);
985 :
986 : void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
987 : unsigned long count);
988 :
989 : static inline void count_memcg_events(struct mem_cgroup *memcg,
990 : enum vm_event_item idx,
991 : unsigned long count)
992 : {
993 : unsigned long flags;
994 :
995 : local_irq_save(flags);
996 : __count_memcg_events(memcg, idx, count);
997 : local_irq_restore(flags);
998 : }
999 :
1000 : static inline void count_memcg_page_event(struct page *page,
1001 : enum vm_event_item idx)
1002 : {
1003 : struct mem_cgroup *memcg = page_memcg(page);
1004 :
1005 : if (memcg)
1006 : count_memcg_events(memcg, idx, 1);
1007 : }
1008 :
1009 : static inline void count_memcg_event_mm(struct mm_struct *mm,
1010 : enum vm_event_item idx)
1011 : {
1012 : struct mem_cgroup *memcg;
1013 :
1014 : if (mem_cgroup_disabled())
1015 : return;
1016 :
1017 : rcu_read_lock();
1018 : memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1019 : if (likely(memcg))
1020 : count_memcg_events(memcg, idx, 1);
1021 : rcu_read_unlock();
1022 : }
1023 :
1024 : static inline void memcg_memory_event(struct mem_cgroup *memcg,
1025 : enum memcg_memory_event event)
1026 : {
1027 : bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1028 : event == MEMCG_SWAP_FAIL;
1029 :
1030 : atomic_long_inc(&memcg->memory_events_local[event]);
1031 : if (!swap_event)
1032 : cgroup_file_notify(&memcg->events_local_file);
1033 :
1034 : do {
1035 : atomic_long_inc(&memcg->memory_events[event]);
1036 : if (swap_event)
1037 : cgroup_file_notify(&memcg->swap_events_file);
1038 : else
1039 : cgroup_file_notify(&memcg->events_file);
1040 :
1041 : if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1042 : break;
1043 : if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1044 : break;
1045 : } while ((memcg = parent_mem_cgroup(memcg)) &&
1046 : !mem_cgroup_is_root(memcg));
1047 : }
1048 :
1049 : static inline void memcg_memory_event_mm(struct mm_struct *mm,
1050 : enum memcg_memory_event event)
1051 : {
1052 : struct mem_cgroup *memcg;
1053 :
1054 : if (mem_cgroup_disabled())
1055 : return;
1056 :
1057 : rcu_read_lock();
1058 : memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1059 : if (likely(memcg))
1060 : memcg_memory_event(memcg, event);
1061 : rcu_read_unlock();
1062 : }
1063 :
1064 : void split_page_memcg(struct page *head, unsigned int nr);
1065 :
1066 : #else /* CONFIG_MEMCG */
1067 :
1068 : #define MEM_CGROUP_ID_SHIFT 0
1069 : #define MEM_CGROUP_ID_MAX 0
1070 :
1071 : struct mem_cgroup;
1072 :
1073 5842 : static inline struct mem_cgroup *page_memcg(struct page *page)
1074 : {
1075 5842 : return NULL;
1076 : }
1077 :
1078 24154 : static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1079 : {
1080 24154 : WARN_ON_ONCE(!rcu_read_lock_held());
1081 24150 : return NULL;
1082 : }
1083 :
1084 : static inline struct mem_cgroup *page_memcg_check(struct page *page)
1085 : {
1086 : return NULL;
1087 : }
1088 :
1089 : static inline bool PageMemcgKmem(struct page *page)
1090 : {
1091 : return false;
1092 : }
1093 :
1094 : static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1095 : {
1096 : return true;
1097 : }
1098 :
1099 24150 : static inline bool mem_cgroup_disabled(void)
1100 : {
1101 24150 : return true;
1102 : }
1103 :
1104 : static inline void memcg_memory_event(struct mem_cgroup *memcg,
1105 : enum memcg_memory_event event)
1106 : {
1107 : }
1108 :
1109 0 : static inline void memcg_memory_event_mm(struct mm_struct *mm,
1110 : enum memcg_memory_event event)
1111 : {
1112 0 : }
1113 :
1114 0 : static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1115 : struct mem_cgroup *memcg,
1116 : bool in_low_reclaim)
1117 : {
1118 0 : return 0;
1119 : }
1120 :
1121 0 : static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1122 : struct mem_cgroup *memcg)
1123 : {
1124 0 : }
1125 :
1126 0 : static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1127 : {
1128 0 : return false;
1129 : }
1130 :
1131 0 : static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1132 : {
1133 0 : return false;
1134 : }
1135 :
1136 70455 : static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1137 : gfp_t gfp_mask)
1138 : {
1139 70455 : return 0;
1140 : }
1141 :
1142 32142 : static inline void mem_cgroup_uncharge(struct page *page)
1143 : {
1144 32142 : }
1145 :
1146 26287 : static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1147 : {
1148 26287 : }
1149 :
1150 0 : static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1151 : {
1152 0 : }
1153 :
1154 2 : static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1155 : struct pglist_data *pgdat)
1156 : {
1157 2 : return &pgdat->__lruvec;
1158 : }
1159 :
1160 25434 : static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1161 : struct pglist_data *pgdat)
1162 : {
1163 25434 : return &pgdat->__lruvec;
1164 : }
1165 :
1166 151036 : static inline bool lruvec_holds_page_lru_lock(struct page *page,
1167 : struct lruvec *lruvec)
1168 : {
1169 151036 : pg_data_t *pgdat = page_pgdat(page);
1170 :
1171 151036 : return lruvec == &pgdat->__lruvec;
1172 : }
1173 :
1174 : static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1175 : {
1176 : return NULL;
1177 : }
1178 :
1179 0 : static inline bool mm_match_cgroup(struct mm_struct *mm,
1180 : struct mem_cgroup *memcg)
1181 : {
1182 0 : return true;
1183 : }
1184 :
1185 20 : static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1186 : {
1187 20 : return NULL;
1188 : }
1189 :
1190 7 : static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1191 : {
1192 7 : }
1193 :
1194 0 : static inline struct lruvec *lock_page_lruvec(struct page *page)
1195 : {
1196 0 : struct pglist_data *pgdat = page_pgdat(page);
1197 :
1198 0 : spin_lock(&pgdat->__lruvec.lru_lock);
1199 0 : return &pgdat->__lruvec;
1200 : }
1201 :
1202 13 : static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1203 : {
1204 13 : struct pglist_data *pgdat = page_pgdat(page);
1205 :
1206 13 : spin_lock_irq(&pgdat->__lruvec.lru_lock);
1207 13 : return &pgdat->__lruvec;
1208 : }
1209 :
1210 27669 : static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1211 : unsigned long *flagsp)
1212 : {
1213 27669 : struct pglist_data *pgdat = page_pgdat(page);
1214 :
1215 27669 : spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1216 27669 : return &pgdat->__lruvec;
1217 : }
1218 :
1219 : static inline struct mem_cgroup *
1220 0 : mem_cgroup_iter(struct mem_cgroup *root,
1221 : struct mem_cgroup *prev,
1222 : struct mem_cgroup_reclaim_cookie *reclaim)
1223 : {
1224 0 : return NULL;
1225 : }
1226 :
1227 : static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1228 : struct mem_cgroup *prev)
1229 : {
1230 : }
1231 :
1232 : static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1233 : int (*fn)(struct task_struct *, void *), void *arg)
1234 : {
1235 : return 0;
1236 : }
1237 :
1238 0 : static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1239 : {
1240 0 : return 0;
1241 : }
1242 :
1243 0 : static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1244 : {
1245 0 : WARN_ON_ONCE(id);
1246 : /* XXX: This should always return root_mem_cgroup */
1247 0 : return NULL;
1248 : }
1249 :
1250 : static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1251 : {
1252 : return NULL;
1253 : }
1254 :
1255 41295 : static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1256 : {
1257 17135 : return NULL;
1258 : }
1259 :
1260 : static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1261 : {
1262 : return true;
1263 : }
1264 :
1265 : static inline
1266 : unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1267 : enum lru_list lru, int zone_idx)
1268 : {
1269 : return 0;
1270 : }
1271 :
1272 0 : static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1273 : {
1274 0 : return 0;
1275 : }
1276 :
1277 : static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1278 : {
1279 : return 0;
1280 : }
1281 :
1282 : static inline void
1283 0 : mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1284 : {
1285 0 : }
1286 :
1287 : static inline void
1288 : mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1289 : {
1290 : }
1291 :
1292 1728636 : static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1293 : {
1294 1728636 : return NULL;
1295 : }
1296 :
1297 1284 : static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1298 : {
1299 1284 : }
1300 :
1301 1726892 : static inline void unlock_page_memcg(struct page *page)
1302 : {
1303 1725608 : }
1304 :
1305 51836 : static inline void mem_cgroup_handle_over_high(void)
1306 : {
1307 51836 : }
1308 :
1309 : static inline void mem_cgroup_enter_user_fault(void)
1310 : {
1311 : }
1312 :
1313 162524 : static inline void mem_cgroup_exit_user_fault(void)
1314 : {
1315 162524 : }
1316 :
1317 162524 : static inline bool task_in_memcg_oom(struct task_struct *p)
1318 : {
1319 162524 : return false;
1320 : }
1321 :
1322 0 : static inline bool mem_cgroup_oom_synchronize(bool wait)
1323 : {
1324 0 : return false;
1325 : }
1326 :
1327 0 : static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1328 : struct task_struct *victim, struct mem_cgroup *oom_domain)
1329 : {
1330 0 : return NULL;
1331 : }
1332 :
1333 : static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1334 : {
1335 : }
1336 :
1337 : static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1338 : {
1339 : return 0;
1340 : }
1341 :
1342 : static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1343 : int idx)
1344 : {
1345 : return 0;
1346 : }
1347 :
1348 : static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1349 : int idx,
1350 : int nr)
1351 : {
1352 : }
1353 :
1354 : static inline void mod_memcg_state(struct mem_cgroup *memcg,
1355 : int idx,
1356 : int nr)
1357 : {
1358 : }
1359 :
1360 0 : static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1361 : enum node_stat_item idx)
1362 : {
1363 0 : return node_page_state(lruvec_pgdat(lruvec), idx);
1364 : }
1365 :
1366 : static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1367 : enum node_stat_item idx)
1368 : {
1369 : return node_page_state(lruvec_pgdat(lruvec), idx);
1370 : }
1371 :
1372 : static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1373 : enum node_stat_item idx, int val)
1374 : {
1375 : }
1376 :
1377 0 : static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1378 : int val)
1379 : {
1380 0 : struct page *page = virt_to_head_page(p);
1381 :
1382 0 : __mod_node_page_state(page_pgdat(page), idx, val);
1383 0 : }
1384 :
1385 1752 : static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1386 : int val)
1387 : {
1388 1752 : struct page *page = virt_to_head_page(p);
1389 :
1390 1752 : mod_node_page_state(page_pgdat(page), idx, val);
1391 1752 : }
1392 :
1393 : static inline
1394 0 : unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1395 : gfp_t gfp_mask,
1396 : unsigned long *total_scanned)
1397 : {
1398 0 : return 0;
1399 : }
1400 :
1401 12 : static inline void split_page_memcg(struct page *head, unsigned int nr)
1402 : {
1403 12 : }
1404 :
1405 : static inline void count_memcg_events(struct mem_cgroup *memcg,
1406 : enum vm_event_item idx,
1407 : unsigned long count)
1408 : {
1409 : }
1410 :
1411 17135 : static inline void __count_memcg_events(struct mem_cgroup *memcg,
1412 : enum vm_event_item idx,
1413 : unsigned long count)
1414 : {
1415 0 : }
1416 :
1417 2 : static inline void count_memcg_page_event(struct page *page,
1418 : int idx)
1419 : {
1420 2 : }
1421 :
1422 : static inline
1423 171951 : void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1424 : {
1425 171951 : }
1426 :
1427 0 : static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1428 : {
1429 0 : }
1430 : #endif /* CONFIG_MEMCG */
1431 :
1432 0 : static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1433 : {
1434 0 : __mod_lruvec_kmem_state(p, idx, 1);
1435 0 : }
1436 :
1437 0 : static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1438 : {
1439 0 : __mod_lruvec_kmem_state(p, idx, -1);
1440 0 : }
1441 :
1442 24160 : static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1443 : {
1444 24160 : struct mem_cgroup *memcg;
1445 :
1446 24160 : memcg = lruvec_memcg(lruvec);
1447 24160 : if (!memcg)
1448 24160 : return NULL;
1449 : memcg = parent_mem_cgroup(memcg);
1450 : if (!memcg)
1451 : return NULL;
1452 : return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1453 : }
1454 :
1455 0 : static inline void unlock_page_lruvec(struct lruvec *lruvec)
1456 : {
1457 0 : spin_unlock(&lruvec->lru_lock);
1458 : }
1459 :
1460 13 : static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1461 : {
1462 13 : spin_unlock_irq(&lruvec->lru_lock);
1463 2 : }
1464 :
1465 27669 : static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1466 : unsigned long flags)
1467 : {
1468 27669 : spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1469 21887 : }
1470 :
1471 : /* Don't lock again iff page's lruvec locked */
1472 16 : static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1473 : struct lruvec *locked_lruvec)
1474 : {
1475 16 : if (locked_lruvec) {
1476 14 : if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1477 : return locked_lruvec;
1478 :
1479 0 : unlock_page_lruvec_irq(locked_lruvec);
1480 : }
1481 :
1482 2 : return lock_page_lruvec_irq(page);
1483 : }
1484 :
1485 : /* Don't lock again iff page's lruvec locked */
1486 178601 : static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1487 : struct lruvec *locked_lruvec, unsigned long *flags)
1488 : {
1489 178601 : if (locked_lruvec) {
1490 151022 : if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1491 : return locked_lruvec;
1492 :
1493 0 : unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1494 : }
1495 :
1496 27579 : return lock_page_lruvec_irqsave(page, flags);
1497 : }
1498 :
1499 : #ifdef CONFIG_CGROUP_WRITEBACK
1500 :
1501 : struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1502 : void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1503 : unsigned long *pheadroom, unsigned long *pdirty,
1504 : unsigned long *pwriteback);
1505 :
1506 : void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1507 : struct bdi_writeback *wb);
1508 :
1509 : static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1510 : struct bdi_writeback *wb)
1511 : {
1512 : if (mem_cgroup_disabled())
1513 : return;
1514 :
1515 : if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1516 : mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1517 : }
1518 :
1519 : void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1520 :
1521 : #else /* CONFIG_CGROUP_WRITEBACK */
1522 :
1523 1284 : static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1524 : {
1525 1284 : return NULL;
1526 : }
1527 :
1528 : static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1529 : unsigned long *pfilepages,
1530 : unsigned long *pheadroom,
1531 : unsigned long *pdirty,
1532 : unsigned long *pwriteback)
1533 : {
1534 : }
1535 :
1536 2493 : static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1537 : struct bdi_writeback *wb)
1538 : {
1539 : }
1540 :
1541 0 : static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1542 : {
1543 0 : }
1544 :
1545 : #endif /* CONFIG_CGROUP_WRITEBACK */
1546 :
1547 : struct sock;
1548 : bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1549 : void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1550 : #ifdef CONFIG_MEMCG
1551 : extern struct static_key_false memcg_sockets_enabled_key;
1552 : #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1553 : void mem_cgroup_sk_alloc(struct sock *sk);
1554 : void mem_cgroup_sk_free(struct sock *sk);
1555 : static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1556 : {
1557 : if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1558 : return true;
1559 : do {
1560 : if (time_before(jiffies, memcg->socket_pressure))
1561 : return true;
1562 : } while ((memcg = parent_mem_cgroup(memcg)));
1563 : return false;
1564 : }
1565 :
1566 : extern int memcg_expand_shrinker_maps(int new_id);
1567 :
1568 : extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1569 : int nid, int shrinker_id);
1570 : #else
1571 : #define mem_cgroup_sockets_enabled 0
1572 833 : static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1573 738 : static inline void mem_cgroup_sk_free(struct sock *sk) { };
1574 : static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1575 : {
1576 : return false;
1577 : }
1578 :
1579 : static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1580 : int nid, int shrinker_id)
1581 : {
1582 : }
1583 : #endif
1584 :
1585 : #ifdef CONFIG_MEMCG_KMEM
1586 : int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1587 : void __memcg_kmem_uncharge_page(struct page *page, int order);
1588 :
1589 : struct obj_cgroup *get_obj_cgroup_from_current(void);
1590 :
1591 : int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1592 : void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1593 :
1594 : extern struct static_key_false memcg_kmem_enabled_key;
1595 :
1596 : extern int memcg_nr_cache_ids;
1597 : void memcg_get_cache_ids(void);
1598 : void memcg_put_cache_ids(void);
1599 :
1600 : /*
1601 : * Helper macro to loop through all memcg-specific caches. Callers must still
1602 : * check if the cache is valid (it is either valid or NULL).
1603 : * the slab_mutex must be held when looping through those caches
1604 : */
1605 : #define for_each_memcg_cache_index(_idx) \
1606 : for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1607 :
1608 : static inline bool memcg_kmem_enabled(void)
1609 : {
1610 : return static_branch_likely(&memcg_kmem_enabled_key);
1611 : }
1612 :
1613 : static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1614 : int order)
1615 : {
1616 : if (memcg_kmem_enabled())
1617 : return __memcg_kmem_charge_page(page, gfp, order);
1618 : return 0;
1619 : }
1620 :
1621 : static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1622 : {
1623 : if (memcg_kmem_enabled())
1624 : __memcg_kmem_uncharge_page(page, order);
1625 : }
1626 :
1627 : /*
1628 : * A helper for accessing memcg's kmem_id, used for getting
1629 : * corresponding LRU lists.
1630 : */
1631 : static inline int memcg_cache_id(struct mem_cgroup *memcg)
1632 : {
1633 : return memcg ? memcg->kmemcg_id : -1;
1634 : }
1635 :
1636 : struct mem_cgroup *mem_cgroup_from_obj(void *p);
1637 :
1638 : #else
1639 :
1640 : static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1641 : int order)
1642 : {
1643 : return 0;
1644 : }
1645 :
1646 0 : static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1647 : {
1648 0 : }
1649 :
1650 : static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1651 : int order)
1652 : {
1653 : return 0;
1654 : }
1655 :
1656 : static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1657 : {
1658 : }
1659 :
1660 : #define for_each_memcg_cache_index(_idx) \
1661 : for (; NULL; )
1662 :
1663 192956 : static inline bool memcg_kmem_enabled(void)
1664 : {
1665 192956 : return false;
1666 : }
1667 :
1668 3 : static inline int memcg_cache_id(struct mem_cgroup *memcg)
1669 : {
1670 3 : return -1;
1671 : }
1672 :
1673 445 : static inline void memcg_get_cache_ids(void)
1674 : {
1675 445 : }
1676 :
1677 198 : static inline void memcg_put_cache_ids(void)
1678 : {
1679 247 : }
1680 :
1681 : static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1682 : {
1683 : return NULL;
1684 : }
1685 :
1686 : #endif /* CONFIG_MEMCG_KMEM */
1687 :
1688 : #endif /* _LINUX_MEMCONTROL_H */
|