LCOV - code coverage report
Current view: top level - include/linux - mmzone.h (source / functions) Hit Total Coverage
Test: landlock.info Lines: 70 89 78.7 %
Date: 2021-04-22 12:43:58 Functions: 5 7 71.4 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_MMZONE_H
       3             : #define _LINUX_MMZONE_H
       4             : 
       5             : #ifndef __ASSEMBLY__
       6             : #ifndef __GENERATING_BOUNDS_H
       7             : 
       8             : #include <linux/spinlock.h>
       9             : #include <linux/list.h>
      10             : #include <linux/wait.h>
      11             : #include <linux/bitops.h>
      12             : #include <linux/cache.h>
      13             : #include <linux/threads.h>
      14             : #include <linux/numa.h>
      15             : #include <linux/init.h>
      16             : #include <linux/seqlock.h>
      17             : #include <linux/nodemask.h>
      18             : #include <linux/pageblock-flags.h>
      19             : #include <linux/page-flags-layout.h>
      20             : #include <linux/atomic.h>
      21             : #include <linux/mm_types.h>
      22             : #include <linux/page-flags.h>
      23             : #include <asm/page.h>
      24             : 
      25             : /* Free memory management - zoned buddy allocator.  */
      26             : #ifndef CONFIG_FORCE_MAX_ZONEORDER
      27             : #define MAX_ORDER 11
      28             : #else
      29             : #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
      30             : #endif
      31             : #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
      32             : 
      33             : /*
      34             :  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
      35             :  * costly to service.  That is between allocation orders which should
      36             :  * coalesce naturally under reasonable reclaim pressure and those which
      37             :  * will not.
      38             :  */
      39             : #define PAGE_ALLOC_COSTLY_ORDER 3
      40             : 
      41             : enum migratetype {
      42             :         MIGRATE_UNMOVABLE,
      43             :         MIGRATE_MOVABLE,
      44             :         MIGRATE_RECLAIMABLE,
      45             :         MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
      46             :         MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
      47             : #ifdef CONFIG_CMA
      48             :         /*
      49             :          * MIGRATE_CMA migration type is designed to mimic the way
      50             :          * ZONE_MOVABLE works.  Only movable pages can be allocated
      51             :          * from MIGRATE_CMA pageblocks and page allocator never
      52             :          * implicitly change migration type of MIGRATE_CMA pageblock.
      53             :          *
      54             :          * The way to use it is to change migratetype of a range of
      55             :          * pageblocks to MIGRATE_CMA which can be done by
      56             :          * __free_pageblock_cma() function.  What is important though
      57             :          * is that a range of pageblocks must be aligned to
      58             :          * MAX_ORDER_NR_PAGES should biggest page be bigger then
      59             :          * a single pageblock.
      60             :          */
      61             :         MIGRATE_CMA,
      62             : #endif
      63             : #ifdef CONFIG_MEMORY_ISOLATION
      64             :         MIGRATE_ISOLATE,        /* can't allocate from here */
      65             : #endif
      66             :         MIGRATE_TYPES
      67             : };
      68             : 
      69             : /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
      70             : extern const char * const migratetype_names[MIGRATE_TYPES];
      71             : 
      72             : #ifdef CONFIG_CMA
      73             : #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
      74             : #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
      75             : #else
      76             : #  define is_migrate_cma(migratetype) false
      77             : #  define is_migrate_cma_page(_page) false
      78             : #endif
      79             : 
      80           0 : static inline bool is_migrate_movable(int mt)
      81             : {
      82           0 :         return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
      83             : }
      84             : 
      85             : #define for_each_migratetype_order(order, type) \
      86             :         for (order = 0; order < MAX_ORDER; order++) \
      87             :                 for (type = 0; type < MIGRATE_TYPES; type++)
      88             : 
      89             : extern int page_group_by_mobility_disabled;
      90             : 
      91             : #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
      92             : 
      93             : #define get_pageblock_migratetype(page)                                 \
      94             :         get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
      95             : 
      96             : struct free_area {
      97             :         struct list_head        free_list[MIGRATE_TYPES];
      98             :         unsigned long           nr_free;
      99             : };
     100             : 
     101      143685 : static inline struct page *get_page_from_free_area(struct free_area *area,
     102             :                                             int migratetype)
     103             : {
     104      143685 :         return list_first_entry_or_null(&area->free_list[migratetype],
     105             :                                         struct page, lru);
     106             : }
     107             : 
     108       30542 : static inline bool free_area_empty(struct free_area *area, int migratetype)
     109             : {
     110       30542 :         return list_empty(&area->free_list[migratetype]);
     111             : }
     112             : 
     113             : struct pglist_data;
     114             : 
     115             : /*
     116             :  * Add a wild amount of padding here to ensure datas fall into separate
     117             :  * cachelines.  There are very few zone structures in the machine, so space
     118             :  * consumption is not a concern here.
     119             :  */
     120             : #if defined(CONFIG_SMP)
     121             : struct zone_padding {
     122             :         char x[0];
     123             : } ____cacheline_internodealigned_in_smp;
     124             : #define ZONE_PADDING(name)      struct zone_padding name;
     125             : #else
     126             : #define ZONE_PADDING(name)
     127             : #endif
     128             : 
     129             : #ifdef CONFIG_NUMA
     130             : enum numa_stat_item {
     131             :         NUMA_HIT,               /* allocated in intended node */
     132             :         NUMA_MISS,              /* allocated in non intended node */
     133             :         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
     134             :         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
     135             :         NUMA_LOCAL,             /* allocation from local node */
     136             :         NUMA_OTHER,             /* allocation from other node */
     137             :         NR_VM_NUMA_STAT_ITEMS
     138             : };
     139             : #else
     140             : #define NR_VM_NUMA_STAT_ITEMS 0
     141             : #endif
     142             : 
     143             : enum zone_stat_item {
     144             :         /* First 128 byte cacheline (assuming 64 bit words) */
     145             :         NR_FREE_PAGES,
     146             :         NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
     147             :         NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
     148             :         NR_ZONE_ACTIVE_ANON,
     149             :         NR_ZONE_INACTIVE_FILE,
     150             :         NR_ZONE_ACTIVE_FILE,
     151             :         NR_ZONE_UNEVICTABLE,
     152             :         NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
     153             :         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
     154             :         /* Second 128 byte cacheline */
     155             :         NR_BOUNCE,
     156             : #if IS_ENABLED(CONFIG_ZSMALLOC)
     157             :         NR_ZSPAGES,             /* allocated in zsmalloc */
     158             : #endif
     159             :         NR_FREE_CMA_PAGES,
     160             :         NR_VM_ZONE_STAT_ITEMS };
     161             : 
     162             : enum node_stat_item {
     163             :         NR_LRU_BASE,
     164             :         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
     165             :         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
     166             :         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
     167             :         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
     168             :         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
     169             :         NR_SLAB_RECLAIMABLE_B,
     170             :         NR_SLAB_UNRECLAIMABLE_B,
     171             :         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
     172             :         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
     173             :         WORKINGSET_NODES,
     174             :         WORKINGSET_REFAULT_BASE,
     175             :         WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
     176             :         WORKINGSET_REFAULT_FILE,
     177             :         WORKINGSET_ACTIVATE_BASE,
     178             :         WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
     179             :         WORKINGSET_ACTIVATE_FILE,
     180             :         WORKINGSET_RESTORE_BASE,
     181             :         WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
     182             :         WORKINGSET_RESTORE_FILE,
     183             :         WORKINGSET_NODERECLAIM,
     184             :         NR_ANON_MAPPED, /* Mapped anonymous pages */
     185             :         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
     186             :                            only modified from process context */
     187             :         NR_FILE_PAGES,
     188             :         NR_FILE_DIRTY,
     189             :         NR_WRITEBACK,
     190             :         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
     191             :         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
     192             :         NR_SHMEM_THPS,
     193             :         NR_SHMEM_PMDMAPPED,
     194             :         NR_FILE_THPS,
     195             :         NR_FILE_PMDMAPPED,
     196             :         NR_ANON_THPS,
     197             :         NR_VMSCAN_WRITE,
     198             :         NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
     199             :         NR_DIRTIED,             /* page dirtyings since bootup */
     200             :         NR_WRITTEN,             /* page writings since bootup */
     201             :         NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
     202             :         NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
     203             :         NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
     204             :         NR_KERNEL_STACK_KB,     /* measured in KiB */
     205             : #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
     206             :         NR_KERNEL_SCS_KB,       /* measured in KiB */
     207             : #endif
     208             :         NR_PAGETABLE,           /* used for pagetables */
     209             : #ifdef CONFIG_SWAP
     210             :         NR_SWAPCACHE,
     211             : #endif
     212             :         NR_VM_NODE_STAT_ITEMS
     213             : };
     214             : 
     215             : /*
     216             :  * Returns true if the item should be printed in THPs (/proc/vmstat
     217             :  * currently prints number of anon, file and shmem THPs. But the item
     218             :  * is charged in pages).
     219             :  */
     220           0 : static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
     221             : {
     222           0 :         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
     223             :                 return false;
     224             : 
     225           0 :         return item == NR_ANON_THPS ||
     226           0 :                item == NR_FILE_THPS ||
     227           0 :                item == NR_SHMEM_THPS ||
     228           0 :                item == NR_SHMEM_PMDMAPPED ||
     229             :                item == NR_FILE_PMDMAPPED;
     230             : }
     231             : 
     232             : /*
     233             :  * Returns true if the value is measured in bytes (most vmstat values are
     234             :  * measured in pages). This defines the API part, the internal representation
     235             :  * might be different.
     236             :  */
     237      678107 : static __always_inline bool vmstat_item_in_bytes(int idx)
     238             : {
     239             :         /*
     240             :          * Global and per-node slab counters track slab pages.
     241             :          * It's expected that changes are multiples of PAGE_SIZE.
     242             :          * Internally values are stored in pages.
     243             :          *
     244             :          * Per-memcg and per-lruvec counters track memory, consumed
     245             :          * by individual slab objects. These counters are actually
     246             :          * byte-precise.
     247             :          */
     248      678107 :         return (idx == NR_SLAB_RECLAIMABLE_B ||
     249             :                 idx == NR_SLAB_UNRECLAIMABLE_B);
     250             : }
     251             : 
     252             : /*
     253             :  * We do arithmetic on the LRU lists in various places in the code,
     254             :  * so it is important to keep the active lists LRU_ACTIVE higher in
     255             :  * the array than the corresponding inactive lists, and to keep
     256             :  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
     257             :  *
     258             :  * This has to be kept in sync with the statistics in zone_stat_item
     259             :  * above and the descriptions in vmstat_text in mm/vmstat.c
     260             :  */
     261             : #define LRU_BASE 0
     262             : #define LRU_ACTIVE 1
     263             : #define LRU_FILE 2
     264             : 
     265             : enum lru_list {
     266             :         LRU_INACTIVE_ANON = LRU_BASE,
     267             :         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
     268             :         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
     269             :         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
     270             :         LRU_UNEVICTABLE,
     271             :         NR_LRU_LISTS
     272             : };
     273             : 
     274             : #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
     275             : 
     276             : #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
     277             : 
     278           0 : static inline bool is_file_lru(enum lru_list lru)
     279             : {
     280           0 :         return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
     281             : }
     282             : 
     283           0 : static inline bool is_active_lru(enum lru_list lru)
     284             : {
     285           0 :         return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
     286             : }
     287             : 
     288             : #define ANON_AND_FILE 2
     289             : 
     290             : enum lruvec_flags {
     291             :         LRUVEC_CONGESTED,               /* lruvec has many dirty pages
     292             :                                          * backed by a congested BDI
     293             :                                          */
     294             : };
     295             : 
     296             : struct lruvec {
     297             :         struct list_head                lists[NR_LRU_LISTS];
     298             :         /* per lruvec lru_lock for memcg */
     299             :         spinlock_t                      lru_lock;
     300             :         /*
     301             :          * These track the cost of reclaiming one LRU - file or anon -
     302             :          * over the other. As the observed cost of reclaiming one LRU
     303             :          * increases, the reclaim scan balance tips toward the other.
     304             :          */
     305             :         unsigned long                   anon_cost;
     306             :         unsigned long                   file_cost;
     307             :         /* Non-resident age, driven by LRU movement */
     308             :         atomic_long_t                   nonresident_age;
     309             :         /* Refaults at the time of last reclaim cycle */
     310             :         unsigned long                   refaults[ANON_AND_FILE];
     311             :         /* Various lruvec state flags (enum lruvec_flags) */
     312             :         unsigned long                   flags;
     313             : #ifdef CONFIG_MEMCG
     314             :         struct pglist_data *pgdat;
     315             : #endif
     316             : };
     317             : 
     318             : /* Isolate unmapped pages */
     319             : #define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
     320             : /* Isolate for asynchronous migration */
     321             : #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
     322             : /* Isolate unevictable pages */
     323             : #define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
     324             : 
     325             : /* LRU Isolation modes. */
     326             : typedef unsigned __bitwise isolate_mode_t;
     327             : 
     328             : enum zone_watermarks {
     329             :         WMARK_MIN,
     330             :         WMARK_LOW,
     331             :         WMARK_HIGH,
     332             :         NR_WMARK
     333             : };
     334             : 
     335             : #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
     336             : #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
     337             : #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
     338             : #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
     339             : 
     340             : struct per_cpu_pages {
     341             :         int count;              /* number of pages in the list */
     342             :         int high;               /* high watermark, emptying needed */
     343             :         int batch;              /* chunk size for buddy add/remove */
     344             : 
     345             :         /* Lists of pages, one per migrate type stored on the pcp-lists */
     346             :         struct list_head lists[MIGRATE_PCPTYPES];
     347             : };
     348             : 
     349             : struct per_cpu_pageset {
     350             :         struct per_cpu_pages pcp;
     351             : #ifdef CONFIG_NUMA
     352             :         s8 expire;
     353             :         u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
     354             : #endif
     355             : #ifdef CONFIG_SMP
     356             :         s8 stat_threshold;
     357             :         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
     358             : #endif
     359             : };
     360             : 
     361             : struct per_cpu_nodestat {
     362             :         s8 stat_threshold;
     363             :         s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
     364             : };
     365             : 
     366             : #endif /* !__GENERATING_BOUNDS.H */
     367             : 
     368             : enum zone_type {
     369             :         /*
     370             :          * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
     371             :          * to DMA to all of the addressable memory (ZONE_NORMAL).
     372             :          * On architectures where this area covers the whole 32 bit address
     373             :          * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
     374             :          * DMA addressing constraints. This distinction is important as a 32bit
     375             :          * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
     376             :          * platforms may need both zones as they support peripherals with
     377             :          * different DMA addressing limitations.
     378             :          */
     379             : #ifdef CONFIG_ZONE_DMA
     380             :         ZONE_DMA,
     381             : #endif
     382             : #ifdef CONFIG_ZONE_DMA32
     383             :         ZONE_DMA32,
     384             : #endif
     385             :         /*
     386             :          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
     387             :          * performed on pages in ZONE_NORMAL if the DMA devices support
     388             :          * transfers to all addressable memory.
     389             :          */
     390             :         ZONE_NORMAL,
     391             : #ifdef CONFIG_HIGHMEM
     392             :         /*
     393             :          * A memory area that is only addressable by the kernel through
     394             :          * mapping portions into its own address space. This is for example
     395             :          * used by i386 to allow the kernel to address the memory beyond
     396             :          * 900MB. The kernel will set up special mappings (page
     397             :          * table entries on i386) for each page that the kernel needs to
     398             :          * access.
     399             :          */
     400             :         ZONE_HIGHMEM,
     401             : #endif
     402             :         /*
     403             :          * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
     404             :          * movable pages with few exceptional cases described below. Main use
     405             :          * cases for ZONE_MOVABLE are to make memory offlining/unplug more
     406             :          * likely to succeed, and to locally limit unmovable allocations - e.g.,
     407             :          * to increase the number of THP/huge pages. Notable special cases are:
     408             :          *
     409             :          * 1. Pinned pages: (long-term) pinning of movable pages might
     410             :          *    essentially turn such pages unmovable. Memory offlining might
     411             :          *    retry a long time.
     412             :          * 2. memblock allocations: kernelcore/movablecore setups might create
     413             :          *    situations where ZONE_MOVABLE contains unmovable allocations
     414             :          *    after boot. Memory offlining and allocations fail early.
     415             :          * 3. Memory holes: kernelcore/movablecore setups might create very rare
     416             :          *    situations where ZONE_MOVABLE contains memory holes after boot,
     417             :          *    for example, if we have sections that are only partially
     418             :          *    populated. Memory offlining and allocations fail early.
     419             :          * 4. PG_hwpoison pages: while poisoned pages can be skipped during
     420             :          *    memory offlining, such pages cannot be allocated.
     421             :          * 5. Unmovable PG_offline pages: in paravirtualized environments,
     422             :          *    hotplugged memory blocks might only partially be managed by the
     423             :          *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
     424             :          *    parts not manged by the buddy are unmovable PG_offline pages. In
     425             :          *    some cases (virtio-mem), such pages can be skipped during
     426             :          *    memory offlining, however, cannot be moved/allocated. These
     427             :          *    techniques might use alloc_contig_range() to hide previously
     428             :          *    exposed pages from the buddy again (e.g., to implement some sort
     429             :          *    of memory unplug in virtio-mem).
     430             :          *
     431             :          * In general, no unmovable allocations that degrade memory offlining
     432             :          * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
     433             :          * have to expect that migrating pages in ZONE_MOVABLE can fail (even
     434             :          * if has_unmovable_pages() states that there are no unmovable pages,
     435             :          * there can be false negatives).
     436             :          */
     437             :         ZONE_MOVABLE,
     438             : #ifdef CONFIG_ZONE_DEVICE
     439             :         ZONE_DEVICE,
     440             : #endif
     441             :         __MAX_NR_ZONES
     442             : 
     443             : };
     444             : 
     445             : #ifndef __GENERATING_BOUNDS_H
     446             : 
     447             : #define ASYNC_AND_SYNC 2
     448             : 
     449             : struct zone {
     450             :         /* Read-mostly fields */
     451             : 
     452             :         /* zone watermarks, access with *_wmark_pages(zone) macros */
     453             :         unsigned long _watermark[NR_WMARK];
     454             :         unsigned long watermark_boost;
     455             : 
     456             :         unsigned long nr_reserved_highatomic;
     457             : 
     458             :         /*
     459             :          * We don't know if the memory that we're going to allocate will be
     460             :          * freeable or/and it will be released eventually, so to avoid totally
     461             :          * wasting several GB of ram we must reserve some of the lower zone
     462             :          * memory (otherwise we risk to run OOM on the lower zones despite
     463             :          * there being tons of freeable ram on the higher zones).  This array is
     464             :          * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
     465             :          * changes.
     466             :          */
     467             :         long lowmem_reserve[MAX_NR_ZONES];
     468             : 
     469             : #ifdef CONFIG_NUMA
     470             :         int node;
     471             : #endif
     472             :         struct pglist_data      *zone_pgdat;
     473             :         struct per_cpu_pageset __percpu *pageset;
     474             :         /*
     475             :          * the high and batch values are copied to individual pagesets for
     476             :          * faster access
     477             :          */
     478             :         int pageset_high;
     479             :         int pageset_batch;
     480             : 
     481             : #ifndef CONFIG_SPARSEMEM
     482             :         /*
     483             :          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
     484             :          * In SPARSEMEM, this map is stored in struct mem_section
     485             :          */
     486             :         unsigned long           *pageblock_flags;
     487             : #endif /* CONFIG_SPARSEMEM */
     488             : 
     489             :         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
     490             :         unsigned long           zone_start_pfn;
     491             : 
     492             :         /*
     493             :          * spanned_pages is the total pages spanned by the zone, including
     494             :          * holes, which is calculated as:
     495             :          *      spanned_pages = zone_end_pfn - zone_start_pfn;
     496             :          *
     497             :          * present_pages is physical pages existing within the zone, which
     498             :          * is calculated as:
     499             :          *      present_pages = spanned_pages - absent_pages(pages in holes);
     500             :          *
     501             :          * managed_pages is present pages managed by the buddy system, which
     502             :          * is calculated as (reserved_pages includes pages allocated by the
     503             :          * bootmem allocator):
     504             :          *      managed_pages = present_pages - reserved_pages;
     505             :          *
     506             :          * cma pages is present pages that are assigned for CMA use
     507             :          * (MIGRATE_CMA).
     508             :          *
     509             :          * So present_pages may be used by memory hotplug or memory power
     510             :          * management logic to figure out unmanaged pages by checking
     511             :          * (present_pages - managed_pages). And managed_pages should be used
     512             :          * by page allocator and vm scanner to calculate all kinds of watermarks
     513             :          * and thresholds.
     514             :          *
     515             :          * Locking rules:
     516             :          *
     517             :          * zone_start_pfn and spanned_pages are protected by span_seqlock.
     518             :          * It is a seqlock because it has to be read outside of zone->lock,
     519             :          * and it is done in the main allocator path.  But, it is written
     520             :          * quite infrequently.
     521             :          *
     522             :          * The span_seq lock is declared along with zone->lock because it is
     523             :          * frequently read in proximity to zone->lock.  It's good to
     524             :          * give them a chance of being in the same cacheline.
     525             :          *
     526             :          * Write access to present_pages at runtime should be protected by
     527             :          * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
     528             :          * present_pages should get_online_mems() to get a stable value.
     529             :          */
     530             :         atomic_long_t           managed_pages;
     531             :         unsigned long           spanned_pages;
     532             :         unsigned long           present_pages;
     533             : #ifdef CONFIG_CMA
     534             :         unsigned long           cma_pages;
     535             : #endif
     536             : 
     537             :         const char              *name;
     538             : 
     539             : #ifdef CONFIG_MEMORY_ISOLATION
     540             :         /*
     541             :          * Number of isolated pageblock. It is used to solve incorrect
     542             :          * freepage counting problem due to racy retrieving migratetype
     543             :          * of pageblock. Protected by zone->lock.
     544             :          */
     545             :         unsigned long           nr_isolate_pageblock;
     546             : #endif
     547             : 
     548             : #ifdef CONFIG_MEMORY_HOTPLUG
     549             :         /* see spanned/present_pages for more description */
     550             :         seqlock_t               span_seqlock;
     551             : #endif
     552             : 
     553             :         int initialized;
     554             : 
     555             :         /* Write-intensive fields used from the page allocator */
     556             :         ZONE_PADDING(_pad1_)
     557             : 
     558             :         /* free areas of different sizes */
     559             :         struct free_area        free_area[MAX_ORDER];
     560             : 
     561             :         /* zone flags, see below */
     562             :         unsigned long           flags;
     563             : 
     564             :         /* Primarily protects free_area */
     565             :         spinlock_t              lock;
     566             : 
     567             :         /* Write-intensive fields used by compaction and vmstats. */
     568             :         ZONE_PADDING(_pad2_)
     569             : 
     570             :         /*
     571             :          * When free pages are below this point, additional steps are taken
     572             :          * when reading the number of free pages to avoid per-cpu counter
     573             :          * drift allowing watermarks to be breached
     574             :          */
     575             :         unsigned long percpu_drift_mark;
     576             : 
     577             : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
     578             :         /* pfn where compaction free scanner should start */
     579             :         unsigned long           compact_cached_free_pfn;
     580             :         /* pfn where compaction migration scanner should start */
     581             :         unsigned long           compact_cached_migrate_pfn[ASYNC_AND_SYNC];
     582             :         unsigned long           compact_init_migrate_pfn;
     583             :         unsigned long           compact_init_free_pfn;
     584             : #endif
     585             : 
     586             : #ifdef CONFIG_COMPACTION
     587             :         /*
     588             :          * On compaction failure, 1<<compact_defer_shift compactions
     589             :          * are skipped before trying again. The number attempted since
     590             :          * last failure is tracked with compact_considered.
     591             :          * compact_order_failed is the minimum compaction failed order.
     592             :          */
     593             :         unsigned int            compact_considered;
     594             :         unsigned int            compact_defer_shift;
     595             :         int                     compact_order_failed;
     596             : #endif
     597             : 
     598             : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
     599             :         /* Set to true when the PG_migrate_skip bits should be cleared */
     600             :         bool                    compact_blockskip_flush;
     601             : #endif
     602             : 
     603             :         bool                    contiguous;
     604             : 
     605             :         ZONE_PADDING(_pad3_)
     606             :         /* Zone statistics */
     607             :         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
     608             :         atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
     609             : } ____cacheline_internodealigned_in_smp;
     610             : 
     611             : enum pgdat_flags {
     612             :         PGDAT_DIRTY,                    /* reclaim scanning has recently found
     613             :                                          * many dirty file pages at the tail
     614             :                                          * of the LRU.
     615             :                                          */
     616             :         PGDAT_WRITEBACK,                /* reclaim scanning has recently found
     617             :                                          * many pages under writeback
     618             :                                          */
     619             :         PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
     620             : };
     621             : 
     622             : enum zone_flags {
     623             :         ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
     624             :                                          * Cleared when kswapd is woken.
     625             :                                          */
     626             : };
     627             : 
     628          13 : static inline unsigned long zone_managed_pages(struct zone *zone)
     629             : {
     630          49 :         return (unsigned long)atomic_long_read(&zone->managed_pages);
     631             : }
     632             : 
     633           0 : static inline unsigned long zone_cma_pages(struct zone *zone)
     634             : {
     635             : #ifdef CONFIG_CMA
     636             :         return zone->cma_pages;
     637             : #else
     638           0 :         return 0;
     639             : #endif
     640             : }
     641             : 
     642      291468 : static inline unsigned long zone_end_pfn(const struct zone *zone)
     643             : {
     644         257 :         return zone->zone_start_pfn + zone->spanned_pages;
     645             : }
     646             : 
     647      290947 : static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
     648             : {
     649      290947 :         return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
     650             : }
     651             : 
     652       37450 : static inline bool zone_is_initialized(struct zone *zone)
     653             : {
     654       37450 :         return zone->initialized;
     655             : }
     656             : 
     657             : static inline bool zone_is_empty(struct zone *zone)
     658             : {
     659             :         return zone->spanned_pages == 0;
     660             : }
     661             : 
     662             : /*
     663             :  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
     664             :  * intersection with the given zone
     665             :  */
     666             : static inline bool zone_intersects(struct zone *zone,
     667             :                 unsigned long start_pfn, unsigned long nr_pages)
     668             : {
     669             :         if (zone_is_empty(zone))
     670             :                 return false;
     671             :         if (start_pfn >= zone_end_pfn(zone) ||
     672             :             start_pfn + nr_pages <= zone->zone_start_pfn)
     673             :                 return false;
     674             : 
     675             :         return true;
     676             : }
     677             : 
     678             : /*
     679             :  * The "priority" of VM scanning is how much of the queues we will scan in one
     680             :  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
     681             :  * queues ("queue_length >> 12") during an aging round.
     682             :  */
     683             : #define DEF_PRIORITY 12
     684             : 
     685             : /* Maximum number of zones on a zonelist */
     686             : #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
     687             : 
     688             : enum {
     689             :         ZONELIST_FALLBACK,      /* zonelist with fallback */
     690             : #ifdef CONFIG_NUMA
     691             :         /*
     692             :          * The NUMA zonelists are doubled because we need zonelists that
     693             :          * restrict the allocations to a single node for __GFP_THISNODE.
     694             :          */
     695             :         ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
     696             : #endif
     697             :         MAX_ZONELISTS
     698             : };
     699             : 
     700             : /*
     701             :  * This struct contains information about a zone in a zonelist. It is stored
     702             :  * here to avoid dereferences into large structures and lookups of tables
     703             :  */
     704             : struct zoneref {
     705             :         struct zone *zone;      /* Pointer to actual zone */
     706             :         int zone_idx;           /* zone_idx(zoneref->zone) */
     707             : };
     708             : 
     709             : /*
     710             :  * One allocation request operates on a zonelist. A zonelist
     711             :  * is a list of zones, the first one is the 'goal' of the
     712             :  * allocation, the other zones are fallback zones, in decreasing
     713             :  * priority.
     714             :  *
     715             :  * To speed the reading of the zonelist, the zonerefs contain the zone index
     716             :  * of the entry being read. Helper functions to access information given
     717             :  * a struct zoneref are
     718             :  *
     719             :  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
     720             :  * zonelist_zone_idx()  - Return the index of the zone for an entry
     721             :  * zonelist_node_idx()  - Return the index of the node for an entry
     722             :  */
     723             : struct zonelist {
     724             :         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
     725             : };
     726             : 
     727             : #ifndef CONFIG_DISCONTIGMEM
     728             : /* The array of struct pages - for discontigmem use pgdat->lmem_map */
     729             : extern struct page *mem_map;
     730             : #endif
     731             : 
     732             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     733             : struct deferred_split {
     734             :         spinlock_t split_queue_lock;
     735             :         struct list_head split_queue;
     736             :         unsigned long split_queue_len;
     737             : };
     738             : #endif
     739             : 
     740             : /*
     741             :  * On NUMA machines, each NUMA node would have a pg_data_t to describe
     742             :  * it's memory layout. On UMA machines there is a single pglist_data which
     743             :  * describes the whole memory.
     744             :  *
     745             :  * Memory statistics and page replacement data structures are maintained on a
     746             :  * per-zone basis.
     747             :  */
     748             : typedef struct pglist_data {
     749             :         /*
     750             :          * node_zones contains just the zones for THIS node. Not all of the
     751             :          * zones may be populated, but it is the full list. It is referenced by
     752             :          * this node's node_zonelists as well as other node's node_zonelists.
     753             :          */
     754             :         struct zone node_zones[MAX_NR_ZONES];
     755             : 
     756             :         /*
     757             :          * node_zonelists contains references to all zones in all nodes.
     758             :          * Generally the first zones will be references to this node's
     759             :          * node_zones.
     760             :          */
     761             :         struct zonelist node_zonelists[MAX_ZONELISTS];
     762             : 
     763             :         int nr_zones; /* number of populated zones in this node */
     764             : #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
     765             :         struct page *node_mem_map;
     766             : #ifdef CONFIG_PAGE_EXTENSION
     767             :         struct page_ext *node_page_ext;
     768             : #endif
     769             : #endif
     770             : #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
     771             :         /*
     772             :          * Must be held any time you expect node_start_pfn,
     773             :          * node_present_pages, node_spanned_pages or nr_zones to stay constant.
     774             :          * Also synchronizes pgdat->first_deferred_pfn during deferred page
     775             :          * init.
     776             :          *
     777             :          * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
     778             :          * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
     779             :          * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
     780             :          *
     781             :          * Nests above zone->lock and zone->span_seqlock
     782             :          */
     783             :         spinlock_t node_size_lock;
     784             : #endif
     785             :         unsigned long node_start_pfn;
     786             :         unsigned long node_present_pages; /* total number of physical pages */
     787             :         unsigned long node_spanned_pages; /* total size of physical page
     788             :                                              range, including holes */
     789             :         int node_id;
     790             :         wait_queue_head_t kswapd_wait;
     791             :         wait_queue_head_t pfmemalloc_wait;
     792             :         struct task_struct *kswapd;     /* Protected by
     793             :                                            mem_hotplug_begin/end() */
     794             :         int kswapd_order;
     795             :         enum zone_type kswapd_highest_zoneidx;
     796             : 
     797             :         int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
     798             : 
     799             : #ifdef CONFIG_COMPACTION
     800             :         int kcompactd_max_order;
     801             :         enum zone_type kcompactd_highest_zoneidx;
     802             :         wait_queue_head_t kcompactd_wait;
     803             :         struct task_struct *kcompactd;
     804             : #endif
     805             :         /*
     806             :          * This is a per-node reserve of pages that are not available
     807             :          * to userspace allocations.
     808             :          */
     809             :         unsigned long           totalreserve_pages;
     810             : 
     811             : #ifdef CONFIG_NUMA
     812             :         /*
     813             :          * node reclaim becomes active if more unmapped pages exist.
     814             :          */
     815             :         unsigned long           min_unmapped_pages;
     816             :         unsigned long           min_slab_pages;
     817             : #endif /* CONFIG_NUMA */
     818             : 
     819             :         /* Write-intensive fields used by page reclaim */
     820             :         ZONE_PADDING(_pad1_)
     821             : 
     822             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
     823             :         /*
     824             :          * If memory initialisation on large machines is deferred then this
     825             :          * is the first PFN that needs to be initialised.
     826             :          */
     827             :         unsigned long first_deferred_pfn;
     828             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
     829             : 
     830             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     831             :         struct deferred_split deferred_split_queue;
     832             : #endif
     833             : 
     834             :         /* Fields commonly accessed by the page reclaim scanner */
     835             : 
     836             :         /*
     837             :          * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
     838             :          *
     839             :          * Use mem_cgroup_lruvec() to look up lruvecs.
     840             :          */
     841             :         struct lruvec           __lruvec;
     842             : 
     843             :         unsigned long           flags;
     844             : 
     845             :         ZONE_PADDING(_pad2_)
     846             : 
     847             :         /* Per-node vmstats */
     848             :         struct per_cpu_nodestat __percpu *per_cpu_nodestats;
     849             :         atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
     850             : } pg_data_t;
     851             : 
     852             : #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
     853             : #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
     854             : #ifdef CONFIG_FLAT_NODE_MEM_MAP
     855             : #define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
     856             : #else
     857             : #define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
     858             : #endif
     859             : #define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
     860             : 
     861             : #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
     862             : #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
     863             : 
     864           0 : static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
     865             : {
     866           0 :         return pgdat->node_start_pfn + pgdat->node_spanned_pages;
     867             : }
     868             : 
     869             : static inline bool pgdat_is_empty(pg_data_t *pgdat)
     870             : {
     871             :         return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
     872             : }
     873             : 
     874             : #include <linux/memory_hotplug.h>
     875             : 
     876             : void build_all_zonelists(pg_data_t *pgdat);
     877             : void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
     878             :                    enum zone_type highest_zoneidx);
     879             : bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
     880             :                          int highest_zoneidx, unsigned int alloc_flags,
     881             :                          long free_pages);
     882             : bool zone_watermark_ok(struct zone *z, unsigned int order,
     883             :                 unsigned long mark, int highest_zoneidx,
     884             :                 unsigned int alloc_flags);
     885             : bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
     886             :                 unsigned long mark, int highest_zoneidx);
     887             : /*
     888             :  * Memory initialization context, use to differentiate memory added by
     889             :  * the platform statically or via memory hotplug interface.
     890             :  */
     891             : enum meminit_context {
     892             :         MEMINIT_EARLY,
     893             :         MEMINIT_HOTPLUG,
     894             : };
     895             : 
     896             : extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
     897             :                                      unsigned long size);
     898             : 
     899             : extern void lruvec_init(struct lruvec *lruvec);
     900             : 
     901      196996 : static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
     902             : {
     903             : #ifdef CONFIG_MEMCG
     904             :         return lruvec->pgdat;
     905             : #else
     906      196996 :         return container_of(lruvec, struct pglist_data, __lruvec);
     907             : #endif
     908             : }
     909             : 
     910             : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
     911             : int local_memory_node(int node_id);
     912             : #else
     913             : static inline int local_memory_node(int node_id) { return node_id; };
     914             : #endif
     915             : 
     916             : /*
     917             :  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
     918             :  */
     919             : #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
     920             : 
     921             : #ifdef CONFIG_ZONE_DEVICE
     922             : static inline bool zone_is_zone_device(struct zone *zone)
     923             : {
     924             :         return zone_idx(zone) == ZONE_DEVICE;
     925             : }
     926             : #else
     927             : static inline bool zone_is_zone_device(struct zone *zone)
     928             : {
     929             :         return false;
     930             : }
     931             : #endif
     932             : 
     933             : /*
     934             :  * Returns true if a zone has pages managed by the buddy allocator.
     935             :  * All the reclaim decisions have to use this function rather than
     936             :  * populated_zone(). If the whole zone is reserved then we can easily
     937             :  * end up with populated_zone() && !managed_zone().
     938             :  */
     939           8 : static inline bool managed_zone(struct zone *zone)
     940             : {
     941           8 :         return zone_managed_pages(zone);
     942             : }
     943             : 
     944             : /* Returns true if a zone has memory */
     945        8207 : static inline bool populated_zone(struct zone *zone)
     946             : {
     947        8207 :         return zone->present_pages;
     948             : }
     949             : 
     950             : #ifdef CONFIG_NUMA
     951      413673 : static inline int zone_to_nid(struct zone *zone)
     952             : {
     953      220669 :         return zone->node;
     954             : }
     955             : 
     956           3 : static inline void zone_set_nid(struct zone *zone, int nid)
     957             : {
     958           3 :         zone->node = nid;
     959             : }
     960             : #else
     961             : static inline int zone_to_nid(struct zone *zone)
     962             : {
     963             :         return 0;
     964             : }
     965             : 
     966             : static inline void zone_set_nid(struct zone *zone, int nid) {}
     967             : #endif
     968             : 
     969             : extern int movable_zone;
     970             : 
     971             : #ifdef CONFIG_HIGHMEM
     972             : static inline int zone_movable_is_highmem(void)
     973             : {
     974             : #ifdef CONFIG_NEED_MULTIPLE_NODES
     975             :         return movable_zone == ZONE_HIGHMEM;
     976             : #else
     977             :         return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
     978             : #endif
     979             : }
     980             : #endif
     981             : 
     982           6 : static inline int is_highmem_idx(enum zone_type idx)
     983             : {
     984             : #ifdef CONFIG_HIGHMEM
     985             :         return (idx == ZONE_HIGHMEM ||
     986             :                 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
     987             : #else
     988           6 :         return 0;
     989             : #endif
     990             : }
     991             : 
     992             : /**
     993             :  * is_highmem - helper function to quickly check if a struct zone is a
     994             :  *              highmem zone or not.  This is an attempt to keep references
     995             :  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
     996             :  * @zone - pointer to struct zone variable
     997             :  */
     998          12 : static inline int is_highmem(struct zone *zone)
     999             : {
    1000             : #ifdef CONFIG_HIGHMEM
    1001             :         return is_highmem_idx(zone_idx(zone));
    1002             : #else
    1003          12 :         return 0;
    1004             : #endif
    1005             : }
    1006             : 
    1007             : /* These two functions are used to setup the per zone pages min values */
    1008             : struct ctl_table;
    1009             : 
    1010             : int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
    1011             :                 loff_t *);
    1012             : int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
    1013             :                 size_t *, loff_t *);
    1014             : extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
    1015             : int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
    1016             :                 size_t *, loff_t *);
    1017             : int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
    1018             :                 void *, size_t *, loff_t *);
    1019             : int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
    1020             :                 void *, size_t *, loff_t *);
    1021             : int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
    1022             :                 void *, size_t *, loff_t *);
    1023             : int numa_zonelist_order_handler(struct ctl_table *, int,
    1024             :                 void *, size_t *, loff_t *);
    1025             : extern int percpu_pagelist_fraction;
    1026             : extern char numa_zonelist_order[];
    1027             : #define NUMA_ZONELIST_ORDER_LEN 16
    1028             : 
    1029             : #ifndef CONFIG_NEED_MULTIPLE_NODES
    1030             : 
    1031             : extern struct pglist_data contig_page_data;
    1032             : #define NODE_DATA(nid)          (&contig_page_data)
    1033             : #define NODE_MEM_MAP(nid)       mem_map
    1034             : 
    1035             : #else /* CONFIG_NEED_MULTIPLE_NODES */
    1036             : 
    1037             : #include <asm/mmzone.h>
    1038             : 
    1039             : #endif /* !CONFIG_NEED_MULTIPLE_NODES */
    1040             : 
    1041             : extern struct pglist_data *first_online_pgdat(void);
    1042             : extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
    1043             : extern struct zone *next_zone(struct zone *zone);
    1044             : 
    1045             : /**
    1046             :  * for_each_online_pgdat - helper macro to iterate over all online nodes
    1047             :  * @pgdat - pointer to a pg_data_t variable
    1048             :  */
    1049             : #define for_each_online_pgdat(pgdat)                    \
    1050             :         for (pgdat = first_online_pgdat();              \
    1051             :              pgdat;                                     \
    1052             :              pgdat = next_online_pgdat(pgdat))
    1053             : /**
    1054             :  * for_each_zone - helper macro to iterate over all memory zones
    1055             :  * @zone - pointer to struct zone variable
    1056             :  *
    1057             :  * The user only needs to declare the zone variable, for_each_zone
    1058             :  * fills it in.
    1059             :  */
    1060             : #define for_each_zone(zone)                             \
    1061             :         for (zone = (first_online_pgdat())->node_zones; \
    1062             :              zone;                                      \
    1063             :              zone = next_zone(zone))
    1064             : 
    1065             : #define for_each_populated_zone(zone)                   \
    1066             :         for (zone = (first_online_pgdat())->node_zones; \
    1067             :              zone;                                      \
    1068             :              zone = next_zone(zone))                    \
    1069             :                 if (!populated_zone(zone))              \
    1070             :                         ; /* do nothing */              \
    1071             :                 else
    1072             : 
    1073       55031 : static inline struct zone *zonelist_zone(struct zoneref *zoneref)
    1074             : {
    1075       55031 :         return zoneref->zone;
    1076             : }
    1077             : 
    1078      248160 : static inline int zonelist_zone_idx(struct zoneref *zoneref)
    1079             : {
    1080      248160 :         return zoneref->zone_idx;
    1081             : }
    1082             : 
    1083           0 : static inline int zonelist_node_idx(struct zoneref *zoneref)
    1084             : {
    1085           0 :         return zone_to_nid(zoneref->zone);
    1086             : }
    1087             : 
    1088             : struct zoneref *__next_zones_zonelist(struct zoneref *z,
    1089             :                                         enum zone_type highest_zoneidx,
    1090             :                                         nodemask_t *nodes);
    1091             : 
    1092             : /**
    1093             :  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
    1094             :  * @z - The cursor used as a starting point for the search
    1095             :  * @highest_zoneidx - The zone index of the highest zone to return
    1096             :  * @nodes - An optional nodemask to filter the zonelist with
    1097             :  *
    1098             :  * This function returns the next zone at or below a given zone index that is
    1099             :  * within the allowed nodemask using a cursor as the starting point for the
    1100             :  * search. The zoneref returned is a cursor that represents the current zone
    1101             :  * being examined. It should be advanced by one before calling
    1102             :  * next_zones_zonelist again.
    1103             :  */
    1104      248160 : static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
    1105             :                                         enum zone_type highest_zoneidx,
    1106             :                                         nodemask_t *nodes)
    1107             : {
    1108      220642 :         if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
    1109             :                 return z;
    1110           0 :         return __next_zones_zonelist(z, highest_zoneidx, nodes);
    1111             : }
    1112             : 
    1113             : /**
    1114             :  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
    1115             :  * @zonelist - The zonelist to search for a suitable zone
    1116             :  * @highest_zoneidx - The zone index of the highest zone to return
    1117             :  * @nodes - An optional nodemask to filter the zonelist with
    1118             :  * @return - Zoneref pointer for the first suitable zone found (see below)
    1119             :  *
    1120             :  * This function returns the first zone at or below a given zone index that is
    1121             :  * within the allowed nodemask. The zoneref returned is a cursor that can be
    1122             :  * used to iterate the zonelist with next_zones_zonelist by advancing it by
    1123             :  * one before calling.
    1124             :  *
    1125             :  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
    1126             :  * never NULL). This may happen either genuinely, or due to concurrent nodemask
    1127             :  * update due to cpuset modification.
    1128             :  */
    1129      220647 : static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
    1130             :                                         enum zone_type highest_zoneidx,
    1131             :                                         nodemask_t *nodes)
    1132             : {
    1133      220647 :         return next_zones_zonelist(zonelist->_zonerefs,
    1134             :                                                         highest_zoneidx, nodes);
    1135             : }
    1136             : 
    1137             : /**
    1138             :  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
    1139             :  * @zone - The current zone in the iterator
    1140             :  * @z - The current pointer within zonelist->_zonerefs being iterated
    1141             :  * @zlist - The zonelist being iterated
    1142             :  * @highidx - The zone index of the highest zone to return
    1143             :  * @nodemask - Nodemask allowed by the allocator
    1144             :  *
    1145             :  * This iterator iterates though all zones at or below a given zone index and
    1146             :  * within a given nodemask
    1147             :  */
    1148             : #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
    1149             :         for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
    1150             :                 zone;                                                   \
    1151             :                 z = next_zones_zonelist(++z, highidx, nodemask),        \
    1152             :                         zone = zonelist_zone(z))
    1153             : 
    1154             : #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
    1155             :         for (zone = z->zone; \
    1156             :                 zone;                                                   \
    1157             :                 z = next_zones_zonelist(++z, highidx, nodemask),        \
    1158             :                         zone = zonelist_zone(z))
    1159             : 
    1160             : 
    1161             : /**
    1162             :  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
    1163             :  * @zone - The current zone in the iterator
    1164             :  * @z - The current pointer within zonelist->zones being iterated
    1165             :  * @zlist - The zonelist being iterated
    1166             :  * @highidx - The zone index of the highest zone to return
    1167             :  *
    1168             :  * This iterator iterates though all zones at or below a given zone index.
    1169             :  */
    1170             : #define for_each_zone_zonelist(zone, z, zlist, highidx) \
    1171             :         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
    1172             : 
    1173             : #ifdef CONFIG_SPARSEMEM
    1174             : #include <asm/sparsemem.h>
    1175             : #endif
    1176             : 
    1177             : #ifdef CONFIG_FLATMEM
    1178             : #define pfn_to_nid(pfn)         (0)
    1179             : #endif
    1180             : 
    1181             : #ifdef CONFIG_SPARSEMEM
    1182             : 
    1183             : /*
    1184             :  * SECTION_SHIFT                #bits space required to store a section #
    1185             :  *
    1186             :  * PA_SECTION_SHIFT             physical address to/from section number
    1187             :  * PFN_SECTION_SHIFT            pfn to/from section number
    1188             :  */
    1189             : #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
    1190             : #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
    1191             : 
    1192             : #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
    1193             : 
    1194             : #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
    1195             : #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
    1196             : 
    1197             : #define SECTION_BLOCKFLAGS_BITS \
    1198             :         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
    1199             : 
    1200             : #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
    1201             : #error Allocator MAX_ORDER exceeds SECTION_SIZE
    1202             : #endif
    1203             : 
    1204     8199259 : static inline unsigned long pfn_to_section_nr(unsigned long pfn)
    1205             : {
    1206     8199259 :         return pfn >> PFN_SECTION_SHIFT;
    1207             : }
    1208          16 : static inline unsigned long section_nr_to_pfn(unsigned long sec)
    1209             : {
    1210          16 :         return sec << PFN_SECTION_SHIFT;
    1211             : }
    1212             : 
    1213             : #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
    1214             : #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
    1215             : 
    1216             : #define SUBSECTION_SHIFT 21
    1217             : #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
    1218             : 
    1219             : #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
    1220             : #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
    1221             : #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
    1222             : 
    1223             : #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
    1224             : #error Subsection size exceeds section size
    1225             : #else
    1226             : #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
    1227             : #endif
    1228             : 
    1229             : #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
    1230             : #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
    1231             : 
    1232             : struct mem_section_usage {
    1233             : #ifdef CONFIG_SPARSEMEM_VMEMMAP
    1234             :         DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
    1235             : #endif
    1236             :         /* See declaration of similar field in struct zone */
    1237             :         unsigned long pageblock_flags[0];
    1238             : };
    1239             : 
    1240             : void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
    1241             : 
    1242             : struct page;
    1243             : struct page_ext;
    1244             : struct mem_section {
    1245             :         /*
    1246             :          * This is, logically, a pointer to an array of struct
    1247             :          * pages.  However, it is stored with some other magic.
    1248             :          * (see sparse.c::sparse_init_one_section())
    1249             :          *
    1250             :          * Additionally during early boot we encode node id of
    1251             :          * the location of the section here to guide allocation.
    1252             :          * (see sparse.c::memory_present())
    1253             :          *
    1254             :          * Making it a UL at least makes someone do a cast
    1255             :          * before using it wrong.
    1256             :          */
    1257             :         unsigned long section_mem_map;
    1258             : 
    1259             :         struct mem_section_usage *usage;
    1260             : #ifdef CONFIG_PAGE_EXTENSION
    1261             :         /*
    1262             :          * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
    1263             :          * section. (see page_ext.h about this.)
    1264             :          */
    1265             :         struct page_ext *page_ext;
    1266             :         unsigned long pad;
    1267             : #endif
    1268             :         /*
    1269             :          * WARNING: mem_section must be a power-of-2 in size for the
    1270             :          * calculation and use of SECTION_ROOT_MASK to make sense.
    1271             :          */
    1272             : };
    1273             : 
    1274             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1275             : #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
    1276             : #else
    1277             : #define SECTIONS_PER_ROOT       1
    1278             : #endif
    1279             : 
    1280             : #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
    1281             : #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
    1282             : #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
    1283             : 
    1284             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1285             : extern struct mem_section **mem_section;
    1286             : #else
    1287             : extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
    1288             : #endif
    1289             : 
    1290      148615 : static inline unsigned long *section_to_usemap(struct mem_section *ms)
    1291             : {
    1292      148615 :         return ms->usage->pageblock_flags;
    1293             : }
    1294             : 
    1295    12283222 : static inline struct mem_section *__nr_to_section(unsigned long nr)
    1296             : {
    1297             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1298    12283222 :         if (!mem_section)
    1299             :                 return NULL;
    1300             : #endif
    1301    12283222 :         if (!mem_section[SECTION_NR_TO_ROOT(nr)])
    1302             :                 return NULL;
    1303    12283222 :         return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
    1304             : }
    1305             : extern unsigned long __section_nr(struct mem_section *ms);
    1306             : extern size_t mem_section_usage_size(void);
    1307             : 
    1308             : /*
    1309             :  * We use the lower bits of the mem_map pointer to store
    1310             :  * a little bit of information.  The pointer is calculated
    1311             :  * as mem_map - section_nr_to_pfn(pnum).  The result is
    1312             :  * aligned to the minimum alignment of the two values:
    1313             :  *   1. All mem_map arrays are page-aligned.
    1314             :  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
    1315             :  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
    1316             :  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
    1317             :  *      worst combination is powerpc with 256k pages,
    1318             :  *      which results in PFN_SECTION_SHIFT equal 6.
    1319             :  * To sum it up, at least 6 bits are available.
    1320             :  */
    1321             : #define SECTION_MARKED_PRESENT          (1UL<<0)
    1322             : #define SECTION_HAS_MEM_MAP             (1UL<<1)
    1323             : #define SECTION_IS_ONLINE               (1UL<<2)
    1324             : #define SECTION_IS_EARLY                (1UL<<3)
    1325             : #define SECTION_TAINT_ZONE_DEVICE       (1UL<<4)
    1326             : #define SECTION_MAP_LAST_BIT            (1UL<<5)
    1327             : #define SECTION_MAP_MASK                (~(SECTION_MAP_LAST_BIT-1))
    1328             : #define SECTION_NID_SHIFT               3
    1329             : 
    1330    12061171 : static inline struct page *__section_mem_map_addr(struct mem_section *section)
    1331             : {
    1332    12061171 :         unsigned long map = section->section_mem_map;
    1333    12061171 :         map &= SECTION_MAP_MASK;
    1334     5381811 :         return (struct page *)map;
    1335             : }
    1336             : 
    1337          16 : static inline int present_section(struct mem_section *section)
    1338             : {
    1339          16 :         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
    1340             : }
    1341             : 
    1342          16 : static inline int present_section_nr(unsigned long nr)
    1343             : {
    1344          16 :         return present_section(__nr_to_section(nr));
    1345             : }
    1346             : 
    1347       98026 : static inline int valid_section(struct mem_section *section)
    1348             : {
    1349       98026 :         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
    1350             : }
    1351             : 
    1352       98026 : static inline int early_section(struct mem_section *section)
    1353             : {
    1354       98026 :         return (section && (section->section_mem_map & SECTION_IS_EARLY));
    1355             : }
    1356             : 
    1357             : static inline int valid_section_nr(unsigned long nr)
    1358             : {
    1359             :         return valid_section(__nr_to_section(nr));
    1360             : }
    1361             : 
    1362             : static inline int online_section(struct mem_section *section)
    1363             : {
    1364             :         return (section && (section->section_mem_map & SECTION_IS_ONLINE));
    1365             : }
    1366             : 
    1367             : static inline int online_device_section(struct mem_section *section)
    1368             : {
    1369             :         unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
    1370             : 
    1371             :         return section && ((section->section_mem_map & flags) == flags);
    1372             : }
    1373             : 
    1374             : static inline int online_section_nr(unsigned long nr)
    1375             : {
    1376             :         return online_section(__nr_to_section(nr));
    1377             : }
    1378             : 
    1379             : #ifdef CONFIG_MEMORY_HOTPLUG
    1380             : void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
    1381             : #ifdef CONFIG_MEMORY_HOTREMOVE
    1382             : void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
    1383             : #endif
    1384             : #endif
    1385             : 
    1386     7741054 : static inline struct mem_section *__pfn_to_section(unsigned long pfn)
    1387             : {
    1388     7381523 :         return __nr_to_section(pfn_to_section_nr(pfn));
    1389             : }
    1390             : 
    1391             : extern unsigned long __highest_present_section_nr;
    1392             : 
    1393             : static inline int subsection_map_index(unsigned long pfn)
    1394             : {
    1395             :         return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
    1396             : }
    1397             : 
    1398             : #ifdef CONFIG_SPARSEMEM_VMEMMAP
    1399             : static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
    1400             : {
    1401             :         int idx = subsection_map_index(pfn);
    1402             : 
    1403             :         return test_bit(idx, ms->usage->subsection_map);
    1404             : }
    1405             : #else
    1406             : static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
    1407             : {
    1408             :         return 1;
    1409             : }
    1410             : #endif
    1411             : 
    1412             : #ifndef CONFIG_HAVE_ARCH_PFN_VALID
    1413       98026 : static inline int pfn_valid(unsigned long pfn)
    1414             : {
    1415       98026 :         struct mem_section *ms;
    1416             : 
    1417       98026 :         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
    1418             :                 return 0;
    1419       98026 :         ms = __nr_to_section(pfn_to_section_nr(pfn));
    1420       98026 :         if (!valid_section(ms))
    1421             :                 return 0;
    1422             :         /*
    1423             :          * Traditionally early sections always returned pfn_valid() for
    1424             :          * the entire section-sized span.
    1425             :          */
    1426       98026 :         return early_section(ms) || pfn_section_valid(ms, pfn);
    1427             : }
    1428             : #endif
    1429             : 
    1430             : static inline int pfn_in_present_section(unsigned long pfn)
    1431             : {
    1432             :         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
    1433             :                 return 0;
    1434             :         return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
    1435             : }
    1436             : 
    1437          18 : static inline unsigned long next_present_section_nr(unsigned long section_nr)
    1438             : {
    1439          18 :         while (++section_nr <= __highest_present_section_nr) {
    1440          16 :                 if (present_section_nr(section_nr))
    1441          16 :                         return section_nr;
    1442             :         }
    1443             : 
    1444             :         return -1;
    1445             : }
    1446             : 
    1447             : /*
    1448             :  * These are _only_ used during initialisation, therefore they
    1449             :  * can use __initdata ...  They could have names to indicate
    1450             :  * this restriction.
    1451             :  */
    1452             : #ifdef CONFIG_NUMA
    1453             : #define pfn_to_nid(pfn)                                                 \
    1454             : ({                                                                      \
    1455             :         unsigned long __pfn_to_nid_pfn = (pfn);                         \
    1456             :         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
    1457             : })
    1458             : #else
    1459             : #define pfn_to_nid(pfn)         (0)
    1460             : #endif
    1461             : 
    1462             : void sparse_init(void);
    1463             : #else
    1464             : #define sparse_init()   do {} while (0)
    1465             : #define sparse_index_init(_sec, _nid)  do {} while (0)
    1466             : #define pfn_in_present_section pfn_valid
    1467             : #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
    1468             : #endif /* CONFIG_SPARSEMEM */
    1469             : 
    1470             : /*
    1471             :  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
    1472             :  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
    1473             :  * pfn_valid_within() should be used in this case; we optimise this away
    1474             :  * when we have no holes within a MAX_ORDER_NR_PAGES block.
    1475             :  */
    1476             : #ifdef CONFIG_HOLES_IN_ZONE
    1477             : #define pfn_valid_within(pfn) pfn_valid(pfn)
    1478             : #else
    1479             : #define pfn_valid_within(pfn) (1)
    1480             : #endif
    1481             : 
    1482             : #endif /* !__GENERATING_BOUNDS.H */
    1483             : #endif /* !__ASSEMBLY__ */
    1484             : #endif /* _LINUX_MMZONE_H */

Generated by: LCOV version 1.14