Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef __LINUX_NODEMASK_H
3 : #define __LINUX_NODEMASK_H
4 :
5 : /*
6 : * Nodemasks provide a bitmap suitable for representing the
7 : * set of Node's in a system, one bit position per Node number.
8 : *
9 : * See detailed comments in the file linux/bitmap.h describing the
10 : * data type on which these nodemasks are based.
11 : *
12 : * For details of nodemask_parse_user(), see bitmap_parse_user() in
13 : * lib/bitmap.c. For details of nodelist_parse(), see bitmap_parselist(),
14 : * also in bitmap.c. For details of node_remap(), see bitmap_bitremap in
15 : * lib/bitmap.c. For details of nodes_remap(), see bitmap_remap in
16 : * lib/bitmap.c. For details of nodes_onto(), see bitmap_onto in
17 : * lib/bitmap.c. For details of nodes_fold(), see bitmap_fold in
18 : * lib/bitmap.c.
19 : *
20 : * The available nodemask operations are:
21 : *
22 : * void node_set(node, mask) turn on bit 'node' in mask
23 : * void node_clear(node, mask) turn off bit 'node' in mask
24 : * void nodes_setall(mask) set all bits
25 : * void nodes_clear(mask) clear all bits
26 : * int node_isset(node, mask) true iff bit 'node' set in mask
27 : * int node_test_and_set(node, mask) test and set bit 'node' in mask
28 : *
29 : * void nodes_and(dst, src1, src2) dst = src1 & src2 [intersection]
30 : * void nodes_or(dst, src1, src2) dst = src1 | src2 [union]
31 : * void nodes_xor(dst, src1, src2) dst = src1 ^ src2
32 : * void nodes_andnot(dst, src1, src2) dst = src1 & ~src2
33 : * void nodes_complement(dst, src) dst = ~src
34 : *
35 : * int nodes_equal(mask1, mask2) Does mask1 == mask2?
36 : * int nodes_intersects(mask1, mask2) Do mask1 and mask2 intersect?
37 : * int nodes_subset(mask1, mask2) Is mask1 a subset of mask2?
38 : * int nodes_empty(mask) Is mask empty (no bits sets)?
39 : * int nodes_full(mask) Is mask full (all bits sets)?
40 : * int nodes_weight(mask) Hamming weight - number of set bits
41 : *
42 : * void nodes_shift_right(dst, src, n) Shift right
43 : * void nodes_shift_left(dst, src, n) Shift left
44 : *
45 : * int first_node(mask) Number lowest set bit, or MAX_NUMNODES
46 : * int next_node(node, mask) Next node past 'node', or MAX_NUMNODES
47 : * int next_node_in(node, mask) Next node past 'node', or wrap to first,
48 : * or MAX_NUMNODES
49 : * int first_unset_node(mask) First node not set in mask, or
50 : * MAX_NUMNODES
51 : *
52 : * nodemask_t nodemask_of_node(node) Return nodemask with bit 'node' set
53 : * NODE_MASK_ALL Initializer - all bits set
54 : * NODE_MASK_NONE Initializer - no bits set
55 : * unsigned long *nodes_addr(mask) Array of unsigned long's in mask
56 : *
57 : * int nodemask_parse_user(ubuf, ulen, mask) Parse ascii string as nodemask
58 : * int nodelist_parse(buf, map) Parse ascii string as nodelist
59 : * int node_remap(oldbit, old, new) newbit = map(old, new)(oldbit)
60 : * void nodes_remap(dst, src, old, new) *dst = map(old, new)(src)
61 : * void nodes_onto(dst, orig, relmap) *dst = orig relative to relmap
62 : * void nodes_fold(dst, orig, sz) dst bits = orig bits mod sz
63 : *
64 : * for_each_node_mask(node, mask) for-loop node over mask
65 : *
66 : * int num_online_nodes() Number of online Nodes
67 : * int num_possible_nodes() Number of all possible Nodes
68 : *
69 : * int node_random(mask) Random node with set bit in mask
70 : *
71 : * int node_online(node) Is some node online?
72 : * int node_possible(node) Is some node possible?
73 : *
74 : * node_set_online(node) set bit 'node' in node_online_map
75 : * node_set_offline(node) clear bit 'node' in node_online_map
76 : *
77 : * for_each_node(node) for-loop node over node_possible_map
78 : * for_each_online_node(node) for-loop node over node_online_map
79 : *
80 : * Subtlety:
81 : * 1) The 'type-checked' form of node_isset() causes gcc (3.3.2, anyway)
82 : * to generate slightly worse code. So use a simple one-line #define
83 : * for node_isset(), instead of wrapping an inline inside a macro, the
84 : * way we do the other calls.
85 : *
86 : * NODEMASK_SCRATCH
87 : * When doing above logical AND, OR, XOR, Remap operations the callers tend to
88 : * need temporary nodemask_t's on the stack. But if NODES_SHIFT is large,
89 : * nodemask_t's consume too much stack space. NODEMASK_SCRATCH is a helper
90 : * for such situations. See below and CPUMASK_ALLOC also.
91 : */
92 :
93 : #include <linux/threads.h>
94 : #include <linux/bitmap.h>
95 : #include <linux/minmax.h>
96 : #include <linux/numa.h>
97 :
98 : typedef struct { DECLARE_BITMAP(bits, MAX_NUMNODES); } nodemask_t;
99 : extern nodemask_t _unused_nodemask_arg_;
100 :
101 : /**
102 : * nodemask_pr_args - printf args to output a nodemask
103 : * @maskp: nodemask to be printed
104 : *
105 : * Can be used to provide arguments for '%*pb[l]' when printing a nodemask.
106 : */
107 : #define nodemask_pr_args(maskp) __nodemask_pr_numnodes(maskp), \
108 : __nodemask_pr_bits(maskp)
109 0 : static inline unsigned int __nodemask_pr_numnodes(const nodemask_t *m)
110 : {
111 0 : return m ? MAX_NUMNODES : 0;
112 : }
113 0 : static inline const unsigned long *__nodemask_pr_bits(const nodemask_t *m)
114 : {
115 0 : return m ? m->bits : NULL;
116 : }
117 :
118 : /*
119 : * The inline keyword gives the compiler room to decide to inline, or
120 : * not inline a function as it sees best. However, as these functions
121 : * are called in both __init and non-__init functions, if they are not
122 : * inlined we will end up with a section mis-match error (of the type of
123 : * freeable items not being freed). So we must use __always_inline here
124 : * to fix the problem. If other functions in the future also end up in
125 : * this situation they will also need to be annotated as __always_inline
126 : */
127 : #define node_set(node, dst) __node_set((node), &(dst))
128 17 : static __always_inline void __node_set(int node, volatile nodemask_t *dstp)
129 : {
130 12 : set_bit(node, dstp->bits);
131 5 : }
132 :
133 : #define node_clear(node, dst) __node_clear((node), &(dst))
134 2 : static inline void __node_clear(int node, volatile nodemask_t *dstp)
135 : {
136 2 : clear_bit(node, dstp->bits);
137 : }
138 :
139 : #define nodes_setall(dst) __nodes_setall(&(dst), MAX_NUMNODES)
140 : static inline void __nodes_setall(nodemask_t *dstp, unsigned int nbits)
141 : {
142 : bitmap_fill(dstp->bits, nbits);
143 : }
144 :
145 : #define nodes_clear(dst) __nodes_clear(&(dst), MAX_NUMNODES)
146 4 : static inline void __nodes_clear(nodemask_t *dstp, unsigned int nbits)
147 : {
148 2 : bitmap_zero(dstp->bits, nbits);
149 0 : }
150 :
151 : /* No static inline type checking - see Subtlety (1) above. */
152 : #define node_isset(node, nodemask) test_bit((node), (nodemask).bits)
153 :
154 : #define node_test_and_set(node, nodemask) \
155 : __node_test_and_set((node), &(nodemask))
156 : static inline int __node_test_and_set(int node, nodemask_t *addr)
157 : {
158 : return test_and_set_bit(node, addr->bits);
159 : }
160 :
161 : #define nodes_and(dst, src1, src2) \
162 : __nodes_and(&(dst), &(src1), &(src2), MAX_NUMNODES)
163 2 : static inline void __nodes_and(nodemask_t *dstp, const nodemask_t *src1p,
164 : const nodemask_t *src2p, unsigned int nbits)
165 : {
166 2 : bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
167 1 : }
168 :
169 : #define nodes_or(dst, src1, src2) \
170 : __nodes_or(&(dst), &(src1), &(src2), MAX_NUMNODES)
171 : static inline void __nodes_or(nodemask_t *dstp, const nodemask_t *src1p,
172 : const nodemask_t *src2p, unsigned int nbits)
173 : {
174 : bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
175 : }
176 :
177 : #define nodes_xor(dst, src1, src2) \
178 : __nodes_xor(&(dst), &(src1), &(src2), MAX_NUMNODES)
179 : static inline void __nodes_xor(nodemask_t *dstp, const nodemask_t *src1p,
180 : const nodemask_t *src2p, unsigned int nbits)
181 : {
182 : bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
183 : }
184 :
185 : #define nodes_andnot(dst, src1, src2) \
186 : __nodes_andnot(&(dst), &(src1), &(src2), MAX_NUMNODES)
187 : static inline void __nodes_andnot(nodemask_t *dstp, const nodemask_t *src1p,
188 : const nodemask_t *src2p, unsigned int nbits)
189 : {
190 : bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
191 : }
192 :
193 : #define nodes_complement(dst, src) \
194 : __nodes_complement(&(dst), &(src), MAX_NUMNODES)
195 : static inline void __nodes_complement(nodemask_t *dstp,
196 : const nodemask_t *srcp, unsigned int nbits)
197 : {
198 : bitmap_complement(dstp->bits, srcp->bits, nbits);
199 : }
200 :
201 : #define nodes_equal(src1, src2) \
202 : __nodes_equal(&(src1), &(src2), MAX_NUMNODES)
203 0 : static inline int __nodes_equal(const nodemask_t *src1p,
204 : const nodemask_t *src2p, unsigned int nbits)
205 : {
206 0 : return bitmap_equal(src1p->bits, src2p->bits, nbits);
207 : }
208 :
209 : #define nodes_intersects(src1, src2) \
210 : __nodes_intersects(&(src1), &(src2), MAX_NUMNODES)
211 0 : static inline int __nodes_intersects(const nodemask_t *src1p,
212 : const nodemask_t *src2p, unsigned int nbits)
213 : {
214 0 : return bitmap_intersects(src1p->bits, src2p->bits, nbits);
215 : }
216 :
217 : #define nodes_subset(src1, src2) \
218 : __nodes_subset(&(src1), &(src2), MAX_NUMNODES)
219 0 : static inline int __nodes_subset(const nodemask_t *src1p,
220 : const nodemask_t *src2p, unsigned int nbits)
221 : {
222 0 : return bitmap_subset(src1p->bits, src2p->bits, nbits);
223 : }
224 :
225 : #define nodes_empty(src) __nodes_empty(&(src), MAX_NUMNODES)
226 4 : static inline int __nodes_empty(const nodemask_t *srcp, unsigned int nbits)
227 : {
228 4 : return bitmap_empty(srcp->bits, nbits);
229 : }
230 :
231 : #define nodes_full(nodemask) __nodes_full(&(nodemask), MAX_NUMNODES)
232 : static inline int __nodes_full(const nodemask_t *srcp, unsigned int nbits)
233 : {
234 : return bitmap_full(srcp->bits, nbits);
235 : }
236 :
237 : #define nodes_weight(nodemask) __nodes_weight(&(nodemask), MAX_NUMNODES)
238 6 : static inline int __nodes_weight(const nodemask_t *srcp, unsigned int nbits)
239 : {
240 6 : return bitmap_weight(srcp->bits, nbits);
241 : }
242 :
243 : #define nodes_shift_right(dst, src, n) \
244 : __nodes_shift_right(&(dst), &(src), (n), MAX_NUMNODES)
245 : static inline void __nodes_shift_right(nodemask_t *dstp,
246 : const nodemask_t *srcp, int n, int nbits)
247 : {
248 : bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
249 : }
250 :
251 : #define nodes_shift_left(dst, src, n) \
252 : __nodes_shift_left(&(dst), &(src), (n), MAX_NUMNODES)
253 : static inline void __nodes_shift_left(nodemask_t *dstp,
254 : const nodemask_t *srcp, int n, int nbits)
255 : {
256 : bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
257 : }
258 :
259 : /* FIXME: better would be to fix all architectures to never return
260 : > MAX_NUMNODES, then the silly min_ts could be dropped. */
261 :
262 : #define first_node(src) __first_node(&(src))
263 9465 : static inline int __first_node(const nodemask_t *srcp)
264 : {
265 9465 : return min_t(int, MAX_NUMNODES, find_first_bit(srcp->bits, MAX_NUMNODES));
266 : }
267 :
268 : #define next_node(n, src) __next_node((n), &(src))
269 9189 : static inline int __next_node(int n, const nodemask_t *srcp)
270 : {
271 10762 : return min_t(int,MAX_NUMNODES,find_next_bit(srcp->bits, MAX_NUMNODES, n+1));
272 : }
273 :
274 : /*
275 : * Find the next present node in src, starting after node n, wrapping around to
276 : * the first node in src if needed. Returns MAX_NUMNODES if src is empty.
277 : */
278 : #define next_node_in(n, src) __next_node_in((n), &(src))
279 : int __next_node_in(int node, const nodemask_t *srcp);
280 :
281 : static inline void init_nodemask_of_node(nodemask_t *mask, int node)
282 : {
283 : nodes_clear(*mask);
284 : node_set(node, *mask);
285 : }
286 :
287 : #define nodemask_of_node(node) \
288 : ({ \
289 : typeof(_unused_nodemask_arg_) m; \
290 : if (sizeof(m) == sizeof(unsigned long)) { \
291 : m.bits[0] = 1UL << (node); \
292 : } else { \
293 : init_nodemask_of_node(&m, (node)); \
294 : } \
295 : m; \
296 : })
297 :
298 : #define first_unset_node(mask) __first_unset_node(&(mask))
299 : static inline int __first_unset_node(const nodemask_t *maskp)
300 : {
301 : return min_t(int,MAX_NUMNODES,
302 : find_first_zero_bit(maskp->bits, MAX_NUMNODES));
303 : }
304 :
305 : #define NODE_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(MAX_NUMNODES)
306 :
307 : #if MAX_NUMNODES <= BITS_PER_LONG
308 :
309 : #define NODE_MASK_ALL \
310 : ((nodemask_t) { { \
311 : [BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \
312 : } })
313 :
314 : #else
315 :
316 : #define NODE_MASK_ALL \
317 : ((nodemask_t) { { \
318 : [0 ... BITS_TO_LONGS(MAX_NUMNODES)-2] = ~0UL, \
319 : [BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \
320 : } })
321 :
322 : #endif
323 :
324 : #define NODE_MASK_NONE \
325 : ((nodemask_t) { { \
326 : [0 ... BITS_TO_LONGS(MAX_NUMNODES)-1] = 0UL \
327 : } })
328 :
329 : #define nodes_addr(src) ((src).bits)
330 :
331 : #define nodemask_parse_user(ubuf, ulen, dst) \
332 : __nodemask_parse_user((ubuf), (ulen), &(dst), MAX_NUMNODES)
333 : static inline int __nodemask_parse_user(const char __user *buf, int len,
334 : nodemask_t *dstp, int nbits)
335 : {
336 : return bitmap_parse_user(buf, len, dstp->bits, nbits);
337 : }
338 :
339 : #define nodelist_parse(buf, dst) __nodelist_parse((buf), &(dst), MAX_NUMNODES)
340 0 : static inline int __nodelist_parse(const char *buf, nodemask_t *dstp, int nbits)
341 : {
342 0 : return bitmap_parselist(buf, dstp->bits, nbits);
343 : }
344 :
345 : #define node_remap(oldbit, old, new) \
346 : __node_remap((oldbit), &(old), &(new), MAX_NUMNODES)
347 0 : static inline int __node_remap(int oldbit,
348 : const nodemask_t *oldp, const nodemask_t *newp, int nbits)
349 : {
350 0 : return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
351 : }
352 :
353 : #define nodes_remap(dst, src, old, new) \
354 : __nodes_remap(&(dst), &(src), &(old), &(new), MAX_NUMNODES)
355 0 : static inline void __nodes_remap(nodemask_t *dstp, const nodemask_t *srcp,
356 : const nodemask_t *oldp, const nodemask_t *newp, int nbits)
357 : {
358 0 : bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
359 : }
360 :
361 : #define nodes_onto(dst, orig, relmap) \
362 : __nodes_onto(&(dst), &(orig), &(relmap), MAX_NUMNODES)
363 0 : static inline void __nodes_onto(nodemask_t *dstp, const nodemask_t *origp,
364 : const nodemask_t *relmapp, int nbits)
365 : {
366 0 : bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits);
367 : }
368 :
369 : #define nodes_fold(dst, orig, sz) \
370 : __nodes_fold(&(dst), &(orig), sz, MAX_NUMNODES)
371 0 : static inline void __nodes_fold(nodemask_t *dstp, const nodemask_t *origp,
372 : int sz, int nbits)
373 : {
374 0 : bitmap_fold(dstp->bits, origp->bits, sz, nbits);
375 : }
376 :
377 : #if MAX_NUMNODES > 1
378 : #define for_each_node_mask(node, mask) \
379 : for ((node) = first_node(mask); \
380 : (node) < MAX_NUMNODES; \
381 : (node) = next_node((node), (mask)))
382 : #else /* MAX_NUMNODES == 1 */
383 : #define for_each_node_mask(node, mask) \
384 : if (!nodes_empty(mask)) \
385 : for ((node) = 0; (node) < 1; (node)++)
386 : #endif /* MAX_NUMNODES */
387 :
388 : /*
389 : * Bitmasks that are kept for all the nodes.
390 : */
391 : enum node_states {
392 : N_POSSIBLE, /* The node could become online at some point */
393 : N_ONLINE, /* The node is online */
394 : N_NORMAL_MEMORY, /* The node has regular memory */
395 : #ifdef CONFIG_HIGHMEM
396 : N_HIGH_MEMORY, /* The node has regular or high memory */
397 : #else
398 : N_HIGH_MEMORY = N_NORMAL_MEMORY,
399 : #endif
400 : N_MEMORY, /* The node has memory(regular, high, movable) */
401 : N_CPU, /* The node has one or more cpus */
402 : N_GENERIC_INITIATOR, /* The node has one or more Generic Initiators */
403 : NR_NODE_STATES
404 : };
405 :
406 : /*
407 : * The following particular system nodemasks and operations
408 : * on them manage all possible and online nodes.
409 : */
410 :
411 : extern nodemask_t node_states[NR_NODE_STATES];
412 :
413 : #if MAX_NUMNODES > 1
414 29 : static inline int node_state(int node, enum node_states state)
415 : {
416 29 : return node_isset(node, node_states[state]);
417 : }
418 :
419 9 : static inline void node_set_state(int node, enum node_states state)
420 : {
421 10 : __node_set(node, &node_states[state]);
422 5 : }
423 :
424 1 : static inline void node_clear_state(int node, enum node_states state)
425 : {
426 1 : __node_clear(node, &node_states[state]);
427 : }
428 :
429 5 : static inline int num_node_state(enum node_states state)
430 : {
431 5 : return nodes_weight(node_states[state]);
432 : }
433 :
434 : #define for_each_node_state(__node, __state) \
435 : for_each_node_mask((__node), node_states[__state])
436 :
437 : #define first_online_node first_node(node_states[N_ONLINE])
438 : #define first_memory_node first_node(node_states[N_MEMORY])
439 1573 : static inline int next_online_node(int nid)
440 : {
441 1573 : return next_node(nid, node_states[N_ONLINE]);
442 : }
443 : static inline int next_memory_node(int nid)
444 : {
445 : return next_node(nid, node_states[N_MEMORY]);
446 : }
447 :
448 : extern unsigned int nr_node_ids;
449 : extern unsigned int nr_online_nodes;
450 :
451 1 : static inline void node_set_online(int nid)
452 : {
453 1 : node_set_state(nid, N_ONLINE);
454 1 : nr_online_nodes = num_node_state(N_ONLINE);
455 1 : }
456 :
457 : static inline void node_set_offline(int nid)
458 : {
459 : node_clear_state(nid, N_ONLINE);
460 : nr_online_nodes = num_node_state(N_ONLINE);
461 : }
462 :
463 : #else
464 :
465 : static inline int node_state(int node, enum node_states state)
466 : {
467 : return node == 0;
468 : }
469 :
470 : static inline void node_set_state(int node, enum node_states state)
471 : {
472 : }
473 :
474 : static inline void node_clear_state(int node, enum node_states state)
475 : {
476 : }
477 :
478 : static inline int num_node_state(enum node_states state)
479 : {
480 : return 1;
481 : }
482 :
483 : #define for_each_node_state(node, __state) \
484 : for ( (node) = 0; (node) == 0; (node) = 1)
485 :
486 : #define first_online_node 0
487 : #define first_memory_node 0
488 : #define next_online_node(nid) (MAX_NUMNODES)
489 : #define nr_node_ids 1U
490 : #define nr_online_nodes 1U
491 :
492 : #define node_set_online(node) node_set_state((node), N_ONLINE)
493 : #define node_set_offline(node) node_clear_state((node), N_ONLINE)
494 :
495 : #endif
496 :
497 : #if defined(CONFIG_NUMA) && (MAX_NUMNODES > 1)
498 : extern int node_random(const nodemask_t *maskp);
499 : #else
500 : static inline int node_random(const nodemask_t *mask)
501 : {
502 : return 0;
503 : }
504 : #endif
505 :
506 : #define node_online_map node_states[N_ONLINE]
507 : #define node_possible_map node_states[N_POSSIBLE]
508 :
509 : #define num_online_nodes() num_node_state(N_ONLINE)
510 : #define num_possible_nodes() num_node_state(N_POSSIBLE)
511 : #define node_online(node) node_state((node), N_ONLINE)
512 : #define node_possible(node) node_state((node), N_POSSIBLE)
513 :
514 : #define for_each_node(node) for_each_node_state(node, N_POSSIBLE)
515 : #define for_each_online_node(node) for_each_node_state(node, N_ONLINE)
516 :
517 : /*
518 : * For nodemask scrach area.
519 : * NODEMASK_ALLOC(type, name) allocates an object with a specified type and
520 : * name.
521 : */
522 : #if NODES_SHIFT > 8 /* nodemask_t > 32 bytes */
523 : #define NODEMASK_ALLOC(type, name, gfp_flags) \
524 : type *name = kmalloc(sizeof(*name), gfp_flags)
525 : #define NODEMASK_FREE(m) kfree(m)
526 : #else
527 : #define NODEMASK_ALLOC(type, name, gfp_flags) type _##name, *name = &_##name
528 : #define NODEMASK_FREE(m) do {} while (0)
529 : #endif
530 :
531 : /* A example struture for using NODEMASK_ALLOC, used in mempolicy. */
532 : struct nodemask_scratch {
533 : nodemask_t mask1;
534 : nodemask_t mask2;
535 : };
536 :
537 : #define NODEMASK_SCRATCH(x) \
538 : NODEMASK_ALLOC(struct nodemask_scratch, x, \
539 : GFP_KERNEL | __GFP_NORETRY)
540 : #define NODEMASK_SCRATCH_FREE(x) NODEMASK_FREE(x)
541 :
542 :
543 : #endif /* __LINUX_NODEMASK_H */
|