Line data Source code
1 : /*
2 : * Performance events:
3 : *
4 : * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 : * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 : * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 : *
8 : * Data type definitions, declarations, prototypes.
9 : *
10 : * Started by: Thomas Gleixner and Ingo Molnar
11 : *
12 : * For licencing details see kernel-base/COPYING
13 : */
14 : #ifndef _LINUX_PERF_EVENT_H
15 : #define _LINUX_PERF_EVENT_H
16 :
17 : #include <uapi/linux/perf_event.h>
18 : #include <uapi/linux/bpf_perf_event.h>
19 :
20 : /*
21 : * Kernel-internal data types and definitions:
22 : */
23 :
24 : #ifdef CONFIG_PERF_EVENTS
25 : # include <asm/perf_event.h>
26 : # include <asm/local64.h>
27 : #endif
28 :
29 : struct perf_guest_info_callbacks {
30 : int (*is_in_guest)(void);
31 : int (*is_user_mode)(void);
32 : unsigned long (*get_guest_ip)(void);
33 : void (*handle_intel_pt_intr)(void);
34 : };
35 :
36 : #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 : #include <asm/hw_breakpoint.h>
38 : #endif
39 :
40 : #include <linux/list.h>
41 : #include <linux/mutex.h>
42 : #include <linux/rculist.h>
43 : #include <linux/rcupdate.h>
44 : #include <linux/spinlock.h>
45 : #include <linux/hrtimer.h>
46 : #include <linux/fs.h>
47 : #include <linux/pid_namespace.h>
48 : #include <linux/workqueue.h>
49 : #include <linux/ftrace.h>
50 : #include <linux/cpu.h>
51 : #include <linux/irq_work.h>
52 : #include <linux/static_key.h>
53 : #include <linux/jump_label_ratelimit.h>
54 : #include <linux/atomic.h>
55 : #include <linux/sysfs.h>
56 : #include <linux/perf_regs.h>
57 : #include <linux/cgroup.h>
58 : #include <linux/refcount.h>
59 : #include <linux/security.h>
60 : #include <asm/local.h>
61 :
62 : struct perf_callchain_entry {
63 : __u64 nr;
64 : __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 : };
66 :
67 : struct perf_callchain_entry_ctx {
68 : struct perf_callchain_entry *entry;
69 : u32 max_stack;
70 : u32 nr;
71 : short contexts;
72 : bool contexts_maxed;
73 : };
74 :
75 : typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 : unsigned long off, unsigned long len);
77 :
78 : struct perf_raw_frag {
79 : union {
80 : struct perf_raw_frag *next;
81 : unsigned long pad;
82 : };
83 : perf_copy_f copy;
84 : void *data;
85 : u32 size;
86 : } __packed;
87 :
88 : struct perf_raw_record {
89 : struct perf_raw_frag frag;
90 : u32 size;
91 : };
92 :
93 : /*
94 : * branch stack layout:
95 : * nr: number of taken branches stored in entries[]
96 : * hw_idx: The low level index of raw branch records
97 : * for the most recent branch.
98 : * -1ULL means invalid/unknown.
99 : *
100 : * Note that nr can vary from sample to sample
101 : * branches (to, from) are stored from most recent
102 : * to least recent, i.e., entries[0] contains the most
103 : * recent branch.
104 : * The entries[] is an abstraction of raw branch records,
105 : * which may not be stored in age order in HW, e.g. Intel LBR.
106 : * The hw_idx is to expose the low level index of raw
107 : * branch record for the most recent branch aka entries[0].
108 : * The hw_idx index is between -1 (unknown) and max depth,
109 : * which can be retrieved in /sys/devices/cpu/caps/branches.
110 : * For the architectures whose raw branch records are
111 : * already stored in age order, the hw_idx should be 0.
112 : */
113 : struct perf_branch_stack {
114 : __u64 nr;
115 : __u64 hw_idx;
116 : struct perf_branch_entry entries[];
117 : };
118 :
119 : struct task_struct;
120 :
121 : /*
122 : * extra PMU register associated with an event
123 : */
124 : struct hw_perf_event_extra {
125 : u64 config; /* register value */
126 : unsigned int reg; /* register address or index */
127 : int alloc; /* extra register already allocated */
128 : int idx; /* index in shared_regs->regs[] */
129 : };
130 :
131 : /**
132 : * struct hw_perf_event - performance event hardware details:
133 : */
134 : struct hw_perf_event {
135 : #ifdef CONFIG_PERF_EVENTS
136 : union {
137 : struct { /* hardware */
138 : u64 config;
139 : u64 last_tag;
140 : unsigned long config_base;
141 : unsigned long event_base;
142 : int event_base_rdpmc;
143 : int idx;
144 : int last_cpu;
145 : int flags;
146 :
147 : struct hw_perf_event_extra extra_reg;
148 : struct hw_perf_event_extra branch_reg;
149 : };
150 : struct { /* software */
151 : struct hrtimer hrtimer;
152 : };
153 : struct { /* tracepoint */
154 : /* for tp_event->class */
155 : struct list_head tp_list;
156 : };
157 : struct { /* amd_power */
158 : u64 pwr_acc;
159 : u64 ptsc;
160 : };
161 : #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 : struct { /* breakpoint */
163 : /*
164 : * Crufty hack to avoid the chicken and egg
165 : * problem hw_breakpoint has with context
166 : * creation and event initalization.
167 : */
168 : struct arch_hw_breakpoint info;
169 : struct list_head bp_list;
170 : };
171 : #endif
172 : struct { /* amd_iommu */
173 : u8 iommu_bank;
174 : u8 iommu_cntr;
175 : u16 padding;
176 : u64 conf;
177 : u64 conf1;
178 : };
179 : };
180 : /*
181 : * If the event is a per task event, this will point to the task in
182 : * question. See the comment in perf_event_alloc().
183 : */
184 : struct task_struct *target;
185 :
186 : /*
187 : * PMU would store hardware filter configuration
188 : * here.
189 : */
190 : void *addr_filters;
191 :
192 : /* Last sync'ed generation of filters */
193 : unsigned long addr_filters_gen;
194 :
195 : /*
196 : * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 : */
198 : #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199 : #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200 : #define PERF_HES_ARCH 0x04
201 :
202 : int state;
203 :
204 : /*
205 : * The last observed hardware counter value, updated with a
206 : * local64_cmpxchg() such that pmu::read() can be called nested.
207 : */
208 : local64_t prev_count;
209 :
210 : /*
211 : * The period to start the next sample with.
212 : */
213 : u64 sample_period;
214 :
215 : union {
216 : struct { /* Sampling */
217 : /*
218 : * The period we started this sample with.
219 : */
220 : u64 last_period;
221 :
222 : /*
223 : * However much is left of the current period;
224 : * note that this is a full 64bit value and
225 : * allows for generation of periods longer
226 : * than hardware might allow.
227 : */
228 : local64_t period_left;
229 : };
230 : struct { /* Topdown events counting for context switch */
231 : u64 saved_metric;
232 : u64 saved_slots;
233 : };
234 : };
235 :
236 : /*
237 : * State for throttling the event, see __perf_event_overflow() and
238 : * perf_adjust_freq_unthr_context().
239 : */
240 : u64 interrupts_seq;
241 : u64 interrupts;
242 :
243 : /*
244 : * State for freq target events, see __perf_event_overflow() and
245 : * perf_adjust_freq_unthr_context().
246 : */
247 : u64 freq_time_stamp;
248 : u64 freq_count_stamp;
249 : #endif
250 : };
251 :
252 : struct perf_event;
253 :
254 : /*
255 : * Common implementation detail of pmu::{start,commit,cancel}_txn
256 : */
257 : #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258 : #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
259 :
260 : /**
261 : * pmu::capabilities flags
262 : */
263 : #define PERF_PMU_CAP_NO_INTERRUPT 0x01
264 : #define PERF_PMU_CAP_NO_NMI 0x02
265 : #define PERF_PMU_CAP_AUX_NO_SG 0x04
266 : #define PERF_PMU_CAP_EXTENDED_REGS 0x08
267 : #define PERF_PMU_CAP_EXCLUSIVE 0x10
268 : #define PERF_PMU_CAP_ITRACE 0x20
269 : #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
270 : #define PERF_PMU_CAP_NO_EXCLUDE 0x80
271 : #define PERF_PMU_CAP_AUX_OUTPUT 0x100
272 :
273 : struct perf_output_handle;
274 :
275 : /**
276 : * struct pmu - generic performance monitoring unit
277 : */
278 : struct pmu {
279 : struct list_head entry;
280 :
281 : struct module *module;
282 : struct device *dev;
283 : const struct attribute_group **attr_groups;
284 : const struct attribute_group **attr_update;
285 : const char *name;
286 : int type;
287 :
288 : /*
289 : * various common per-pmu feature flags
290 : */
291 : int capabilities;
292 :
293 : int __percpu *pmu_disable_count;
294 : struct perf_cpu_context __percpu *pmu_cpu_context;
295 : atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
296 : int task_ctx_nr;
297 : int hrtimer_interval_ms;
298 :
299 : /* number of address filters this PMU can do */
300 : unsigned int nr_addr_filters;
301 :
302 : /*
303 : * Fully disable/enable this PMU, can be used to protect from the PMI
304 : * as well as for lazy/batch writing of the MSRs.
305 : */
306 : void (*pmu_enable) (struct pmu *pmu); /* optional */
307 : void (*pmu_disable) (struct pmu *pmu); /* optional */
308 :
309 : /*
310 : * Try and initialize the event for this PMU.
311 : *
312 : * Returns:
313 : * -ENOENT -- @event is not for this PMU
314 : *
315 : * -ENODEV -- @event is for this PMU but PMU not present
316 : * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
317 : * -EINVAL -- @event is for this PMU but @event is not valid
318 : * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
319 : * -EACCES -- @event is for this PMU, @event is valid, but no privileges
320 : *
321 : * 0 -- @event is for this PMU and valid
322 : *
323 : * Other error return values are allowed.
324 : */
325 : int (*event_init) (struct perf_event *event);
326 :
327 : /*
328 : * Notification that the event was mapped or unmapped. Called
329 : * in the context of the mapping task.
330 : */
331 : void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
332 : void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333 :
334 : /*
335 : * Flags for ->add()/->del()/ ->start()/->stop(). There are
336 : * matching hw_perf_event::state flags.
337 : */
338 : #define PERF_EF_START 0x01 /* start the counter when adding */
339 : #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
340 : #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
341 :
342 : /*
343 : * Adds/Removes a counter to/from the PMU, can be done inside a
344 : * transaction, see the ->*_txn() methods.
345 : *
346 : * The add/del callbacks will reserve all hardware resources required
347 : * to service the event, this includes any counter constraint
348 : * scheduling etc.
349 : *
350 : * Called with IRQs disabled and the PMU disabled on the CPU the event
351 : * is on.
352 : *
353 : * ->add() called without PERF_EF_START should result in the same state
354 : * as ->add() followed by ->stop().
355 : *
356 : * ->del() must always PERF_EF_UPDATE stop an event. If it calls
357 : * ->stop() that must deal with already being stopped without
358 : * PERF_EF_UPDATE.
359 : */
360 : int (*add) (struct perf_event *event, int flags);
361 : void (*del) (struct perf_event *event, int flags);
362 :
363 : /*
364 : * Starts/Stops a counter present on the PMU.
365 : *
366 : * The PMI handler should stop the counter when perf_event_overflow()
367 : * returns !0. ->start() will be used to continue.
368 : *
369 : * Also used to change the sample period.
370 : *
371 : * Called with IRQs disabled and the PMU disabled on the CPU the event
372 : * is on -- will be called from NMI context with the PMU generates
373 : * NMIs.
374 : *
375 : * ->stop() with PERF_EF_UPDATE will read the counter and update
376 : * period/count values like ->read() would.
377 : *
378 : * ->start() with PERF_EF_RELOAD will reprogram the counter
379 : * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
380 : */
381 : void (*start) (struct perf_event *event, int flags);
382 : void (*stop) (struct perf_event *event, int flags);
383 :
384 : /*
385 : * Updates the counter value of the event.
386 : *
387 : * For sampling capable PMUs this will also update the software period
388 : * hw_perf_event::period_left field.
389 : */
390 : void (*read) (struct perf_event *event);
391 :
392 : /*
393 : * Group events scheduling is treated as a transaction, add
394 : * group events as a whole and perform one schedulability test.
395 : * If the test fails, roll back the whole group
396 : *
397 : * Start the transaction, after this ->add() doesn't need to
398 : * do schedulability tests.
399 : *
400 : * Optional.
401 : */
402 : void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
403 : /*
404 : * If ->start_txn() disabled the ->add() schedulability test
405 : * then ->commit_txn() is required to perform one. On success
406 : * the transaction is closed. On error the transaction is kept
407 : * open until ->cancel_txn() is called.
408 : *
409 : * Optional.
410 : */
411 : int (*commit_txn) (struct pmu *pmu);
412 : /*
413 : * Will cancel the transaction, assumes ->del() is called
414 : * for each successful ->add() during the transaction.
415 : *
416 : * Optional.
417 : */
418 : void (*cancel_txn) (struct pmu *pmu);
419 :
420 : /*
421 : * Will return the value for perf_event_mmap_page::index for this event,
422 : * if no implementation is provided it will default to: event->hw.idx + 1.
423 : */
424 : int (*event_idx) (struct perf_event *event); /*optional */
425 :
426 : /*
427 : * context-switches callback
428 : */
429 : void (*sched_task) (struct perf_event_context *ctx,
430 : bool sched_in);
431 :
432 : /*
433 : * Kmem cache of PMU specific data
434 : */
435 : struct kmem_cache *task_ctx_cache;
436 :
437 : /*
438 : * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
439 : * can be synchronized using this function. See Intel LBR callstack support
440 : * implementation and Perf core context switch handling callbacks for usage
441 : * examples.
442 : */
443 : void (*swap_task_ctx) (struct perf_event_context *prev,
444 : struct perf_event_context *next);
445 : /* optional */
446 :
447 : /*
448 : * Set up pmu-private data structures for an AUX area
449 : */
450 : void *(*setup_aux) (struct perf_event *event, void **pages,
451 : int nr_pages, bool overwrite);
452 : /* optional */
453 :
454 : /*
455 : * Free pmu-private AUX data structures
456 : */
457 : void (*free_aux) (void *aux); /* optional */
458 :
459 : /*
460 : * Take a snapshot of the AUX buffer without touching the event
461 : * state, so that preempting ->start()/->stop() callbacks does
462 : * not interfere with their logic. Called in PMI context.
463 : *
464 : * Returns the size of AUX data copied to the output handle.
465 : *
466 : * Optional.
467 : */
468 : long (*snapshot_aux) (struct perf_event *event,
469 : struct perf_output_handle *handle,
470 : unsigned long size);
471 :
472 : /*
473 : * Validate address range filters: make sure the HW supports the
474 : * requested configuration and number of filters; return 0 if the
475 : * supplied filters are valid, -errno otherwise.
476 : *
477 : * Runs in the context of the ioctl()ing process and is not serialized
478 : * with the rest of the PMU callbacks.
479 : */
480 : int (*addr_filters_validate) (struct list_head *filters);
481 : /* optional */
482 :
483 : /*
484 : * Synchronize address range filter configuration:
485 : * translate hw-agnostic filters into hardware configuration in
486 : * event::hw::addr_filters.
487 : *
488 : * Runs as a part of filter sync sequence that is done in ->start()
489 : * callback by calling perf_event_addr_filters_sync().
490 : *
491 : * May (and should) traverse event::addr_filters::list, for which its
492 : * caller provides necessary serialization.
493 : */
494 : void (*addr_filters_sync) (struct perf_event *event);
495 : /* optional */
496 :
497 : /*
498 : * Check if event can be used for aux_output purposes for
499 : * events of this PMU.
500 : *
501 : * Runs from perf_event_open(). Should return 0 for "no match"
502 : * or non-zero for "match".
503 : */
504 : int (*aux_output_match) (struct perf_event *event);
505 : /* optional */
506 :
507 : /*
508 : * Filter events for PMU-specific reasons.
509 : */
510 : int (*filter_match) (struct perf_event *event); /* optional */
511 :
512 : /*
513 : * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
514 : */
515 : int (*check_period) (struct perf_event *event, u64 value); /* optional */
516 : };
517 :
518 : enum perf_addr_filter_action_t {
519 : PERF_ADDR_FILTER_ACTION_STOP = 0,
520 : PERF_ADDR_FILTER_ACTION_START,
521 : PERF_ADDR_FILTER_ACTION_FILTER,
522 : };
523 :
524 : /**
525 : * struct perf_addr_filter - address range filter definition
526 : * @entry: event's filter list linkage
527 : * @path: object file's path for file-based filters
528 : * @offset: filter range offset
529 : * @size: filter range size (size==0 means single address trigger)
530 : * @action: filter/start/stop
531 : *
532 : * This is a hardware-agnostic filter configuration as specified by the user.
533 : */
534 : struct perf_addr_filter {
535 : struct list_head entry;
536 : struct path path;
537 : unsigned long offset;
538 : unsigned long size;
539 : enum perf_addr_filter_action_t action;
540 : };
541 :
542 : /**
543 : * struct perf_addr_filters_head - container for address range filters
544 : * @list: list of filters for this event
545 : * @lock: spinlock that serializes accesses to the @list and event's
546 : * (and its children's) filter generations.
547 : * @nr_file_filters: number of file-based filters
548 : *
549 : * A child event will use parent's @list (and therefore @lock), so they are
550 : * bundled together; see perf_event_addr_filters().
551 : */
552 : struct perf_addr_filters_head {
553 : struct list_head list;
554 : raw_spinlock_t lock;
555 : unsigned int nr_file_filters;
556 : };
557 :
558 : struct perf_addr_filter_range {
559 : unsigned long start;
560 : unsigned long size;
561 : };
562 :
563 : /**
564 : * enum perf_event_state - the states of an event:
565 : */
566 : enum perf_event_state {
567 : PERF_EVENT_STATE_DEAD = -4,
568 : PERF_EVENT_STATE_EXIT = -3,
569 : PERF_EVENT_STATE_ERROR = -2,
570 : PERF_EVENT_STATE_OFF = -1,
571 : PERF_EVENT_STATE_INACTIVE = 0,
572 : PERF_EVENT_STATE_ACTIVE = 1,
573 : };
574 :
575 : struct file;
576 : struct perf_sample_data;
577 :
578 : typedef void (*perf_overflow_handler_t)(struct perf_event *,
579 : struct perf_sample_data *,
580 : struct pt_regs *regs);
581 :
582 : /*
583 : * Event capabilities. For event_caps and groups caps.
584 : *
585 : * PERF_EV_CAP_SOFTWARE: Is a software event.
586 : * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
587 : * from any CPU in the package where it is active.
588 : * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
589 : * cannot be a group leader. If an event with this flag is detached from the
590 : * group it is scheduled out and moved into an unrecoverable ERROR state.
591 : */
592 : #define PERF_EV_CAP_SOFTWARE BIT(0)
593 : #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
594 : #define PERF_EV_CAP_SIBLING BIT(2)
595 :
596 : #define SWEVENT_HLIST_BITS 8
597 : #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
598 :
599 : struct swevent_hlist {
600 : struct hlist_head heads[SWEVENT_HLIST_SIZE];
601 : struct rcu_head rcu_head;
602 : };
603 :
604 : #define PERF_ATTACH_CONTEXT 0x01
605 : #define PERF_ATTACH_GROUP 0x02
606 : #define PERF_ATTACH_TASK 0x04
607 : #define PERF_ATTACH_TASK_DATA 0x08
608 : #define PERF_ATTACH_ITRACE 0x10
609 : #define PERF_ATTACH_SCHED_CB 0x20
610 :
611 : struct perf_cgroup;
612 : struct perf_buffer;
613 :
614 : struct pmu_event_list {
615 : raw_spinlock_t lock;
616 : struct list_head list;
617 : };
618 :
619 : #define for_each_sibling_event(sibling, event) \
620 : if ((event)->group_leader == (event)) \
621 : list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
622 :
623 : /**
624 : * struct perf_event - performance event kernel representation:
625 : */
626 : struct perf_event {
627 : #ifdef CONFIG_PERF_EVENTS
628 : /*
629 : * entry onto perf_event_context::event_list;
630 : * modifications require ctx->lock
631 : * RCU safe iterations.
632 : */
633 : struct list_head event_entry;
634 :
635 : /*
636 : * Locked for modification by both ctx->mutex and ctx->lock; holding
637 : * either sufficies for read.
638 : */
639 : struct list_head sibling_list;
640 : struct list_head active_list;
641 : /*
642 : * Node on the pinned or flexible tree located at the event context;
643 : */
644 : struct rb_node group_node;
645 : u64 group_index;
646 : /*
647 : * We need storage to track the entries in perf_pmu_migrate_context; we
648 : * cannot use the event_entry because of RCU and we want to keep the
649 : * group in tact which avoids us using the other two entries.
650 : */
651 : struct list_head migrate_entry;
652 :
653 : struct hlist_node hlist_entry;
654 : struct list_head active_entry;
655 : int nr_siblings;
656 :
657 : /* Not serialized. Only written during event initialization. */
658 : int event_caps;
659 : /* The cumulative AND of all event_caps for events in this group. */
660 : int group_caps;
661 :
662 : struct perf_event *group_leader;
663 : struct pmu *pmu;
664 : void *pmu_private;
665 :
666 : enum perf_event_state state;
667 : unsigned int attach_state;
668 : local64_t count;
669 : atomic64_t child_count;
670 :
671 : /*
672 : * These are the total time in nanoseconds that the event
673 : * has been enabled (i.e. eligible to run, and the task has
674 : * been scheduled in, if this is a per-task event)
675 : * and running (scheduled onto the CPU), respectively.
676 : */
677 : u64 total_time_enabled;
678 : u64 total_time_running;
679 : u64 tstamp;
680 :
681 : /*
682 : * timestamp shadows the actual context timing but it can
683 : * be safely used in NMI interrupt context. It reflects the
684 : * context time as it was when the event was last scheduled in.
685 : *
686 : * ctx_time already accounts for ctx->timestamp. Therefore to
687 : * compute ctx_time for a sample, simply add perf_clock().
688 : */
689 : u64 shadow_ctx_time;
690 :
691 : struct perf_event_attr attr;
692 : u16 header_size;
693 : u16 id_header_size;
694 : u16 read_size;
695 : struct hw_perf_event hw;
696 :
697 : struct perf_event_context *ctx;
698 : atomic_long_t refcount;
699 :
700 : /*
701 : * These accumulate total time (in nanoseconds) that children
702 : * events have been enabled and running, respectively.
703 : */
704 : atomic64_t child_total_time_enabled;
705 : atomic64_t child_total_time_running;
706 :
707 : /*
708 : * Protect attach/detach and child_list:
709 : */
710 : struct mutex child_mutex;
711 : struct list_head child_list;
712 : struct perf_event *parent;
713 :
714 : int oncpu;
715 : int cpu;
716 :
717 : struct list_head owner_entry;
718 : struct task_struct *owner;
719 :
720 : /* mmap bits */
721 : struct mutex mmap_mutex;
722 : atomic_t mmap_count;
723 :
724 : struct perf_buffer *rb;
725 : struct list_head rb_entry;
726 : unsigned long rcu_batches;
727 : int rcu_pending;
728 :
729 : /* poll related */
730 : wait_queue_head_t waitq;
731 : struct fasync_struct *fasync;
732 :
733 : /* delayed work for NMIs and such */
734 : int pending_wakeup;
735 : int pending_kill;
736 : int pending_disable;
737 : struct irq_work pending;
738 :
739 : atomic_t event_limit;
740 :
741 : /* address range filters */
742 : struct perf_addr_filters_head addr_filters;
743 : /* vma address array for file-based filders */
744 : struct perf_addr_filter_range *addr_filter_ranges;
745 : unsigned long addr_filters_gen;
746 :
747 : /* for aux_output events */
748 : struct perf_event *aux_event;
749 :
750 : void (*destroy)(struct perf_event *);
751 : struct rcu_head rcu_head;
752 :
753 : struct pid_namespace *ns;
754 : u64 id;
755 :
756 : u64 (*clock)(void);
757 : perf_overflow_handler_t overflow_handler;
758 : void *overflow_handler_context;
759 : #ifdef CONFIG_BPF_SYSCALL
760 : perf_overflow_handler_t orig_overflow_handler;
761 : struct bpf_prog *prog;
762 : #endif
763 :
764 : #ifdef CONFIG_EVENT_TRACING
765 : struct trace_event_call *tp_event;
766 : struct event_filter *filter;
767 : #ifdef CONFIG_FUNCTION_TRACER
768 : struct ftrace_ops ftrace_ops;
769 : #endif
770 : #endif
771 :
772 : #ifdef CONFIG_CGROUP_PERF
773 : struct perf_cgroup *cgrp; /* cgroup event is attach to */
774 : #endif
775 :
776 : #ifdef CONFIG_SECURITY
777 : void *security;
778 : #endif
779 : struct list_head sb_list;
780 : #endif /* CONFIG_PERF_EVENTS */
781 : };
782 :
783 :
784 : struct perf_event_groups {
785 : struct rb_root tree;
786 : u64 index;
787 : };
788 :
789 : /**
790 : * struct perf_event_context - event context structure
791 : *
792 : * Used as a container for task events and CPU events as well:
793 : */
794 : struct perf_event_context {
795 : struct pmu *pmu;
796 : /*
797 : * Protect the states of the events in the list,
798 : * nr_active, and the list:
799 : */
800 : raw_spinlock_t lock;
801 : /*
802 : * Protect the list of events. Locking either mutex or lock
803 : * is sufficient to ensure the list doesn't change; to change
804 : * the list you need to lock both the mutex and the spinlock.
805 : */
806 : struct mutex mutex;
807 :
808 : struct list_head active_ctx_list;
809 : struct perf_event_groups pinned_groups;
810 : struct perf_event_groups flexible_groups;
811 : struct list_head event_list;
812 :
813 : struct list_head pinned_active;
814 : struct list_head flexible_active;
815 :
816 : int nr_events;
817 : int nr_active;
818 : int is_active;
819 : int nr_stat;
820 : int nr_freq;
821 : int rotate_disable;
822 : /*
823 : * Set when nr_events != nr_active, except tolerant to events not
824 : * necessary to be active due to scheduling constraints, such as cgroups.
825 : */
826 : int rotate_necessary;
827 : refcount_t refcount;
828 : struct task_struct *task;
829 :
830 : /*
831 : * Context clock, runs when context enabled.
832 : */
833 : u64 time;
834 : u64 timestamp;
835 :
836 : /*
837 : * These fields let us detect when two contexts have both
838 : * been cloned (inherited) from a common ancestor.
839 : */
840 : struct perf_event_context *parent_ctx;
841 : u64 parent_gen;
842 : u64 generation;
843 : int pin_count;
844 : #ifdef CONFIG_CGROUP_PERF
845 : int nr_cgroups; /* cgroup evts */
846 : #endif
847 : void *task_ctx_data; /* pmu specific data */
848 : struct rcu_head rcu_head;
849 : };
850 :
851 : /*
852 : * Number of contexts where an event can trigger:
853 : * task, softirq, hardirq, nmi.
854 : */
855 : #define PERF_NR_CONTEXTS 4
856 :
857 : /**
858 : * struct perf_event_cpu_context - per cpu event context structure
859 : */
860 : struct perf_cpu_context {
861 : struct perf_event_context ctx;
862 : struct perf_event_context *task_ctx;
863 : int active_oncpu;
864 : int exclusive;
865 :
866 : raw_spinlock_t hrtimer_lock;
867 : struct hrtimer hrtimer;
868 : ktime_t hrtimer_interval;
869 : unsigned int hrtimer_active;
870 :
871 : #ifdef CONFIG_CGROUP_PERF
872 : struct perf_cgroup *cgrp;
873 : struct list_head cgrp_cpuctx_entry;
874 : #endif
875 :
876 : struct list_head sched_cb_entry;
877 : int sched_cb_usage;
878 :
879 : int online;
880 : /*
881 : * Per-CPU storage for iterators used in visit_groups_merge. The default
882 : * storage is of size 2 to hold the CPU and any CPU event iterators.
883 : */
884 : int heap_size;
885 : struct perf_event **heap;
886 : struct perf_event *heap_default[2];
887 : };
888 :
889 : struct perf_output_handle {
890 : struct perf_event *event;
891 : struct perf_buffer *rb;
892 : unsigned long wakeup;
893 : unsigned long size;
894 : u64 aux_flags;
895 : union {
896 : void *addr;
897 : unsigned long head;
898 : };
899 : int page;
900 : };
901 :
902 : struct bpf_perf_event_data_kern {
903 : bpf_user_pt_regs_t *regs;
904 : struct perf_sample_data *data;
905 : struct perf_event *event;
906 : };
907 :
908 : #ifdef CONFIG_CGROUP_PERF
909 :
910 : /*
911 : * perf_cgroup_info keeps track of time_enabled for a cgroup.
912 : * This is a per-cpu dynamically allocated data structure.
913 : */
914 : struct perf_cgroup_info {
915 : u64 time;
916 : u64 timestamp;
917 : };
918 :
919 : struct perf_cgroup {
920 : struct cgroup_subsys_state css;
921 : struct perf_cgroup_info __percpu *info;
922 : };
923 :
924 : /*
925 : * Must ensure cgroup is pinned (css_get) before calling
926 : * this function. In other words, we cannot call this function
927 : * if there is no cgroup event for the current CPU context.
928 : */
929 : static inline struct perf_cgroup *
930 : perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
931 : {
932 : return container_of(task_css_check(task, perf_event_cgrp_id,
933 : ctx ? lockdep_is_held(&ctx->lock)
934 : : true),
935 : struct perf_cgroup, css);
936 : }
937 : #endif /* CONFIG_CGROUP_PERF */
938 :
939 : #ifdef CONFIG_PERF_EVENTS
940 :
941 : extern void *perf_aux_output_begin(struct perf_output_handle *handle,
942 : struct perf_event *event);
943 : extern void perf_aux_output_end(struct perf_output_handle *handle,
944 : unsigned long size);
945 : extern int perf_aux_output_skip(struct perf_output_handle *handle,
946 : unsigned long size);
947 : extern void *perf_get_aux(struct perf_output_handle *handle);
948 : extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
949 : extern void perf_event_itrace_started(struct perf_event *event);
950 :
951 : extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
952 : extern void perf_pmu_unregister(struct pmu *pmu);
953 :
954 : extern int perf_num_counters(void);
955 : extern const char *perf_pmu_name(void);
956 : extern void __perf_event_task_sched_in(struct task_struct *prev,
957 : struct task_struct *task);
958 : extern void __perf_event_task_sched_out(struct task_struct *prev,
959 : struct task_struct *next);
960 : extern int perf_event_init_task(struct task_struct *child);
961 : extern void perf_event_exit_task(struct task_struct *child);
962 : extern void perf_event_free_task(struct task_struct *task);
963 : extern void perf_event_delayed_put(struct task_struct *task);
964 : extern struct file *perf_event_get(unsigned int fd);
965 : extern const struct perf_event *perf_get_event(struct file *file);
966 : extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
967 : extern void perf_event_print_debug(void);
968 : extern void perf_pmu_disable(struct pmu *pmu);
969 : extern void perf_pmu_enable(struct pmu *pmu);
970 : extern void perf_sched_cb_dec(struct pmu *pmu);
971 : extern void perf_sched_cb_inc(struct pmu *pmu);
972 : extern int perf_event_task_disable(void);
973 : extern int perf_event_task_enable(void);
974 :
975 : extern void perf_pmu_resched(struct pmu *pmu);
976 :
977 : extern int perf_event_refresh(struct perf_event *event, int refresh);
978 : extern void perf_event_update_userpage(struct perf_event *event);
979 : extern int perf_event_release_kernel(struct perf_event *event);
980 : extern struct perf_event *
981 : perf_event_create_kernel_counter(struct perf_event_attr *attr,
982 : int cpu,
983 : struct task_struct *task,
984 : perf_overflow_handler_t callback,
985 : void *context);
986 : extern void perf_pmu_migrate_context(struct pmu *pmu,
987 : int src_cpu, int dst_cpu);
988 : int perf_event_read_local(struct perf_event *event, u64 *value,
989 : u64 *enabled, u64 *running);
990 : extern u64 perf_event_read_value(struct perf_event *event,
991 : u64 *enabled, u64 *running);
992 :
993 :
994 : struct perf_sample_data {
995 : /*
996 : * Fields set by perf_sample_data_init(), group so as to
997 : * minimize the cachelines touched.
998 : */
999 : u64 addr;
1000 : struct perf_raw_record *raw;
1001 : struct perf_branch_stack *br_stack;
1002 : u64 period;
1003 : union perf_sample_weight weight;
1004 : u64 txn;
1005 : union perf_mem_data_src data_src;
1006 :
1007 : /*
1008 : * The other fields, optionally {set,used} by
1009 : * perf_{prepare,output}_sample().
1010 : */
1011 : u64 type;
1012 : u64 ip;
1013 : struct {
1014 : u32 pid;
1015 : u32 tid;
1016 : } tid_entry;
1017 : u64 time;
1018 : u64 id;
1019 : u64 stream_id;
1020 : struct {
1021 : u32 cpu;
1022 : u32 reserved;
1023 : } cpu_entry;
1024 : struct perf_callchain_entry *callchain;
1025 : u64 aux_size;
1026 :
1027 : struct perf_regs regs_user;
1028 : struct perf_regs regs_intr;
1029 : u64 stack_user_size;
1030 :
1031 : u64 phys_addr;
1032 : u64 cgroup;
1033 : u64 data_page_size;
1034 : u64 code_page_size;
1035 : } ____cacheline_aligned;
1036 :
1037 : /* default value for data source */
1038 : #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1039 : PERF_MEM_S(LVL, NA) |\
1040 : PERF_MEM_S(SNOOP, NA) |\
1041 : PERF_MEM_S(LOCK, NA) |\
1042 : PERF_MEM_S(TLB, NA))
1043 :
1044 0 : static inline void perf_sample_data_init(struct perf_sample_data *data,
1045 : u64 addr, u64 period)
1046 : {
1047 : /* remaining struct members initialized in perf_prepare_sample() */
1048 0 : data->addr = addr;
1049 0 : data->raw = NULL;
1050 0 : data->br_stack = NULL;
1051 0 : data->period = period;
1052 0 : data->weight.full = 0;
1053 0 : data->data_src.val = PERF_MEM_NA;
1054 0 : data->txn = 0;
1055 : }
1056 :
1057 : extern void perf_output_sample(struct perf_output_handle *handle,
1058 : struct perf_event_header *header,
1059 : struct perf_sample_data *data,
1060 : struct perf_event *event);
1061 : extern void perf_prepare_sample(struct perf_event_header *header,
1062 : struct perf_sample_data *data,
1063 : struct perf_event *event,
1064 : struct pt_regs *regs);
1065 :
1066 : extern int perf_event_overflow(struct perf_event *event,
1067 : struct perf_sample_data *data,
1068 : struct pt_regs *regs);
1069 :
1070 : extern void perf_event_output_forward(struct perf_event *event,
1071 : struct perf_sample_data *data,
1072 : struct pt_regs *regs);
1073 : extern void perf_event_output_backward(struct perf_event *event,
1074 : struct perf_sample_data *data,
1075 : struct pt_regs *regs);
1076 : extern int perf_event_output(struct perf_event *event,
1077 : struct perf_sample_data *data,
1078 : struct pt_regs *regs);
1079 :
1080 : static inline bool
1081 : is_default_overflow_handler(struct perf_event *event)
1082 : {
1083 : if (likely(event->overflow_handler == perf_event_output_forward))
1084 : return true;
1085 : if (unlikely(event->overflow_handler == perf_event_output_backward))
1086 : return true;
1087 : return false;
1088 : }
1089 :
1090 : extern void
1091 : perf_event_header__init_id(struct perf_event_header *header,
1092 : struct perf_sample_data *data,
1093 : struct perf_event *event);
1094 : extern void
1095 : perf_event__output_id_sample(struct perf_event *event,
1096 : struct perf_output_handle *handle,
1097 : struct perf_sample_data *sample);
1098 :
1099 : extern void
1100 : perf_log_lost_samples(struct perf_event *event, u64 lost);
1101 :
1102 0 : static inline bool event_has_any_exclude_flag(struct perf_event *event)
1103 : {
1104 0 : struct perf_event_attr *attr = &event->attr;
1105 :
1106 0 : return attr->exclude_idle || attr->exclude_user ||
1107 : attr->exclude_kernel || attr->exclude_hv ||
1108 0 : attr->exclude_guest || attr->exclude_host;
1109 : }
1110 :
1111 0 : static inline bool is_sampling_event(struct perf_event *event)
1112 : {
1113 0 : return event->attr.sample_period != 0;
1114 : }
1115 :
1116 : /*
1117 : * Return 1 for a software event, 0 for a hardware event
1118 : */
1119 0 : static inline int is_software_event(struct perf_event *event)
1120 : {
1121 0 : return event->event_caps & PERF_EV_CAP_SOFTWARE;
1122 : }
1123 :
1124 : /*
1125 : * Return 1 for event in sw context, 0 for event in hw context
1126 : */
1127 0 : static inline int in_software_context(struct perf_event *event)
1128 : {
1129 0 : return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1130 : }
1131 :
1132 0 : static inline int is_exclusive_pmu(struct pmu *pmu)
1133 : {
1134 0 : return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1135 : }
1136 :
1137 : extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1138 :
1139 : extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1140 : extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1141 :
1142 : #ifndef perf_arch_fetch_caller_regs
1143 : static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1144 : #endif
1145 :
1146 : /*
1147 : * When generating a perf sample in-line, instead of from an interrupt /
1148 : * exception, we lack a pt_regs. This is typically used from software events
1149 : * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1150 : *
1151 : * We typically don't need a full set, but (for x86) do require:
1152 : * - ip for PERF_SAMPLE_IP
1153 : * - cs for user_mode() tests
1154 : * - sp for PERF_SAMPLE_CALLCHAIN
1155 : * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1156 : *
1157 : * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1158 : * things like PERF_SAMPLE_REGS_INTR.
1159 : */
1160 0 : static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1161 : {
1162 0 : perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1163 : }
1164 :
1165 : static __always_inline void
1166 463366 : perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1167 : {
1168 758515 : if (static_key_false(&perf_swevent_enabled[event_id]))
1169 0 : __perf_sw_event(event_id, nr, regs, addr);
1170 : }
1171 :
1172 : DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1173 :
1174 : /*
1175 : * 'Special' version for the scheduler, it hard assumes no recursion,
1176 : * which is guaranteed by us not actually scheduling inside other swevents
1177 : * because those disable preemption.
1178 : */
1179 : static __always_inline void
1180 26512 : perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1181 : {
1182 53023 : if (static_key_false(&perf_swevent_enabled[event_id])) {
1183 0 : struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1184 :
1185 0 : perf_fetch_caller_regs(regs);
1186 0 : ___perf_sw_event(event_id, nr, regs, addr);
1187 : }
1188 : }
1189 :
1190 : extern struct static_key_false perf_sched_events;
1191 :
1192 : static __always_inline bool
1193 27509 : perf_sw_migrate_enabled(void)
1194 : {
1195 55019 : if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1196 0 : return true;
1197 : return false;
1198 : }
1199 :
1200 995 : static inline void perf_event_task_migrate(struct task_struct *task)
1201 : {
1202 995 : if (perf_sw_migrate_enabled())
1203 0 : task->sched_migrated = 1;
1204 995 : }
1205 :
1206 26509 : static inline void perf_event_task_sched_in(struct task_struct *prev,
1207 : struct task_struct *task)
1208 : {
1209 26509 : if (static_branch_unlikely(&perf_sched_events))
1210 0 : __perf_event_task_sched_in(prev, task);
1211 :
1212 26514 : if (perf_sw_migrate_enabled() && task->sched_migrated) {
1213 0 : struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1214 :
1215 0 : perf_fetch_caller_regs(regs);
1216 0 : ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1217 0 : task->sched_migrated = 0;
1218 : }
1219 26515 : }
1220 :
1221 26512 : static inline void perf_event_task_sched_out(struct task_struct *prev,
1222 : struct task_struct *next)
1223 : {
1224 26512 : perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1225 :
1226 26511 : if (static_branch_unlikely(&perf_sched_events))
1227 0 : __perf_event_task_sched_out(prev, next);
1228 26515 : }
1229 :
1230 : extern void perf_event_mmap(struct vm_area_struct *vma);
1231 :
1232 : extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1233 : bool unregister, const char *sym);
1234 : extern void perf_event_bpf_event(struct bpf_prog *prog,
1235 : enum perf_bpf_event_type type,
1236 : u16 flags);
1237 :
1238 : extern struct perf_guest_info_callbacks *perf_guest_cbs;
1239 : extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1240 : extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1241 :
1242 : extern void perf_event_exec(void);
1243 : extern void perf_event_comm(struct task_struct *tsk, bool exec);
1244 : extern void perf_event_namespaces(struct task_struct *tsk);
1245 : extern void perf_event_fork(struct task_struct *tsk);
1246 : extern void perf_event_text_poke(const void *addr,
1247 : const void *old_bytes, size_t old_len,
1248 : const void *new_bytes, size_t new_len);
1249 :
1250 : /* Callchains */
1251 : DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1252 :
1253 : extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1254 : extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1255 : extern struct perf_callchain_entry *
1256 : get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1257 : u32 max_stack, bool crosstask, bool add_mark);
1258 : extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1259 : extern int get_callchain_buffers(int max_stack);
1260 : extern void put_callchain_buffers(void);
1261 : extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1262 : extern void put_callchain_entry(int rctx);
1263 :
1264 : extern int sysctl_perf_event_max_stack;
1265 : extern int sysctl_perf_event_max_contexts_per_stack;
1266 :
1267 0 : static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1268 : {
1269 0 : if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1270 0 : struct perf_callchain_entry *entry = ctx->entry;
1271 0 : entry->ip[entry->nr++] = ip;
1272 0 : ++ctx->contexts;
1273 0 : return 0;
1274 : } else {
1275 0 : ctx->contexts_maxed = true;
1276 0 : return -1; /* no more room, stop walking the stack */
1277 : }
1278 : }
1279 :
1280 : static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1281 : {
1282 : if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1283 : struct perf_callchain_entry *entry = ctx->entry;
1284 : entry->ip[entry->nr++] = ip;
1285 : ++ctx->nr;
1286 : return 0;
1287 : } else {
1288 : return -1; /* no more room, stop walking the stack */
1289 : }
1290 : }
1291 :
1292 : extern int sysctl_perf_event_paranoid;
1293 : extern int sysctl_perf_event_mlock;
1294 : extern int sysctl_perf_event_sample_rate;
1295 : extern int sysctl_perf_cpu_time_max_percent;
1296 :
1297 : extern void perf_sample_event_took(u64 sample_len_ns);
1298 :
1299 : int perf_proc_update_handler(struct ctl_table *table, int write,
1300 : void *buffer, size_t *lenp, loff_t *ppos);
1301 : int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1302 : void *buffer, size_t *lenp, loff_t *ppos);
1303 : int perf_event_max_stack_handler(struct ctl_table *table, int write,
1304 : void *buffer, size_t *lenp, loff_t *ppos);
1305 :
1306 : /* Access to perf_event_open(2) syscall. */
1307 : #define PERF_SECURITY_OPEN 0
1308 :
1309 : /* Finer grained perf_event_open(2) access control. */
1310 : #define PERF_SECURITY_CPU 1
1311 : #define PERF_SECURITY_KERNEL 2
1312 : #define PERF_SECURITY_TRACEPOINT 3
1313 :
1314 0 : static inline int perf_is_paranoid(void)
1315 : {
1316 0 : return sysctl_perf_event_paranoid > -1;
1317 : }
1318 :
1319 0 : static inline int perf_allow_kernel(struct perf_event_attr *attr)
1320 : {
1321 0 : if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1322 : return -EACCES;
1323 :
1324 0 : return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1325 : }
1326 :
1327 0 : static inline int perf_allow_cpu(struct perf_event_attr *attr)
1328 : {
1329 0 : if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1330 : return -EACCES;
1331 :
1332 0 : return security_perf_event_open(attr, PERF_SECURITY_CPU);
1333 : }
1334 :
1335 0 : static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1336 : {
1337 0 : if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1338 : return -EPERM;
1339 :
1340 0 : return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1341 : }
1342 :
1343 : extern void perf_event_init(void);
1344 : extern void perf_tp_event(u16 event_type, u64 count, void *record,
1345 : int entry_size, struct pt_regs *regs,
1346 : struct hlist_head *head, int rctx,
1347 : struct task_struct *task);
1348 : extern void perf_bp_event(struct perf_event *event, void *data);
1349 :
1350 : #ifndef perf_misc_flags
1351 : # define perf_misc_flags(regs) \
1352 : (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1353 : # define perf_instruction_pointer(regs) instruction_pointer(regs)
1354 : #endif
1355 : #ifndef perf_arch_bpf_user_pt_regs
1356 : # define perf_arch_bpf_user_pt_regs(regs) regs
1357 : #endif
1358 :
1359 0 : static inline bool has_branch_stack(struct perf_event *event)
1360 : {
1361 0 : return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1362 : }
1363 :
1364 0 : static inline bool needs_branch_stack(struct perf_event *event)
1365 : {
1366 0 : return event->attr.branch_sample_type != 0;
1367 : }
1368 :
1369 0 : static inline bool has_aux(struct perf_event *event)
1370 : {
1371 0 : return event->pmu->setup_aux;
1372 : }
1373 :
1374 0 : static inline bool is_write_backward(struct perf_event *event)
1375 : {
1376 0 : return !!event->attr.write_backward;
1377 : }
1378 :
1379 0 : static inline bool has_addr_filter(struct perf_event *event)
1380 : {
1381 0 : return event->pmu->nr_addr_filters;
1382 : }
1383 :
1384 : /*
1385 : * An inherited event uses parent's filters
1386 : */
1387 : static inline struct perf_addr_filters_head *
1388 0 : perf_event_addr_filters(struct perf_event *event)
1389 : {
1390 0 : struct perf_addr_filters_head *ifh = &event->addr_filters;
1391 :
1392 0 : if (event->parent)
1393 0 : ifh = &event->parent->addr_filters;
1394 :
1395 0 : return ifh;
1396 : }
1397 :
1398 : extern void perf_event_addr_filters_sync(struct perf_event *event);
1399 :
1400 : extern int perf_output_begin(struct perf_output_handle *handle,
1401 : struct perf_sample_data *data,
1402 : struct perf_event *event, unsigned int size);
1403 : extern int perf_output_begin_forward(struct perf_output_handle *handle,
1404 : struct perf_sample_data *data,
1405 : struct perf_event *event,
1406 : unsigned int size);
1407 : extern int perf_output_begin_backward(struct perf_output_handle *handle,
1408 : struct perf_sample_data *data,
1409 : struct perf_event *event,
1410 : unsigned int size);
1411 :
1412 : extern void perf_output_end(struct perf_output_handle *handle);
1413 : extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1414 : const void *buf, unsigned int len);
1415 : extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1416 : unsigned int len);
1417 : extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1418 : struct perf_output_handle *handle,
1419 : unsigned long from, unsigned long to);
1420 : extern int perf_swevent_get_recursion_context(void);
1421 : extern void perf_swevent_put_recursion_context(int rctx);
1422 : extern u64 perf_swevent_set_period(struct perf_event *event);
1423 : extern void perf_event_enable(struct perf_event *event);
1424 : extern void perf_event_disable(struct perf_event *event);
1425 : extern void perf_event_disable_local(struct perf_event *event);
1426 : extern void perf_event_disable_inatomic(struct perf_event *event);
1427 : extern void perf_event_task_tick(void);
1428 : extern int perf_event_account_interrupt(struct perf_event *event);
1429 : extern int perf_event_period(struct perf_event *event, u64 value);
1430 : extern u64 perf_event_pause(struct perf_event *event, bool reset);
1431 : #else /* !CONFIG_PERF_EVENTS: */
1432 : static inline void *
1433 : perf_aux_output_begin(struct perf_output_handle *handle,
1434 : struct perf_event *event) { return NULL; }
1435 : static inline void
1436 : perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1437 : { }
1438 : static inline int
1439 : perf_aux_output_skip(struct perf_output_handle *handle,
1440 : unsigned long size) { return -EINVAL; }
1441 : static inline void *
1442 : perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1443 : static inline void
1444 : perf_event_task_migrate(struct task_struct *task) { }
1445 : static inline void
1446 : perf_event_task_sched_in(struct task_struct *prev,
1447 : struct task_struct *task) { }
1448 : static inline void
1449 : perf_event_task_sched_out(struct task_struct *prev,
1450 : struct task_struct *next) { }
1451 : static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1452 : static inline void perf_event_exit_task(struct task_struct *child) { }
1453 : static inline void perf_event_free_task(struct task_struct *task) { }
1454 : static inline void perf_event_delayed_put(struct task_struct *task) { }
1455 : static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1456 : static inline const struct perf_event *perf_get_event(struct file *file)
1457 : {
1458 : return ERR_PTR(-EINVAL);
1459 : }
1460 : static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1461 : {
1462 : return ERR_PTR(-EINVAL);
1463 : }
1464 : static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1465 : u64 *enabled, u64 *running)
1466 : {
1467 : return -EINVAL;
1468 : }
1469 : static inline void perf_event_print_debug(void) { }
1470 : static inline int perf_event_task_disable(void) { return -EINVAL; }
1471 : static inline int perf_event_task_enable(void) { return -EINVAL; }
1472 : static inline int perf_event_refresh(struct perf_event *event, int refresh)
1473 : {
1474 : return -EINVAL;
1475 : }
1476 :
1477 : static inline void
1478 : perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1479 : static inline void
1480 : perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1481 : static inline void
1482 : perf_bp_event(struct perf_event *event, void *data) { }
1483 :
1484 : static inline int perf_register_guest_info_callbacks
1485 : (struct perf_guest_info_callbacks *callbacks) { return 0; }
1486 : static inline int perf_unregister_guest_info_callbacks
1487 : (struct perf_guest_info_callbacks *callbacks) { return 0; }
1488 :
1489 : static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1490 :
1491 : typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1492 : static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1493 : bool unregister, const char *sym) { }
1494 : static inline void perf_event_bpf_event(struct bpf_prog *prog,
1495 : enum perf_bpf_event_type type,
1496 : u16 flags) { }
1497 : static inline void perf_event_exec(void) { }
1498 : static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1499 : static inline void perf_event_namespaces(struct task_struct *tsk) { }
1500 : static inline void perf_event_fork(struct task_struct *tsk) { }
1501 : static inline void perf_event_text_poke(const void *addr,
1502 : const void *old_bytes,
1503 : size_t old_len,
1504 : const void *new_bytes,
1505 : size_t new_len) { }
1506 : static inline void perf_event_init(void) { }
1507 : static inline int perf_swevent_get_recursion_context(void) { return -1; }
1508 : static inline void perf_swevent_put_recursion_context(int rctx) { }
1509 : static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1510 : static inline void perf_event_enable(struct perf_event *event) { }
1511 : static inline void perf_event_disable(struct perf_event *event) { }
1512 : static inline int __perf_event_disable(void *info) { return -1; }
1513 : static inline void perf_event_task_tick(void) { }
1514 : static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1515 : static inline int perf_event_period(struct perf_event *event, u64 value)
1516 : {
1517 : return -EINVAL;
1518 : }
1519 : static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1520 : {
1521 : return 0;
1522 : }
1523 : #endif
1524 :
1525 : #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1526 : extern void perf_restore_debug_store(void);
1527 : #else
1528 : static inline void perf_restore_debug_store(void) { }
1529 : #endif
1530 :
1531 0 : static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1532 : {
1533 0 : return frag->pad < sizeof(u64);
1534 : }
1535 :
1536 : #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1537 :
1538 : struct perf_pmu_events_attr {
1539 : struct device_attribute attr;
1540 : u64 id;
1541 : const char *event_str;
1542 : };
1543 :
1544 : struct perf_pmu_events_ht_attr {
1545 : struct device_attribute attr;
1546 : u64 id;
1547 : const char *event_str_ht;
1548 : const char *event_str_noht;
1549 : };
1550 :
1551 : ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1552 : char *page);
1553 :
1554 : #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1555 : static struct perf_pmu_events_attr _var = { \
1556 : .attr = __ATTR(_name, 0444, _show, NULL), \
1557 : .id = _id, \
1558 : };
1559 :
1560 : #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1561 : static struct perf_pmu_events_attr _var = { \
1562 : .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1563 : .id = 0, \
1564 : .event_str = _str, \
1565 : };
1566 :
1567 : #define PMU_FORMAT_ATTR(_name, _format) \
1568 : static ssize_t \
1569 : _name##_show(struct device *dev, \
1570 : struct device_attribute *attr, \
1571 : char *page) \
1572 : { \
1573 : BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1574 : return sprintf(page, _format "\n"); \
1575 : } \
1576 : \
1577 : static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1578 :
1579 : /* Performance counter hotplug functions */
1580 : #ifdef CONFIG_PERF_EVENTS
1581 : int perf_event_init_cpu(unsigned int cpu);
1582 : int perf_event_exit_cpu(unsigned int cpu);
1583 : #else
1584 : #define perf_event_init_cpu NULL
1585 : #define perf_event_exit_cpu NULL
1586 : #endif
1587 :
1588 : extern void __weak arch_perf_update_userpage(struct perf_event *event,
1589 : struct perf_event_mmap_page *userpg,
1590 : u64 now);
1591 :
1592 : #ifdef CONFIG_MMU
1593 : extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1594 : #endif
1595 :
1596 : #endif /* _LINUX_PERF_EVENT_H */
|