LCOV - code coverage report
Current view: top level - include/linux - pgtable.h (source / functions) Hit Total Coverage
Test: landlock.info Lines: 74 101 73.3 %
Date: 2021-04-22 12:43:58 Functions: 5 5 100.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_PGTABLE_H
       3             : #define _LINUX_PGTABLE_H
       4             : 
       5             : #include <linux/pfn.h>
       6             : #include <asm/pgtable.h>
       7             : 
       8             : #ifndef __ASSEMBLY__
       9             : #ifdef CONFIG_MMU
      10             : 
      11             : #include <linux/mm_types.h>
      12             : #include <linux/bug.h>
      13             : #include <linux/errno.h>
      14             : #include <asm-generic/pgtable_uffd.h>
      15             : 
      16             : #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
      17             :         defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
      18             : #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
      19             : #endif
      20             : 
      21             : /*
      22             :  * On almost all architectures and configurations, 0 can be used as the
      23             :  * upper ceiling to free_pgtables(): on many architectures it has the same
      24             :  * effect as using TASK_SIZE.  However, there is one configuration which
      25             :  * must impose a more careful limit, to avoid freeing kernel pgtables.
      26             :  */
      27             : #ifndef USER_PGTABLES_CEILING
      28             : #define USER_PGTABLES_CEILING   0UL
      29             : #endif
      30             : 
      31             : /*
      32             :  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
      33             :  *
      34             :  * The pXx_index() functions return the index of the entry in the page
      35             :  * table page which would control the given virtual address
      36             :  *
      37             :  * As these functions may be used by the same code for different levels of
      38             :  * the page table folding, they are always available, regardless of
      39             :  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
      40             :  * because in such cases PTRS_PER_PxD equals 1.
      41             :  */
      42             : 
      43      478748 : static inline unsigned long pte_index(unsigned long address)
      44             : {
      45      478551 :         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
      46             : }
      47             : 
      48             : #ifndef pmd_index
      49      418832 : static inline unsigned long pmd_index(unsigned long address)
      50             : {
      51      418631 :         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
      52             : }
      53             : #define pmd_index pmd_index
      54             : #endif
      55             : 
      56             : #ifndef pud_index
      57      417242 : static inline unsigned long pud_index(unsigned long address)
      58             : {
      59      416981 :         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
      60             : }
      61             : #define pud_index pud_index
      62             : #endif
      63             : 
      64             : #ifndef pgd_index
      65             : /* Must be a compile-time constant, so implement it as a macro */
      66             : #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
      67             : #endif
      68             : 
      69             : #ifndef pte_offset_kernel
      70      478604 : static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
      71             : {
      72      948107 :         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
      73             : }
      74             : #define pte_offset_kernel pte_offset_kernel
      75             : #endif
      76             : 
      77             : #if defined(CONFIG_HIGHPTE)
      78             : #define pte_offset_map(dir, address)                            \
      79             :         ((pte_t *)kmap_atomic(pmd_page(*(dir))) +               \
      80             :          pte_index((address)))
      81             : #define pte_unmap(pte) kunmap_atomic((pte))
      82             : #else
      83             : #define pte_offset_map(dir, address)    pte_offset_kernel((dir), (address))
      84             : #define pte_unmap(pte) ((void)(pte))    /* NOP */
      85             : #endif
      86             : 
      87             : /* Find an entry in the second-level page table.. */
      88             : #ifndef pmd_offset
      89      417031 : static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
      90             : {
      91      827326 :         return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
      92             : }
      93             : #define pmd_offset pmd_offset
      94             : #endif
      95             : 
      96             : #ifndef pud_offset
      97      414673 : static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
      98             : {
      99      414477 :         return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
     100             : }
     101             : #define pud_offset pud_offset
     102             : #endif
     103             : 
     104      383585 : static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
     105             : {
     106      383585 :         return (pgd + pgd_index(address));
     107             : };
     108             : 
     109             : /*
     110             :  * a shortcut to get a pgd_t in a given mm
     111             :  */
     112             : #ifndef pgd_offset
     113             : #define pgd_offset(mm, address)         pgd_offset_pgd((mm)->pgd, (address))
     114             : #endif
     115             : 
     116             : /*
     117             :  * a shortcut which implies the use of the kernel's pgd, instead
     118             :  * of a process's
     119             :  */
     120             : #ifndef pgd_offset_k
     121             : #define pgd_offset_k(address)           pgd_offset(&init_mm, (address))
     122             : #endif
     123             : 
     124             : /*
     125             :  * In many cases it is known that a virtual address is mapped at PMD or PTE
     126             :  * level, so instead of traversing all the page table levels, we can get a
     127             :  * pointer to the PMD entry in user or kernel page table or translate a virtual
     128             :  * address to the pointer in the PTE in the kernel page tables with simple
     129             :  * helpers.
     130             :  */
     131             : static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
     132             : {
     133             :         return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
     134             : }
     135             : 
     136             : static inline pmd_t *pmd_off_k(unsigned long va)
     137             : {
     138             :         return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
     139             : }
     140             : 
     141             : static inline pte_t *virt_to_kpte(unsigned long vaddr)
     142             : {
     143             :         pmd_t *pmd = pmd_off_k(vaddr);
     144             : 
     145             :         return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
     146             : }
     147             : 
     148             : #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
     149             : extern int ptep_set_access_flags(struct vm_area_struct *vma,
     150             :                                  unsigned long address, pte_t *ptep,
     151             :                                  pte_t entry, int dirty);
     152             : #endif
     153             : 
     154             : #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
     155             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     156             : extern int pmdp_set_access_flags(struct vm_area_struct *vma,
     157             :                                  unsigned long address, pmd_t *pmdp,
     158             :                                  pmd_t entry, int dirty);
     159             : extern int pudp_set_access_flags(struct vm_area_struct *vma,
     160             :                                  unsigned long address, pud_t *pudp,
     161             :                                  pud_t entry, int dirty);
     162             : #else
     163             : static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
     164             :                                         unsigned long address, pmd_t *pmdp,
     165             :                                         pmd_t entry, int dirty)
     166             : {
     167             :         BUILD_BUG();
     168             :         return 0;
     169             : }
     170             : static inline int pudp_set_access_flags(struct vm_area_struct *vma,
     171             :                                         unsigned long address, pud_t *pudp,
     172             :                                         pud_t entry, int dirty)
     173             : {
     174             :         BUILD_BUG();
     175             :         return 0;
     176             : }
     177             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     178             : #endif
     179             : 
     180             : #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
     181             : static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
     182             :                                             unsigned long address,
     183             :                                             pte_t *ptep)
     184             : {
     185             :         pte_t pte = *ptep;
     186             :         int r = 1;
     187             :         if (!pte_young(pte))
     188             :                 r = 0;
     189             :         else
     190             :                 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
     191             :         return r;
     192             : }
     193             : #endif
     194             : 
     195             : #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
     196             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     197             : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
     198             :                                             unsigned long address,
     199             :                                             pmd_t *pmdp)
     200             : {
     201             :         pmd_t pmd = *pmdp;
     202             :         int r = 1;
     203             :         if (!pmd_young(pmd))
     204             :                 r = 0;
     205             :         else
     206             :                 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
     207             :         return r;
     208             : }
     209             : #else
     210             : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
     211             :                                             unsigned long address,
     212             :                                             pmd_t *pmdp)
     213             : {
     214             :         BUILD_BUG();
     215             :         return 0;
     216             : }
     217             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     218             : #endif
     219             : 
     220             : #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
     221             : int ptep_clear_flush_young(struct vm_area_struct *vma,
     222             :                            unsigned long address, pte_t *ptep);
     223             : #endif
     224             : 
     225             : #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
     226             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     227             : extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
     228             :                                   unsigned long address, pmd_t *pmdp);
     229             : #else
     230             : /*
     231             :  * Despite relevant to THP only, this API is called from generic rmap code
     232             :  * under PageTransHuge(), hence needs a dummy implementation for !THP
     233             :  */
     234             : static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
     235             :                                          unsigned long address, pmd_t *pmdp)
     236             : {
     237             :         BUILD_BUG();
     238             :         return 0;
     239             : }
     240             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     241             : #endif
     242             : 
     243             : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
     244             : static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
     245             :                                        unsigned long address,
     246             :                                        pte_t *ptep)
     247             : {
     248             :         pte_t pte = *ptep;
     249             :         pte_clear(mm, address, ptep);
     250             :         return pte;
     251             : }
     252             : #endif
     253             : 
     254             : #ifndef __HAVE_ARCH_PTEP_GET
     255           2 : static inline pte_t ptep_get(pte_t *ptep)
     256             : {
     257           2 :         return READ_ONCE(*ptep);
     258             : }
     259             : #endif
     260             : 
     261             : #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
     262             : /*
     263             :  * WARNING: only to be used in the get_user_pages_fast() implementation.
     264             :  *
     265             :  * With get_user_pages_fast(), we walk down the pagetables without taking any
     266             :  * locks.  For this we would like to load the pointers atomically, but sometimes
     267             :  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
     268             :  * we do have is the guarantee that a PTE will only either go from not present
     269             :  * to present, or present to not present or both -- it will not switch to a
     270             :  * completely different present page without a TLB flush in between; something
     271             :  * that we are blocking by holding interrupts off.
     272             :  *
     273             :  * Setting ptes from not present to present goes:
     274             :  *
     275             :  *   ptep->pte_high = h;
     276             :  *   smp_wmb();
     277             :  *   ptep->pte_low = l;
     278             :  *
     279             :  * And present to not present goes:
     280             :  *
     281             :  *   ptep->pte_low = 0;
     282             :  *   smp_wmb();
     283             :  *   ptep->pte_high = 0;
     284             :  *
     285             :  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
     286             :  * We load pte_high *after* loading pte_low, which ensures we don't see an older
     287             :  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
     288             :  * picked up a changed pte high. We might have gotten rubbish values from
     289             :  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
     290             :  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
     291             :  * operates on present ptes we're safe.
     292             :  */
     293             : static inline pte_t ptep_get_lockless(pte_t *ptep)
     294             : {
     295             :         pte_t pte;
     296             : 
     297             :         do {
     298             :                 pte.pte_low = ptep->pte_low;
     299             :                 smp_rmb();
     300             :                 pte.pte_high = ptep->pte_high;
     301             :                 smp_rmb();
     302             :         } while (unlikely(pte.pte_low != ptep->pte_low));
     303             : 
     304             :         return pte;
     305             : }
     306             : #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
     307             : /*
     308             :  * We require that the PTE can be read atomically.
     309             :  */
     310           2 : static inline pte_t ptep_get_lockless(pte_t *ptep)
     311             : {
     312           2 :         return ptep_get(ptep);
     313             : }
     314             : #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
     315             : 
     316             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     317             : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
     318             : static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
     319             :                                             unsigned long address,
     320             :                                             pmd_t *pmdp)
     321             : {
     322             :         pmd_t pmd = *pmdp;
     323             :         pmd_clear(pmdp);
     324             :         return pmd;
     325             : }
     326             : #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
     327             : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
     328             : static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
     329             :                                             unsigned long address,
     330             :                                             pud_t *pudp)
     331             : {
     332             :         pud_t pud = *pudp;
     333             : 
     334             :         pud_clear(pudp);
     335             :         return pud;
     336             : }
     337             : #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
     338             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     339             : 
     340             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     341             : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
     342          17 : static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
     343             :                                             unsigned long address, pmd_t *pmdp,
     344             :                                             int full)
     345             : {
     346          34 :         return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
     347             : }
     348             : #endif
     349             : 
     350             : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
     351           0 : static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
     352             :                                             unsigned long address, pud_t *pudp,
     353             :                                             int full)
     354             : {
     355           0 :         return pudp_huge_get_and_clear(mm, address, pudp);
     356             : }
     357             : #endif
     358             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     359             : 
     360             : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
     361             : static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
     362             :                                             unsigned long address, pte_t *ptep,
     363             :                                             int full)
     364             : {
     365             :         pte_t pte;
     366             :         pte = ptep_get_and_clear(mm, address, ptep);
     367             :         return pte;
     368             : }
     369             : #endif
     370             : 
     371             : 
     372             : /*
     373             :  * If two threads concurrently fault at the same page, the thread that
     374             :  * won the race updates the PTE and its local TLB/Cache. The other thread
     375             :  * gives up, simply does nothing, and continues; on architectures where
     376             :  * software can update TLB,  local TLB can be updated here to avoid next page
     377             :  * fault. This function updates TLB only, do nothing with cache or others.
     378             :  * It is the difference with function update_mmu_cache.
     379             :  */
     380             : #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
     381       10583 : static inline void update_mmu_tlb(struct vm_area_struct *vma,
     382             :                                 unsigned long address, pte_t *ptep)
     383             : {
     384       10583 : }
     385             : #define __HAVE_ARCH_UPDATE_MMU_TLB
     386             : #endif
     387             : 
     388             : /*
     389             :  * Some architectures may be able to avoid expensive synchronization
     390             :  * primitives when modifications are made to PTE's which are already
     391             :  * not present, or in the process of an address space destruction.
     392             :  */
     393             : #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
     394           0 : static inline void pte_clear_not_present_full(struct mm_struct *mm,
     395             :                                               unsigned long address,
     396             :                                               pte_t *ptep,
     397             :                                               int full)
     398             : {
     399           0 :         pte_clear(mm, address, ptep);
     400             : }
     401             : #endif
     402             : 
     403             : #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
     404             : extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
     405             :                               unsigned long address,
     406             :                               pte_t *ptep);
     407             : #endif
     408             : 
     409             : #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
     410             : extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
     411             :                               unsigned long address,
     412             :                               pmd_t *pmdp);
     413             : extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
     414             :                               unsigned long address,
     415             :                               pud_t *pudp);
     416             : #endif
     417             : 
     418             : #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
     419             : struct mm_struct;
     420             : static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
     421             : {
     422             :         pte_t old_pte = *ptep;
     423             :         set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
     424             : }
     425             : #endif
     426             : 
     427             : /*
     428             :  * On some architectures hardware does not set page access bit when accessing
     429             :  * memory page, it is responsibilty of software setting this bit. It brings
     430             :  * out extra page fault penalty to track page access bit. For optimization page
     431             :  * access bit can be set during all page fault flow on these arches.
     432             :  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
     433             :  * where software maintains page access bit.
     434             :  */
     435             : #ifndef pte_savedwrite
     436             : #define pte_savedwrite pte_write
     437             : #endif
     438             : 
     439             : #ifndef pte_mk_savedwrite
     440             : #define pte_mk_savedwrite pte_mkwrite
     441             : #endif
     442             : 
     443             : #ifndef pte_clear_savedwrite
     444             : #define pte_clear_savedwrite pte_wrprotect
     445             : #endif
     446             : 
     447             : #ifndef pmd_savedwrite
     448             : #define pmd_savedwrite pmd_write
     449             : #endif
     450             : 
     451             : #ifndef pmd_mk_savedwrite
     452             : #define pmd_mk_savedwrite pmd_mkwrite
     453             : #endif
     454             : 
     455             : #ifndef pmd_clear_savedwrite
     456             : #define pmd_clear_savedwrite pmd_wrprotect
     457             : #endif
     458             : 
     459             : #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
     460             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     461             : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
     462             :                                       unsigned long address, pmd_t *pmdp)
     463             : {
     464             :         pmd_t old_pmd = *pmdp;
     465             :         set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
     466             : }
     467             : #else
     468             : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
     469             :                                       unsigned long address, pmd_t *pmdp)
     470             : {
     471             :         BUILD_BUG();
     472             : }
     473             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     474             : #endif
     475             : #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
     476             : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
     477           0 : static inline void pudp_set_wrprotect(struct mm_struct *mm,
     478             :                                       unsigned long address, pud_t *pudp)
     479             : {
     480           0 :         pud_t old_pud = *pudp;
     481             : 
     482           0 :         set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
     483             : }
     484             : #else
     485             : static inline void pudp_set_wrprotect(struct mm_struct *mm,
     486             :                                       unsigned long address, pud_t *pudp)
     487             : {
     488             :         BUILD_BUG();
     489             : }
     490             : #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
     491             : #endif
     492             : 
     493             : #ifndef pmdp_collapse_flush
     494             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     495             : extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
     496             :                                  unsigned long address, pmd_t *pmdp);
     497             : #else
     498             : static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
     499             :                                         unsigned long address,
     500             :                                         pmd_t *pmdp)
     501             : {
     502             :         BUILD_BUG();
     503             :         return *pmdp;
     504             : }
     505             : #define pmdp_collapse_flush pmdp_collapse_flush
     506             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     507             : #endif
     508             : 
     509             : #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
     510             : extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
     511             :                                        pgtable_t pgtable);
     512             : #endif
     513             : 
     514             : #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
     515             : extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
     516             : #endif
     517             : 
     518             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     519             : /*
     520             :  * This is an implementation of pmdp_establish() that is only suitable for an
     521             :  * architecture that doesn't have hardware dirty/accessed bits. In this case we
     522             :  * can't race with CPU which sets these bits and non-atomic aproach is fine.
     523             :  */
     524             : static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
     525             :                 unsigned long address, pmd_t *pmdp, pmd_t pmd)
     526             : {
     527             :         pmd_t old_pmd = *pmdp;
     528             :         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
     529             :         return old_pmd;
     530             : }
     531             : #endif
     532             : 
     533             : #ifndef __HAVE_ARCH_PMDP_INVALIDATE
     534             : extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
     535             :                             pmd_t *pmdp);
     536             : #endif
     537             : 
     538             : #ifndef __HAVE_ARCH_PTE_SAME
     539             : static inline int pte_same(pte_t pte_a, pte_t pte_b)
     540             : {
     541             :         return pte_val(pte_a) == pte_val(pte_b);
     542             : }
     543             : #endif
     544             : 
     545             : #ifndef __HAVE_ARCH_PTE_UNUSED
     546             : /*
     547             :  * Some architectures provide facilities to virtualization guests
     548             :  * so that they can flag allocated pages as unused. This allows the
     549             :  * host to transparently reclaim unused pages. This function returns
     550             :  * whether the pte's page is unused.
     551             :  */
     552           0 : static inline int pte_unused(pte_t pte)
     553             : {
     554           0 :         return 0;
     555             : }
     556             : #endif
     557             : 
     558             : #ifndef pte_access_permitted
     559             : #define pte_access_permitted(pte, write) \
     560             :         (pte_present(pte) && (!(write) || pte_write(pte)))
     561             : #endif
     562             : 
     563             : #ifndef pmd_access_permitted
     564             : #define pmd_access_permitted(pmd, write) \
     565             :         (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
     566             : #endif
     567             : 
     568             : #ifndef pud_access_permitted
     569             : #define pud_access_permitted(pud, write) \
     570             :         (pud_present(pud) && (!(write) || pud_write(pud)))
     571             : #endif
     572             : 
     573             : #ifndef p4d_access_permitted
     574             : #define p4d_access_permitted(p4d, write) \
     575             :         (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
     576             : #endif
     577             : 
     578             : #ifndef pgd_access_permitted
     579             : #define pgd_access_permitted(pgd, write) \
     580             :         (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
     581             : #endif
     582             : 
     583             : #ifndef __HAVE_ARCH_PMD_SAME
     584           3 : static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
     585             : {
     586           3 :         return pmd_val(pmd_a) == pmd_val(pmd_b);
     587             : }
     588             : 
     589           0 : static inline int pud_same(pud_t pud_a, pud_t pud_b)
     590             : {
     591           0 :         return pud_val(pud_a) == pud_val(pud_b);
     592             : }
     593             : #endif
     594             : 
     595             : #ifndef __HAVE_ARCH_P4D_SAME
     596           0 : static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
     597             : {
     598           0 :         return p4d_val(p4d_a) == p4d_val(p4d_b);
     599             : }
     600             : #endif
     601             : 
     602             : #ifndef __HAVE_ARCH_PGD_SAME
     603             : static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
     604             : {
     605             :         return pgd_val(pgd_a) == pgd_val(pgd_b);
     606             : }
     607             : #endif
     608             : 
     609             : /*
     610             :  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
     611             :  * TLB flush will be required as a result of the "set". For example, use
     612             :  * in scenarios where it is known ahead of time that the routine is
     613             :  * setting non-present entries, or re-setting an existing entry to the
     614             :  * same value. Otherwise, use the typical "set" helpers and flush the
     615             :  * TLB.
     616             :  */
     617             : #define set_pte_safe(ptep, pte) \
     618             : ({ \
     619             :         WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
     620             :         set_pte(ptep, pte); \
     621             : })
     622             : 
     623             : #define set_pmd_safe(pmdp, pmd) \
     624             : ({ \
     625             :         WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
     626             :         set_pmd(pmdp, pmd); \
     627             : })
     628             : 
     629             : #define set_pud_safe(pudp, pud) \
     630             : ({ \
     631             :         WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
     632             :         set_pud(pudp, pud); \
     633             : })
     634             : 
     635             : #define set_p4d_safe(p4dp, p4d) \
     636             : ({ \
     637             :         WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
     638             :         set_p4d(p4dp, p4d); \
     639             : })
     640             : 
     641             : #define set_pgd_safe(pgdp, pgd) \
     642             : ({ \
     643             :         WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
     644             :         set_pgd(pgdp, pgd); \
     645             : })
     646             : 
     647             : #ifndef __HAVE_ARCH_DO_SWAP_PAGE
     648             : /*
     649             :  * Some architectures support metadata associated with a page. When a
     650             :  * page is being swapped out, this metadata must be saved so it can be
     651             :  * restored when the page is swapped back in. SPARC M7 and newer
     652             :  * processors support an ADI (Application Data Integrity) tag for the
     653             :  * page as metadata for the page. arch_do_swap_page() can restore this
     654             :  * metadata when a page is swapped back in.
     655             :  */
     656             : static inline void arch_do_swap_page(struct mm_struct *mm,
     657             :                                      struct vm_area_struct *vma,
     658             :                                      unsigned long addr,
     659             :                                      pte_t pte, pte_t oldpte)
     660             : {
     661             : 
     662             : }
     663             : #endif
     664             : 
     665             : #ifndef __HAVE_ARCH_UNMAP_ONE
     666             : /*
     667             :  * Some architectures support metadata associated with a page. When a
     668             :  * page is being swapped out, this metadata must be saved so it can be
     669             :  * restored when the page is swapped back in. SPARC M7 and newer
     670             :  * processors support an ADI (Application Data Integrity) tag for the
     671             :  * page as metadata for the page. arch_unmap_one() can save this
     672             :  * metadata on a swap-out of a page.
     673             :  */
     674           0 : static inline int arch_unmap_one(struct mm_struct *mm,
     675             :                                   struct vm_area_struct *vma,
     676             :                                   unsigned long addr,
     677             :                                   pte_t orig_pte)
     678             : {
     679           0 :         return 0;
     680             : }
     681             : #endif
     682             : 
     683             : /*
     684             :  * Allow architectures to preserve additional metadata associated with
     685             :  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
     686             :  * prototypes must be defined in the arch-specific asm/pgtable.h file.
     687             :  */
     688             : #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
     689             : static inline int arch_prepare_to_swap(struct page *page)
     690             : {
     691             :         return 0;
     692             : }
     693             : #endif
     694             : 
     695             : #ifndef __HAVE_ARCH_SWAP_INVALIDATE
     696             : static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
     697             : {
     698             : }
     699             : 
     700             : static inline void arch_swap_invalidate_area(int type)
     701             : {
     702             : }
     703             : #endif
     704             : 
     705             : #ifndef __HAVE_ARCH_SWAP_RESTORE
     706             : static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
     707             : {
     708             : }
     709             : #endif
     710             : 
     711             : #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
     712             : #define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
     713             : #endif
     714             : 
     715             : #ifndef __HAVE_ARCH_MOVE_PTE
     716             : #define move_pte(pte, prot, old_addr, new_addr) (pte)
     717             : #endif
     718             : 
     719             : #ifndef pte_accessible
     720             : # define pte_accessible(mm, pte)        ((void)(pte), 1)
     721             : #endif
     722             : 
     723             : #ifndef flush_tlb_fix_spurious_fault
     724             : #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
     725             : #endif
     726             : 
     727             : /*
     728             :  * When walking page tables, get the address of the next boundary,
     729             :  * or the end address of the range if that comes earlier.  Although no
     730             :  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
     731             :  */
     732             : 
     733             : #define pgd_addr_end(addr, end)                                         \
     734             : ({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;      \
     735             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     736             : })
     737             : 
     738             : #ifndef p4d_addr_end
     739             : #define p4d_addr_end(addr, end)                                         \
     740             : ({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;  \
     741             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     742             : })
     743             : #endif
     744             : 
     745             : #ifndef pud_addr_end
     746             : #define pud_addr_end(addr, end)                                         \
     747             : ({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;  \
     748             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     749             : })
     750             : #endif
     751             : 
     752             : #ifndef pmd_addr_end
     753             : #define pmd_addr_end(addr, end)                                         \
     754             : ({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;  \
     755             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     756             : })
     757             : #endif
     758             : 
     759             : /*
     760             :  * When walking page tables, we usually want to skip any p?d_none entries;
     761             :  * and any p?d_bad entries - reporting the error before resetting to none.
     762             :  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
     763             :  */
     764             : void pgd_clear_bad(pgd_t *);
     765             : 
     766             : #ifndef __PAGETABLE_P4D_FOLDED
     767             : void p4d_clear_bad(p4d_t *);
     768             : #else
     769             : #define p4d_clear_bad(p4d)        do { } while (0)
     770             : #endif
     771             : 
     772             : #ifndef __PAGETABLE_PUD_FOLDED
     773             : void pud_clear_bad(pud_t *);
     774             : #else
     775             : #define pud_clear_bad(p4d)        do { } while (0)
     776             : #endif
     777             : 
     778             : void pmd_clear_bad(pmd_t *);
     779             : 
     780      172632 : static inline int pgd_none_or_clear_bad(pgd_t *pgd)
     781             : {
     782      172632 :         if (pgd_none(*pgd))
     783             :                 return 1;
     784      172632 :         if (unlikely(pgd_bad(*pgd))) {
     785             :                 pgd_clear_bad(pgd);
     786             :                 return 1;
     787             :         }
     788      172632 :         return 0;
     789             : }
     790             : 
     791      172638 : static inline int p4d_none_or_clear_bad(p4d_t *p4d)
     792             : {
     793      172638 :         if (p4d_none(*p4d))
     794             :                 return 1;
     795      171111 :         if (unlikely(p4d_bad(*p4d))) {
     796             :                 p4d_clear_bad(p4d);
     797             :                 return 1;
     798             :         }
     799             :         return 0;
     800             : }
     801             : 
     802      171132 : static inline int pud_none_or_clear_bad(pud_t *pud)
     803             : {
     804      171132 :         if (pud_none(*pud))
     805             :                 return 1;
     806      341259 :         if (unlikely(pud_bad(*pud))) {
     807           0 :                 pud_clear_bad(pud);
     808           0 :                 return 1;
     809             :         }
     810             :         return 0;
     811             : }
     812             : 
     813       57084 : static inline int pmd_none_or_clear_bad(pmd_t *pmd)
     814             : {
     815       57084 :         if (pmd_none(*pmd))
     816             :                 return 1;
     817      111582 :         if (unlikely(pmd_bad(*pmd))) {
     818           0 :                 pmd_clear_bad(pmd);
     819           0 :                 return 1;
     820             :         }
     821             :         return 0;
     822             : }
     823             : 
     824       14563 : static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
     825             :                                              unsigned long addr,
     826             :                                              pte_t *ptep)
     827             : {
     828             :         /*
     829             :          * Get the current pte state, but zero it out to make it
     830             :          * non-present, preventing the hardware from asynchronously
     831             :          * updating it.
     832             :          */
     833       29126 :         return ptep_get_and_clear(vma->vm_mm, addr, ptep);
     834             : }
     835             : 
     836       14563 : static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
     837             :                                              unsigned long addr,
     838             :                                              pte_t *ptep, pte_t pte)
     839             : {
     840             :         /*
     841             :          * The pte is non-present, so there's no hardware state to
     842             :          * preserve.
     843             :          */
     844       14563 :         set_pte_at(vma->vm_mm, addr, ptep, pte);
     845             : }
     846             : 
     847             : #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
     848             : /*
     849             :  * Start a pte protection read-modify-write transaction, which
     850             :  * protects against asynchronous hardware modifications to the pte.
     851             :  * The intention is not to prevent the hardware from making pte
     852             :  * updates, but to prevent any updates it may make from being lost.
     853             :  *
     854             :  * This does not protect against other software modifications of the
     855             :  * pte; the appropriate pte lock must be held over the transation.
     856             :  *
     857             :  * Note that this interface is intended to be batchable, meaning that
     858             :  * ptep_modify_prot_commit may not actually update the pte, but merely
     859             :  * queue the update to be done at some later time.  The update must be
     860             :  * actually committed before the pte lock is released, however.
     861             :  */
     862       14563 : static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
     863             :                                            unsigned long addr,
     864             :                                            pte_t *ptep)
     865             : {
     866       29126 :         return __ptep_modify_prot_start(vma, addr, ptep);
     867             : }
     868             : 
     869             : /*
     870             :  * Commit an update to a pte, leaving any hardware-controlled bits in
     871             :  * the PTE unmodified.
     872             :  */
     873       14563 : static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
     874             :                                            unsigned long addr,
     875             :                                            pte_t *ptep, pte_t old_pte, pte_t pte)
     876             : {
     877       14563 :         __ptep_modify_prot_commit(vma, addr, ptep, pte);
     878             : }
     879             : #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
     880             : #endif /* CONFIG_MMU */
     881             : 
     882             : /*
     883             :  * No-op macros that just return the current protection value. Defined here
     884             :  * because these macros can be used even if CONFIG_MMU is not defined.
     885             :  */
     886             : 
     887             : #ifndef pgprot_nx
     888             : #define pgprot_nx(prot) (prot)
     889             : #endif
     890             : 
     891             : #ifndef pgprot_noncached
     892             : #define pgprot_noncached(prot)  (prot)
     893             : #endif
     894             : 
     895             : #ifndef pgprot_writecombine
     896             : #define pgprot_writecombine pgprot_noncached
     897             : #endif
     898             : 
     899             : #ifndef pgprot_writethrough
     900             : #define pgprot_writethrough pgprot_noncached
     901             : #endif
     902             : 
     903             : #ifndef pgprot_device
     904             : #define pgprot_device pgprot_noncached
     905             : #endif
     906             : 
     907             : #ifndef pgprot_mhp
     908             : #define pgprot_mhp(prot)        (prot)
     909             : #endif
     910             : 
     911             : #ifdef CONFIG_MMU
     912             : #ifndef pgprot_modify
     913             : #define pgprot_modify pgprot_modify
     914             : static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
     915             : {
     916             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
     917             :                 newprot = pgprot_noncached(newprot);
     918             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
     919             :                 newprot = pgprot_writecombine(newprot);
     920             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
     921             :                 newprot = pgprot_device(newprot);
     922             :         return newprot;
     923             : }
     924             : #endif
     925             : #endif /* CONFIG_MMU */
     926             : 
     927             : #ifndef pgprot_encrypted
     928             : #define pgprot_encrypted(prot)  (prot)
     929             : #endif
     930             : 
     931             : #ifndef pgprot_decrypted
     932             : #define pgprot_decrypted(prot)  (prot)
     933             : #endif
     934             : 
     935             : /*
     936             :  * A facility to provide lazy MMU batching.  This allows PTE updates and
     937             :  * page invalidations to be delayed until a call to leave lazy MMU mode
     938             :  * is issued.  Some architectures may benefit from doing this, and it is
     939             :  * beneficial for both shadow and direct mode hypervisors, which may batch
     940             :  * the PTE updates which happen during this window.  Note that using this
     941             :  * interface requires that read hazards be removed from the code.  A read
     942             :  * hazard could result in the direct mode hypervisor case, since the actual
     943             :  * write to the page tables may not yet have taken place, so reads though
     944             :  * a raw PTE pointer after it has been modified are not guaranteed to be
     945             :  * up to date.  This mode can only be entered and left under the protection of
     946             :  * the page table locks for all page tables which may be modified.  In the UP
     947             :  * case, this is required so that preemption is disabled, and in the SMP case,
     948             :  * it must synchronize the delayed page table writes properly on other CPUs.
     949             :  */
     950             : #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
     951             : #define arch_enter_lazy_mmu_mode()      do {} while (0)
     952             : #define arch_leave_lazy_mmu_mode()      do {} while (0)
     953             : #define arch_flush_lazy_mmu_mode()      do {} while (0)
     954             : #endif
     955             : 
     956             : /*
     957             :  * A facility to provide batching of the reload of page tables and
     958             :  * other process state with the actual context switch code for
     959             :  * paravirtualized guests.  By convention, only one of the batched
     960             :  * update (lazy) modes (CPU, MMU) should be active at any given time,
     961             :  * entry should never be nested, and entry and exits should always be
     962             :  * paired.  This is for sanity of maintaining and reasoning about the
     963             :  * kernel code.  In this case, the exit (end of the context switch) is
     964             :  * in architecture-specific code, and so doesn't need a generic
     965             :  * definition.
     966             :  */
     967             : #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
     968             : #define arch_start_context_switch(prev) do {} while (0)
     969             : #endif
     970             : 
     971             : #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
     972             : #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
     973             : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
     974             : {
     975             :         return pmd;
     976             : }
     977             : 
     978             : static inline int pmd_swp_soft_dirty(pmd_t pmd)
     979             : {
     980             :         return 0;
     981             : }
     982             : 
     983             : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
     984             : {
     985             :         return pmd;
     986             : }
     987             : #endif
     988             : #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
     989             : static inline int pte_soft_dirty(pte_t pte)
     990             : {
     991             :         return 0;
     992             : }
     993             : 
     994             : static inline int pmd_soft_dirty(pmd_t pmd)
     995             : {
     996             :         return 0;
     997             : }
     998             : 
     999             : static inline pte_t pte_mksoft_dirty(pte_t pte)
    1000             : {
    1001             :         return pte;
    1002             : }
    1003             : 
    1004             : static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
    1005             : {
    1006             :         return pmd;
    1007             : }
    1008             : 
    1009             : static inline pte_t pte_clear_soft_dirty(pte_t pte)
    1010             : {
    1011             :         return pte;
    1012             : }
    1013             : 
    1014             : static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
    1015             : {
    1016             :         return pmd;
    1017             : }
    1018             : 
    1019             : static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
    1020             : {
    1021             :         return pte;
    1022             : }
    1023             : 
    1024             : static inline int pte_swp_soft_dirty(pte_t pte)
    1025             : {
    1026             :         return 0;
    1027             : }
    1028             : 
    1029             : static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
    1030             : {
    1031             :         return pte;
    1032             : }
    1033             : 
    1034             : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
    1035             : {
    1036             :         return pmd;
    1037             : }
    1038             : 
    1039             : static inline int pmd_swp_soft_dirty(pmd_t pmd)
    1040             : {
    1041             :         return 0;
    1042             : }
    1043             : 
    1044             : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
    1045             : {
    1046             :         return pmd;
    1047             : }
    1048             : #endif
    1049             : 
    1050             : #ifndef __HAVE_PFNMAP_TRACKING
    1051             : /*
    1052             :  * Interfaces that can be used by architecture code to keep track of
    1053             :  * memory type of pfn mappings specified by the remap_pfn_range,
    1054             :  * vmf_insert_pfn.
    1055             :  */
    1056             : 
    1057             : /*
    1058             :  * track_pfn_remap is called when a _new_ pfn mapping is being established
    1059             :  * by remap_pfn_range() for physical range indicated by pfn and size.
    1060             :  */
    1061             : static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
    1062             :                                   unsigned long pfn, unsigned long addr,
    1063             :                                   unsigned long size)
    1064             : {
    1065             :         return 0;
    1066             : }
    1067             : 
    1068             : /*
    1069             :  * track_pfn_insert is called when a _new_ single pfn is established
    1070             :  * by vmf_insert_pfn().
    1071             :  */
    1072             : static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
    1073             :                                     pfn_t pfn)
    1074             : {
    1075             : }
    1076             : 
    1077             : /*
    1078             :  * track_pfn_copy is called when vma that is covering the pfnmap gets
    1079             :  * copied through copy_page_range().
    1080             :  */
    1081             : static inline int track_pfn_copy(struct vm_area_struct *vma)
    1082             : {
    1083             :         return 0;
    1084             : }
    1085             : 
    1086             : /*
    1087             :  * untrack_pfn is called while unmapping a pfnmap for a region.
    1088             :  * untrack can be called for a specific region indicated by pfn and size or
    1089             :  * can be for the entire vma (in which case pfn, size are zero).
    1090             :  */
    1091             : static inline void untrack_pfn(struct vm_area_struct *vma,
    1092             :                                unsigned long pfn, unsigned long size)
    1093             : {
    1094             : }
    1095             : 
    1096             : /*
    1097             :  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
    1098             :  */
    1099             : static inline void untrack_pfn_moved(struct vm_area_struct *vma)
    1100             : {
    1101             : }
    1102             : #else
    1103             : extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
    1104             :                            unsigned long pfn, unsigned long addr,
    1105             :                            unsigned long size);
    1106             : extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
    1107             :                              pfn_t pfn);
    1108             : extern int track_pfn_copy(struct vm_area_struct *vma);
    1109             : extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
    1110             :                         unsigned long size);
    1111             : extern void untrack_pfn_moved(struct vm_area_struct *vma);
    1112             : #endif
    1113             : 
    1114             : #ifdef __HAVE_COLOR_ZERO_PAGE
    1115             : static inline int is_zero_pfn(unsigned long pfn)
    1116             : {
    1117             :         extern unsigned long zero_pfn;
    1118             :         unsigned long offset_from_zero_pfn = pfn - zero_pfn;
    1119             :         return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
    1120             : }
    1121             : 
    1122             : #define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
    1123             : 
    1124             : #else
    1125       45771 : static inline int is_zero_pfn(unsigned long pfn)
    1126             : {
    1127       45771 :         extern unsigned long zero_pfn;
    1128       45771 :         return pfn == zero_pfn;
    1129             : }
    1130             : 
    1131       14675 : static inline unsigned long my_zero_pfn(unsigned long addr)
    1132             : {
    1133       14675 :         extern unsigned long zero_pfn;
    1134       14675 :         return zero_pfn;
    1135             : }
    1136             : #endif
    1137             : 
    1138             : #ifdef CONFIG_MMU
    1139             : 
    1140             : #ifndef CONFIG_TRANSPARENT_HUGEPAGE
    1141             : static inline int pmd_trans_huge(pmd_t pmd)
    1142             : {
    1143             :         return 0;
    1144             : }
    1145             : #ifndef pmd_write
    1146             : static inline int pmd_write(pmd_t pmd)
    1147             : {
    1148             :         BUG();
    1149             :         return 0;
    1150             : }
    1151             : #endif /* pmd_write */
    1152             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    1153             : 
    1154             : #ifndef pud_write
    1155             : static inline int pud_write(pud_t pud)
    1156             : {
    1157             :         BUG();
    1158             :         return 0;
    1159             : }
    1160             : #endif /* pud_write */
    1161             : 
    1162             : #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
    1163             : static inline int pmd_devmap(pmd_t pmd)
    1164             : {
    1165             :         return 0;
    1166             : }
    1167             : static inline int pud_devmap(pud_t pud)
    1168             : {
    1169             :         return 0;
    1170             : }
    1171             : static inline int pgd_devmap(pgd_t pgd)
    1172             : {
    1173             :         return 0;
    1174             : }
    1175             : #endif
    1176             : 
    1177             : #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
    1178             :         (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
    1179             :          !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
    1180             : static inline int pud_trans_huge(pud_t pud)
    1181             : {
    1182             :         return 0;
    1183             : }
    1184             : #endif
    1185             : 
    1186             : /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
    1187      171939 : static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
    1188             : {
    1189      171939 :         pud_t pudval = READ_ONCE(*pud);
    1190             : 
    1191      171939 :         if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
    1192             :                 return 1;
    1193      343878 :         if (unlikely(pud_bad(pudval))) {
    1194           0 :                 pud_clear_bad(pud);
    1195           0 :                 return 1;
    1196             :         }
    1197             :         return 0;
    1198             : }
    1199             : 
    1200             : /* See pmd_trans_unstable for discussion. */
    1201      171939 : static inline int pud_trans_unstable(pud_t *pud)
    1202             : {
    1203             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
    1204             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    1205      171939 :         return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
    1206             : #else
    1207             :         return 0;
    1208             : #endif
    1209             : }
    1210             : 
    1211             : #ifndef pmd_read_atomic
    1212      354936 : static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
    1213             : {
    1214             :         /*
    1215             :          * Depend on compiler for an atomic pmd read. NOTE: this is
    1216             :          * only going to work, if the pmdval_t isn't larger than
    1217             :          * an unsigned long.
    1218             :          */
    1219      346973 :         return *pmdp;
    1220             : }
    1221             : #endif
    1222             : 
    1223             : #ifndef arch_needs_pgtable_deposit
    1224             : #define arch_needs_pgtable_deposit() (false)
    1225             : #endif
    1226             : /*
    1227             :  * This function is meant to be used by sites walking pagetables with
    1228             :  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
    1229             :  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
    1230             :  * into a null pmd and the transhuge page fault can convert a null pmd
    1231             :  * into an hugepmd or into a regular pmd (if the hugepage allocation
    1232             :  * fails). While holding the mmap_lock in read mode the pmd becomes
    1233             :  * stable and stops changing under us only if it's not null and not a
    1234             :  * transhuge pmd. When those races occurs and this function makes a
    1235             :  * difference vs the standard pmd_none_or_clear_bad, the result is
    1236             :  * undefined so behaving like if the pmd was none is safe (because it
    1237             :  * can return none anyway). The compiler level barrier() is critically
    1238             :  * important to compute the two checks atomically on the same pmdval.
    1239             :  *
    1240             :  * For 32bit kernels with a 64bit large pmd_t this automatically takes
    1241             :  * care of reading the pmd atomically to avoid SMP race conditions
    1242             :  * against pmd_populate() when the mmap_lock is hold for reading by the
    1243             :  * caller (a special atomic read not done by "gcc" as in the generic
    1244             :  * version above, is also needed when THP is disabled because the page
    1245             :  * fault can populate the pmd from under us).
    1246             :  */
    1247      345643 : static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
    1248             : {
    1249      345643 :         pmd_t pmdval = pmd_read_atomic(pmd);
    1250             :         /*
    1251             :          * The barrier will stabilize the pmdval in a register or on
    1252             :          * the stack so that it will stop changing under the code.
    1253             :          *
    1254             :          * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
    1255             :          * pmd_read_atomic is allowed to return a not atomic pmdval
    1256             :          * (for example pointing to an hugepage that has never been
    1257             :          * mapped in the pmd). The below checks will only care about
    1258             :          * the low part of the pmd with 32bit PAE x86 anyway, with the
    1259             :          * exception of pmd_none(). So the important thing is that if
    1260             :          * the low part of the pmd is found null, the high part will
    1261             :          * be also null or the pmd_none() check below would be
    1262             :          * confused.
    1263             :          */
    1264             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1265      345643 :         barrier();
    1266             : #endif
    1267             :         /*
    1268             :          * !pmd_present() checks for pmd migration entries
    1269             :          *
    1270             :          * The complete check uses is_pmd_migration_entry() in linux/swapops.h
    1271             :          * But using that requires moving current function and pmd_trans_unstable()
    1272             :          * to linux/swapops.h to resovle dependency, which is too much code move.
    1273             :          *
    1274             :          * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
    1275             :          * because !pmd_present() pages can only be under migration not swapped
    1276             :          * out.
    1277             :          *
    1278             :          * pmd_none() is preseved for future condition checks on pmd migration
    1279             :          * entries and not confusing with this function name, although it is
    1280             :          * redundant with !pmd_present().
    1281             :          */
    1282      345649 :         if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
    1283      342807 :                 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
    1284             :                 return 1;
    1285      342807 :         if (unlikely(pmd_bad(pmdval))) {
    1286           0 :                 pmd_clear_bad(pmd);
    1287           0 :                 return 1;
    1288             :         }
    1289             :         return 0;
    1290             : }
    1291             : 
    1292             : /*
    1293             :  * This is a noop if Transparent Hugepage Support is not built into
    1294             :  * the kernel. Otherwise it is equivalent to
    1295             :  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
    1296             :  * places that already verified the pmd is not none and they want to
    1297             :  * walk ptes while holding the mmap sem in read mode (write mode don't
    1298             :  * need this). If THP is not enabled, the pmd can't go away under the
    1299             :  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
    1300             :  * run a pmd_trans_unstable before walking the ptes after
    1301             :  * split_huge_pmd returns (because it may have run when the pmd become
    1302             :  * null, but then a page fault can map in a THP and not a regular page).
    1303             :  */
    1304      225530 : static inline int pmd_trans_unstable(pmd_t *pmd)
    1305             : {
    1306             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1307      225530 :         return pmd_none_or_trans_huge_or_clear_bad(pmd);
    1308             : #else
    1309             :         return 0;
    1310             : #endif
    1311             : }
    1312             : 
    1313             : /*
    1314             :  * the ordering of these checks is important for pmds with _page_devmap set.
    1315             :  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
    1316             :  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
    1317             :  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
    1318             :  */
    1319      173862 : static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
    1320             : {
    1321      347728 :         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
    1322             : }
    1323             : 
    1324             : #ifndef CONFIG_NUMA_BALANCING
    1325             : /*
    1326             :  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
    1327             :  * the only case the kernel cares is for NUMA balancing and is only ever set
    1328             :  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
    1329             :  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
    1330             :  * is the responsibility of the caller to distinguish between PROT_NONE
    1331             :  * protections and NUMA hinting fault protections.
    1332             :  */
    1333       47741 : static inline int pte_protnone(pte_t pte)
    1334             : {
    1335       47741 :         return 0;
    1336             : }
    1337             : 
    1338           0 : static inline int pmd_protnone(pmd_t pmd)
    1339             : {
    1340           0 :         return 0;
    1341             : }
    1342             : #endif /* CONFIG_NUMA_BALANCING */
    1343             : 
    1344             : #endif /* CONFIG_MMU */
    1345             : 
    1346             : #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
    1347             : 
    1348             : #ifndef __PAGETABLE_P4D_FOLDED
    1349             : int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
    1350             : int p4d_clear_huge(p4d_t *p4d);
    1351             : #else
    1352           0 : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    1353             : {
    1354           0 :         return 0;
    1355             : }
    1356       10585 : static inline int p4d_clear_huge(p4d_t *p4d)
    1357             : {
    1358       10585 :         return 0;
    1359             : }
    1360             : #endif /* !__PAGETABLE_P4D_FOLDED */
    1361             : 
    1362             : int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
    1363             : int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
    1364             : int pud_clear_huge(pud_t *pud);
    1365             : int pmd_clear_huge(pmd_t *pmd);
    1366             : int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
    1367             : int pud_free_pmd_page(pud_t *pud, unsigned long addr);
    1368             : int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
    1369             : #else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
    1370             : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    1371             : {
    1372             :         return 0;
    1373             : }
    1374             : static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
    1375             : {
    1376             :         return 0;
    1377             : }
    1378             : static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
    1379             : {
    1380             :         return 0;
    1381             : }
    1382             : static inline int p4d_clear_huge(p4d_t *p4d)
    1383             : {
    1384             :         return 0;
    1385             : }
    1386             : static inline int pud_clear_huge(pud_t *pud)
    1387             : {
    1388             :         return 0;
    1389             : }
    1390             : static inline int pmd_clear_huge(pmd_t *pmd)
    1391             : {
    1392             :         return 0;
    1393             : }
    1394             : static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
    1395             : {
    1396             :         return 0;
    1397             : }
    1398             : static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
    1399             : {
    1400             :         return 0;
    1401             : }
    1402             : static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
    1403             : {
    1404             :         return 0;
    1405             : }
    1406             : #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
    1407             : 
    1408             : #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
    1409             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1410             : /*
    1411             :  * ARCHes with special requirements for evicting THP backing TLB entries can
    1412             :  * implement this. Otherwise also, it can help optimize normal TLB flush in
    1413             :  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
    1414             :  * entire TLB if flush span is greater than a threshold, which will
    1415             :  * likely be true for a single huge page. Thus a single THP flush will
    1416             :  * invalidate the entire TLB which is not desirable.
    1417             :  * e.g. see arch/arc: flush_pmd_tlb_range
    1418             :  */
    1419             : #define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
    1420             : #define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
    1421             : #else
    1422             : #define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
    1423             : #define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
    1424             : #endif
    1425             : #endif
    1426             : 
    1427             : struct file;
    1428             : int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
    1429             :                         unsigned long size, pgprot_t *vma_prot);
    1430             : 
    1431             : #ifndef CONFIG_X86_ESPFIX64
    1432           1 : static inline void init_espfix_bsp(void) { }
    1433             : #endif
    1434             : 
    1435             : extern void __init pgtable_cache_init(void);
    1436             : 
    1437             : #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
    1438             : static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
    1439             : {
    1440             :         return true;
    1441             : }
    1442             : 
    1443             : static inline bool arch_has_pfn_modify_check(void)
    1444             : {
    1445             :         return false;
    1446             : }
    1447             : #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
    1448             : 
    1449             : /*
    1450             :  * Architecture PAGE_KERNEL_* fallbacks
    1451             :  *
    1452             :  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
    1453             :  * because they really don't support them, or the port needs to be updated to
    1454             :  * reflect the required functionality. Below are a set of relatively safe
    1455             :  * fallbacks, as best effort, which we can count on in lieu of the architectures
    1456             :  * not defining them on their own yet.
    1457             :  */
    1458             : 
    1459             : #ifndef PAGE_KERNEL_RO
    1460             : # define PAGE_KERNEL_RO PAGE_KERNEL
    1461             : #endif
    1462             : 
    1463             : #ifndef PAGE_KERNEL_EXEC
    1464             : # define PAGE_KERNEL_EXEC PAGE_KERNEL
    1465             : #endif
    1466             : 
    1467             : /*
    1468             :  * Page Table Modification bits for pgtbl_mod_mask.
    1469             :  *
    1470             :  * These are used by the p?d_alloc_track*() set of functions an in the generic
    1471             :  * vmalloc/ioremap code to track at which page-table levels entries have been
    1472             :  * modified. Based on that the code can better decide when vmalloc and ioremap
    1473             :  * mapping changes need to be synchronized to other page-tables in the system.
    1474             :  */
    1475             : #define         __PGTBL_PGD_MODIFIED    0
    1476             : #define         __PGTBL_P4D_MODIFIED    1
    1477             : #define         __PGTBL_PUD_MODIFIED    2
    1478             : #define         __PGTBL_PMD_MODIFIED    3
    1479             : #define         __PGTBL_PTE_MODIFIED    4
    1480             : 
    1481             : #define         PGTBL_PGD_MODIFIED      BIT(__PGTBL_PGD_MODIFIED)
    1482             : #define         PGTBL_P4D_MODIFIED      BIT(__PGTBL_P4D_MODIFIED)
    1483             : #define         PGTBL_PUD_MODIFIED      BIT(__PGTBL_PUD_MODIFIED)
    1484             : #define         PGTBL_PMD_MODIFIED      BIT(__PGTBL_PMD_MODIFIED)
    1485             : #define         PGTBL_PTE_MODIFIED      BIT(__PGTBL_PTE_MODIFIED)
    1486             : 
    1487             : /* Page-Table Modification Mask */
    1488             : typedef unsigned int pgtbl_mod_mask;
    1489             : 
    1490             : #endif /* !__ASSEMBLY__ */
    1491             : 
    1492             : #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
    1493             : #ifdef CONFIG_PHYS_ADDR_T_64BIT
    1494             : /*
    1495             :  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
    1496             :  * with physical address space extension, but falls back to
    1497             :  * BITS_PER_LONG otherwise.
    1498             :  */
    1499             : #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
    1500             : #else
    1501             : #define MAX_POSSIBLE_PHYSMEM_BITS 32
    1502             : #endif
    1503             : #endif
    1504             : 
    1505             : #ifndef has_transparent_hugepage
    1506             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1507             : #define has_transparent_hugepage() 1
    1508             : #else
    1509             : #define has_transparent_hugepage() 0
    1510             : #endif
    1511             : #endif
    1512             : 
    1513             : /*
    1514             :  * On some architectures it depends on the mm if the p4d/pud or pmd
    1515             :  * layer of the page table hierarchy is folded or not.
    1516             :  */
    1517             : #ifndef mm_p4d_folded
    1518             : #define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
    1519             : #endif
    1520             : 
    1521             : #ifndef mm_pud_folded
    1522             : #define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
    1523             : #endif
    1524             : 
    1525             : #ifndef mm_pmd_folded
    1526             : #define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
    1527             : #endif
    1528             : 
    1529             : #ifndef p4d_offset_lockless
    1530             : #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
    1531             : #endif
    1532             : #ifndef pud_offset_lockless
    1533             : #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
    1534             : #endif
    1535             : #ifndef pmd_offset_lockless
    1536             : #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
    1537             : #endif
    1538             : 
    1539             : /*
    1540             :  * p?d_leaf() - true if this entry is a final mapping to a physical address.
    1541             :  * This differs from p?d_huge() by the fact that they are always available (if
    1542             :  * the architecture supports large pages at the appropriate level) even
    1543             :  * if CONFIG_HUGETLB_PAGE is not defined.
    1544             :  * Only meaningful when called on a valid entry.
    1545             :  */
    1546             : #ifndef pgd_leaf
    1547             : #define pgd_leaf(x)     0
    1548             : #endif
    1549             : #ifndef p4d_leaf
    1550             : #define p4d_leaf(x)     0
    1551             : #endif
    1552             : #ifndef pud_leaf
    1553             : #define pud_leaf(x)     0
    1554             : #endif
    1555             : #ifndef pmd_leaf
    1556             : #define pmd_leaf(x)     0
    1557             : #endif
    1558             : 
    1559             : #ifndef pgd_leaf_size
    1560             : #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
    1561             : #endif
    1562             : #ifndef p4d_leaf_size
    1563             : #define p4d_leaf_size(x) P4D_SIZE
    1564             : #endif
    1565             : #ifndef pud_leaf_size
    1566             : #define pud_leaf_size(x) PUD_SIZE
    1567             : #endif
    1568             : #ifndef pmd_leaf_size
    1569             : #define pmd_leaf_size(x) PMD_SIZE
    1570             : #endif
    1571             : #ifndef pte_leaf_size
    1572             : #define pte_leaf_size(x) PAGE_SIZE
    1573             : #endif
    1574             : 
    1575             : #endif /* _LINUX_PGTABLE_H */

Generated by: LCOV version 1.14