LCOV - code coverage report
Current view: top level - include/linux - skbuff.h (source / functions) Hit Total Coverage
Test: landlock.info Lines: 406 809 50.2 %
Date: 2021-04-22 12:43:58 Functions: 45 82 54.9 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0-or-later */
       2             : /*
       3             :  *      Definitions for the 'struct sk_buff' memory handlers.
       4             :  *
       5             :  *      Authors:
       6             :  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
       7             :  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
       8             :  */
       9             : 
      10             : #ifndef _LINUX_SKBUFF_H
      11             : #define _LINUX_SKBUFF_H
      12             : 
      13             : #include <linux/kernel.h>
      14             : #include <linux/compiler.h>
      15             : #include <linux/time.h>
      16             : #include <linux/bug.h>
      17             : #include <linux/bvec.h>
      18             : #include <linux/cache.h>
      19             : #include <linux/rbtree.h>
      20             : #include <linux/socket.h>
      21             : #include <linux/refcount.h>
      22             : 
      23             : #include <linux/atomic.h>
      24             : #include <asm/types.h>
      25             : #include <linux/spinlock.h>
      26             : #include <linux/net.h>
      27             : #include <linux/textsearch.h>
      28             : #include <net/checksum.h>
      29             : #include <linux/rcupdate.h>
      30             : #include <linux/hrtimer.h>
      31             : #include <linux/dma-mapping.h>
      32             : #include <linux/netdev_features.h>
      33             : #include <linux/sched.h>
      34             : #include <linux/sched/clock.h>
      35             : #include <net/flow_dissector.h>
      36             : #include <linux/splice.h>
      37             : #include <linux/in6.h>
      38             : #include <linux/if_packet.h>
      39             : #include <net/flow.h>
      40             : #if IS_ENABLED(CONFIG_NF_CONNTRACK)
      41             : #include <linux/netfilter/nf_conntrack_common.h>
      42             : #endif
      43             : 
      44             : /* The interface for checksum offload between the stack and networking drivers
      45             :  * is as follows...
      46             :  *
      47             :  * A. IP checksum related features
      48             :  *
      49             :  * Drivers advertise checksum offload capabilities in the features of a device.
      50             :  * From the stack's point of view these are capabilities offered by the driver.
      51             :  * A driver typically only advertises features that it is capable of offloading
      52             :  * to its device.
      53             :  *
      54             :  * The checksum related features are:
      55             :  *
      56             :  *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
      57             :  *                        IP (one's complement) checksum for any combination
      58             :  *                        of protocols or protocol layering. The checksum is
      59             :  *                        computed and set in a packet per the CHECKSUM_PARTIAL
      60             :  *                        interface (see below).
      61             :  *
      62             :  *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
      63             :  *                        TCP or UDP packets over IPv4. These are specifically
      64             :  *                        unencapsulated packets of the form IPv4|TCP or
      65             :  *                        IPv4|UDP where the Protocol field in the IPv4 header
      66             :  *                        is TCP or UDP. The IPv4 header may contain IP options.
      67             :  *                        This feature cannot be set in features for a device
      68             :  *                        with NETIF_F_HW_CSUM also set. This feature is being
      69             :  *                        DEPRECATED (see below).
      70             :  *
      71             :  *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
      72             :  *                        TCP or UDP packets over IPv6. These are specifically
      73             :  *                        unencapsulated packets of the form IPv6|TCP or
      74             :  *                        IPv6|UDP where the Next Header field in the IPv6
      75             :  *                        header is either TCP or UDP. IPv6 extension headers
      76             :  *                        are not supported with this feature. This feature
      77             :  *                        cannot be set in features for a device with
      78             :  *                        NETIF_F_HW_CSUM also set. This feature is being
      79             :  *                        DEPRECATED (see below).
      80             :  *
      81             :  *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
      82             :  *                       This flag is only used to disable the RX checksum
      83             :  *                       feature for a device. The stack will accept receive
      84             :  *                       checksum indication in packets received on a device
      85             :  *                       regardless of whether NETIF_F_RXCSUM is set.
      86             :  *
      87             :  * B. Checksumming of received packets by device. Indication of checksum
      88             :  *    verification is set in skb->ip_summed. Possible values are:
      89             :  *
      90             :  * CHECKSUM_NONE:
      91             :  *
      92             :  *   Device did not checksum this packet e.g. due to lack of capabilities.
      93             :  *   The packet contains full (though not verified) checksum in packet but
      94             :  *   not in skb->csum. Thus, skb->csum is undefined in this case.
      95             :  *
      96             :  * CHECKSUM_UNNECESSARY:
      97             :  *
      98             :  *   The hardware you're dealing with doesn't calculate the full checksum
      99             :  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
     100             :  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
     101             :  *   if their checksums are okay. skb->csum is still undefined in this case
     102             :  *   though. A driver or device must never modify the checksum field in the
     103             :  *   packet even if checksum is verified.
     104             :  *
     105             :  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
     106             :  *     TCP: IPv6 and IPv4.
     107             :  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
     108             :  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
     109             :  *       may perform further validation in this case.
     110             :  *     GRE: only if the checksum is present in the header.
     111             :  *     SCTP: indicates the CRC in SCTP header has been validated.
     112             :  *     FCOE: indicates the CRC in FC frame has been validated.
     113             :  *
     114             :  *   skb->csum_level indicates the number of consecutive checksums found in
     115             :  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
     116             :  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
     117             :  *   and a device is able to verify the checksums for UDP (possibly zero),
     118             :  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
     119             :  *   two. If the device were only able to verify the UDP checksum and not
     120             :  *   GRE, either because it doesn't support GRE checksum or because GRE
     121             :  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
     122             :  *   not considered in this case).
     123             :  *
     124             :  * CHECKSUM_COMPLETE:
     125             :  *
     126             :  *   This is the most generic way. The device supplied checksum of the _whole_
     127             :  *   packet as seen by netif_rx() and fills in skb->csum. This means the
     128             :  *   hardware doesn't need to parse L3/L4 headers to implement this.
     129             :  *
     130             :  *   Notes:
     131             :  *   - Even if device supports only some protocols, but is able to produce
     132             :  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
     133             :  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
     134             :  *
     135             :  * CHECKSUM_PARTIAL:
     136             :  *
     137             :  *   A checksum is set up to be offloaded to a device as described in the
     138             :  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
     139             :  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
     140             :  *   on the same host, or it may be set in the input path in GRO or remote
     141             :  *   checksum offload. For the purposes of checksum verification, the checksum
     142             :  *   referred to by skb->csum_start + skb->csum_offset and any preceding
     143             :  *   checksums in the packet are considered verified. Any checksums in the
     144             :  *   packet that are after the checksum being offloaded are not considered to
     145             :  *   be verified.
     146             :  *
     147             :  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
     148             :  *    in the skb->ip_summed for a packet. Values are:
     149             :  *
     150             :  * CHECKSUM_PARTIAL:
     151             :  *
     152             :  *   The driver is required to checksum the packet as seen by hard_start_xmit()
     153             :  *   from skb->csum_start up to the end, and to record/write the checksum at
     154             :  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
     155             :  *   csum_start and csum_offset values are valid values given the length and
     156             :  *   offset of the packet, but it should not attempt to validate that the
     157             :  *   checksum refers to a legitimate transport layer checksum -- it is the
     158             :  *   purview of the stack to validate that csum_start and csum_offset are set
     159             :  *   correctly.
     160             :  *
     161             :  *   When the stack requests checksum offload for a packet, the driver MUST
     162             :  *   ensure that the checksum is set correctly. A driver can either offload the
     163             :  *   checksum calculation to the device, or call skb_checksum_help (in the case
     164             :  *   that the device does not support offload for a particular checksum).
     165             :  *
     166             :  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
     167             :  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
     168             :  *   checksum offload capability.
     169             :  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
     170             :  *   on network device checksumming capabilities: if a packet does not match
     171             :  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
     172             :  *   csum_not_inet, see item D.) is called to resolve the checksum.
     173             :  *
     174             :  * CHECKSUM_NONE:
     175             :  *
     176             :  *   The skb was already checksummed by the protocol, or a checksum is not
     177             :  *   required.
     178             :  *
     179             :  * CHECKSUM_UNNECESSARY:
     180             :  *
     181             :  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
     182             :  *   output.
     183             :  *
     184             :  * CHECKSUM_COMPLETE:
     185             :  *   Not used in checksum output. If a driver observes a packet with this value
     186             :  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
     187             :  *
     188             :  * D. Non-IP checksum (CRC) offloads
     189             :  *
     190             :  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
     191             :  *     offloading the SCTP CRC in a packet. To perform this offload the stack
     192             :  *     will set csum_start and csum_offset accordingly, set ip_summed to
     193             :  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
     194             :  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
     195             :  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
     196             :  *     must verify which offload is configured for a packet by testing the
     197             :  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
     198             :  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
     199             :  *
     200             :  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
     201             :  *     offloading the FCOE CRC in a packet. To perform this offload the stack
     202             :  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
     203             :  *     accordingly. Note that there is no indication in the skbuff that the
     204             :  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
     205             :  *     both IP checksum offload and FCOE CRC offload must verify which offload
     206             :  *     is configured for a packet, presumably by inspecting packet headers.
     207             :  *
     208             :  * E. Checksumming on output with GSO.
     209             :  *
     210             :  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
     211             :  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
     212             :  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
     213             :  * part of the GSO operation is implied. If a checksum is being offloaded
     214             :  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
     215             :  * csum_offset are set to refer to the outermost checksum being offloaded
     216             :  * (two offloaded checksums are possible with UDP encapsulation).
     217             :  */
     218             : 
     219             : /* Don't change this without changing skb_csum_unnecessary! */
     220             : #define CHECKSUM_NONE           0
     221             : #define CHECKSUM_UNNECESSARY    1
     222             : #define CHECKSUM_COMPLETE       2
     223             : #define CHECKSUM_PARTIAL        3
     224             : 
     225             : /* Maximum value in skb->csum_level */
     226             : #define SKB_MAX_CSUM_LEVEL      3
     227             : 
     228             : #define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
     229             : #define SKB_WITH_OVERHEAD(X)    \
     230             :         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
     231             : #define SKB_MAX_ORDER(X, ORDER) \
     232             :         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
     233             : #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
     234             : #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
     235             : 
     236             : /* return minimum truesize of one skb containing X bytes of data */
     237             : #define SKB_TRUESIZE(X) ((X) +                                          \
     238             :                          SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
     239             :                          SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
     240             : 
     241             : struct ahash_request;
     242             : struct net_device;
     243             : struct scatterlist;
     244             : struct pipe_inode_info;
     245             : struct iov_iter;
     246             : struct napi_struct;
     247             : struct bpf_prog;
     248             : union bpf_attr;
     249             : struct skb_ext;
     250             : 
     251             : #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
     252             : struct nf_bridge_info {
     253             :         enum {
     254             :                 BRNF_PROTO_UNCHANGED,
     255             :                 BRNF_PROTO_8021Q,
     256             :                 BRNF_PROTO_PPPOE
     257             :         } orig_proto:8;
     258             :         u8                      pkt_otherhost:1;
     259             :         u8                      in_prerouting:1;
     260             :         u8                      bridged_dnat:1;
     261             :         __u16                   frag_max_size;
     262             :         struct net_device       *physindev;
     263             : 
     264             :         /* always valid & non-NULL from FORWARD on, for physdev match */
     265             :         struct net_device       *physoutdev;
     266             :         union {
     267             :                 /* prerouting: detect dnat in orig/reply direction */
     268             :                 __be32          ipv4_daddr;
     269             :                 struct in6_addr ipv6_daddr;
     270             : 
     271             :                 /* after prerouting + nat detected: store original source
     272             :                  * mac since neigh resolution overwrites it, only used while
     273             :                  * skb is out in neigh layer.
     274             :                  */
     275             :                 char neigh_header[8];
     276             :         };
     277             : };
     278             : #endif
     279             : 
     280             : #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
     281             : /* Chain in tc_skb_ext will be used to share the tc chain with
     282             :  * ovs recirc_id. It will be set to the current chain by tc
     283             :  * and read by ovs to recirc_id.
     284             :  */
     285             : struct tc_skb_ext {
     286             :         __u32 chain;
     287             :         __u16 mru;
     288             : };
     289             : #endif
     290             : 
     291             : struct sk_buff_head {
     292             :         /* These two members must be first. */
     293             :         struct sk_buff  *next;
     294             :         struct sk_buff  *prev;
     295             : 
     296             :         __u32           qlen;
     297             :         spinlock_t      lock;
     298             : };
     299             : 
     300             : struct sk_buff;
     301             : 
     302             : /* To allow 64K frame to be packed as single skb without frag_list we
     303             :  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
     304             :  * buffers which do not start on a page boundary.
     305             :  *
     306             :  * Since GRO uses frags we allocate at least 16 regardless of page
     307             :  * size.
     308             :  */
     309             : #if (65536/PAGE_SIZE + 1) < 16
     310             : #define MAX_SKB_FRAGS 16UL
     311             : #else
     312             : #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
     313             : #endif
     314             : extern int sysctl_max_skb_frags;
     315             : 
     316             : /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
     317             :  * segment using its current segmentation instead.
     318             :  */
     319             : #define GSO_BY_FRAGS    0xFFFF
     320             : 
     321             : typedef struct bio_vec skb_frag_t;
     322             : 
     323             : /**
     324             :  * skb_frag_size() - Returns the size of a skb fragment
     325             :  * @frag: skb fragment
     326             :  */
     327        1481 : static inline unsigned int skb_frag_size(const skb_frag_t *frag)
     328             : {
     329        1070 :         return frag->bv_len;
     330             : }
     331             : 
     332             : /**
     333             :  * skb_frag_size_set() - Sets the size of a skb fragment
     334             :  * @frag: skb fragment
     335             :  * @size: size of fragment
     336             :  */
     337         691 : static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
     338             : {
     339         361 :         frag->bv_len = size;
     340           0 : }
     341             : 
     342             : /**
     343             :  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
     344             :  * @frag: skb fragment
     345             :  * @delta: value to add
     346             :  */
     347          50 : static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
     348             : {
     349          50 :         frag->bv_len += delta;
     350          50 : }
     351             : 
     352             : /**
     353             :  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
     354             :  * @frag: skb fragment
     355             :  * @delta: value to subtract
     356             :  */
     357           0 : static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
     358             : {
     359           0 :         frag->bv_len -= delta;
     360           0 : }
     361             : 
     362             : /**
     363             :  * skb_frag_must_loop - Test if %p is a high memory page
     364             :  * @p: fragment's page
     365             :  */
     366         685 : static inline bool skb_frag_must_loop(struct page *p)
     367             : {
     368             : #if defined(CONFIG_HIGHMEM)
     369             :         if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
     370             :                 return true;
     371             : #endif
     372         685 :         return false;
     373             : }
     374             : 
     375             : /**
     376             :  *      skb_frag_foreach_page - loop over pages in a fragment
     377             :  *
     378             :  *      @f:             skb frag to operate on
     379             :  *      @f_off:         offset from start of f->bv_page
     380             :  *      @f_len:         length from f_off to loop over
     381             :  *      @p:             (temp var) current page
     382             :  *      @p_off:         (temp var) offset from start of current page,
     383             :  *                                 non-zero only on first page.
     384             :  *      @p_len:         (temp var) length in current page,
     385             :  *                                 < PAGE_SIZE only on first and last page.
     386             :  *      @copied:        (temp var) length so far, excluding current p_len.
     387             :  *
     388             :  *      A fragment can hold a compound page, in which case per-page
     389             :  *      operations, notably kmap_atomic, must be called for each
     390             :  *      regular page.
     391             :  */
     392             : #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
     393             :         for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),              \
     394             :              p_off = (f_off) & (PAGE_SIZE - 1),                             \
     395             :              p_len = skb_frag_must_loop(p) ?                            \
     396             :              min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
     397             :              copied = 0;                                                \
     398             :              copied < f_len;                                         \
     399             :              copied += p_len, p++, p_off = 0,                           \
     400             :              p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
     401             : 
     402             : #define HAVE_HW_TIME_STAMP
     403             : 
     404             : /**
     405             :  * struct skb_shared_hwtstamps - hardware time stamps
     406             :  * @hwtstamp:   hardware time stamp transformed into duration
     407             :  *              since arbitrary point in time
     408             :  *
     409             :  * Software time stamps generated by ktime_get_real() are stored in
     410             :  * skb->tstamp.
     411             :  *
     412             :  * hwtstamps can only be compared against other hwtstamps from
     413             :  * the same device.
     414             :  *
     415             :  * This structure is attached to packets as part of the
     416             :  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
     417             :  */
     418             : struct skb_shared_hwtstamps {
     419             :         ktime_t hwtstamp;
     420             : };
     421             : 
     422             : /* Definitions for tx_flags in struct skb_shared_info */
     423             : enum {
     424             :         /* generate hardware time stamp */
     425             :         SKBTX_HW_TSTAMP = 1 << 0,
     426             : 
     427             :         /* generate software time stamp when queueing packet to NIC */
     428             :         SKBTX_SW_TSTAMP = 1 << 1,
     429             : 
     430             :         /* device driver is going to provide hardware time stamp */
     431             :         SKBTX_IN_PROGRESS = 1 << 2,
     432             : 
     433             :         /* generate wifi status information (where possible) */
     434             :         SKBTX_WIFI_STATUS = 1 << 4,
     435             : 
     436             :         /* generate software time stamp when entering packet scheduling */
     437             :         SKBTX_SCHED_TSTAMP = 1 << 6,
     438             : };
     439             : 
     440             : #define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
     441             :                                  SKBTX_SCHED_TSTAMP)
     442             : #define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
     443             : 
     444             : /* Definitions for flags in struct skb_shared_info */
     445             : enum {
     446             :         /* use zcopy routines */
     447             :         SKBFL_ZEROCOPY_ENABLE = BIT(0),
     448             : 
     449             :         /* This indicates at least one fragment might be overwritten
     450             :          * (as in vmsplice(), sendfile() ...)
     451             :          * If we need to compute a TX checksum, we'll need to copy
     452             :          * all frags to avoid possible bad checksum
     453             :          */
     454             :         SKBFL_SHARED_FRAG = BIT(1),
     455             : };
     456             : 
     457             : #define SKBFL_ZEROCOPY_FRAG     (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
     458             : 
     459             : /*
     460             :  * The callback notifies userspace to release buffers when skb DMA is done in
     461             :  * lower device, the skb last reference should be 0 when calling this.
     462             :  * The zerocopy_success argument is true if zero copy transmit occurred,
     463             :  * false on data copy or out of memory error caused by data copy attempt.
     464             :  * The ctx field is used to track device context.
     465             :  * The desc field is used to track userspace buffer index.
     466             :  */
     467             : struct ubuf_info {
     468             :         void (*callback)(struct sk_buff *, struct ubuf_info *,
     469             :                          bool zerocopy_success);
     470             :         union {
     471             :                 struct {
     472             :                         unsigned long desc;
     473             :                         void *ctx;
     474             :                 };
     475             :                 struct {
     476             :                         u32 id;
     477             :                         u16 len;
     478             :                         u16 zerocopy:1;
     479             :                         u32 bytelen;
     480             :                 };
     481             :         };
     482             :         refcount_t refcnt;
     483             :         u8 flags;
     484             : 
     485             :         struct mmpin {
     486             :                 struct user_struct *user;
     487             :                 unsigned int num_pg;
     488             :         } mmp;
     489             : };
     490             : 
     491             : #define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
     492             : 
     493             : int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
     494             : void mm_unaccount_pinned_pages(struct mmpin *mmp);
     495             : 
     496             : struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
     497             : struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
     498             :                                        struct ubuf_info *uarg);
     499             : 
     500             : void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
     501             : 
     502             : void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
     503             :                            bool success);
     504             : 
     505             : int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
     506             : int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
     507             :                              struct msghdr *msg, int len,
     508             :                              struct ubuf_info *uarg);
     509             : 
     510             : /* This data is invariant across clones and lives at
     511             :  * the end of the header data, ie. at skb->end.
     512             :  */
     513             : struct skb_shared_info {
     514             :         __u8            flags;
     515             :         __u8            meta_len;
     516             :         __u8            nr_frags;
     517             :         __u8            tx_flags;
     518             :         unsigned short  gso_size;
     519             :         /* Warning: this field is not always filled in (UFO)! */
     520             :         unsigned short  gso_segs;
     521             :         struct sk_buff  *frag_list;
     522             :         struct skb_shared_hwtstamps hwtstamps;
     523             :         unsigned int    gso_type;
     524             :         u32             tskey;
     525             : 
     526             :         /*
     527             :          * Warning : all fields before dataref are cleared in __alloc_skb()
     528             :          */
     529             :         atomic_t        dataref;
     530             : 
     531             :         /* Intermediate layers must ensure that destructor_arg
     532             :          * remains valid until skb destructor */
     533             :         void *          destructor_arg;
     534             : 
     535             :         /* must be last field, see pskb_expand_head() */
     536             :         skb_frag_t      frags[MAX_SKB_FRAGS];
     537             : };
     538             : 
     539             : /* We divide dataref into two halves.  The higher 16 bits hold references
     540             :  * to the payload part of skb->data.  The lower 16 bits hold references to
     541             :  * the entire skb->data.  A clone of a headerless skb holds the length of
     542             :  * the header in skb->hdr_len.
     543             :  *
     544             :  * All users must obey the rule that the skb->data reference count must be
     545             :  * greater than or equal to the payload reference count.
     546             :  *
     547             :  * Holding a reference to the payload part means that the user does not
     548             :  * care about modifications to the header part of skb->data.
     549             :  */
     550             : #define SKB_DATAREF_SHIFT 16
     551             : #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
     552             : 
     553             : 
     554             : enum {
     555             :         SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
     556             :         SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
     557             :         SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
     558             : };
     559             : 
     560             : enum {
     561             :         SKB_GSO_TCPV4 = 1 << 0,
     562             : 
     563             :         /* This indicates the skb is from an untrusted source. */
     564             :         SKB_GSO_DODGY = 1 << 1,
     565             : 
     566             :         /* This indicates the tcp segment has CWR set. */
     567             :         SKB_GSO_TCP_ECN = 1 << 2,
     568             : 
     569             :         SKB_GSO_TCP_FIXEDID = 1 << 3,
     570             : 
     571             :         SKB_GSO_TCPV6 = 1 << 4,
     572             : 
     573             :         SKB_GSO_FCOE = 1 << 5,
     574             : 
     575             :         SKB_GSO_GRE = 1 << 6,
     576             : 
     577             :         SKB_GSO_GRE_CSUM = 1 << 7,
     578             : 
     579             :         SKB_GSO_IPXIP4 = 1 << 8,
     580             : 
     581             :         SKB_GSO_IPXIP6 = 1 << 9,
     582             : 
     583             :         SKB_GSO_UDP_TUNNEL = 1 << 10,
     584             : 
     585             :         SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
     586             : 
     587             :         SKB_GSO_PARTIAL = 1 << 12,
     588             : 
     589             :         SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
     590             : 
     591             :         SKB_GSO_SCTP = 1 << 14,
     592             : 
     593             :         SKB_GSO_ESP = 1 << 15,
     594             : 
     595             :         SKB_GSO_UDP = 1 << 16,
     596             : 
     597             :         SKB_GSO_UDP_L4 = 1 << 17,
     598             : 
     599             :         SKB_GSO_FRAGLIST = 1 << 18,
     600             : };
     601             : 
     602             : #if BITS_PER_LONG > 32
     603             : #define NET_SKBUFF_DATA_USES_OFFSET 1
     604             : #endif
     605             : 
     606             : #ifdef NET_SKBUFF_DATA_USES_OFFSET
     607             : typedef unsigned int sk_buff_data_t;
     608             : #else
     609             : typedef unsigned char *sk_buff_data_t;
     610             : #endif
     611             : 
     612             : /**
     613             :  *      struct sk_buff - socket buffer
     614             :  *      @next: Next buffer in list
     615             :  *      @prev: Previous buffer in list
     616             :  *      @tstamp: Time we arrived/left
     617             :  *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
     618             :  *              for retransmit timer
     619             :  *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
     620             :  *      @list: queue head
     621             :  *      @sk: Socket we are owned by
     622             :  *      @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
     623             :  *              fragmentation management
     624             :  *      @dev: Device we arrived on/are leaving by
     625             :  *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
     626             :  *      @cb: Control buffer. Free for use by every layer. Put private vars here
     627             :  *      @_skb_refdst: destination entry (with norefcount bit)
     628             :  *      @sp: the security path, used for xfrm
     629             :  *      @len: Length of actual data
     630             :  *      @data_len: Data length
     631             :  *      @mac_len: Length of link layer header
     632             :  *      @hdr_len: writable header length of cloned skb
     633             :  *      @csum: Checksum (must include start/offset pair)
     634             :  *      @csum_start: Offset from skb->head where checksumming should start
     635             :  *      @csum_offset: Offset from csum_start where checksum should be stored
     636             :  *      @priority: Packet queueing priority
     637             :  *      @ignore_df: allow local fragmentation
     638             :  *      @cloned: Head may be cloned (check refcnt to be sure)
     639             :  *      @ip_summed: Driver fed us an IP checksum
     640             :  *      @nohdr: Payload reference only, must not modify header
     641             :  *      @pkt_type: Packet class
     642             :  *      @fclone: skbuff clone status
     643             :  *      @ipvs_property: skbuff is owned by ipvs
     644             :  *      @inner_protocol_type: whether the inner protocol is
     645             :  *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
     646             :  *      @remcsum_offload: remote checksum offload is enabled
     647             :  *      @offload_fwd_mark: Packet was L2-forwarded in hardware
     648             :  *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
     649             :  *      @tc_skip_classify: do not classify packet. set by IFB device
     650             :  *      @tc_at_ingress: used within tc_classify to distinguish in/egress
     651             :  *      @redirected: packet was redirected by packet classifier
     652             :  *      @from_ingress: packet was redirected from the ingress path
     653             :  *      @peeked: this packet has been seen already, so stats have been
     654             :  *              done for it, don't do them again
     655             :  *      @nf_trace: netfilter packet trace flag
     656             :  *      @protocol: Packet protocol from driver
     657             :  *      @destructor: Destruct function
     658             :  *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
     659             :  *      @_nfct: Associated connection, if any (with nfctinfo bits)
     660             :  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
     661             :  *      @skb_iif: ifindex of device we arrived on
     662             :  *      @tc_index: Traffic control index
     663             :  *      @hash: the packet hash
     664             :  *      @queue_mapping: Queue mapping for multiqueue devices
     665             :  *      @head_frag: skb was allocated from page fragments,
     666             :  *              not allocated by kmalloc() or vmalloc().
     667             :  *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
     668             :  *      @active_extensions: active extensions (skb_ext_id types)
     669             :  *      @ndisc_nodetype: router type (from link layer)
     670             :  *      @ooo_okay: allow the mapping of a socket to a queue to be changed
     671             :  *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
     672             :  *              ports.
     673             :  *      @sw_hash: indicates hash was computed in software stack
     674             :  *      @wifi_acked_valid: wifi_acked was set
     675             :  *      @wifi_acked: whether frame was acked on wifi or not
     676             :  *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
     677             :  *      @encapsulation: indicates the inner headers in the skbuff are valid
     678             :  *      @encap_hdr_csum: software checksum is needed
     679             :  *      @csum_valid: checksum is already valid
     680             :  *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
     681             :  *      @csum_complete_sw: checksum was completed by software
     682             :  *      @csum_level: indicates the number of consecutive checksums found in
     683             :  *              the packet minus one that have been verified as
     684             :  *              CHECKSUM_UNNECESSARY (max 3)
     685             :  *      @dst_pending_confirm: need to confirm neighbour
     686             :  *      @decrypted: Decrypted SKB
     687             :  *      @napi_id: id of the NAPI struct this skb came from
     688             :  *      @sender_cpu: (aka @napi_id) source CPU in XPS
     689             :  *      @secmark: security marking
     690             :  *      @mark: Generic packet mark
     691             :  *      @reserved_tailroom: (aka @mark) number of bytes of free space available
     692             :  *              at the tail of an sk_buff
     693             :  *      @vlan_present: VLAN tag is present
     694             :  *      @vlan_proto: vlan encapsulation protocol
     695             :  *      @vlan_tci: vlan tag control information
     696             :  *      @inner_protocol: Protocol (encapsulation)
     697             :  *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
     698             :  *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
     699             :  *      @inner_transport_header: Inner transport layer header (encapsulation)
     700             :  *      @inner_network_header: Network layer header (encapsulation)
     701             :  *      @inner_mac_header: Link layer header (encapsulation)
     702             :  *      @transport_header: Transport layer header
     703             :  *      @network_header: Network layer header
     704             :  *      @mac_header: Link layer header
     705             :  *      @kcov_handle: KCOV remote handle for remote coverage collection
     706             :  *      @tail: Tail pointer
     707             :  *      @end: End pointer
     708             :  *      @head: Head of buffer
     709             :  *      @data: Data head pointer
     710             :  *      @truesize: Buffer size
     711             :  *      @users: User count - see {datagram,tcp}.c
     712             :  *      @extensions: allocated extensions, valid if active_extensions is nonzero
     713             :  */
     714             : 
     715             : struct sk_buff {
     716             :         union {
     717             :                 struct {
     718             :                         /* These two members must be first. */
     719             :                         struct sk_buff          *next;
     720             :                         struct sk_buff          *prev;
     721             : 
     722             :                         union {
     723             :                                 struct net_device       *dev;
     724             :                                 /* Some protocols might use this space to store information,
     725             :                                  * while device pointer would be NULL.
     726             :                                  * UDP receive path is one user.
     727             :                                  */
     728             :                                 unsigned long           dev_scratch;
     729             :                         };
     730             :                 };
     731             :                 struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
     732             :                 struct list_head        list;
     733             :         };
     734             : 
     735             :         union {
     736             :                 struct sock             *sk;
     737             :                 int                     ip_defrag_offset;
     738             :         };
     739             : 
     740             :         union {
     741             :                 ktime_t         tstamp;
     742             :                 u64             skb_mstamp_ns; /* earliest departure time */
     743             :         };
     744             :         /*
     745             :          * This is the control buffer. It is free to use for every
     746             :          * layer. Please put your private variables there. If you
     747             :          * want to keep them across layers you have to do a skb_clone()
     748             :          * first. This is owned by whoever has the skb queued ATM.
     749             :          */
     750             :         char                    cb[48] __aligned(8);
     751             : 
     752             :         union {
     753             :                 struct {
     754             :                         unsigned long   _skb_refdst;
     755             :                         void            (*destructor)(struct sk_buff *skb);
     756             :                 };
     757             :                 struct list_head        tcp_tsorted_anchor;
     758             :         };
     759             : 
     760             : #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
     761             :         unsigned long            _nfct;
     762             : #endif
     763             :         unsigned int            len,
     764             :                                 data_len;
     765             :         __u16                   mac_len,
     766             :                                 hdr_len;
     767             : 
     768             :         /* Following fields are _not_ copied in __copy_skb_header()
     769             :          * Note that queue_mapping is here mostly to fill a hole.
     770             :          */
     771             :         __u16                   queue_mapping;
     772             : 
     773             : /* if you move cloned around you also must adapt those constants */
     774             : #ifdef __BIG_ENDIAN_BITFIELD
     775             : #define CLONED_MASK     (1 << 7)
     776             : #else
     777             : #define CLONED_MASK     1
     778             : #endif
     779             : #define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
     780             : 
     781             :         /* private: */
     782             :         __u8                    __cloned_offset[0];
     783             :         /* public: */
     784             :         __u8                    cloned:1,
     785             :                                 nohdr:1,
     786             :                                 fclone:2,
     787             :                                 peeked:1,
     788             :                                 head_frag:1,
     789             :                                 pfmemalloc:1;
     790             : #ifdef CONFIG_SKB_EXTENSIONS
     791             :         __u8                    active_extensions;
     792             : #endif
     793             :         /* fields enclosed in headers_start/headers_end are copied
     794             :          * using a single memcpy() in __copy_skb_header()
     795             :          */
     796             :         /* private: */
     797             :         __u32                   headers_start[0];
     798             :         /* public: */
     799             : 
     800             : /* if you move pkt_type around you also must adapt those constants */
     801             : #ifdef __BIG_ENDIAN_BITFIELD
     802             : #define PKT_TYPE_MAX    (7 << 5)
     803             : #else
     804             : #define PKT_TYPE_MAX    7
     805             : #endif
     806             : #define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
     807             : 
     808             :         /* private: */
     809             :         __u8                    __pkt_type_offset[0];
     810             :         /* public: */
     811             :         __u8                    pkt_type:3;
     812             :         __u8                    ignore_df:1;
     813             :         __u8                    nf_trace:1;
     814             :         __u8                    ip_summed:2;
     815             :         __u8                    ooo_okay:1;
     816             : 
     817             :         __u8                    l4_hash:1;
     818             :         __u8                    sw_hash:1;
     819             :         __u8                    wifi_acked_valid:1;
     820             :         __u8                    wifi_acked:1;
     821             :         __u8                    no_fcs:1;
     822             :         /* Indicates the inner headers are valid in the skbuff. */
     823             :         __u8                    encapsulation:1;
     824             :         __u8                    encap_hdr_csum:1;
     825             :         __u8                    csum_valid:1;
     826             : 
     827             : #ifdef __BIG_ENDIAN_BITFIELD
     828             : #define PKT_VLAN_PRESENT_BIT    7
     829             : #else
     830             : #define PKT_VLAN_PRESENT_BIT    0
     831             : #endif
     832             : #define PKT_VLAN_PRESENT_OFFSET()       offsetof(struct sk_buff, __pkt_vlan_present_offset)
     833             :         /* private: */
     834             :         __u8                    __pkt_vlan_present_offset[0];
     835             :         /* public: */
     836             :         __u8                    vlan_present:1;
     837             :         __u8                    csum_complete_sw:1;
     838             :         __u8                    csum_level:2;
     839             :         __u8                    csum_not_inet:1;
     840             :         __u8                    dst_pending_confirm:1;
     841             : #ifdef CONFIG_IPV6_NDISC_NODETYPE
     842             :         __u8                    ndisc_nodetype:2;
     843             : #endif
     844             : 
     845             :         __u8                    ipvs_property:1;
     846             :         __u8                    inner_protocol_type:1;
     847             :         __u8                    remcsum_offload:1;
     848             : #ifdef CONFIG_NET_SWITCHDEV
     849             :         __u8                    offload_fwd_mark:1;
     850             :         __u8                    offload_l3_fwd_mark:1;
     851             : #endif
     852             : #ifdef CONFIG_NET_CLS_ACT
     853             :         __u8                    tc_skip_classify:1;
     854             :         __u8                    tc_at_ingress:1;
     855             : #endif
     856             : #ifdef CONFIG_NET_REDIRECT
     857             :         __u8                    redirected:1;
     858             :         __u8                    from_ingress:1;
     859             : #endif
     860             : #ifdef CONFIG_TLS_DEVICE
     861             :         __u8                    decrypted:1;
     862             : #endif
     863             : 
     864             : #ifdef CONFIG_NET_SCHED
     865             :         __u16                   tc_index;       /* traffic control index */
     866             : #endif
     867             : 
     868             :         union {
     869             :                 __wsum          csum;
     870             :                 struct {
     871             :                         __u16   csum_start;
     872             :                         __u16   csum_offset;
     873             :                 };
     874             :         };
     875             :         __u32                   priority;
     876             :         int                     skb_iif;
     877             :         __u32                   hash;
     878             :         __be16                  vlan_proto;
     879             :         __u16                   vlan_tci;
     880             : #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
     881             :         union {
     882             :                 unsigned int    napi_id;
     883             :                 unsigned int    sender_cpu;
     884             :         };
     885             : #endif
     886             : #ifdef CONFIG_NETWORK_SECMARK
     887             :         __u32           secmark;
     888             : #endif
     889             : 
     890             :         union {
     891             :                 __u32           mark;
     892             :                 __u32           reserved_tailroom;
     893             :         };
     894             : 
     895             :         union {
     896             :                 __be16          inner_protocol;
     897             :                 __u8            inner_ipproto;
     898             :         };
     899             : 
     900             :         __u16                   inner_transport_header;
     901             :         __u16                   inner_network_header;
     902             :         __u16                   inner_mac_header;
     903             : 
     904             :         __be16                  protocol;
     905             :         __u16                   transport_header;
     906             :         __u16                   network_header;
     907             :         __u16                   mac_header;
     908             : 
     909             : #ifdef CONFIG_KCOV
     910             :         u64                     kcov_handle;
     911             : #endif
     912             : 
     913             :         /* private: */
     914             :         __u32                   headers_end[0];
     915             :         /* public: */
     916             : 
     917             :         /* These elements must be at the end, see alloc_skb() for details.  */
     918             :         sk_buff_data_t          tail;
     919             :         sk_buff_data_t          end;
     920             :         unsigned char           *head,
     921             :                                 *data;
     922             :         unsigned int            truesize;
     923             :         refcount_t              users;
     924             : 
     925             : #ifdef CONFIG_SKB_EXTENSIONS
     926             :         /* only useable after checking ->active_extensions != 0 */
     927             :         struct skb_ext          *extensions;
     928             : #endif
     929             : };
     930             : 
     931             : #ifdef __KERNEL__
     932             : /*
     933             :  *      Handling routines are only of interest to the kernel
     934             :  */
     935             : 
     936             : #define SKB_ALLOC_FCLONE        0x01
     937             : #define SKB_ALLOC_RX            0x02
     938             : #define SKB_ALLOC_NAPI          0x04
     939             : 
     940             : /**
     941             :  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
     942             :  * @skb: buffer
     943             :  */
     944        3218 : static inline bool skb_pfmemalloc(const struct sk_buff *skb)
     945             : {
     946        3218 :         return unlikely(skb->pfmemalloc);
     947             : }
     948             : 
     949             : /*
     950             :  * skb might have a dst pointer attached, refcounted or not.
     951             :  * _skb_refdst low order bit is set if refcount was _not_ taken
     952             :  */
     953             : #define SKB_DST_NOREF   1UL
     954             : #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
     955             : 
     956             : /**
     957             :  * skb_dst - returns skb dst_entry
     958             :  * @skb: buffer
     959             :  *
     960             :  * Returns skb dst_entry, regardless of reference taken or not.
     961             :  */
     962        6838 : static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
     963             : {
     964             :         /* If refdst was not refcounted, check we still are in a
     965             :          * rcu_read_lock section
     966             :          */
     967        6838 :         WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
     968             :                 !rcu_read_lock_held() &&
     969             :                 !rcu_read_lock_bh_held());
     970        6838 :         return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
     971             : }
     972             : 
     973             : /**
     974             :  * skb_dst_set - sets skb dst
     975             :  * @skb: buffer
     976             :  * @dst: dst entry
     977             :  *
     978             :  * Sets skb dst, assuming a reference was taken on dst and should
     979             :  * be released by skb_dst_drop()
     980             :  */
     981          25 : static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
     982             : {
     983          25 :         skb->_skb_refdst = (unsigned long)dst;
     984           0 : }
     985             : 
     986             : /**
     987             :  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
     988             :  * @skb: buffer
     989             :  * @dst: dst entry
     990             :  *
     991             :  * Sets skb dst, assuming a reference was not taken on dst.
     992             :  * If dst entry is cached, we do not take reference and dst_release
     993             :  * will be avoided by refdst_drop. If dst entry is not cached, we take
     994             :  * reference, so that last dst_release can destroy the dst immediately.
     995             :  */
     996         828 : static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
     997             : {
     998         828 :         WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
     999         828 :         skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
    1000         828 : }
    1001             : 
    1002             : /**
    1003             :  * skb_dst_is_noref - Test if skb dst isn't refcounted
    1004             :  * @skb: buffer
    1005             :  */
    1006         286 : static inline bool skb_dst_is_noref(const struct sk_buff *skb)
    1007             : {
    1008         286 :         return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
    1009             : }
    1010             : 
    1011             : /**
    1012             :  * skb_rtable - Returns the skb &rtable
    1013             :  * @skb: buffer
    1014             :  */
    1015        1448 : static inline struct rtable *skb_rtable(const struct sk_buff *skb)
    1016             : {
    1017        1448 :         return (struct rtable *)skb_dst(skb);
    1018             : }
    1019             : 
    1020             : /* For mangling skb->pkt_type from user space side from applications
    1021             :  * such as nft, tc, etc, we only allow a conservative subset of
    1022             :  * possible pkt_types to be set.
    1023             : */
    1024           0 : static inline bool skb_pkt_type_ok(u32 ptype)
    1025             : {
    1026           0 :         return ptype <= PACKET_OTHERHOST;
    1027             : }
    1028             : 
    1029             : /**
    1030             :  * skb_napi_id - Returns the skb's NAPI id
    1031             :  * @skb: buffer
    1032             :  */
    1033           0 : static inline unsigned int skb_napi_id(const struct sk_buff *skb)
    1034             : {
    1035             : #ifdef CONFIG_NET_RX_BUSY_POLL
    1036           0 :         return skb->napi_id;
    1037             : #else
    1038             :         return 0;
    1039             : #endif
    1040             : }
    1041             : 
    1042             : /**
    1043             :  * skb_unref - decrement the skb's reference count
    1044             :  * @skb: buffer
    1045             :  *
    1046             :  * Returns true if we can free the skb.
    1047             :  */
    1048        9631 : static inline bool skb_unref(struct sk_buff *skb)
    1049             : {
    1050        9631 :         if (unlikely(!skb))
    1051             :                 return false;
    1052        8936 :         if (likely(refcount_read(&skb->users) == 1))
    1053        5249 :                 smp_rmb();
    1054        3687 :         else if (likely(!refcount_dec_and_test(&skb->users)))
    1055        3687 :                 return false;
    1056             : 
    1057             :         return true;
    1058             : }
    1059             : 
    1060             : void skb_release_head_state(struct sk_buff *skb);
    1061             : void kfree_skb(struct sk_buff *skb);
    1062             : void kfree_skb_list(struct sk_buff *segs);
    1063             : void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
    1064             : void skb_tx_error(struct sk_buff *skb);
    1065             : 
    1066             : #ifdef CONFIG_TRACEPOINTS
    1067             : void consume_skb(struct sk_buff *skb);
    1068             : #else
    1069             : static inline void consume_skb(struct sk_buff *skb)
    1070             : {
    1071             :         return kfree_skb(skb);
    1072             : }
    1073             : #endif
    1074             : 
    1075             : void __consume_stateless_skb(struct sk_buff *skb);
    1076             : void  __kfree_skb(struct sk_buff *skb);
    1077             : extern struct kmem_cache *skbuff_head_cache;
    1078             : 
    1079             : void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
    1080             : bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
    1081             :                       bool *fragstolen, int *delta_truesize);
    1082             : 
    1083             : struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
    1084             :                             int node);
    1085             : struct sk_buff *__build_skb(void *data, unsigned int frag_size);
    1086             : struct sk_buff *build_skb(void *data, unsigned int frag_size);
    1087             : struct sk_buff *build_skb_around(struct sk_buff *skb,
    1088             :                                  void *data, unsigned int frag_size);
    1089             : 
    1090             : struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
    1091             : 
    1092             : /**
    1093             :  * alloc_skb - allocate a network buffer
    1094             :  * @size: size to allocate
    1095             :  * @priority: allocation mask
    1096             :  *
    1097             :  * This function is a convenient wrapper around __alloc_skb().
    1098             :  */
    1099        3778 : static inline struct sk_buff *alloc_skb(unsigned int size,
    1100             :                                         gfp_t priority)
    1101             : {
    1102        3778 :         return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
    1103             : }
    1104             : 
    1105             : struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
    1106             :                                      unsigned long data_len,
    1107             :                                      int max_page_order,
    1108             :                                      int *errcode,
    1109             :                                      gfp_t gfp_mask);
    1110             : struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
    1111             : 
    1112             : /* Layout of fast clones : [skb1][skb2][fclone_ref] */
    1113             : struct sk_buff_fclones {
    1114             :         struct sk_buff  skb1;
    1115             : 
    1116             :         struct sk_buff  skb2;
    1117             : 
    1118             :         refcount_t      fclone_ref;
    1119             : };
    1120             : 
    1121             : /**
    1122             :  *      skb_fclone_busy - check if fclone is busy
    1123             :  *      @sk: socket
    1124             :  *      @skb: buffer
    1125             :  *
    1126             :  * Returns true if skb is a fast clone, and its clone is not freed.
    1127             :  * Some drivers call skb_orphan() in their ndo_start_xmit(),
    1128             :  * so we also check that this didnt happen.
    1129             :  */
    1130           0 : static inline bool skb_fclone_busy(const struct sock *sk,
    1131             :                                    const struct sk_buff *skb)
    1132             : {
    1133           0 :         const struct sk_buff_fclones *fclones;
    1134             : 
    1135           0 :         fclones = container_of(skb, struct sk_buff_fclones, skb1);
    1136             : 
    1137           0 :         return skb->fclone == SKB_FCLONE_ORIG &&
    1138           0 :                refcount_read(&fclones->fclone_ref) > 1 &&
    1139           0 :                fclones->skb2.sk == sk;
    1140             : }
    1141             : 
    1142             : /**
    1143             :  * alloc_skb_fclone - allocate a network buffer from fclone cache
    1144             :  * @size: size to allocate
    1145             :  * @priority: allocation mask
    1146             :  *
    1147             :  * This function is a convenient wrapper around __alloc_skb().
    1148             :  */
    1149         364 : static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
    1150             :                                                gfp_t priority)
    1151             : {
    1152         364 :         return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
    1153             : }
    1154             : 
    1155             : struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
    1156             : void skb_headers_offset_update(struct sk_buff *skb, int off);
    1157             : int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
    1158             : struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
    1159             : void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
    1160             : struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
    1161             : struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
    1162             :                                    gfp_t gfp_mask, bool fclone);
    1163           0 : static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
    1164             :                                           gfp_t gfp_mask)
    1165             : {
    1166           0 :         return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
    1167             : }
    1168             : 
    1169             : int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
    1170             : struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
    1171             :                                      unsigned int headroom);
    1172             : struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
    1173             :                                 int newtailroom, gfp_t priority);
    1174             : int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
    1175             :                                      int offset, int len);
    1176             : int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
    1177             :                               int offset, int len);
    1178             : int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
    1179             : int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
    1180             : 
    1181             : /**
    1182             :  *      skb_pad                 -       zero pad the tail of an skb
    1183             :  *      @skb: buffer to pad
    1184             :  *      @pad: space to pad
    1185             :  *
    1186             :  *      Ensure that a buffer is followed by a padding area that is zero
    1187             :  *      filled. Used by network drivers which may DMA or transfer data
    1188             :  *      beyond the buffer end onto the wire.
    1189             :  *
    1190             :  *      May return error in out of memory cases. The skb is freed on error.
    1191             :  */
    1192             : static inline int skb_pad(struct sk_buff *skb, int pad)
    1193             : {
    1194             :         return __skb_pad(skb, pad, true);
    1195             : }
    1196             : #define dev_kfree_skb(a)        consume_skb(a)
    1197             : 
    1198             : int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
    1199             :                          int offset, size_t size);
    1200             : 
    1201             : struct skb_seq_state {
    1202             :         __u32           lower_offset;
    1203             :         __u32           upper_offset;
    1204             :         __u32           frag_idx;
    1205             :         __u32           stepped_offset;
    1206             :         struct sk_buff  *root_skb;
    1207             :         struct sk_buff  *cur_skb;
    1208             :         __u8            *frag_data;
    1209             :         __u32           frag_off;
    1210             : };
    1211             : 
    1212             : void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
    1213             :                           unsigned int to, struct skb_seq_state *st);
    1214             : unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
    1215             :                           struct skb_seq_state *st);
    1216             : void skb_abort_seq_read(struct skb_seq_state *st);
    1217             : 
    1218             : unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
    1219             :                            unsigned int to, struct ts_config *config);
    1220             : 
    1221             : /*
    1222             :  * Packet hash types specify the type of hash in skb_set_hash.
    1223             :  *
    1224             :  * Hash types refer to the protocol layer addresses which are used to
    1225             :  * construct a packet's hash. The hashes are used to differentiate or identify
    1226             :  * flows of the protocol layer for the hash type. Hash types are either
    1227             :  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
    1228             :  *
    1229             :  * Properties of hashes:
    1230             :  *
    1231             :  * 1) Two packets in different flows have different hash values
    1232             :  * 2) Two packets in the same flow should have the same hash value
    1233             :  *
    1234             :  * A hash at a higher layer is considered to be more specific. A driver should
    1235             :  * set the most specific hash possible.
    1236             :  *
    1237             :  * A driver cannot indicate a more specific hash than the layer at which a hash
    1238             :  * was computed. For instance an L3 hash cannot be set as an L4 hash.
    1239             :  *
    1240             :  * A driver may indicate a hash level which is less specific than the
    1241             :  * actual layer the hash was computed on. For instance, a hash computed
    1242             :  * at L4 may be considered an L3 hash. This should only be done if the
    1243             :  * driver can't unambiguously determine that the HW computed the hash at
    1244             :  * the higher layer. Note that the "should" in the second property above
    1245             :  * permits this.
    1246             :  */
    1247             : enum pkt_hash_types {
    1248             :         PKT_HASH_TYPE_NONE,     /* Undefined type */
    1249             :         PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
    1250             :         PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
    1251             :         PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
    1252             : };
    1253             : 
    1254           0 : static inline void skb_clear_hash(struct sk_buff *skb)
    1255             : {
    1256           0 :         skb->hash = 0;
    1257           0 :         skb->sw_hash = 0;
    1258           0 :         skb->l4_hash = 0;
    1259           0 : }
    1260             : 
    1261           0 : static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
    1262             : {
    1263           0 :         if (!skb->l4_hash)
    1264           0 :                 skb_clear_hash(skb);
    1265             : }
    1266             : 
    1267             : static inline void
    1268           4 : __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
    1269             : {
    1270           4 :         skb->l4_hash = is_l4;
    1271           4 :         skb->sw_hash = is_sw;
    1272           4 :         skb->hash = hash;
    1273             : }
    1274             : 
    1275             : static inline void
    1276           4 : skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
    1277             : {
    1278             :         /* Used by drivers to set hash from HW */
    1279           4 :         __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
    1280             : }
    1281             : 
    1282             : static inline void
    1283           0 : __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
    1284             : {
    1285           0 :         __skb_set_hash(skb, hash, true, is_l4);
    1286             : }
    1287             : 
    1288             : void __skb_get_hash(struct sk_buff *skb);
    1289             : u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
    1290             : u32 skb_get_poff(const struct sk_buff *skb);
    1291             : u32 __skb_get_poff(const struct sk_buff *skb, void *data,
    1292             :                    const struct flow_keys_basic *keys, int hlen);
    1293             : __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
    1294             :                             void *data, int hlen_proto);
    1295             : 
    1296             : static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
    1297             :                                         int thoff, u8 ip_proto)
    1298             : {
    1299             :         return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
    1300             : }
    1301             : 
    1302             : void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
    1303             :                              const struct flow_dissector_key *key,
    1304             :                              unsigned int key_count);
    1305             : 
    1306             : struct bpf_flow_dissector;
    1307             : bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
    1308             :                       __be16 proto, int nhoff, int hlen, unsigned int flags);
    1309             : 
    1310             : bool __skb_flow_dissect(const struct net *net,
    1311             :                         const struct sk_buff *skb,
    1312             :                         struct flow_dissector *flow_dissector,
    1313             :                         void *target_container,
    1314             :                         void *data, __be16 proto, int nhoff, int hlen,
    1315             :                         unsigned int flags);
    1316             : 
    1317             : static inline bool skb_flow_dissect(const struct sk_buff *skb,
    1318             :                                     struct flow_dissector *flow_dissector,
    1319             :                                     void *target_container, unsigned int flags)
    1320             : {
    1321             :         return __skb_flow_dissect(NULL, skb, flow_dissector,
    1322             :                                   target_container, NULL, 0, 0, 0, flags);
    1323             : }
    1324             : 
    1325           0 : static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
    1326             :                                               struct flow_keys *flow,
    1327             :                                               unsigned int flags)
    1328             : {
    1329           0 :         memset(flow, 0, sizeof(*flow));
    1330           0 :         return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
    1331             :                                   flow, NULL, 0, 0, 0, flags);
    1332             : }
    1333             : 
    1334             : static inline bool
    1335           2 : skb_flow_dissect_flow_keys_basic(const struct net *net,
    1336             :                                  const struct sk_buff *skb,
    1337             :                                  struct flow_keys_basic *flow, void *data,
    1338             :                                  __be16 proto, int nhoff, int hlen,
    1339             :                                  unsigned int flags)
    1340             : {
    1341           2 :         memset(flow, 0, sizeof(*flow));
    1342           2 :         return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
    1343             :                                   data, proto, nhoff, hlen, flags);
    1344             : }
    1345             : 
    1346             : void skb_flow_dissect_meta(const struct sk_buff *skb,
    1347             :                            struct flow_dissector *flow_dissector,
    1348             :                            void *target_container);
    1349             : 
    1350             : /* Gets a skb connection tracking info, ctinfo map should be a
    1351             :  * map of mapsize to translate enum ip_conntrack_info states
    1352             :  * to user states.
    1353             :  */
    1354             : void
    1355             : skb_flow_dissect_ct(const struct sk_buff *skb,
    1356             :                     struct flow_dissector *flow_dissector,
    1357             :                     void *target_container,
    1358             :                     u16 *ctinfo_map, size_t mapsize,
    1359             :                     bool post_ct);
    1360             : void
    1361             : skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
    1362             :                              struct flow_dissector *flow_dissector,
    1363             :                              void *target_container);
    1364             : 
    1365             : void skb_flow_dissect_hash(const struct sk_buff *skb,
    1366             :                            struct flow_dissector *flow_dissector,
    1367             :                            void *target_container);
    1368             : 
    1369           0 : static inline __u32 skb_get_hash(struct sk_buff *skb)
    1370             : {
    1371           0 :         if (!skb->l4_hash && !skb->sw_hash)
    1372           0 :                 __skb_get_hash(skb);
    1373             : 
    1374           0 :         return skb->hash;
    1375             : }
    1376             : 
    1377             : static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
    1378             : {
    1379             :         if (!skb->l4_hash && !skb->sw_hash) {
    1380             :                 struct flow_keys keys;
    1381             :                 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
    1382             : 
    1383             :                 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
    1384             :         }
    1385             : 
    1386             :         return skb->hash;
    1387             : }
    1388             : 
    1389             : __u32 skb_get_hash_perturb(const struct sk_buff *skb,
    1390             :                            const siphash_key_t *perturb);
    1391             : 
    1392        1715 : static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
    1393             : {
    1394        1715 :         return skb->hash;
    1395             : }
    1396             : 
    1397           0 : static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
    1398             : {
    1399           0 :         to->hash = from->hash;
    1400           0 :         to->sw_hash = from->sw_hash;
    1401           0 :         to->l4_hash = from->l4_hash;
    1402             : };
    1403             : 
    1404           0 : static inline void skb_copy_decrypted(struct sk_buff *to,
    1405             :                                       const struct sk_buff *from)
    1406             : {
    1407             : #ifdef CONFIG_TLS_DEVICE
    1408             :         to->decrypted = from->decrypted;
    1409             : #endif
    1410           0 : }
    1411             : 
    1412             : #ifdef NET_SKBUFF_DATA_USES_OFFSET
    1413       44504 : static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
    1414             : {
    1415       22359 :         return skb->head + skb->end;
    1416             : }
    1417             : 
    1418         519 : static inline unsigned int skb_end_offset(const struct sk_buff *skb)
    1419             : {
    1420         519 :         return skb->end;
    1421             : }
    1422             : #else
    1423             : static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
    1424             : {
    1425             :         return skb->end;
    1426             : }
    1427             : 
    1428             : static inline unsigned int skb_end_offset(const struct sk_buff *skb)
    1429             : {
    1430             :         return skb->end - skb->head;
    1431             : }
    1432             : #endif
    1433             : 
    1434             : /* Internal */
    1435             : #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
    1436             : 
    1437         949 : static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
    1438             : {
    1439         949 :         return &skb_shinfo(skb)->hwtstamps;
    1440             : }
    1441             : 
    1442        9264 : static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
    1443             : {
    1444        9264 :         bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
    1445             : 
    1446        9264 :         return is_zcopy ? skb_uarg(skb) : NULL;
    1447             : }
    1448             : 
    1449           0 : static inline void net_zcopy_get(struct ubuf_info *uarg)
    1450             : {
    1451           0 :         refcount_inc(&uarg->refcnt);
    1452           0 : }
    1453             : 
    1454           0 : static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
    1455             : {
    1456           0 :         skb_shinfo(skb)->destructor_arg = uarg;
    1457           0 :         skb_shinfo(skb)->flags |= uarg->flags;
    1458           0 : }
    1459             : 
    1460          14 : static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
    1461             :                                  bool *have_ref)
    1462             : {
    1463          14 :         if (skb && uarg && !skb_zcopy(skb)) {
    1464           0 :                 if (unlikely(have_ref && *have_ref))
    1465           0 :                         *have_ref = false;
    1466             :                 else
    1467           0 :                         net_zcopy_get(uarg);
    1468           0 :                 skb_zcopy_init(skb, uarg);
    1469             :         }
    1470          14 : }
    1471             : 
    1472           0 : static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
    1473             : {
    1474           0 :         skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
    1475           0 :         skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
    1476             : }
    1477             : 
    1478           0 : static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
    1479             : {
    1480           0 :         return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
    1481             : }
    1482             : 
    1483           0 : static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
    1484             : {
    1485           0 :         return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
    1486             : }
    1487             : 
    1488         411 : static inline void net_zcopy_put(struct ubuf_info *uarg)
    1489             : {
    1490         411 :         if (uarg)
    1491           0 :                 uarg->callback(NULL, uarg, true);
    1492         411 : }
    1493             : 
    1494           0 : static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
    1495             : {
    1496           0 :         if (uarg) {
    1497           0 :                 if (uarg->callback == msg_zerocopy_callback)
    1498           0 :                         msg_zerocopy_put_abort(uarg, have_uref);
    1499           0 :                 else if (have_uref)
    1500           0 :                         net_zcopy_put(uarg);
    1501             :         }
    1502           0 : }
    1503             : 
    1504             : /* Release a reference on a zerocopy structure */
    1505        5586 : static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
    1506             : {
    1507        5586 :         struct ubuf_info *uarg = skb_zcopy(skb);
    1508             : 
    1509        5586 :         if (uarg) {
    1510           0 :                 if (!skb_zcopy_is_nouarg(skb))
    1511           0 :                         uarg->callback(skb, uarg, zerocopy_success);
    1512             : 
    1513           0 :                 skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
    1514             :         }
    1515        5586 : }
    1516             : 
    1517        3779 : static inline void skb_mark_not_on_list(struct sk_buff *skb)
    1518             : {
    1519        2848 :         skb->next = NULL;
    1520             : }
    1521             : 
    1522             : /* Iterate through singly-linked GSO fragments of an skb. */
    1523             : #define skb_list_walk_safe(first, skb, next_skb)                               \
    1524             :         for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
    1525             :              (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
    1526             : 
    1527        2293 : static inline void skb_list_del_init(struct sk_buff *skb)
    1528             : {
    1529        2293 :         __list_del_entry(&skb->list);
    1530        2293 :         skb_mark_not_on_list(skb);
    1531             : }
    1532             : 
    1533             : /**
    1534             :  *      skb_queue_empty - check if a queue is empty
    1535             :  *      @list: queue head
    1536             :  *
    1537             :  *      Returns true if the queue is empty, false otherwise.
    1538             :  */
    1539        1149 : static inline int skb_queue_empty(const struct sk_buff_head *list)
    1540             : {
    1541        1067 :         return list->next == (const struct sk_buff *) list;
    1542             : }
    1543             : 
    1544             : /**
    1545             :  *      skb_queue_empty_lockless - check if a queue is empty
    1546             :  *      @list: queue head
    1547             :  *
    1548             :  *      Returns true if the queue is empty, false otherwise.
    1549             :  *      This variant can be used in lockless contexts.
    1550             :  */
    1551       10106 : static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
    1552             : {
    1553       10106 :         return READ_ONCE(list->next) == (const struct sk_buff *) list;
    1554             : }
    1555             : 
    1556             : 
    1557             : /**
    1558             :  *      skb_queue_is_last - check if skb is the last entry in the queue
    1559             :  *      @list: queue head
    1560             :  *      @skb: buffer
    1561             :  *
    1562             :  *      Returns true if @skb is the last buffer on the list.
    1563             :  */
    1564         366 : static inline bool skb_queue_is_last(const struct sk_buff_head *list,
    1565             :                                      const struct sk_buff *skb)
    1566             : {
    1567         366 :         return skb->next == (const struct sk_buff *) list;
    1568             : }
    1569             : 
    1570             : /**
    1571             :  *      skb_queue_is_first - check if skb is the first entry in the queue
    1572             :  *      @list: queue head
    1573             :  *      @skb: buffer
    1574             :  *
    1575             :  *      Returns true if @skb is the first buffer on the list.
    1576             :  */
    1577             : static inline bool skb_queue_is_first(const struct sk_buff_head *list,
    1578             :                                       const struct sk_buff *skb)
    1579             : {
    1580             :         return skb->prev == (const struct sk_buff *) list;
    1581             : }
    1582             : 
    1583             : /**
    1584             :  *      skb_queue_next - return the next packet in the queue
    1585             :  *      @list: queue head
    1586             :  *      @skb: current buffer
    1587             :  *
    1588             :  *      Return the next packet in @list after @skb.  It is only valid to
    1589             :  *      call this if skb_queue_is_last() evaluates to false.
    1590             :  */
    1591             : static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
    1592             :                                              const struct sk_buff *skb)
    1593             : {
    1594             :         /* This BUG_ON may seem severe, but if we just return then we
    1595             :          * are going to dereference garbage.
    1596             :          */
    1597             :         BUG_ON(skb_queue_is_last(list, skb));
    1598             :         return skb->next;
    1599             : }
    1600             : 
    1601             : /**
    1602             :  *      skb_queue_prev - return the prev packet in the queue
    1603             :  *      @list: queue head
    1604             :  *      @skb: current buffer
    1605             :  *
    1606             :  *      Return the prev packet in @list before @skb.  It is only valid to
    1607             :  *      call this if skb_queue_is_first() evaluates to false.
    1608             :  */
    1609             : static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
    1610             :                                              const struct sk_buff *skb)
    1611             : {
    1612             :         /* This BUG_ON may seem severe, but if we just return then we
    1613             :          * are going to dereference garbage.
    1614             :          */
    1615             :         BUG_ON(skb_queue_is_first(list, skb));
    1616             :         return skb->prev;
    1617             : }
    1618             : 
    1619             : /**
    1620             :  *      skb_get - reference buffer
    1621             :  *      @skb: buffer to reference
    1622             :  *
    1623             :  *      Makes another reference to a socket buffer and returns a pointer
    1624             :  *      to the buffer.
    1625             :  */
    1626        3002 : static inline struct sk_buff *skb_get(struct sk_buff *skb)
    1627             : {
    1628        3002 :         refcount_inc(&skb->users);
    1629        3001 :         return skb;
    1630             : }
    1631             : 
    1632             : /*
    1633             :  * If users == 1, we are the only owner and can avoid redundant atomic changes.
    1634             :  */
    1635             : 
    1636             : /**
    1637             :  *      skb_cloned - is the buffer a clone
    1638             :  *      @skb: buffer to check
    1639             :  *
    1640             :  *      Returns true if the buffer was generated with skb_clone() and is
    1641             :  *      one of multiple shared copies of the buffer. Cloned buffers are
    1642             :  *      shared data so must not be written to under normal circumstances.
    1643             :  */
    1644        1200 : static inline int skb_cloned(const struct sk_buff *skb)
    1645             : {
    1646        1200 :         return skb->cloned &&
    1647         365 :                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
    1648             : }
    1649             : 
    1650           0 : static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
    1651             : {
    1652           0 :         might_sleep_if(gfpflags_allow_blocking(pri));
    1653             : 
    1654           0 :         if (skb_cloned(skb))
    1655           0 :                 return pskb_expand_head(skb, 0, 0, pri);
    1656             : 
    1657             :         return 0;
    1658             : }
    1659             : 
    1660             : /**
    1661             :  *      skb_header_cloned - is the header a clone
    1662             :  *      @skb: buffer to check
    1663             :  *
    1664             :  *      Returns true if modifying the header part of the buffer requires
    1665             :  *      the data to be copied.
    1666             :  */
    1667         451 : static inline int skb_header_cloned(const struct sk_buff *skb)
    1668             : {
    1669         451 :         int dataref;
    1670             : 
    1671         451 :         if (!skb->cloned)
    1672             :                 return 0;
    1673             : 
    1674         449 :         dataref = atomic_read(&skb_shinfo(skb)->dataref);
    1675         449 :         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
    1676         449 :         return dataref != 1;
    1677             : }
    1678             : 
    1679           0 : static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
    1680             : {
    1681           0 :         might_sleep_if(gfpflags_allow_blocking(pri));
    1682             : 
    1683           0 :         if (skb_header_cloned(skb))
    1684           0 :                 return pskb_expand_head(skb, 0, 0, pri);
    1685             : 
    1686             :         return 0;
    1687             : }
    1688             : 
    1689             : /**
    1690             :  *      __skb_header_release - release reference to header
    1691             :  *      @skb: buffer to operate on
    1692             :  */
    1693         631 : static inline void __skb_header_release(struct sk_buff *skb)
    1694             : {
    1695         631 :         skb->nohdr = 1;
    1696         631 :         atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
    1697         631 : }
    1698             : 
    1699             : 
    1700             : /**
    1701             :  *      skb_shared - is the buffer shared
    1702             :  *      @skb: buffer to check
    1703             :  *
    1704             :  *      Returns true if more than one person has a reference to this
    1705             :  *      buffer.
    1706             :  */
    1707        1691 : static inline int skb_shared(const struct sk_buff *skb)
    1708             : {
    1709        2149 :         return refcount_read(&skb->users) != 1;
    1710             : }
    1711             : 
    1712             : /**
    1713             :  *      skb_share_check - check if buffer is shared and if so clone it
    1714             :  *      @skb: buffer to check
    1715             :  *      @pri: priority for memory allocation
    1716             :  *
    1717             :  *      If the buffer is shared the buffer is cloned and the old copy
    1718             :  *      drops a reference. A new clone with a single reference is returned.
    1719             :  *      If the buffer is not shared the original buffer is returned. When
    1720             :  *      being called from interrupt status or with spinlocks held pri must
    1721             :  *      be GFP_ATOMIC.
    1722             :  *
    1723             :  *      NULL is returned on a memory allocation failure.
    1724             :  */
    1725         458 : static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
    1726             : {
    1727         458 :         might_sleep_if(gfpflags_allow_blocking(pri));
    1728         458 :         if (skb_shared(skb)) {
    1729           0 :                 struct sk_buff *nskb = skb_clone(skb, pri);
    1730             : 
    1731           0 :                 if (likely(nskb))
    1732           0 :                         consume_skb(skb);
    1733             :                 else
    1734           0 :                         kfree_skb(skb);
    1735             :                 skb = nskb;
    1736             :         }
    1737         458 :         return skb;
    1738             : }
    1739             : 
    1740             : /*
    1741             :  *      Copy shared buffers into a new sk_buff. We effectively do COW on
    1742             :  *      packets to handle cases where we have a local reader and forward
    1743             :  *      and a couple of other messy ones. The normal one is tcpdumping
    1744             :  *      a packet thats being forwarded.
    1745             :  */
    1746             : 
    1747             : /**
    1748             :  *      skb_unshare - make a copy of a shared buffer
    1749             :  *      @skb: buffer to check
    1750             :  *      @pri: priority for memory allocation
    1751             :  *
    1752             :  *      If the socket buffer is a clone then this function creates a new
    1753             :  *      copy of the data, drops a reference count on the old copy and returns
    1754             :  *      the new copy with the reference count at 1. If the buffer is not a clone
    1755             :  *      the original buffer is returned. When called with a spinlock held or
    1756             :  *      from interrupt state @pri must be %GFP_ATOMIC
    1757             :  *
    1758             :  *      %NULL is returned on a memory allocation failure.
    1759             :  */
    1760             : static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
    1761             :                                           gfp_t pri)
    1762             : {
    1763             :         might_sleep_if(gfpflags_allow_blocking(pri));
    1764             :         if (skb_cloned(skb)) {
    1765             :                 struct sk_buff *nskb = skb_copy(skb, pri);
    1766             : 
    1767             :                 /* Free our shared copy */
    1768             :                 if (likely(nskb))
    1769             :                         consume_skb(skb);
    1770             :                 else
    1771             :                         kfree_skb(skb);
    1772             :                 skb = nskb;
    1773             :         }
    1774             :         return skb;
    1775             : }
    1776             : 
    1777             : /**
    1778             :  *      skb_peek - peek at the head of an &sk_buff_head
    1779             :  *      @list_: list to peek at
    1780             :  *
    1781             :  *      Peek an &sk_buff. Unlike most other operations you _MUST_
    1782             :  *      be careful with this one. A peek leaves the buffer on the
    1783             :  *      list and someone else may run off with it. You must hold
    1784             :  *      the appropriate locks or have a private queue to do this.
    1785             :  *
    1786             :  *      Returns %NULL for an empty list or a pointer to the head element.
    1787             :  *      The reference count is not incremented and the reference is therefore
    1788             :  *      volatile. Use with caution.
    1789             :  */
    1790        8251 : static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
    1791             : {
    1792        8251 :         struct sk_buff *skb = list_->next;
    1793             : 
    1794        6785 :         if (skb == (struct sk_buff *)list_)
    1795         896 :                 skb = NULL;
    1796        4498 :         return skb;
    1797             : }
    1798             : 
    1799             : /**
    1800             :  *      __skb_peek - peek at the head of a non-empty &sk_buff_head
    1801             :  *      @list_: list to peek at
    1802             :  *
    1803             :  *      Like skb_peek(), but the caller knows that the list is not empty.
    1804             :  */
    1805             : static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
    1806             : {
    1807             :         return list_->next;
    1808             : }
    1809             : 
    1810             : /**
    1811             :  *      skb_peek_next - peek skb following the given one from a queue
    1812             :  *      @skb: skb to start from
    1813             :  *      @list_: list to peek at
    1814             :  *
    1815             :  *      Returns %NULL when the end of the list is met or a pointer to the
    1816             :  *      next element. The reference count is not incremented and the
    1817             :  *      reference is therefore volatile. Use with caution.
    1818             :  */
    1819           0 : static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
    1820             :                 const struct sk_buff_head *list_)
    1821             : {
    1822           0 :         struct sk_buff *next = skb->next;
    1823             : 
    1824           0 :         if (next == (struct sk_buff *)list_)
    1825             :                 next = NULL;
    1826           0 :         return next;
    1827             : }
    1828             : 
    1829             : /**
    1830             :  *      skb_peek_tail - peek at the tail of an &sk_buff_head
    1831             :  *      @list_: list to peek at
    1832             :  *
    1833             :  *      Peek an &sk_buff. Unlike most other operations you _MUST_
    1834             :  *      be careful with this one. A peek leaves the buffer on the
    1835             :  *      list and someone else may run off with it. You must hold
    1836             :  *      the appropriate locks or have a private queue to do this.
    1837             :  *
    1838             :  *      Returns %NULL for an empty list or a pointer to the tail element.
    1839             :  *      The reference count is not incremented and the reference is therefore
    1840             :  *      volatile. Use with caution.
    1841             :  */
    1842        1700 : static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
    1843             : {
    1844        1700 :         struct sk_buff *skb = READ_ONCE(list_->prev);
    1845             : 
    1846        1700 :         if (skb == (struct sk_buff *)list_)
    1847         130 :                 skb = NULL;
    1848        1267 :         return skb;
    1849             : 
    1850             : }
    1851             : 
    1852             : /**
    1853             :  *      skb_queue_len   - get queue length
    1854             :  *      @list_: list to measure
    1855             :  *
    1856             :  *      Return the length of an &sk_buff queue.
    1857             :  */
    1858         195 : static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
    1859             : {
    1860         195 :         return list_->qlen;
    1861             : }
    1862             : 
    1863             : /**
    1864             :  *      skb_queue_len_lockless  - get queue length
    1865             :  *      @list_: list to measure
    1866             :  *
    1867             :  *      Return the length of an &sk_buff queue.
    1868             :  *      This variant can be used in lockless contexts.
    1869             :  */
    1870         599 : static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
    1871             : {
    1872         599 :         return READ_ONCE(list_->qlen);
    1873             : }
    1874             : 
    1875             : /**
    1876             :  *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
    1877             :  *      @list: queue to initialize
    1878             :  *
    1879             :  *      This initializes only the list and queue length aspects of
    1880             :  *      an sk_buff_head object.  This allows to initialize the list
    1881             :  *      aspects of an sk_buff_head without reinitializing things like
    1882             :  *      the spinlock.  It can also be used for on-stack sk_buff_head
    1883             :  *      objects where the spinlock is known to not be used.
    1884             :  */
    1885        2637 : static inline void __skb_queue_head_init(struct sk_buff_head *list)
    1886             : {
    1887        2637 :         list->prev = list->next = (struct sk_buff *)list;
    1888        2636 :         list->qlen = 0;
    1889           2 : }
    1890             : 
    1891             : /*
    1892             :  * This function creates a split out lock class for each invocation;
    1893             :  * this is needed for now since a whole lot of users of the skb-queue
    1894             :  * infrastructure in drivers have different locking usage (in hardirq)
    1895             :  * than the networking core (in softirq only). In the long run either the
    1896             :  * network layer or drivers should need annotation to consolidate the
    1897             :  * main types of usage into 3 classes.
    1898             :  */
    1899        2616 : static inline void skb_queue_head_init(struct sk_buff_head *list)
    1900             : {
    1901        2616 :         spin_lock_init(&list->lock);
    1902        2616 :         __skb_queue_head_init(list);
    1903        2616 : }
    1904             : 
    1905           1 : static inline void skb_queue_head_init_class(struct sk_buff_head *list,
    1906             :                 struct lock_class_key *class)
    1907             : {
    1908           1 :         skb_queue_head_init(list);
    1909           1 :         lockdep_set_class(&list->lock, class);
    1910           1 : }
    1911             : 
    1912             : /*
    1913             :  *      Insert an sk_buff on a list.
    1914             :  *
    1915             :  *      The "__skb_xxxx()" functions are the non-atomic ones that
    1916             :  *      can only be called with interrupts disabled.
    1917             :  */
    1918        3704 : static inline void __skb_insert(struct sk_buff *newsk,
    1919             :                                 struct sk_buff *prev, struct sk_buff *next,
    1920             :                                 struct sk_buff_head *list)
    1921             : {
    1922             :         /* See skb_queue_empty_lockless() and skb_peek_tail()
    1923             :          * for the opposite READ_ONCE()
    1924             :          */
    1925        3704 :         WRITE_ONCE(newsk->next, next);
    1926        3704 :         WRITE_ONCE(newsk->prev, prev);
    1927        3704 :         WRITE_ONCE(next->prev, newsk);
    1928        3704 :         WRITE_ONCE(prev->next, newsk);
    1929        3704 :         list->qlen++;
    1930             : }
    1931             : 
    1932           2 : static inline void __skb_queue_splice(const struct sk_buff_head *list,
    1933             :                                       struct sk_buff *prev,
    1934             :                                       struct sk_buff *next)
    1935             : {
    1936           2 :         struct sk_buff *first = list->next;
    1937           2 :         struct sk_buff *last = list->prev;
    1938             : 
    1939           2 :         WRITE_ONCE(first->prev, prev);
    1940           2 :         WRITE_ONCE(prev->next, first);
    1941             : 
    1942           2 :         WRITE_ONCE(last->next, next);
    1943           2 :         WRITE_ONCE(next->prev, last);
    1944             : }
    1945             : 
    1946             : /**
    1947             :  *      skb_queue_splice - join two skb lists, this is designed for stacks
    1948             :  *      @list: the new list to add
    1949             :  *      @head: the place to add it in the first list
    1950             :  */
    1951             : static inline void skb_queue_splice(const struct sk_buff_head *list,
    1952             :                                     struct sk_buff_head *head)
    1953             : {
    1954             :         if (!skb_queue_empty(list)) {
    1955             :                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
    1956             :                 head->qlen += list->qlen;
    1957             :         }
    1958             : }
    1959             : 
    1960             : /**
    1961             :  *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
    1962             :  *      @list: the new list to add
    1963             :  *      @head: the place to add it in the first list
    1964             :  *
    1965             :  *      The list at @list is reinitialised
    1966             :  */
    1967             : static inline void skb_queue_splice_init(struct sk_buff_head *list,
    1968             :                                          struct sk_buff_head *head)
    1969             : {
    1970             :         if (!skb_queue_empty(list)) {
    1971             :                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
    1972             :                 head->qlen += list->qlen;
    1973             :                 __skb_queue_head_init(list);
    1974             :         }
    1975             : }
    1976             : 
    1977             : /**
    1978             :  *      skb_queue_splice_tail - join two skb lists, each list being a queue
    1979             :  *      @list: the new list to add
    1980             :  *      @head: the place to add it in the first list
    1981             :  */
    1982             : static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
    1983             :                                          struct sk_buff_head *head)
    1984             : {
    1985             :         if (!skb_queue_empty(list)) {
    1986             :                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
    1987             :                 head->qlen += list->qlen;
    1988             :         }
    1989             : }
    1990             : 
    1991             : /**
    1992             :  *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
    1993             :  *      @list: the new list to add
    1994             :  *      @head: the place to add it in the first list
    1995             :  *
    1996             :  *      Each of the lists is a queue.
    1997             :  *      The list at @list is reinitialised
    1998             :  */
    1999          82 : static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
    2000             :                                               struct sk_buff_head *head)
    2001             : {
    2002          82 :         if (!skb_queue_empty(list)) {
    2003           2 :                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
    2004           2 :                 head->qlen += list->qlen;
    2005           2 :                 __skb_queue_head_init(list);
    2006             :         }
    2007          82 : }
    2008             : 
    2009             : /**
    2010             :  *      __skb_queue_after - queue a buffer at the list head
    2011             :  *      @list: list to use
    2012             :  *      @prev: place after this buffer
    2013             :  *      @newsk: buffer to queue
    2014             :  *
    2015             :  *      Queue a buffer int the middle of a list. This function takes no locks
    2016             :  *      and you must therefore hold required locks before calling it.
    2017             :  *
    2018             :  *      A buffer cannot be placed on two lists at the same time.
    2019             :  */
    2020           0 : static inline void __skb_queue_after(struct sk_buff_head *list,
    2021             :                                      struct sk_buff *prev,
    2022             :                                      struct sk_buff *newsk)
    2023             : {
    2024           0 :         __skb_insert(newsk, prev, prev->next, list);
    2025           0 : }
    2026             : 
    2027             : void skb_append(struct sk_buff *old, struct sk_buff *newsk,
    2028             :                 struct sk_buff_head *list);
    2029             : 
    2030        3704 : static inline void __skb_queue_before(struct sk_buff_head *list,
    2031             :                                       struct sk_buff *next,
    2032             :                                       struct sk_buff *newsk)
    2033             : {
    2034        3701 :         __skb_insert(newsk, next->prev, next, list);
    2035           0 : }
    2036             : 
    2037             : /**
    2038             :  *      __skb_queue_head - queue a buffer at the list head
    2039             :  *      @list: list to use
    2040             :  *      @newsk: buffer to queue
    2041             :  *
    2042             :  *      Queue a buffer at the start of a list. This function takes no locks
    2043             :  *      and you must therefore hold required locks before calling it.
    2044             :  *
    2045             :  *      A buffer cannot be placed on two lists at the same time.
    2046             :  */
    2047           0 : static inline void __skb_queue_head(struct sk_buff_head *list,
    2048             :                                     struct sk_buff *newsk)
    2049             : {
    2050           0 :         __skb_queue_after(list, (struct sk_buff *)list, newsk);
    2051             : }
    2052             : void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
    2053             : 
    2054             : /**
    2055             :  *      __skb_queue_tail - queue a buffer at the list tail
    2056             :  *      @list: list to use
    2057             :  *      @newsk: buffer to queue
    2058             :  *
    2059             :  *      Queue a buffer at the end of a list. This function takes no locks
    2060             :  *      and you must therefore hold required locks before calling it.
    2061             :  *
    2062             :  *      A buffer cannot be placed on two lists at the same time.
    2063             :  */
    2064        3704 : static inline void __skb_queue_tail(struct sk_buff_head *list,
    2065             :                                    struct sk_buff *newsk)
    2066             : {
    2067        3704 :         __skb_queue_before(list, (struct sk_buff *)list, newsk);
    2068           0 : }
    2069             : void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
    2070             : 
    2071             : /*
    2072             :  * remove sk_buff from list. _Must_ be called atomically, and with
    2073             :  * the list known..
    2074             :  */
    2075             : void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
    2076        3704 : static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
    2077             : {
    2078        3704 :         struct sk_buff *next, *prev;
    2079             : 
    2080        3704 :         WRITE_ONCE(list->qlen, list->qlen - 1);
    2081        3704 :         next       = skb->next;
    2082        3704 :         prev       = skb->prev;
    2083        3704 :         skb->next  = skb->prev = NULL;
    2084        3704 :         WRITE_ONCE(next->prev, prev);
    2085        2339 :         WRITE_ONCE(prev->next, next);
    2086        1379 : }
    2087             : 
    2088             : /**
    2089             :  *      __skb_dequeue - remove from the head of the queue
    2090             :  *      @list: list to dequeue from
    2091             :  *
    2092             :  *      Remove the head of the list. This function does not take any locks
    2093             :  *      so must be used with appropriate locks held only. The head item is
    2094             :  *      returned or %NULL if the list is empty.
    2095             :  */
    2096        1620 : static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
    2097             : {
    2098        1620 :         struct sk_buff *skb = skb_peek(list);
    2099          17 :         if (skb)
    2100          17 :                 __skb_unlink(skb, list);
    2101        1620 :         return skb;
    2102             : }
    2103             : struct sk_buff *skb_dequeue(struct sk_buff_head *list);
    2104             : 
    2105             : /**
    2106             :  *      __skb_dequeue_tail - remove from the tail of the queue
    2107             :  *      @list: list to dequeue from
    2108             :  *
    2109             :  *      Remove the tail of the list. This function does not take any locks
    2110             :  *      so must be used with appropriate locks held only. The tail item is
    2111             :  *      returned or %NULL if the list is empty.
    2112             :  */
    2113           0 : static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
    2114             : {
    2115           0 :         struct sk_buff *skb = skb_peek_tail(list);
    2116           0 :         if (skb)
    2117           0 :                 __skb_unlink(skb, list);
    2118           0 :         return skb;
    2119             : }
    2120             : struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
    2121             : 
    2122             : 
    2123        8352 : static inline bool skb_is_nonlinear(const struct sk_buff *skb)
    2124             : {
    2125        7426 :         return skb->data_len;
    2126             : }
    2127             : 
    2128       16736 : static inline unsigned int skb_headlen(const struct sk_buff *skb)
    2129             : {
    2130       15945 :         return skb->len - skb->data_len;
    2131             : }
    2132             : 
    2133           0 : static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
    2134             : {
    2135           0 :         unsigned int i, len = 0;
    2136             : 
    2137           0 :         for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
    2138           0 :                 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
    2139           0 :         return len;
    2140             : }
    2141             : 
    2142           0 : static inline unsigned int skb_pagelen(const struct sk_buff *skb)
    2143             : {
    2144           0 :         return skb_headlen(skb) + __skb_pagelen(skb);
    2145             : }
    2146             : 
    2147             : /**
    2148             :  * __skb_fill_page_desc - initialise a paged fragment in an skb
    2149             :  * @skb: buffer containing fragment to be initialised
    2150             :  * @i: paged fragment index to initialise
    2151             :  * @page: the page to use for this fragment
    2152             :  * @off: the offset to the data with @page
    2153             :  * @size: the length of the data
    2154             :  *
    2155             :  * Initialises the @i'th fragment of @skb to point to &size bytes at
    2156             :  * offset @off within @page.
    2157             :  *
    2158             :  * Does not take any additional reference on the fragment.
    2159             :  */
    2160         691 : static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
    2161             :                                         struct page *page, int off, int size)
    2162             : {
    2163         691 :         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
    2164             : 
    2165             :         /*
    2166             :          * Propagate page pfmemalloc to the skb if we can. The problem is
    2167             :          * that not all callers have unique ownership of the page but rely
    2168             :          * on page_is_pfmemalloc doing the right thing(tm).
    2169             :          */
    2170         691 :         frag->bv_page                  = page;
    2171         691 :         frag->bv_offset                = off;
    2172         691 :         skb_frag_size_set(frag, size);
    2173             : 
    2174         691 :         page = compound_head(page);
    2175         691 :         if (page_is_pfmemalloc(page))
    2176           0 :                 skb->pfmemalloc      = true;
    2177         691 : }
    2178             : 
    2179             : /**
    2180             :  * skb_fill_page_desc - initialise a paged fragment in an skb
    2181             :  * @skb: buffer containing fragment to be initialised
    2182             :  * @i: paged fragment index to initialise
    2183             :  * @page: the page to use for this fragment
    2184             :  * @off: the offset to the data with @page
    2185             :  * @size: the length of the data
    2186             :  *
    2187             :  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
    2188             :  * @skb to point to @size bytes at offset @off within @page. In
    2189             :  * addition updates @skb such that @i is the last fragment.
    2190             :  *
    2191             :  * Does not take any additional reference on the fragment.
    2192             :  */
    2193         691 : static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
    2194             :                                       struct page *page, int off, int size)
    2195             : {
    2196         691 :         __skb_fill_page_desc(skb, i, page, off, size);
    2197         691 :         skb_shinfo(skb)->nr_frags = i + 1;
    2198         691 : }
    2199             : 
    2200             : void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
    2201             :                      int size, unsigned int truesize);
    2202             : 
    2203             : void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
    2204             :                           unsigned int truesize);
    2205             : 
    2206             : #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
    2207             : 
    2208             : #ifdef NET_SKBUFF_DATA_USES_OFFSET
    2209        6972 : static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
    2210             : {
    2211        6972 :         return skb->head + skb->tail;
    2212             : }
    2213             : 
    2214        4880 : static inline void skb_reset_tail_pointer(struct sk_buff *skb)
    2215             : {
    2216        4864 :         skb->tail = skb->data - skb->head;
    2217             : }
    2218             : 
    2219          16 : static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
    2220             : {
    2221          16 :         skb_reset_tail_pointer(skb);
    2222           0 :         skb->tail += offset;
    2223           0 : }
    2224             : 
    2225             : #else /* NET_SKBUFF_DATA_USES_OFFSET */
    2226             : static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
    2227             : {
    2228             :         return skb->tail;
    2229             : }
    2230             : 
    2231             : static inline void skb_reset_tail_pointer(struct sk_buff *skb)
    2232             : {
    2233             :         skb->tail = skb->data;
    2234             : }
    2235             : 
    2236             : static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
    2237             : {
    2238             :         skb->tail = skb->data + offset;
    2239             : }
    2240             : 
    2241             : #endif /* NET_SKBUFF_DATA_USES_OFFSET */
    2242             : 
    2243             : /*
    2244             :  *      Add data to an sk_buff
    2245             :  */
    2246             : void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
    2247             : void *skb_put(struct sk_buff *skb, unsigned int len);
    2248           0 : static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
    2249             : {
    2250           0 :         void *tmp = skb_tail_pointer(skb);
    2251           0 :         SKB_LINEAR_ASSERT(skb);
    2252           0 :         skb->tail += len;
    2253           0 :         skb->len  += len;
    2254           0 :         return tmp;
    2255             : }
    2256             : 
    2257             : static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
    2258             : {
    2259             :         void *tmp = __skb_put(skb, len);
    2260             : 
    2261             :         memset(tmp, 0, len);
    2262             :         return tmp;
    2263             : }
    2264             : 
    2265             : static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
    2266             :                                    unsigned int len)
    2267             : {
    2268             :         void *tmp = __skb_put(skb, len);
    2269             : 
    2270             :         memcpy(tmp, data, len);
    2271             :         return tmp;
    2272             : }
    2273             : 
    2274             : static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
    2275             : {
    2276             :         *(u8 *)__skb_put(skb, 1) = val;
    2277             : }
    2278             : 
    2279           0 : static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
    2280             : {
    2281           0 :         void *tmp = skb_put(skb, len);
    2282             : 
    2283           0 :         memset(tmp, 0, len);
    2284             : 
    2285           0 :         return tmp;
    2286             : }
    2287             : 
    2288         915 : static inline void *skb_put_data(struct sk_buff *skb, const void *data,
    2289             :                                  unsigned int len)
    2290             : {
    2291         915 :         void *tmp = skb_put(skb, len);
    2292             : 
    2293         915 :         memcpy(tmp, data, len);
    2294             : 
    2295         915 :         return tmp;
    2296             : }
    2297             : 
    2298             : static inline void skb_put_u8(struct sk_buff *skb, u8 val)
    2299             : {
    2300             :         *(u8 *)skb_put(skb, 1) = val;
    2301             : }
    2302             : 
    2303             : void *skb_push(struct sk_buff *skb, unsigned int len);
    2304         886 : static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
    2305             : {
    2306         886 :         skb->data -= len;
    2307         886 :         skb->len  += len;
    2308         886 :         return skb->data;
    2309             : }
    2310             : 
    2311             : void *skb_pull(struct sk_buff *skb, unsigned int len);
    2312        2029 : static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
    2313             : {
    2314        2029 :         skb->len -= len;
    2315        2029 :         BUG_ON(skb->len < skb->data_len);
    2316        2029 :         return skb->data += len;
    2317             : }
    2318             : 
    2319         766 : static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
    2320             : {
    2321         766 :         return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
    2322             : }
    2323             : 
    2324             : void *__pskb_pull_tail(struct sk_buff *skb, int delta);
    2325             : 
    2326          14 : static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
    2327             : {
    2328          14 :         if (len > skb_headlen(skb) &&
    2329           0 :             !__pskb_pull_tail(skb, len - skb_headlen(skb)))
    2330             :                 return NULL;
    2331          14 :         skb->len -= len;
    2332          14 :         return skb->data += len;
    2333             : }
    2334             : 
    2335          14 : static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
    2336             : {
    2337          14 :         return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
    2338             : }
    2339             : 
    2340        4772 : static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
    2341             : {
    2342        4772 :         if (likely(len <= skb_headlen(skb)))
    2343             :                 return true;
    2344           0 :         if (unlikely(len > skb->len))
    2345             :                 return false;
    2346           0 :         return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
    2347             : }
    2348             : 
    2349             : void skb_condense(struct sk_buff *skb);
    2350             : 
    2351             : /**
    2352             :  *      skb_headroom - bytes at buffer head
    2353             :  *      @skb: buffer to check
    2354             :  *
    2355             :  *      Return the number of bytes of free space at the head of an &sk_buff.
    2356             :  */
    2357        3008 : static inline unsigned int skb_headroom(const struct sk_buff *skb)
    2358             : {
    2359        2145 :         return skb->data - skb->head;
    2360             : }
    2361             : 
    2362             : /**
    2363             :  *      skb_tailroom - bytes at buffer end
    2364             :  *      @skb: buffer to check
    2365             :  *
    2366             :  *      Return the number of bytes of free space at the tail of an sk_buff
    2367             :  */
    2368        1833 : static inline int skb_tailroom(const struct sk_buff *skb)
    2369             : {
    2370        1833 :         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
    2371             : }
    2372             : 
    2373             : /**
    2374             :  *      skb_availroom - bytes at buffer end
    2375             :  *      @skb: buffer to check
    2376             :  *
    2377             :  *      Return the number of bytes of free space at the tail of an sk_buff
    2378             :  *      allocated by sk_stream_alloc()
    2379             :  */
    2380         411 : static inline int skb_availroom(const struct sk_buff *skb)
    2381             : {
    2382         411 :         if (skb_is_nonlinear(skb))
    2383             :                 return 0;
    2384             : 
    2385         361 :         return skb->end - skb->tail - skb->reserved_tailroom;
    2386             : }
    2387             : 
    2388             : /**
    2389             :  *      skb_reserve - adjust headroom
    2390             :  *      @skb: buffer to alter
    2391             :  *      @len: bytes to move
    2392             :  *
    2393             :  *      Increase the headroom of an empty &sk_buff by reducing the tail
    2394             :  *      room. This is only allowed for an empty buffer.
    2395             :  */
    2396        1241 : static inline void skb_reserve(struct sk_buff *skb, int len)
    2397             : {
    2398        1241 :         skb->data += len;
    2399        1241 :         skb->tail += len;
    2400             : }
    2401             : 
    2402             : /**
    2403             :  *      skb_tailroom_reserve - adjust reserved_tailroom
    2404             :  *      @skb: buffer to alter
    2405             :  *      @mtu: maximum amount of headlen permitted
    2406             :  *      @needed_tailroom: minimum amount of reserved_tailroom
    2407             :  *
    2408             :  *      Set reserved_tailroom so that headlen can be as large as possible but
    2409             :  *      not larger than mtu and tailroom cannot be smaller than
    2410             :  *      needed_tailroom.
    2411             :  *      The required headroom should already have been reserved before using
    2412             :  *      this function.
    2413             :  */
    2414             : static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
    2415             :                                         unsigned int needed_tailroom)
    2416             : {
    2417             :         SKB_LINEAR_ASSERT(skb);
    2418             :         if (mtu < skb_tailroom(skb) - needed_tailroom)
    2419             :                 /* use at most mtu */
    2420             :                 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
    2421             :         else
    2422             :                 /* use up to all available space */
    2423             :                 skb->reserved_tailroom = needed_tailroom;
    2424             : }
    2425             : 
    2426             : #define ENCAP_TYPE_ETHER        0
    2427             : #define ENCAP_TYPE_IPPROTO      1
    2428             : 
    2429           0 : static inline void skb_set_inner_protocol(struct sk_buff *skb,
    2430             :                                           __be16 protocol)
    2431             : {
    2432           0 :         skb->inner_protocol = protocol;
    2433           0 :         skb->inner_protocol_type = ENCAP_TYPE_ETHER;
    2434           0 : }
    2435             : 
    2436             : static inline void skb_set_inner_ipproto(struct sk_buff *skb,
    2437             :                                          __u8 ipproto)
    2438             : {
    2439             :         skb->inner_ipproto = ipproto;
    2440             :         skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
    2441             : }
    2442             : 
    2443           0 : static inline void skb_reset_inner_headers(struct sk_buff *skb)
    2444             : {
    2445           0 :         skb->inner_mac_header = skb->mac_header;
    2446           0 :         skb->inner_network_header = skb->network_header;
    2447           0 :         skb->inner_transport_header = skb->transport_header;
    2448           0 : }
    2449             : 
    2450        1176 : static inline void skb_reset_mac_len(struct sk_buff *skb)
    2451             : {
    2452        1176 :         skb->mac_len = skb->network_header - skb->mac_header;
    2453           0 : }
    2454             : 
    2455           0 : static inline unsigned char *skb_inner_transport_header(const struct sk_buff
    2456             :                                                         *skb)
    2457             : {
    2458           0 :         return skb->head + skb->inner_transport_header;
    2459             : }
    2460             : 
    2461           0 : static inline int skb_inner_transport_offset(const struct sk_buff *skb)
    2462             : {
    2463           0 :         return skb_inner_transport_header(skb) - skb->data;
    2464             : }
    2465             : 
    2466           0 : static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
    2467             : {
    2468           0 :         skb->inner_transport_header = skb->data - skb->head;
    2469             : }
    2470             : 
    2471           0 : static inline void skb_set_inner_transport_header(struct sk_buff *skb,
    2472             :                                                    const int offset)
    2473             : {
    2474           0 :         skb_reset_inner_transport_header(skb);
    2475           0 :         skb->inner_transport_header += offset;
    2476           0 : }
    2477             : 
    2478           0 : static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
    2479             : {
    2480           0 :         return skb->head + skb->inner_network_header;
    2481             : }
    2482             : 
    2483           0 : static inline void skb_reset_inner_network_header(struct sk_buff *skb)
    2484             : {
    2485           0 :         skb->inner_network_header = skb->data - skb->head;
    2486             : }
    2487             : 
    2488           0 : static inline void skb_set_inner_network_header(struct sk_buff *skb,
    2489             :                                                 const int offset)
    2490             : {
    2491           0 :         skb_reset_inner_network_header(skb);
    2492           0 :         skb->inner_network_header += offset;
    2493           0 : }
    2494             : 
    2495           0 : static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
    2496             : {
    2497           0 :         return skb->head + skb->inner_mac_header;
    2498             : }
    2499             : 
    2500           0 : static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
    2501             : {
    2502           0 :         skb->inner_mac_header = skb->data - skb->head;
    2503             : }
    2504             : 
    2505           0 : static inline void skb_set_inner_mac_header(struct sk_buff *skb,
    2506             :                                             const int offset)
    2507             : {
    2508           0 :         skb_reset_inner_mac_header(skb);
    2509           0 :         skb->inner_mac_header += offset;
    2510           0 : }
    2511         458 : static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
    2512             : {
    2513         458 :         return skb->transport_header != (typeof(skb->transport_header))~0U;
    2514             : }
    2515             : 
    2516        2562 : static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
    2517             : {
    2518        1727 :         return skb->head + skb->transport_header;
    2519             : }
    2520             : 
    2521        2048 : static inline void skb_reset_transport_header(struct sk_buff *skb)
    2522             : {
    2523        1341 :         skb->transport_header = skb->data - skb->head;
    2524          16 : }
    2525             : 
    2526        1139 : static inline void skb_set_transport_header(struct sk_buff *skb,
    2527             :                                             const int offset)
    2528             : {
    2529        1139 :         skb_reset_transport_header(skb);
    2530        1137 :         skb->transport_header += offset;
    2531         432 : }
    2532             : 
    2533        8358 : static inline unsigned char *skb_network_header(const struct sk_buff *skb)
    2534             : {
    2535        7156 :         return skb->head + skb->network_header;
    2536             : }
    2537             : 
    2538        2333 : static inline void skb_reset_network_header(struct sk_buff *skb)
    2539             : {
    2540         892 :         skb->network_header = skb->data - skb->head;
    2541           0 : }
    2542             : 
    2543        1441 : static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
    2544             : {
    2545        1441 :         skb_reset_network_header(skb);
    2546        1441 :         skb->network_header += offset;
    2547           0 : }
    2548             : 
    2549        1181 : static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
    2550             : {
    2551        1181 :         return skb->head + skb->mac_header;
    2552             : }
    2553             : 
    2554           0 : static inline int skb_mac_offset(const struct sk_buff *skb)
    2555             : {
    2556           0 :         return skb_mac_header(skb) - skb->data;
    2557             : }
    2558             : 
    2559           0 : static inline u32 skb_mac_header_len(const struct sk_buff *skb)
    2560             : {
    2561           0 :         return skb->network_header - skb->mac_header;
    2562             : }
    2563             : 
    2564         374 : static inline int skb_mac_header_was_set(const struct sk_buff *skb)
    2565             : {
    2566         374 :         return skb->mac_header != (typeof(skb->mac_header))~0U;
    2567             : }
    2568             : 
    2569           0 : static inline void skb_unset_mac_header(struct sk_buff *skb)
    2570             : {
    2571           0 :         skb->mac_header = (typeof(skb->mac_header))~0U;
    2572             : }
    2573             : 
    2574        1619 : static inline void skb_reset_mac_header(struct sk_buff *skb)
    2575             : {
    2576        1619 :         skb->mac_header = skb->data - skb->head;
    2577           0 : }
    2578             : 
    2579             : static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
    2580             : {
    2581             :         skb_reset_mac_header(skb);
    2582             :         skb->mac_header += offset;
    2583             : }
    2584             : 
    2585           0 : static inline void skb_pop_mac_header(struct sk_buff *skb)
    2586             : {
    2587           0 :         skb->mac_header = skb->network_header;
    2588             : }
    2589             : 
    2590           2 : static inline void skb_probe_transport_header(struct sk_buff *skb)
    2591             : {
    2592           2 :         struct flow_keys_basic keys;
    2593             : 
    2594           2 :         if (skb_transport_header_was_set(skb))
    2595           0 :                 return;
    2596             : 
    2597           2 :         if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
    2598             :                                              NULL, 0, 0, 0, 0))
    2599           2 :                 skb_set_transport_header(skb, keys.control.thoff);
    2600             : }
    2601             : 
    2602             : static inline void skb_mac_header_rebuild(struct sk_buff *skb)
    2603             : {
    2604             :         if (skb_mac_header_was_set(skb)) {
    2605             :                 const unsigned char *old_mac = skb_mac_header(skb);
    2606             : 
    2607             :                 skb_set_mac_header(skb, -skb->mac_len);
    2608             :                 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
    2609             :         }
    2610             : }
    2611             : 
    2612         875 : static inline int skb_checksum_start_offset(const struct sk_buff *skb)
    2613             : {
    2614         875 :         return skb->csum_start - skb_headroom(skb);
    2615             : }
    2616             : 
    2617           0 : static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
    2618             : {
    2619           0 :         return skb->head + skb->csum_start;
    2620             : }
    2621             : 
    2622         405 : static inline int skb_transport_offset(const struct sk_buff *skb)
    2623             : {
    2624         405 :         return skb_transport_header(skb) - skb->data;
    2625             : }
    2626             : 
    2627         454 : static inline u32 skb_network_header_len(const struct sk_buff *skb)
    2628             : {
    2629         454 :         return skb->transport_header - skb->network_header;
    2630             : }
    2631             : 
    2632             : static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
    2633             : {
    2634             :         return skb->inner_transport_header - skb->inner_network_header;
    2635             : }
    2636             : 
    2637         717 : static inline int skb_network_offset(const struct sk_buff *skb)
    2638             : {
    2639         715 :         return skb_network_header(skb) - skb->data;
    2640             : }
    2641             : 
    2642           0 : static inline int skb_inner_network_offset(const struct sk_buff *skb)
    2643             : {
    2644           0 :         return skb_inner_network_header(skb) - skb->data;
    2645             : }
    2646             : 
    2647           0 : static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
    2648             : {
    2649           0 :         return pskb_may_pull(skb, skb_network_offset(skb) + len);
    2650             : }
    2651             : 
    2652             : /*
    2653             :  * CPUs often take a performance hit when accessing unaligned memory
    2654             :  * locations. The actual performance hit varies, it can be small if the
    2655             :  * hardware handles it or large if we have to take an exception and fix it
    2656             :  * in software.
    2657             :  *
    2658             :  * Since an ethernet header is 14 bytes network drivers often end up with
    2659             :  * the IP header at an unaligned offset. The IP header can be aligned by
    2660             :  * shifting the start of the packet by 2 bytes. Drivers should do this
    2661             :  * with:
    2662             :  *
    2663             :  * skb_reserve(skb, NET_IP_ALIGN);
    2664             :  *
    2665             :  * The downside to this alignment of the IP header is that the DMA is now
    2666             :  * unaligned. On some architectures the cost of an unaligned DMA is high
    2667             :  * and this cost outweighs the gains made by aligning the IP header.
    2668             :  *
    2669             :  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
    2670             :  * to be overridden.
    2671             :  */
    2672             : #ifndef NET_IP_ALIGN
    2673             : #define NET_IP_ALIGN    2
    2674             : #endif
    2675             : 
    2676             : /*
    2677             :  * The networking layer reserves some headroom in skb data (via
    2678             :  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
    2679             :  * the header has to grow. In the default case, if the header has to grow
    2680             :  * 32 bytes or less we avoid the reallocation.
    2681             :  *
    2682             :  * Unfortunately this headroom changes the DMA alignment of the resulting
    2683             :  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
    2684             :  * on some architectures. An architecture can override this value,
    2685             :  * perhaps setting it to a cacheline in size (since that will maintain
    2686             :  * cacheline alignment of the DMA). It must be a power of 2.
    2687             :  *
    2688             :  * Various parts of the networking layer expect at least 32 bytes of
    2689             :  * headroom, you should not reduce this.
    2690             :  *
    2691             :  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
    2692             :  * to reduce average number of cache lines per packet.
    2693             :  * get_rps_cpu() for example only access one 64 bytes aligned block :
    2694             :  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
    2695             :  */
    2696             : #ifndef NET_SKB_PAD
    2697             : #define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
    2698             : #endif
    2699             : 
    2700             : int ___pskb_trim(struct sk_buff *skb, unsigned int len);
    2701             : 
    2702          16 : static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
    2703             : {
    2704          16 :         if (WARN_ON(skb_is_nonlinear(skb)))
    2705             :                 return;
    2706          16 :         skb->len = len;
    2707          16 :         skb_set_tail_pointer(skb, len);
    2708             : }
    2709             : 
    2710          16 : static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
    2711             : {
    2712          16 :         __skb_set_length(skb, len);
    2713          16 : }
    2714             : 
    2715             : void skb_trim(struct sk_buff *skb, unsigned int len);
    2716             : 
    2717           0 : static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
    2718             : {
    2719           0 :         if (skb->data_len)
    2720           0 :                 return ___pskb_trim(skb, len);
    2721           0 :         __skb_trim(skb, len);
    2722           0 :         return 0;
    2723             : }
    2724             : 
    2725          17 : static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
    2726             : {
    2727          17 :         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
    2728             : }
    2729             : 
    2730             : /**
    2731             :  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
    2732             :  *      @skb: buffer to alter
    2733             :  *      @len: new length
    2734             :  *
    2735             :  *      This is identical to pskb_trim except that the caller knows that
    2736             :  *      the skb is not cloned so we should never get an error due to out-
    2737             :  *      of-memory.
    2738             :  */
    2739           0 : static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
    2740             : {
    2741           0 :         int err = pskb_trim(skb, len);
    2742           0 :         BUG_ON(err);
    2743           0 : }
    2744             : 
    2745           0 : static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
    2746             : {
    2747           0 :         unsigned int diff = len - skb->len;
    2748             : 
    2749           0 :         if (skb_tailroom(skb) < diff) {
    2750           0 :                 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
    2751             :                                            GFP_ATOMIC);
    2752           0 :                 if (ret)
    2753             :                         return ret;
    2754             :         }
    2755           0 :         __skb_set_length(skb, len);
    2756           0 :         return 0;
    2757             : }
    2758             : 
    2759             : /**
    2760             :  *      skb_orphan - orphan a buffer
    2761             :  *      @skb: buffer to orphan
    2762             :  *
    2763             :  *      If a buffer currently has an owner then we call the owner's
    2764             :  *      destructor function and make the @skb unowned. The buffer continues
    2765             :  *      to exist but is no longer charged to its former owner.
    2766             :  */
    2767        3962 : static inline void skb_orphan(struct sk_buff *skb)
    2768             : {
    2769        3962 :         if (skb->destructor) {
    2770           0 :                 skb->destructor(skb);
    2771           0 :                 skb->destructor = NULL;
    2772           0 :                 skb->sk              = NULL;
    2773             :         } else {
    2774        3962 :                 BUG_ON(skb->sk);
    2775             :         }
    2776        3962 : }
    2777             : 
    2778             : /**
    2779             :  *      skb_orphan_frags - orphan the frags contained in a buffer
    2780             :  *      @skb: buffer to orphan frags from
    2781             :  *      @gfp_mask: allocation mask for replacement pages
    2782             :  *
    2783             :  *      For each frag in the SKB which needs a destructor (i.e. has an
    2784             :  *      owner) create a copy of that frag and release the original
    2785             :  *      page by calling the destructor.
    2786             :  */
    2787        1545 : static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
    2788             : {
    2789        1545 :         if (likely(!skb_zcopy(skb)))
    2790             :                 return 0;
    2791           0 :         if (!skb_zcopy_is_nouarg(skb) &&
    2792           0 :             skb_uarg(skb)->callback == msg_zerocopy_callback)
    2793             :                 return 0;
    2794           0 :         return skb_copy_ubufs(skb, gfp_mask);
    2795             : }
    2796             : 
    2797             : /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
    2798        1358 : static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
    2799             : {
    2800        1358 :         if (likely(!skb_zcopy(skb)))
    2801             :                 return 0;
    2802           0 :         return skb_copy_ubufs(skb, gfp_mask);
    2803             : }
    2804             : 
    2805             : /**
    2806             :  *      __skb_queue_purge - empty a list
    2807             :  *      @list: list to empty
    2808             :  *
    2809             :  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
    2810             :  *      the list and one reference dropped. This function does not take the
    2811             :  *      list lock and the caller must hold the relevant locks to use it.
    2812             :  */
    2813         150 : static inline void __skb_queue_purge(struct sk_buff_head *list)
    2814             : {
    2815         150 :         struct sk_buff *skb;
    2816         150 :         while ((skb = __skb_dequeue(list)) != NULL)
    2817           0 :                 kfree_skb(skb);
    2818         150 : }
    2819             : void skb_queue_purge(struct sk_buff_head *list);
    2820             : 
    2821             : unsigned int skb_rbtree_purge(struct rb_root *root);
    2822             : 
    2823             : void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
    2824             : 
    2825             : /**
    2826             :  * netdev_alloc_frag - allocate a page fragment
    2827             :  * @fragsz: fragment size
    2828             :  *
    2829             :  * Allocates a frag from a page for receive buffer.
    2830             :  * Uses GFP_ATOMIC allocations.
    2831             :  */
    2832             : static inline void *netdev_alloc_frag(unsigned int fragsz)
    2833             : {
    2834             :         return __netdev_alloc_frag_align(fragsz, ~0u);
    2835             : }
    2836             : 
    2837             : static inline void *netdev_alloc_frag_align(unsigned int fragsz,
    2838             :                                             unsigned int align)
    2839             : {
    2840             :         WARN_ON_ONCE(!is_power_of_2(align));
    2841             :         return __netdev_alloc_frag_align(fragsz, -align);
    2842             : }
    2843             : 
    2844             : struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
    2845             :                                    gfp_t gfp_mask);
    2846             : 
    2847             : /**
    2848             :  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
    2849             :  *      @dev: network device to receive on
    2850             :  *      @length: length to allocate
    2851             :  *
    2852             :  *      Allocate a new &sk_buff and assign it a usage count of one. The
    2853             :  *      buffer has unspecified headroom built in. Users should allocate
    2854             :  *      the headroom they think they need without accounting for the
    2855             :  *      built in space. The built in space is used for optimisations.
    2856             :  *
    2857             :  *      %NULL is returned if there is no free memory. Although this function
    2858             :  *      allocates memory it can be called from an interrupt.
    2859             :  */
    2860             : static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
    2861             :                                                unsigned int length)
    2862             : {
    2863             :         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
    2864             : }
    2865             : 
    2866             : /* legacy helper around __netdev_alloc_skb() */
    2867             : static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
    2868             :                                               gfp_t gfp_mask)
    2869             : {
    2870             :         return __netdev_alloc_skb(NULL, length, gfp_mask);
    2871             : }
    2872             : 
    2873             : /* legacy helper around netdev_alloc_skb() */
    2874             : static inline struct sk_buff *dev_alloc_skb(unsigned int length)
    2875             : {
    2876             :         return netdev_alloc_skb(NULL, length);
    2877             : }
    2878             : 
    2879             : 
    2880             : static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
    2881             :                 unsigned int length, gfp_t gfp)
    2882             : {
    2883             :         struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
    2884             : 
    2885             :         if (NET_IP_ALIGN && skb)
    2886             :                 skb_reserve(skb, NET_IP_ALIGN);
    2887             :         return skb;
    2888             : }
    2889             : 
    2890             : static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
    2891             :                 unsigned int length)
    2892             : {
    2893             :         return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
    2894             : }
    2895             : 
    2896           0 : static inline void skb_free_frag(void *addr)
    2897             : {
    2898           0 :         page_frag_free(addr);
    2899           0 : }
    2900             : 
    2901             : void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
    2902             : 
    2903             : static inline void *napi_alloc_frag(unsigned int fragsz)
    2904             : {
    2905             :         return __napi_alloc_frag_align(fragsz, ~0u);
    2906             : }
    2907             : 
    2908             : static inline void *napi_alloc_frag_align(unsigned int fragsz,
    2909             :                                           unsigned int align)
    2910             : {
    2911             :         WARN_ON_ONCE(!is_power_of_2(align));
    2912             :         return __napi_alloc_frag_align(fragsz, -align);
    2913             : }
    2914             : 
    2915             : struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
    2916             :                                  unsigned int length, gfp_t gfp_mask);
    2917         723 : static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
    2918             :                                              unsigned int length)
    2919             : {
    2920         723 :         return __napi_alloc_skb(napi, length, GFP_ATOMIC);
    2921             : }
    2922             : void napi_consume_skb(struct sk_buff *skb, int budget);
    2923             : 
    2924             : void napi_skb_free_stolen_head(struct sk_buff *skb);
    2925             : void __kfree_skb_defer(struct sk_buff *skb);
    2926             : 
    2927             : /**
    2928             :  * __dev_alloc_pages - allocate page for network Rx
    2929             :  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
    2930             :  * @order: size of the allocation
    2931             :  *
    2932             :  * Allocate a new page.
    2933             :  *
    2934             :  * %NULL is returned if there is no free memory.
    2935             : */
    2936           0 : static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
    2937             :                                              unsigned int order)
    2938             : {
    2939             :         /* This piece of code contains several assumptions.
    2940             :          * 1.  This is for device Rx, therefor a cold page is preferred.
    2941             :          * 2.  The expectation is the user wants a compound page.
    2942             :          * 3.  If requesting a order 0 page it will not be compound
    2943             :          *     due to the check to see if order has a value in prep_new_page
    2944             :          * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
    2945             :          *     code in gfp_to_alloc_flags that should be enforcing this.
    2946             :          */
    2947           0 :         gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
    2948             : 
    2949           0 :         return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
    2950             : }
    2951             : 
    2952           0 : static inline struct page *dev_alloc_pages(unsigned int order)
    2953             : {
    2954           0 :         return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
    2955             : }
    2956             : 
    2957             : /**
    2958             :  * __dev_alloc_page - allocate a page for network Rx
    2959             :  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
    2960             :  *
    2961             :  * Allocate a new page.
    2962             :  *
    2963             :  * %NULL is returned if there is no free memory.
    2964             :  */
    2965             : static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
    2966             : {
    2967             :         return __dev_alloc_pages(gfp_mask, 0);
    2968             : }
    2969             : 
    2970           0 : static inline struct page *dev_alloc_page(void)
    2971             : {
    2972           0 :         return dev_alloc_pages(0);
    2973             : }
    2974             : 
    2975             : /**
    2976             :  * dev_page_is_reusable - check whether a page can be reused for network Rx
    2977             :  * @page: the page to test
    2978             :  *
    2979             :  * A page shouldn't be considered for reusing/recycling if it was allocated
    2980             :  * under memory pressure or at a distant memory node.
    2981             :  *
    2982             :  * Returns false if this page should be returned to page allocator, true
    2983             :  * otherwise.
    2984             :  */
    2985             : static inline bool dev_page_is_reusable(const struct page *page)
    2986             : {
    2987             :         return likely(page_to_nid(page) == numa_mem_id() &&
    2988             :                       !page_is_pfmemalloc(page));
    2989             : }
    2990             : 
    2991             : /**
    2992             :  *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
    2993             :  *      @page: The page that was allocated from skb_alloc_page
    2994             :  *      @skb: The skb that may need pfmemalloc set
    2995             :  */
    2996           0 : static inline void skb_propagate_pfmemalloc(const struct page *page,
    2997             :                                             struct sk_buff *skb)
    2998             : {
    2999           0 :         if (page_is_pfmemalloc(page))
    3000           0 :                 skb->pfmemalloc = true;
    3001             : }
    3002             : 
    3003             : /**
    3004             :  * skb_frag_off() - Returns the offset of a skb fragment
    3005             :  * @frag: the paged fragment
    3006             :  */
    3007        1097 : static inline unsigned int skb_frag_off(const skb_frag_t *frag)
    3008             : {
    3009         362 :         return frag->bv_offset;
    3010             : }
    3011             : 
    3012             : /**
    3013             :  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
    3014             :  * @frag: skb fragment
    3015             :  * @delta: value to add
    3016             :  */
    3017           0 : static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
    3018             : {
    3019           0 :         frag->bv_offset += delta;
    3020             : }
    3021             : 
    3022             : /**
    3023             :  * skb_frag_off_set() - Sets the offset of a skb fragment
    3024             :  * @frag: skb fragment
    3025             :  * @offset: offset of fragment
    3026             :  */
    3027           0 : static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
    3028             : {
    3029           0 :         frag->bv_offset = offset;
    3030             : }
    3031             : 
    3032             : /**
    3033             :  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
    3034             :  * @fragto: skb fragment where offset is set
    3035             :  * @fragfrom: skb fragment offset is copied from
    3036             :  */
    3037           0 : static inline void skb_frag_off_copy(skb_frag_t *fragto,
    3038             :                                      const skb_frag_t *fragfrom)
    3039             : {
    3040           0 :         fragto->bv_offset = fragfrom->bv_offset;
    3041             : }
    3042             : 
    3043             : /**
    3044             :  * skb_frag_page - retrieve the page referred to by a paged fragment
    3045             :  * @frag: the paged fragment
    3046             :  *
    3047             :  * Returns the &struct page associated with @frag.
    3048             :  */
    3049        2510 : static inline struct page *skb_frag_page(const skb_frag_t *frag)
    3050             : {
    3051        1047 :         return frag->bv_page;
    3052             : }
    3053             : 
    3054             : /**
    3055             :  * __skb_frag_ref - take an addition reference on a paged fragment.
    3056             :  * @frag: the paged fragment
    3057             :  *
    3058             :  * Takes an additional reference on the paged fragment @frag.
    3059             :  */
    3060         361 : static inline void __skb_frag_ref(skb_frag_t *frag)
    3061             : {
    3062           0 :         get_page(skb_frag_page(frag));
    3063             : }
    3064             : 
    3065             : /**
    3066             :  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
    3067             :  * @skb: the buffer
    3068             :  * @f: the fragment offset.
    3069             :  *
    3070             :  * Takes an additional reference on the @f'th paged fragment of @skb.
    3071             :  */
    3072         361 : static inline void skb_frag_ref(struct sk_buff *skb, int f)
    3073             : {
    3074         361 :         __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
    3075             : }
    3076             : 
    3077             : /**
    3078             :  * __skb_frag_unref - release a reference on a paged fragment.
    3079             :  * @frag: the paged fragment
    3080             :  *
    3081             :  * Releases a reference on the paged fragment @frag.
    3082             :  */
    3083        1052 : static inline void __skb_frag_unref(skb_frag_t *frag)
    3084             : {
    3085         691 :         put_page(skb_frag_page(frag));
    3086           0 : }
    3087             : 
    3088             : /**
    3089             :  * skb_frag_unref - release a reference on a paged fragment of an skb.
    3090             :  * @skb: the buffer
    3091             :  * @f: the fragment offset
    3092             :  *
    3093             :  * Releases a reference on the @f'th paged fragment of @skb.
    3094             :  */
    3095         361 : static inline void skb_frag_unref(struct sk_buff *skb, int f)
    3096             : {
    3097         361 :         __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
    3098             : }
    3099             : 
    3100             : /**
    3101             :  * skb_frag_address - gets the address of the data contained in a paged fragment
    3102             :  * @frag: the paged fragment buffer
    3103             :  *
    3104             :  * Returns the address of the data within @frag. The page must already
    3105             :  * be mapped.
    3106             :  */
    3107           0 : static inline void *skb_frag_address(const skb_frag_t *frag)
    3108             : {
    3109           0 :         return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
    3110             : }
    3111             : 
    3112             : /**
    3113             :  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
    3114             :  * @frag: the paged fragment buffer
    3115             :  *
    3116             :  * Returns the address of the data within @frag. Checks that the page
    3117             :  * is mapped and returns %NULL otherwise.
    3118             :  */
    3119             : static inline void *skb_frag_address_safe(const skb_frag_t *frag)
    3120             : {
    3121             :         void *ptr = page_address(skb_frag_page(frag));
    3122             :         if (unlikely(!ptr))
    3123             :                 return NULL;
    3124             : 
    3125             :         return ptr + skb_frag_off(frag);
    3126             : }
    3127             : 
    3128             : /**
    3129             :  * skb_frag_page_copy() - sets the page in a fragment from another fragment
    3130             :  * @fragto: skb fragment where page is set
    3131             :  * @fragfrom: skb fragment page is copied from
    3132             :  */
    3133           0 : static inline void skb_frag_page_copy(skb_frag_t *fragto,
    3134             :                                       const skb_frag_t *fragfrom)
    3135             : {
    3136           0 :         fragto->bv_page = fragfrom->bv_page;
    3137             : }
    3138             : 
    3139             : /**
    3140             :  * __skb_frag_set_page - sets the page contained in a paged fragment
    3141             :  * @frag: the paged fragment
    3142             :  * @page: the page to set
    3143             :  *
    3144             :  * Sets the fragment @frag to contain @page.
    3145             :  */
    3146           0 : static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
    3147             : {
    3148           0 :         frag->bv_page = page;
    3149             : }
    3150             : 
    3151             : /**
    3152             :  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
    3153             :  * @skb: the buffer
    3154             :  * @f: the fragment offset
    3155             :  * @page: the page to set
    3156             :  *
    3157             :  * Sets the @f'th fragment of @skb to contain @page.
    3158             :  */
    3159             : static inline void skb_frag_set_page(struct sk_buff *skb, int f,
    3160             :                                      struct page *page)
    3161             : {
    3162             :         __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
    3163             : }
    3164             : 
    3165             : bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
    3166             : 
    3167             : /**
    3168             :  * skb_frag_dma_map - maps a paged fragment via the DMA API
    3169             :  * @dev: the device to map the fragment to
    3170             :  * @frag: the paged fragment to map
    3171             :  * @offset: the offset within the fragment (starting at the
    3172             :  *          fragment's own offset)
    3173             :  * @size: the number of bytes to map
    3174             :  * @dir: the direction of the mapping (``PCI_DMA_*``)
    3175             :  *
    3176             :  * Maps the page associated with @frag to @device.
    3177             :  */
    3178             : static inline dma_addr_t skb_frag_dma_map(struct device *dev,
    3179             :                                           const skb_frag_t *frag,
    3180             :                                           size_t offset, size_t size,
    3181             :                                           enum dma_data_direction dir)
    3182             : {
    3183             :         return dma_map_page(dev, skb_frag_page(frag),
    3184             :                             skb_frag_off(frag) + offset, size, dir);
    3185             : }
    3186             : 
    3187           0 : static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
    3188             :                                         gfp_t gfp_mask)
    3189             : {
    3190           0 :         return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
    3191             : }
    3192             : 
    3193             : 
    3194             : static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
    3195             :                                                   gfp_t gfp_mask)
    3196             : {
    3197             :         return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
    3198             : }
    3199             : 
    3200             : 
    3201             : /**
    3202             :  *      skb_clone_writable - is the header of a clone writable
    3203             :  *      @skb: buffer to check
    3204             :  *      @len: length up to which to write
    3205             :  *
    3206             :  *      Returns true if modifying the header part of the cloned buffer
    3207             :  *      does not requires the data to be copied.
    3208             :  */
    3209           3 : static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
    3210             : {
    3211           3 :         return !skb_header_cloned(skb) &&
    3212           3 :                skb_headroom(skb) + len <= skb->hdr_len;
    3213             : }
    3214             : 
    3215             : static inline int skb_try_make_writable(struct sk_buff *skb,
    3216             :                                         unsigned int write_len)
    3217             : {
    3218             :         return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
    3219             :                pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
    3220             : }
    3221             : 
    3222           0 : static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
    3223             :                             int cloned)
    3224             : {
    3225           0 :         int delta = 0;
    3226             : 
    3227           0 :         if (headroom > skb_headroom(skb))
    3228           0 :                 delta = headroom - skb_headroom(skb);
    3229             : 
    3230           0 :         if (delta || cloned)
    3231           0 :                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
    3232             :                                         GFP_ATOMIC);
    3233             :         return 0;
    3234             : }
    3235             : 
    3236             : /**
    3237             :  *      skb_cow - copy header of skb when it is required
    3238             :  *      @skb: buffer to cow
    3239             :  *      @headroom: needed headroom
    3240             :  *
    3241             :  *      If the skb passed lacks sufficient headroom or its data part
    3242             :  *      is shared, data is reallocated. If reallocation fails, an error
    3243             :  *      is returned and original skb is not changed.
    3244             :  *
    3245             :  *      The result is skb with writable area skb->head...skb->tail
    3246             :  *      and at least @headroom of space at head.
    3247             :  */
    3248           0 : static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
    3249             : {
    3250           0 :         return __skb_cow(skb, headroom, skb_cloned(skb));
    3251             : }
    3252             : 
    3253             : /**
    3254             :  *      skb_cow_head - skb_cow but only making the head writable
    3255             :  *      @skb: buffer to cow
    3256             :  *      @headroom: needed headroom
    3257             :  *
    3258             :  *      This function is identical to skb_cow except that we replace the
    3259             :  *      skb_cloned check by skb_header_cloned.  It should be used when
    3260             :  *      you only need to push on some header and do not need to modify
    3261             :  *      the data.
    3262             :  */
    3263           0 : static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
    3264             : {
    3265           0 :         return __skb_cow(skb, headroom, skb_header_cloned(skb));
    3266             : }
    3267             : 
    3268             : /**
    3269             :  *      skb_padto       - pad an skbuff up to a minimal size
    3270             :  *      @skb: buffer to pad
    3271             :  *      @len: minimal length
    3272             :  *
    3273             :  *      Pads up a buffer to ensure the trailing bytes exist and are
    3274             :  *      blanked. If the buffer already contains sufficient data it
    3275             :  *      is untouched. Otherwise it is extended. Returns zero on
    3276             :  *      success. The skb is freed on error.
    3277             :  */
    3278             : static inline int skb_padto(struct sk_buff *skb, unsigned int len)
    3279             : {
    3280             :         unsigned int size = skb->len;
    3281             :         if (likely(size >= len))
    3282             :                 return 0;
    3283             :         return skb_pad(skb, len - size);
    3284             : }
    3285             : 
    3286             : /**
    3287             :  *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
    3288             :  *      @skb: buffer to pad
    3289             :  *      @len: minimal length
    3290             :  *      @free_on_error: free buffer on error
    3291             :  *
    3292             :  *      Pads up a buffer to ensure the trailing bytes exist and are
    3293             :  *      blanked. If the buffer already contains sufficient data it
    3294             :  *      is untouched. Otherwise it is extended. Returns zero on
    3295             :  *      success. The skb is freed on error if @free_on_error is true.
    3296             :  */
    3297             : static inline int __must_check __skb_put_padto(struct sk_buff *skb,
    3298             :                                                unsigned int len,
    3299             :                                                bool free_on_error)
    3300             : {
    3301             :         unsigned int size = skb->len;
    3302             : 
    3303             :         if (unlikely(size < len)) {
    3304             :                 len -= size;
    3305             :                 if (__skb_pad(skb, len, free_on_error))
    3306             :                         return -ENOMEM;
    3307             :                 __skb_put(skb, len);
    3308             :         }
    3309             :         return 0;
    3310             : }
    3311             : 
    3312             : /**
    3313             :  *      skb_put_padto - increase size and pad an skbuff up to a minimal size
    3314             :  *      @skb: buffer to pad
    3315             :  *      @len: minimal length
    3316             :  *
    3317             :  *      Pads up a buffer to ensure the trailing bytes exist and are
    3318             :  *      blanked. If the buffer already contains sufficient data it
    3319             :  *      is untouched. Otherwise it is extended. Returns zero on
    3320             :  *      success. The skb is freed on error.
    3321             :  */
    3322             : static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
    3323             : {
    3324             :         return __skb_put_padto(skb, len, true);
    3325             : }
    3326             : 
    3327             : static inline int skb_add_data(struct sk_buff *skb,
    3328             :                                struct iov_iter *from, int copy)
    3329             : {
    3330             :         const int off = skb->len;
    3331             : 
    3332             :         if (skb->ip_summed == CHECKSUM_NONE) {
    3333             :                 __wsum csum = 0;
    3334             :                 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
    3335             :                                                  &csum, from)) {
    3336             :                         skb->csum = csum_block_add(skb->csum, csum, off);
    3337             :                         return 0;
    3338             :                 }
    3339             :         } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
    3340             :                 return 0;
    3341             : 
    3342             :         __skb_trim(skb, off);
    3343             :         return -EFAULT;
    3344             : }
    3345             : 
    3346         411 : static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
    3347             :                                     const struct page *page, int off)
    3348             : {
    3349         411 :         if (skb_zcopy(skb))
    3350             :                 return false;
    3351         411 :         if (i) {
    3352          50 :                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
    3353             : 
    3354         100 :                 return page == skb_frag_page(frag) &&
    3355          50 :                        off == skb_frag_off(frag) + skb_frag_size(frag);
    3356             :         }
    3357             :         return false;
    3358             : }
    3359             : 
    3360         361 : static inline int __skb_linearize(struct sk_buff *skb)
    3361             : {
    3362         361 :         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
    3363             : }
    3364             : 
    3365             : /**
    3366             :  *      skb_linearize - convert paged skb to linear one
    3367             :  *      @skb: buffer to linarize
    3368             :  *
    3369             :  *      If there is no free memory -ENOMEM is returned, otherwise zero
    3370             :  *      is returned and the old skb data released.
    3371             :  */
    3372           0 : static inline int skb_linearize(struct sk_buff *skb)
    3373             : {
    3374           0 :         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
    3375             : }
    3376             : 
    3377             : /**
    3378             :  * skb_has_shared_frag - can any frag be overwritten
    3379             :  * @skb: buffer to test
    3380             :  *
    3381             :  * Return true if the skb has at least one frag that might be modified
    3382             :  * by an external entity (as in vmsplice()/sendfile())
    3383             :  */
    3384         430 : static inline bool skb_has_shared_frag(const struct sk_buff *skb)
    3385             : {
    3386         430 :         return skb_is_nonlinear(skb) &&
    3387           0 :                skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
    3388             : }
    3389             : 
    3390             : /**
    3391             :  *      skb_linearize_cow - make sure skb is linear and writable
    3392             :  *      @skb: buffer to process
    3393             :  *
    3394             :  *      If there is no free memory -ENOMEM is returned, otherwise zero
    3395             :  *      is returned and the old skb data released.
    3396             :  */
    3397             : static inline int skb_linearize_cow(struct sk_buff *skb)
    3398             : {
    3399             :         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
    3400             :                __skb_linearize(skb) : 0;
    3401             : }
    3402             : 
    3403             : static __always_inline void
    3404           2 : __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
    3405             :                      unsigned int off)
    3406             : {
    3407           2 :         if (skb->ip_summed == CHECKSUM_COMPLETE)
    3408           0 :                 skb->csum = csum_block_sub(skb->csum,
    3409             :                                            csum_partial(start, len, 0), off);
    3410           2 :         else if (skb->ip_summed == CHECKSUM_PARTIAL &&
    3411           0 :                  skb_checksum_start_offset(skb) < 0)
    3412           0 :                 skb->ip_summed = CHECKSUM_NONE;
    3413             : }
    3414             : 
    3415             : /**
    3416             :  *      skb_postpull_rcsum - update checksum for received skb after pull
    3417             :  *      @skb: buffer to update
    3418             :  *      @start: start of data before pull
    3419             :  *      @len: length of data pulled
    3420             :  *
    3421             :  *      After doing a pull on a received packet, you need to call this to
    3422             :  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
    3423             :  *      CHECKSUM_NONE so that it can be recomputed from scratch.
    3424             :  */
    3425           2 : static inline void skb_postpull_rcsum(struct sk_buff *skb,
    3426             :                                       const void *start, unsigned int len)
    3427             : {
    3428           2 :         __skb_postpull_rcsum(skb, start, len, 0);
    3429           2 : }
    3430             : 
    3431             : static __always_inline void
    3432           0 : __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
    3433             :                      unsigned int off)
    3434             : {
    3435           0 :         if (skb->ip_summed == CHECKSUM_COMPLETE)
    3436           0 :                 skb->csum = csum_block_add(skb->csum,
    3437             :                                            csum_partial(start, len, 0), off);
    3438             : }
    3439             : 
    3440             : /**
    3441             :  *      skb_postpush_rcsum - update checksum for received skb after push
    3442             :  *      @skb: buffer to update
    3443             :  *      @start: start of data after push
    3444             :  *      @len: length of data pushed
    3445             :  *
    3446             :  *      After doing a push on a received packet, you need to call this to
    3447             :  *      update the CHECKSUM_COMPLETE checksum.
    3448             :  */
    3449           0 : static inline void skb_postpush_rcsum(struct sk_buff *skb,
    3450             :                                       const void *start, unsigned int len)
    3451             : {
    3452           0 :         __skb_postpush_rcsum(skb, start, len, 0);
    3453           0 : }
    3454             : 
    3455             : void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
    3456             : 
    3457             : /**
    3458             :  *      skb_push_rcsum - push skb and update receive checksum
    3459             :  *      @skb: buffer to update
    3460             :  *      @len: length of data pulled
    3461             :  *
    3462             :  *      This function performs an skb_push on the packet and updates
    3463             :  *      the CHECKSUM_COMPLETE checksum.  It should be used on
    3464             :  *      receive path processing instead of skb_push unless you know
    3465             :  *      that the checksum difference is zero (e.g., a valid IP header)
    3466             :  *      or you are setting ip_summed to CHECKSUM_NONE.
    3467             :  */
    3468           0 : static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
    3469             : {
    3470           0 :         skb_push(skb, len);
    3471           0 :         skb_postpush_rcsum(skb, skb->data, len);
    3472           0 :         return skb->data;
    3473             : }
    3474             : 
    3475             : int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
    3476             : /**
    3477             :  *      pskb_trim_rcsum - trim received skb and update checksum
    3478             :  *      @skb: buffer to trim
    3479             :  *      @len: new length
    3480             :  *
    3481             :  *      This is exactly the same as pskb_trim except that it ensures the
    3482             :  *      checksum of received packets are still valid after the operation.
    3483             :  *      It can change skb pointers.
    3484             :  */
    3485             : 
    3486         456 : static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
    3487             : {
    3488         456 :         if (likely(len >= skb->len))
    3489             :                 return 0;
    3490           0 :         return pskb_trim_rcsum_slow(skb, len);
    3491             : }
    3492             : 
    3493           0 : static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
    3494             : {
    3495           0 :         if (skb->ip_summed == CHECKSUM_COMPLETE)
    3496           0 :                 skb->ip_summed = CHECKSUM_NONE;
    3497           0 :         __skb_trim(skb, len);
    3498           0 :         return 0;
    3499             : }
    3500             : 
    3501           0 : static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
    3502             : {
    3503           0 :         if (skb->ip_summed == CHECKSUM_COMPLETE)
    3504           0 :                 skb->ip_summed = CHECKSUM_NONE;
    3505           0 :         return __skb_grow(skb, len);
    3506             : }
    3507             : 
    3508             : #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
    3509             : #define skb_rb_first(root) rb_to_skb(rb_first(root))
    3510             : #define skb_rb_last(root)  rb_to_skb(rb_last(root))
    3511             : #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
    3512             : #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
    3513             : 
    3514             : #define skb_queue_walk(queue, skb) \
    3515             :                 for (skb = (queue)->next;                                    \
    3516             :                      skb != (struct sk_buff *)(queue);                          \
    3517             :                      skb = skb->next)
    3518             : 
    3519             : #define skb_queue_walk_safe(queue, skb, tmp)                                    \
    3520             :                 for (skb = (queue)->next, tmp = skb->next;                        \
    3521             :                      skb != (struct sk_buff *)(queue);                          \
    3522             :                      skb = tmp, tmp = skb->next)
    3523             : 
    3524             : #define skb_queue_walk_from(queue, skb)                                         \
    3525             :                 for (; skb != (struct sk_buff *)(queue);                        \
    3526             :                      skb = skb->next)
    3527             : 
    3528             : #define skb_rbtree_walk(skb, root)                                              \
    3529             :                 for (skb = skb_rb_first(root); skb != NULL;                     \
    3530             :                      skb = skb_rb_next(skb))
    3531             : 
    3532             : #define skb_rbtree_walk_from(skb)                                               \
    3533             :                 for (; skb != NULL;                                             \
    3534             :                      skb = skb_rb_next(skb))
    3535             : 
    3536             : #define skb_rbtree_walk_from_safe(skb, tmp)                                     \
    3537             :                 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
    3538             :                      skb = tmp)
    3539             : 
    3540             : #define skb_queue_walk_from_safe(queue, skb, tmp)                               \
    3541             :                 for (tmp = skb->next;                                                \
    3542             :                      skb != (struct sk_buff *)(queue);                          \
    3543             :                      skb = tmp, tmp = skb->next)
    3544             : 
    3545             : #define skb_queue_reverse_walk(queue, skb) \
    3546             :                 for (skb = (queue)->prev;                                    \
    3547             :                      skb != (struct sk_buff *)(queue);                          \
    3548             :                      skb = skb->prev)
    3549             : 
    3550             : #define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
    3551             :                 for (skb = (queue)->prev, tmp = skb->prev;                        \
    3552             :                      skb != (struct sk_buff *)(queue);                          \
    3553             :                      skb = tmp, tmp = skb->prev)
    3554             : 
    3555             : #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
    3556             :                 for (tmp = skb->prev;                                                \
    3557             :                      skb != (struct sk_buff *)(queue);                          \
    3558             :                      skb = tmp, tmp = skb->prev)
    3559             : 
    3560        1803 : static inline bool skb_has_frag_list(const struct sk_buff *skb)
    3561             : {
    3562        1442 :         return skb_shinfo(skb)->frag_list != NULL;
    3563             : }
    3564             : 
    3565           0 : static inline void skb_frag_list_init(struct sk_buff *skb)
    3566             : {
    3567           0 :         skb_shinfo(skb)->frag_list = NULL;
    3568             : }
    3569             : 
    3570             : #define skb_walk_frags(skb, iter)       \
    3571             :         for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
    3572             : 
    3573             : 
    3574             : int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
    3575             :                                 int *err, long *timeo_p,
    3576             :                                 const struct sk_buff *skb);
    3577             : struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
    3578             :                                           struct sk_buff_head *queue,
    3579             :                                           unsigned int flags,
    3580             :                                           int *off, int *err,
    3581             :                                           struct sk_buff **last);
    3582             : struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
    3583             :                                         struct sk_buff_head *queue,
    3584             :                                         unsigned int flags, int *off, int *err,
    3585             :                                         struct sk_buff **last);
    3586             : struct sk_buff *__skb_recv_datagram(struct sock *sk,
    3587             :                                     struct sk_buff_head *sk_queue,
    3588             :                                     unsigned int flags, int *off, int *err);
    3589             : struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
    3590             :                                   int *err);
    3591             : __poll_t datagram_poll(struct file *file, struct socket *sock,
    3592             :                            struct poll_table_struct *wait);
    3593             : int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
    3594             :                            struct iov_iter *to, int size);
    3595        4316 : static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
    3596             :                                         struct msghdr *msg, int size)
    3597             : {
    3598        4316 :         return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
    3599             : }
    3600             : int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
    3601             :                                    struct msghdr *msg);
    3602             : int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
    3603             :                            struct iov_iter *to, int len,
    3604             :                            struct ahash_request *hash);
    3605             : int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
    3606             :                                  struct iov_iter *from, int len);
    3607             : int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
    3608             : void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
    3609             : void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
    3610             : static inline void skb_free_datagram_locked(struct sock *sk,
    3611             :                                             struct sk_buff *skb)
    3612             : {
    3613             :         __skb_free_datagram_locked(sk, skb, 0);
    3614             : }
    3615             : int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
    3616             : int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
    3617             : int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
    3618             : __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
    3619             :                               int len);
    3620             : int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
    3621             :                     struct pipe_inode_info *pipe, unsigned int len,
    3622             :                     unsigned int flags);
    3623             : int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
    3624             :                          int len);
    3625             : void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
    3626             : unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
    3627             : int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
    3628             :                  int len, int hlen);
    3629             : void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
    3630             : int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
    3631             : void skb_scrub_packet(struct sk_buff *skb, bool xnet);
    3632             : bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
    3633             : bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
    3634             : struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
    3635             : struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
    3636             :                                  unsigned int offset);
    3637             : struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
    3638             : int skb_ensure_writable(struct sk_buff *skb, int write_len);
    3639             : int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
    3640             : int skb_vlan_pop(struct sk_buff *skb);
    3641             : int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
    3642             : int skb_eth_pop(struct sk_buff *skb);
    3643             : int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
    3644             :                  const unsigned char *src);
    3645             : int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
    3646             :                   int mac_len, bool ethernet);
    3647             : int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
    3648             :                  bool ethernet);
    3649             : int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
    3650             : int skb_mpls_dec_ttl(struct sk_buff *skb);
    3651             : struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
    3652             :                              gfp_t gfp);
    3653             : 
    3654         405 : static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
    3655             : {
    3656         810 :         return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
    3657             : }
    3658             : 
    3659           0 : static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
    3660             : {
    3661           0 :         return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
    3662             : }
    3663             : 
    3664             : struct skb_checksum_ops {
    3665             :         __wsum (*update)(const void *mem, int len, __wsum wsum);
    3666             :         __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
    3667             : };
    3668             : 
    3669             : extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
    3670             : 
    3671             : __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
    3672             :                       __wsum csum, const struct skb_checksum_ops *ops);
    3673             : __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
    3674             :                     __wsum csum);
    3675             : 
    3676             : static inline void * __must_check
    3677           2 : __skb_header_pointer(const struct sk_buff *skb, int offset,
    3678             :                      int len, void *data, int hlen, void *buffer)
    3679             : {
    3680           2 :         if (hlen - offset >= len)
    3681           2 :                 return data + offset;
    3682             : 
    3683           0 :         if (!skb ||
    3684           0 :             skb_copy_bits(skb, offset, buffer, len) < 0)
    3685           0 :                 return NULL;
    3686             : 
    3687             :         return buffer;
    3688             : }
    3689             : 
    3690             : static inline void * __must_check
    3691           0 : skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
    3692             : {
    3693           0 :         return __skb_header_pointer(skb, offset, len, skb->data,
    3694           0 :                                     skb_headlen(skb), buffer);
    3695             : }
    3696             : 
    3697             : /**
    3698             :  *      skb_needs_linearize - check if we need to linearize a given skb
    3699             :  *                            depending on the given device features.
    3700             :  *      @skb: socket buffer to check
    3701             :  *      @features: net device features
    3702             :  *
    3703             :  *      Returns true if either:
    3704             :  *      1. skb has frag_list and the device doesn't support FRAGLIST, or
    3705             :  *      2. skb is fragmented and the device does not support SG.
    3706             :  */
    3707         448 : static inline bool skb_needs_linearize(struct sk_buff *skb,
    3708             :                                        netdev_features_t features)
    3709             : {
    3710         448 :         return skb_is_nonlinear(skb) &&
    3711         361 :                ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
    3712         361 :                 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
    3713             : }
    3714             : 
    3715           0 : static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
    3716             :                                              void *to,
    3717             :                                              const unsigned int len)
    3718             : {
    3719           0 :         memcpy(to, skb->data, len);
    3720             : }
    3721             : 
    3722           0 : static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
    3723             :                                                     const int offset, void *to,
    3724             :                                                     const unsigned int len)
    3725             : {
    3726           0 :         memcpy(to, skb->data + offset, len);
    3727             : }
    3728             : 
    3729             : static inline void skb_copy_to_linear_data(struct sk_buff *skb,
    3730             :                                            const void *from,
    3731             :                                            const unsigned int len)
    3732             : {
    3733             :         memcpy(skb->data, from, len);
    3734             : }
    3735             : 
    3736           0 : static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
    3737             :                                                   const int offset,
    3738             :                                                   const void *from,
    3739             :                                                   const unsigned int len)
    3740             : {
    3741           0 :         memcpy(skb->data + offset, from, len);
    3742             : }
    3743             : 
    3744             : void skb_init(void);
    3745             : 
    3746             : static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
    3747             : {
    3748             :         return skb->tstamp;
    3749             : }
    3750             : 
    3751             : /**
    3752             :  *      skb_get_timestamp - get timestamp from a skb
    3753             :  *      @skb: skb to get stamp from
    3754             :  *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
    3755             :  *
    3756             :  *      Timestamps are stored in the skb as offsets to a base timestamp.
    3757             :  *      This function converts the offset back to a struct timeval and stores
    3758             :  *      it in stamp.
    3759             :  */
    3760         511 : static inline void skb_get_timestamp(const struct sk_buff *skb,
    3761             :                                      struct __kernel_old_timeval *stamp)
    3762             : {
    3763         511 :         *stamp = ns_to_kernel_old_timeval(skb->tstamp);
    3764             : }
    3765             : 
    3766           0 : static inline void skb_get_new_timestamp(const struct sk_buff *skb,
    3767             :                                          struct __kernel_sock_timeval *stamp)
    3768             : {
    3769           0 :         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
    3770             : 
    3771           0 :         stamp->tv_sec = ts.tv_sec;
    3772           0 :         stamp->tv_usec = ts.tv_nsec / 1000;
    3773           0 : }
    3774             : 
    3775           0 : static inline void skb_get_timestampns(const struct sk_buff *skb,
    3776             :                                        struct __kernel_old_timespec *stamp)
    3777             : {
    3778           0 :         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
    3779             : 
    3780           0 :         stamp->tv_sec = ts.tv_sec;
    3781           0 :         stamp->tv_nsec = ts.tv_nsec;
    3782           0 : }
    3783             : 
    3784           0 : static inline void skb_get_new_timestampns(const struct sk_buff *skb,
    3785             :                                            struct __kernel_timespec *stamp)
    3786             : {
    3787           0 :         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
    3788             : 
    3789           0 :         stamp->tv_sec = ts.tv_sec;
    3790           0 :         stamp->tv_nsec = ts.tv_nsec;
    3791           0 : }
    3792             : 
    3793         511 : static inline void __net_timestamp(struct sk_buff *skb)
    3794             : {
    3795         511 :         skb->tstamp = ktime_get_real();
    3796         437 : }
    3797             : 
    3798             : static inline ktime_t net_timedelta(ktime_t t)
    3799             : {
    3800             :         return ktime_sub(ktime_get_real(), t);
    3801             : }
    3802             : 
    3803             : static inline ktime_t net_invalid_timestamp(void)
    3804             : {
    3805             :         return 0;
    3806             : }
    3807             : 
    3808         269 : static inline u8 skb_metadata_len(const struct sk_buff *skb)
    3809             : {
    3810         269 :         return skb_shinfo(skb)->meta_len;
    3811             : }
    3812             : 
    3813           0 : static inline void *skb_metadata_end(const struct sk_buff *skb)
    3814             : {
    3815           0 :         return skb_mac_header(skb);
    3816             : }
    3817             : 
    3818           0 : static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
    3819             :                                           const struct sk_buff *skb_b,
    3820             :                                           u8 meta_len)
    3821             : {
    3822           0 :         const void *a = skb_metadata_end(skb_a);
    3823           0 :         const void *b = skb_metadata_end(skb_b);
    3824             :         /* Using more efficient varaiant than plain call to memcmp(). */
    3825             : #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
    3826           0 :         u64 diffs = 0;
    3827             : 
    3828           0 :         switch (meta_len) {
    3829             : #define __it(x, op) (x -= sizeof(u##op))
    3830             : #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
    3831           0 :         case 32: diffs |= __it_diff(a, b, 64);
    3832           0 :                 fallthrough;
    3833           0 :         case 24: diffs |= __it_diff(a, b, 64);
    3834           0 :                 fallthrough;
    3835           0 :         case 16: diffs |= __it_diff(a, b, 64);
    3836           0 :                 fallthrough;
    3837           0 :         case  8: diffs |= __it_diff(a, b, 64);
    3838           0 :                 break;
    3839           0 :         case 28: diffs |= __it_diff(a, b, 64);
    3840           0 :                 fallthrough;
    3841           0 :         case 20: diffs |= __it_diff(a, b, 64);
    3842           0 :                 fallthrough;
    3843           0 :         case 12: diffs |= __it_diff(a, b, 64);
    3844           0 :                 fallthrough;
    3845           0 :         case  4: diffs |= __it_diff(a, b, 32);
    3846           0 :                 break;
    3847             :         }
    3848           0 :         return diffs;
    3849             : #else
    3850             :         return memcmp(a - meta_len, b - meta_len, meta_len);
    3851             : #endif
    3852             : }
    3853             : 
    3854         269 : static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
    3855             :                                         const struct sk_buff *skb_b)
    3856             : {
    3857         269 :         u8 len_a = skb_metadata_len(skb_a);
    3858         269 :         u8 len_b = skb_metadata_len(skb_b);
    3859             : 
    3860         269 :         if (!(len_a | len_b))
    3861             :                 return false;
    3862             : 
    3863           0 :         return len_a != len_b ?
    3864           0 :                true : __skb_metadata_differs(skb_a, skb_b, len_a);
    3865             : }
    3866             : 
    3867         374 : static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
    3868             : {
    3869         374 :         skb_shinfo(skb)->meta_len = meta_len;
    3870           0 : }
    3871             : 
    3872         374 : static inline void skb_metadata_clear(struct sk_buff *skb)
    3873             : {
    3874         374 :         skb_metadata_set(skb, 0);
    3875             : }
    3876             : 
    3877             : struct sk_buff *skb_clone_sk(struct sk_buff *skb);
    3878             : 
    3879             : #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
    3880             : 
    3881             : void skb_clone_tx_timestamp(struct sk_buff *skb);
    3882             : bool skb_defer_rx_timestamp(struct sk_buff *skb);
    3883             : 
    3884             : #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
    3885             : 
    3886         448 : static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
    3887             : {
    3888         448 : }
    3889             : 
    3890         456 : static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
    3891             : {
    3892         456 :         return false;
    3893             : }
    3894             : 
    3895             : #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
    3896             : 
    3897             : /**
    3898             :  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
    3899             :  *
    3900             :  * PHY drivers may accept clones of transmitted packets for
    3901             :  * timestamping via their phy_driver.txtstamp method. These drivers
    3902             :  * must call this function to return the skb back to the stack with a
    3903             :  * timestamp.
    3904             :  *
    3905             :  * @skb: clone of the original outgoing packet
    3906             :  * @hwtstamps: hardware time stamps
    3907             :  *
    3908             :  */
    3909             : void skb_complete_tx_timestamp(struct sk_buff *skb,
    3910             :                                struct skb_shared_hwtstamps *hwtstamps);
    3911             : 
    3912             : void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
    3913             :                      struct skb_shared_hwtstamps *hwtstamps,
    3914             :                      struct sock *sk, int tstype);
    3915             : 
    3916             : /**
    3917             :  * skb_tstamp_tx - queue clone of skb with send time stamps
    3918             :  * @orig_skb:   the original outgoing packet
    3919             :  * @hwtstamps:  hardware time stamps, may be NULL if not available
    3920             :  *
    3921             :  * If the skb has a socket associated, then this function clones the
    3922             :  * skb (thus sharing the actual data and optional structures), stores
    3923             :  * the optional hardware time stamping information (if non NULL) or
    3924             :  * generates a software time stamp (otherwise), then queues the clone
    3925             :  * to the error queue of the socket.  Errors are silently ignored.
    3926             :  */
    3927             : void skb_tstamp_tx(struct sk_buff *orig_skb,
    3928             :                    struct skb_shared_hwtstamps *hwtstamps);
    3929             : 
    3930             : /**
    3931             :  * skb_tx_timestamp() - Driver hook for transmit timestamping
    3932             :  *
    3933             :  * Ethernet MAC Drivers should call this function in their hard_xmit()
    3934             :  * function immediately before giving the sk_buff to the MAC hardware.
    3935             :  *
    3936             :  * Specifically, one should make absolutely sure that this function is
    3937             :  * called before TX completion of this packet can trigger.  Otherwise
    3938             :  * the packet could potentially already be freed.
    3939             :  *
    3940             :  * @skb: A socket buffer.
    3941             :  */
    3942         448 : static inline void skb_tx_timestamp(struct sk_buff *skb)
    3943             : {
    3944         448 :         skb_clone_tx_timestamp(skb);
    3945         448 :         if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
    3946           0 :                 skb_tstamp_tx(skb, NULL);
    3947         448 : }
    3948             : 
    3949             : /**
    3950             :  * skb_complete_wifi_ack - deliver skb with wifi status
    3951             :  *
    3952             :  * @skb: the original outgoing packet
    3953             :  * @acked: ack status
    3954             :  *
    3955             :  */
    3956             : void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
    3957             : 
    3958             : __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
    3959             : __sum16 __skb_checksum_complete(struct sk_buff *skb);
    3960             : 
    3961         698 : static inline int skb_csum_unnecessary(const struct sk_buff *skb)
    3962             : {
    3963         271 :         return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
    3964         727 :                 skb->csum_valid ||
    3965          15 :                 (skb->ip_summed == CHECKSUM_PARTIAL &&
    3966          15 :                  skb_checksum_start_offset(skb) >= 0));
    3967             : }
    3968             : 
    3969             : /**
    3970             :  *      skb_checksum_complete - Calculate checksum of an entire packet
    3971             :  *      @skb: packet to process
    3972             :  *
    3973             :  *      This function calculates the checksum over the entire packet plus
    3974             :  *      the value of skb->csum.  The latter can be used to supply the
    3975             :  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
    3976             :  *      checksum.
    3977             :  *
    3978             :  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
    3979             :  *      this function can be used to verify that checksum on received
    3980             :  *      packets.  In that case the function should return zero if the
    3981             :  *      checksum is correct.  In particular, this function will return zero
    3982             :  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
    3983             :  *      hardware has already verified the correctness of the checksum.
    3984             :  */
    3985             : static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
    3986             : {
    3987             :         return skb_csum_unnecessary(skb) ?
    3988             :                0 : __skb_checksum_complete(skb);
    3989             : }
    3990             : 
    3991         440 : static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
    3992             : {
    3993         440 :         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
    3994         425 :                 if (skb->csum_level == 0)
    3995         425 :                         skb->ip_summed = CHECKSUM_NONE;
    3996             :                 else
    3997           0 :                         skb->csum_level--;
    3998             :         }
    3999         440 : }
    4000             : 
    4001         707 : static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
    4002             : {
    4003         707 :         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
    4004           0 :                 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
    4005           0 :                         skb->csum_level++;
    4006         707 :         } else if (skb->ip_summed == CHECKSUM_NONE) {
    4007         707 :                 skb->ip_summed = CHECKSUM_UNNECESSARY;
    4008         707 :                 skb->csum_level = 0;
    4009             :         }
    4010         707 : }
    4011             : 
    4012           0 : static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
    4013             : {
    4014           0 :         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
    4015           0 :                 skb->ip_summed = CHECKSUM_NONE;
    4016           0 :                 skb->csum_level = 0;
    4017             :         }
    4018             : }
    4019             : 
    4020             : /* Check if we need to perform checksum complete validation.
    4021             :  *
    4022             :  * Returns true if checksum complete is needed, false otherwise
    4023             :  * (either checksum is unnecessary or zero checksum is allowed).
    4024             :  */
    4025         454 : static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
    4026             :                                                   bool zero_okay,
    4027             :                                                   __sum16 check)
    4028             : {
    4029         454 :         if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
    4030         440 :                 skb->csum_valid = 1;
    4031         440 :                 __skb_decr_checksum_unnecessary(skb);
    4032         440 :                 return false;
    4033             :         }
    4034             : 
    4035             :         return true;
    4036             : }
    4037             : 
    4038             : /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
    4039             :  * in checksum_init.
    4040             :  */
    4041             : #define CHECKSUM_BREAK 76
    4042             : 
    4043             : /* Unset checksum-complete
    4044             :  *
    4045             :  * Unset checksum complete can be done when packet is being modified
    4046             :  * (uncompressed for instance) and checksum-complete value is
    4047             :  * invalidated.
    4048             :  */
    4049           0 : static inline void skb_checksum_complete_unset(struct sk_buff *skb)
    4050             : {
    4051           0 :         if (skb->ip_summed == CHECKSUM_COMPLETE)
    4052           0 :                 skb->ip_summed = CHECKSUM_NONE;
    4053             : }
    4054             : 
    4055             : /* Validate (init) checksum based on checksum complete.
    4056             :  *
    4057             :  * Return values:
    4058             :  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
    4059             :  *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
    4060             :  *      checksum is stored in skb->csum for use in __skb_checksum_complete
    4061             :  *   non-zero: value of invalid checksum
    4062             :  *
    4063             :  */
    4064          14 : static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
    4065             :                                                        bool complete,
    4066             :                                                        __wsum psum)
    4067             : {
    4068          14 :         if (skb->ip_summed == CHECKSUM_COMPLETE) {
    4069           0 :                 if (!csum_fold(csum_add(psum, skb->csum))) {
    4070           0 :                         skb->csum_valid = 1;
    4071           0 :                         return 0;
    4072             :                 }
    4073             :         }
    4074             : 
    4075          14 :         skb->csum = psum;
    4076             : 
    4077          14 :         if (complete || skb->len <= CHECKSUM_BREAK) {
    4078          14 :                 __sum16 csum;
    4079             : 
    4080          14 :                 csum = __skb_checksum_complete(skb);
    4081          14 :                 skb->csum_valid = !csum;
    4082          14 :                 return csum;
    4083             :         }
    4084             : 
    4085             :         return 0;
    4086             : }
    4087             : 
    4088          14 : static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
    4089             : {
    4090          14 :         return 0;
    4091             : }
    4092             : 
    4093             : /* Perform checksum validate (init). Note that this is a macro since we only
    4094             :  * want to calculate the pseudo header which is an input function if necessary.
    4095             :  * First we try to validate without any computation (checksum unnecessary) and
    4096             :  * then calculate based on checksum complete calling the function to compute
    4097             :  * pseudo header.
    4098             :  *
    4099             :  * Return values:
    4100             :  *   0: checksum is validated or try to in skb_checksum_complete
    4101             :  *   non-zero: value of invalid checksum
    4102             :  */
    4103             : #define __skb_checksum_validate(skb, proto, complete,                   \
    4104             :                                 zero_okay, check, compute_pseudo)       \
    4105             : ({                                                                      \
    4106             :         __sum16 __ret = 0;                                              \
    4107             :         skb->csum_valid = 0;                                         \
    4108             :         if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
    4109             :                 __ret = __skb_checksum_validate_complete(skb,           \
    4110             :                                 complete, compute_pseudo(skb, proto));  \
    4111             :         __ret;                                                          \
    4112             : })
    4113             : 
    4114             : #define skb_checksum_init(skb, proto, compute_pseudo)                   \
    4115             :         __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
    4116             : 
    4117             : #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
    4118             :         __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
    4119             : 
    4120             : #define skb_checksum_validate(skb, proto, compute_pseudo)               \
    4121             :         __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
    4122             : 
    4123             : #define skb_checksum_validate_zero_check(skb, proto, check,             \
    4124             :                                          compute_pseudo)                \
    4125             :         __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
    4126             : 
    4127             : #define skb_checksum_simple_validate(skb)                               \
    4128             :         __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
    4129             : 
    4130           0 : static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
    4131             : {
    4132           0 :         return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
    4133             : }
    4134             : 
    4135           0 : static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
    4136             : {
    4137           0 :         skb->csum = ~pseudo;
    4138           0 :         skb->ip_summed = CHECKSUM_COMPLETE;
    4139           0 : }
    4140             : 
    4141             : #define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
    4142             : do {                                                                    \
    4143             :         if (__skb_checksum_convert_check(skb))                          \
    4144             :                 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
    4145             : } while (0)
    4146             : 
    4147             : static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
    4148             :                                               u16 start, u16 offset)
    4149             : {
    4150             :         skb->ip_summed = CHECKSUM_PARTIAL;
    4151             :         skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
    4152             :         skb->csum_offset = offset - start;
    4153             : }
    4154             : 
    4155             : /* Update skbuf and packet to reflect the remote checksum offload operation.
    4156             :  * When called, ptr indicates the starting point for skb->csum when
    4157             :  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
    4158             :  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
    4159             :  */
    4160             : static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
    4161             :                                        int start, int offset, bool nopartial)
    4162             : {
    4163             :         __wsum delta;
    4164             : 
    4165             :         if (!nopartial) {
    4166             :                 skb_remcsum_adjust_partial(skb, ptr, start, offset);
    4167             :                 return;
    4168             :         }
    4169             : 
    4170             :          if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
    4171             :                 __skb_checksum_complete(skb);
    4172             :                 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
    4173             :         }
    4174             : 
    4175             :         delta = remcsum_adjust(ptr, skb->csum, start, offset);
    4176             : 
    4177             :         /* Adjust skb->csum since we changed the packet */
    4178             :         skb->csum = csum_add(skb->csum, delta);
    4179             : }
    4180             : 
    4181             : static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
    4182             : {
    4183             : #if IS_ENABLED(CONFIG_NF_CONNTRACK)
    4184             :         return (void *)(skb->_nfct & NFCT_PTRMASK);
    4185             : #else
    4186             :         return NULL;
    4187             : #endif
    4188             : }
    4189             : 
    4190             : static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
    4191             : {
    4192             : #if IS_ENABLED(CONFIG_NF_CONNTRACK)
    4193             :         return skb->_nfct;
    4194             : #else
    4195             :         return 0UL;
    4196             : #endif
    4197             : }
    4198             : 
    4199             : static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
    4200             : {
    4201             : #if IS_ENABLED(CONFIG_NF_CONNTRACK)
    4202             :         skb->_nfct = nfct;
    4203             : #endif
    4204             : }
    4205             : 
    4206             : #ifdef CONFIG_SKB_EXTENSIONS
    4207             : enum skb_ext_id {
    4208             : #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
    4209             :         SKB_EXT_BRIDGE_NF,
    4210             : #endif
    4211             : #ifdef CONFIG_XFRM
    4212             :         SKB_EXT_SEC_PATH,
    4213             : #endif
    4214             : #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
    4215             :         TC_SKB_EXT,
    4216             : #endif
    4217             : #if IS_ENABLED(CONFIG_MPTCP)
    4218             :         SKB_EXT_MPTCP,
    4219             : #endif
    4220             :         SKB_EXT_NUM, /* must be last */
    4221             : };
    4222             : 
    4223             : /**
    4224             :  *      struct skb_ext - sk_buff extensions
    4225             :  *      @refcnt: 1 on allocation, deallocated on 0
    4226             :  *      @offset: offset to add to @data to obtain extension address
    4227             :  *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
    4228             :  *      @data: start of extension data, variable sized
    4229             :  *
    4230             :  *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
    4231             :  *      to use 'u8' types while allowing up to 2kb worth of extension data.
    4232             :  */
    4233             : struct skb_ext {
    4234             :         refcount_t refcnt;
    4235             :         u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
    4236             :         u8 chunks;              /* same */
    4237             :         char data[] __aligned(8);
    4238             : };
    4239             : 
    4240             : struct skb_ext *__skb_ext_alloc(gfp_t flags);
    4241             : void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
    4242             :                     struct skb_ext *ext);
    4243             : void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
    4244             : void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
    4245             : void __skb_ext_put(struct skb_ext *ext);
    4246             : 
    4247             : static inline void skb_ext_put(struct sk_buff *skb)
    4248             : {
    4249             :         if (skb->active_extensions)
    4250             :                 __skb_ext_put(skb->extensions);
    4251             : }
    4252             : 
    4253             : static inline void __skb_ext_copy(struct sk_buff *dst,
    4254             :                                   const struct sk_buff *src)
    4255             : {
    4256             :         dst->active_extensions = src->active_extensions;
    4257             : 
    4258             :         if (src->active_extensions) {
    4259             :                 struct skb_ext *ext = src->extensions;
    4260             : 
    4261             :                 refcount_inc(&ext->refcnt);
    4262             :                 dst->extensions = ext;
    4263             :         }
    4264             : }
    4265             : 
    4266             : static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
    4267             : {
    4268             :         skb_ext_put(dst);
    4269             :         __skb_ext_copy(dst, src);
    4270             : }
    4271             : 
    4272             : static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
    4273             : {
    4274             :         return !!ext->offset[i];
    4275             : }
    4276             : 
    4277             : static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
    4278             : {
    4279             :         return skb->active_extensions & (1 << id);
    4280             : }
    4281             : 
    4282             : static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
    4283             : {
    4284             :         if (skb_ext_exist(skb, id))
    4285             :                 __skb_ext_del(skb, id);
    4286             : }
    4287             : 
    4288             : static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
    4289             : {
    4290             :         if (skb_ext_exist(skb, id)) {
    4291             :                 struct skb_ext *ext = skb->extensions;
    4292             : 
    4293             :                 return (void *)ext + (ext->offset[id] << 3);
    4294             :         }
    4295             : 
    4296             :         return NULL;
    4297             : }
    4298             : 
    4299             : static inline void skb_ext_reset(struct sk_buff *skb)
    4300             : {
    4301             :         if (unlikely(skb->active_extensions)) {
    4302             :                 __skb_ext_put(skb->extensions);
    4303             :                 skb->active_extensions = 0;
    4304             :         }
    4305             : }
    4306             : 
    4307             : static inline bool skb_has_extensions(struct sk_buff *skb)
    4308             : {
    4309             :         return unlikely(skb->active_extensions);
    4310             : }
    4311             : #else
    4312           0 : static inline void skb_ext_put(struct sk_buff *skb) {}
    4313           0 : static inline void skb_ext_reset(struct sk_buff *skb) {}
    4314             : static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
    4315        1184 : static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
    4316           0 : static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
    4317           2 : static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
    4318             : #endif /* CONFIG_SKB_EXTENSIONS */
    4319             : 
    4320         438 : static inline void nf_reset_ct(struct sk_buff *skb)
    4321             : {
    4322             : #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
    4323             :         nf_conntrack_put(skb_nfct(skb));
    4324             :         skb->_nfct = 0;
    4325             : #endif
    4326         438 : }
    4327             : 
    4328           0 : static inline void nf_reset_trace(struct sk_buff *skb)
    4329             : {
    4330             : #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
    4331             :         skb->nf_trace = 0;
    4332             : #endif
    4333           0 : }
    4334             : 
    4335           0 : static inline void ipvs_reset(struct sk_buff *skb)
    4336             : {
    4337             : #if IS_ENABLED(CONFIG_IP_VS)
    4338             :         skb->ipvs_property = 0;
    4339             : #endif
    4340           0 : }
    4341             : 
    4342             : /* Note: This doesn't put any conntrack info in dst. */
    4343        1184 : static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
    4344             :                              bool copy)
    4345             : {
    4346             : #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
    4347             :         dst->_nfct = src->_nfct;
    4348             :         nf_conntrack_get(skb_nfct(src));
    4349             : #endif
    4350             : #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
    4351             :         if (copy)
    4352             :                 dst->nf_trace = src->nf_trace;
    4353             : #endif
    4354        1184 : }
    4355             : 
    4356           0 : static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
    4357             : {
    4358             : #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
    4359             :         nf_conntrack_put(skb_nfct(dst));
    4360             : #endif
    4361           0 :         __nf_copy(dst, src, true);
    4362             : }
    4363             : 
    4364             : #ifdef CONFIG_NETWORK_SECMARK
    4365             : static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
    4366             : {
    4367             :         to->secmark = from->secmark;
    4368             : }
    4369             : 
    4370             : static inline void skb_init_secmark(struct sk_buff *skb)
    4371             : {
    4372             :         skb->secmark = 0;
    4373             : }
    4374             : #else
    4375           0 : static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
    4376           0 : { }
    4377             : 
    4378             : static inline void skb_init_secmark(struct sk_buff *skb)
    4379             : { }
    4380             : #endif
    4381             : 
    4382          73 : static inline int secpath_exists(const struct sk_buff *skb)
    4383             : {
    4384             : #ifdef CONFIG_XFRM
    4385             :         return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
    4386             : #else
    4387          73 :         return 0;
    4388             : #endif
    4389             : }
    4390             : 
    4391             : static inline bool skb_irq_freeable(const struct sk_buff *skb)
    4392             : {
    4393             :         return !skb->destructor &&
    4394             :                 !secpath_exists(skb) &&
    4395             :                 !skb_nfct(skb) &&
    4396             :                 !skb->_skb_refdst &&
    4397             :                 !skb_has_frag_list(skb);
    4398             : }
    4399             : 
    4400         448 : static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
    4401             : {
    4402           0 :         skb->queue_mapping = queue_mapping;
    4403             : }
    4404             : 
    4405         896 : static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
    4406             : {
    4407         896 :         return skb->queue_mapping;
    4408             : }
    4409             : 
    4410             : static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
    4411             : {
    4412             :         to->queue_mapping = from->queue_mapping;
    4413             : }
    4414             : 
    4415         723 : static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
    4416             : {
    4417         723 :         skb->queue_mapping = rx_queue + 1;
    4418             : }
    4419             : 
    4420         420 : static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
    4421             : {
    4422         420 :         return skb->queue_mapping - 1;
    4423             : }
    4424             : 
    4425         420 : static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
    4426             : {
    4427         420 :         return skb->queue_mapping != 0;
    4428             : }
    4429             : 
    4430         426 : static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
    4431             : {
    4432         426 :         skb->dst_pending_confirm = val;
    4433           0 : }
    4434             : 
    4435         444 : static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
    4436             : {
    4437         444 :         return skb->dst_pending_confirm != 0;
    4438             : }
    4439             : 
    4440           0 : static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
    4441             : {
    4442             : #ifdef CONFIG_XFRM
    4443             :         return skb_ext_find(skb, SKB_EXT_SEC_PATH);
    4444             : #else
    4445           0 :         return NULL;
    4446             : #endif
    4447             : }
    4448             : 
    4449             : /* Keeps track of mac header offset relative to skb->head.
    4450             :  * It is useful for TSO of Tunneling protocol. e.g. GRE.
    4451             :  * For non-tunnel skb it points to skb_mac_header() and for
    4452             :  * tunnel skb it points to outer mac header.
    4453             :  * Keeps track of level of encapsulation of network headers.
    4454             :  */
    4455             : struct skb_gso_cb {
    4456             :         union {
    4457             :                 int     mac_offset;
    4458             :                 int     data_offset;
    4459             :         };
    4460             :         int     encap_level;
    4461             :         __wsum  csum;
    4462             :         __u16   csum_start;
    4463             : };
    4464             : #define SKB_GSO_CB_OFFSET       32
    4465             : #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
    4466             : 
    4467           0 : static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
    4468             : {
    4469           0 :         return (skb_mac_header(inner_skb) - inner_skb->head) -
    4470           0 :                 SKB_GSO_CB(inner_skb)->mac_offset;
    4471             : }
    4472             : 
    4473             : static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
    4474             : {
    4475             :         int new_headroom, headroom;
    4476             :         int ret;
    4477             : 
    4478             :         headroom = skb_headroom(skb);
    4479             :         ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
    4480             :         if (ret)
    4481             :                 return ret;
    4482             : 
    4483             :         new_headroom = skb_headroom(skb);
    4484             :         SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
    4485             :         return 0;
    4486             : }
    4487             : 
    4488           0 : static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
    4489             : {
    4490             :         /* Do not update partial checksums if remote checksum is enabled. */
    4491           0 :         if (skb->remcsum_offload)
    4492             :                 return;
    4493             : 
    4494           0 :         SKB_GSO_CB(skb)->csum = res;
    4495           0 :         SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
    4496             : }
    4497             : 
    4498             : /* Compute the checksum for a gso segment. First compute the checksum value
    4499             :  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
    4500             :  * then add in skb->csum (checksum from csum_start to end of packet).
    4501             :  * skb->csum and csum_start are then updated to reflect the checksum of the
    4502             :  * resultant packet starting from the transport header-- the resultant checksum
    4503             :  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
    4504             :  * header.
    4505             :  */
    4506           0 : static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
    4507             : {
    4508           0 :         unsigned char *csum_start = skb_transport_header(skb);
    4509           0 :         int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
    4510           0 :         __wsum partial = SKB_GSO_CB(skb)->csum;
    4511             : 
    4512           0 :         SKB_GSO_CB(skb)->csum = res;
    4513           0 :         SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
    4514             : 
    4515           0 :         return csum_fold(csum_partial(csum_start, plen, partial));
    4516             : }
    4517             : 
    4518        3388 : static inline bool skb_is_gso(const struct sk_buff *skb)
    4519             : {
    4520        3388 :         return skb_shinfo(skb)->gso_size;
    4521             : }
    4522             : 
    4523             : /* Note: Should be called only if skb_is_gso(skb) is true */
    4524             : static inline bool skb_is_gso_v6(const struct sk_buff *skb)
    4525             : {
    4526             :         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
    4527             : }
    4528             : 
    4529             : /* Note: Should be called only if skb_is_gso(skb) is true */
    4530           0 : static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
    4531             : {
    4532           0 :         return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
    4533             : }
    4534             : 
    4535             : /* Note: Should be called only if skb_is_gso(skb) is true */
    4536           0 : static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
    4537             : {
    4538           0 :         return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
    4539             : }
    4540             : 
    4541           0 : static inline void skb_gso_reset(struct sk_buff *skb)
    4542             : {
    4543           0 :         skb_shinfo(skb)->gso_size = 0;
    4544           0 :         skb_shinfo(skb)->gso_segs = 0;
    4545           0 :         skb_shinfo(skb)->gso_type = 0;
    4546           0 : }
    4547             : 
    4548           0 : static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
    4549             :                                          u16 increment)
    4550             : {
    4551           0 :         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
    4552             :                 return;
    4553           0 :         shinfo->gso_size += increment;
    4554             : }
    4555             : 
    4556           0 : static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
    4557             :                                          u16 decrement)
    4558             : {
    4559           0 :         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
    4560             :                 return;
    4561           0 :         shinfo->gso_size -= decrement;
    4562             : }
    4563             : 
    4564             : void __skb_warn_lro_forwarding(const struct sk_buff *skb);
    4565             : 
    4566           0 : static inline bool skb_warn_if_lro(const struct sk_buff *skb)
    4567             : {
    4568             :         /* LRO sets gso_size but not gso_type, whereas if GSO is really
    4569             :          * wanted then gso_type will be set. */
    4570           0 :         const struct skb_shared_info *shinfo = skb_shinfo(skb);
    4571             : 
    4572           0 :         if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
    4573           0 :             unlikely(shinfo->gso_type == 0)) {
    4574           0 :                 __skb_warn_lro_forwarding(skb);
    4575           0 :                 return true;
    4576             :         }
    4577             :         return false;
    4578             : }
    4579             : 
    4580           0 : static inline void skb_forward_csum(struct sk_buff *skb)
    4581             : {
    4582             :         /* Unfortunately we don't support this one.  Any brave souls? */
    4583           0 :         if (skb->ip_summed == CHECKSUM_COMPLETE)
    4584           0 :                 skb->ip_summed = CHECKSUM_NONE;
    4585             : }
    4586             : 
    4587             : /**
    4588             :  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
    4589             :  * @skb: skb to check
    4590             :  *
    4591             :  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
    4592             :  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
    4593             :  * use this helper, to document places where we make this assertion.
    4594             :  */
    4595             : static inline void skb_checksum_none_assert(const struct sk_buff *skb)
    4596             : {
    4597             : #ifdef DEBUG
    4598             :         BUG_ON(skb->ip_summed != CHECKSUM_NONE);
    4599             : #endif
    4600             : }
    4601             : 
    4602             : bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
    4603             : 
    4604             : int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
    4605             : struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
    4606             :                                      unsigned int transport_len,
    4607             :                                      __sum16(*skb_chkf)(struct sk_buff *skb));
    4608             : 
    4609             : /**
    4610             :  * skb_head_is_locked - Determine if the skb->head is locked down
    4611             :  * @skb: skb to check
    4612             :  *
    4613             :  * The head on skbs build around a head frag can be removed if they are
    4614             :  * not cloned.  This function returns true if the skb head is locked down
    4615             :  * due to either being allocated via kmalloc, or by being a clone with
    4616             :  * multiple references to the head.
    4617             :  */
    4618           2 : static inline bool skb_head_is_locked(const struct sk_buff *skb)
    4619             : {
    4620           2 :         return !skb->head_frag || skb_cloned(skb);
    4621             : }
    4622             : 
    4623             : /* Local Checksum Offload.
    4624             :  * Compute outer checksum based on the assumption that the
    4625             :  * inner checksum will be offloaded later.
    4626             :  * See Documentation/networking/checksum-offloads.rst for
    4627             :  * explanation of how this works.
    4628             :  * Fill in outer checksum adjustment (e.g. with sum of outer
    4629             :  * pseudo-header) before calling.
    4630             :  * Also ensure that inner checksum is in linear data area.
    4631             :  */
    4632           0 : static inline __wsum lco_csum(struct sk_buff *skb)
    4633             : {
    4634           0 :         unsigned char *csum_start = skb_checksum_start(skb);
    4635           0 :         unsigned char *l4_hdr = skb_transport_header(skb);
    4636           0 :         __wsum partial;
    4637             : 
    4638             :         /* Start with complement of inner checksum adjustment */
    4639           0 :         partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
    4640           0 :                                                     skb->csum_offset));
    4641             : 
    4642             :         /* Add in checksum of our headers (incl. outer checksum
    4643             :          * adjustment filled in by caller) and return result.
    4644             :          */
    4645           0 :         return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
    4646             : }
    4647             : 
    4648           0 : static inline bool skb_is_redirected(const struct sk_buff *skb)
    4649             : {
    4650             : #ifdef CONFIG_NET_REDIRECT
    4651             :         return skb->redirected;
    4652             : #else
    4653           0 :         return false;
    4654             : #endif
    4655             : }
    4656             : 
    4657             : static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
    4658             : {
    4659             : #ifdef CONFIG_NET_REDIRECT
    4660             :         skb->redirected = 1;
    4661             :         skb->from_ingress = from_ingress;
    4662             :         if (skb->from_ingress)
    4663             :                 skb->tstamp = 0;
    4664             : #endif
    4665             : }
    4666             : 
    4667         456 : static inline void skb_reset_redirect(struct sk_buff *skb)
    4668             : {
    4669             : #ifdef CONFIG_NET_REDIRECT
    4670             :         skb->redirected = 0;
    4671             : #endif
    4672         456 : }
    4673             : 
    4674         430 : static inline bool skb_csum_is_sctp(struct sk_buff *skb)
    4675             : {
    4676         430 :         return skb->csum_not_inet;
    4677             : }
    4678             : 
    4679        4864 : static inline void skb_set_kcov_handle(struct sk_buff *skb,
    4680             :                                        const u64 kcov_handle)
    4681             : {
    4682             : #ifdef CONFIG_KCOV
    4683             :         skb->kcov_handle = kcov_handle;
    4684             : #endif
    4685        4864 : }
    4686             : 
    4687             : static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
    4688             : {
    4689             : #ifdef CONFIG_KCOV
    4690             :         return skb->kcov_handle;
    4691             : #else
    4692             :         return 0;
    4693             : #endif
    4694             : }
    4695             : 
    4696             : #endif  /* __KERNEL__ */
    4697             : #endif  /* _LINUX_SKBUFF_H */

Generated by: LCOV version 1.14