Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : /*
3 : * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 : *
5 : * (C) SGI 2006, Christoph Lameter
6 : * Cleaned up and restructured to ease the addition of alternative
7 : * implementations of SLAB allocators.
8 : * (C) Linux Foundation 2008-2013
9 : * Unified interface for all slab allocators
10 : */
11 :
12 : #ifndef _LINUX_SLAB_H
13 : #define _LINUX_SLAB_H
14 :
15 : #include <linux/gfp.h>
16 : #include <linux/overflow.h>
17 : #include <linux/types.h>
18 : #include <linux/workqueue.h>
19 : #include <linux/percpu-refcount.h>
20 :
21 :
22 : /*
23 : * Flags to pass to kmem_cache_create().
24 : * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25 : */
26 : /* DEBUG: Perform (expensive) checks on alloc/free */
27 : #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
28 : /* DEBUG: Red zone objs in a cache */
29 : #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
30 : /* DEBUG: Poison objects */
31 : #define SLAB_POISON ((slab_flags_t __force)0x00000800U)
32 : /* Align objs on cache lines */
33 : #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
34 : /* Use GFP_DMA memory */
35 : #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
36 : /* Use GFP_DMA32 memory */
37 : #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
38 : /* DEBUG: Store the last owner for bug hunting */
39 : #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
40 : /* Panic if kmem_cache_create() fails */
41 : #define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
42 : /*
43 : * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44 : *
45 : * This delays freeing the SLAB page by a grace period, it does _NOT_
46 : * delay object freeing. This means that if you do kmem_cache_free()
47 : * that memory location is free to be reused at any time. Thus it may
48 : * be possible to see another object there in the same RCU grace period.
49 : *
50 : * This feature only ensures the memory location backing the object
51 : * stays valid, the trick to using this is relying on an independent
52 : * object validation pass. Something like:
53 : *
54 : * rcu_read_lock()
55 : * again:
56 : * obj = lockless_lookup(key);
57 : * if (obj) {
58 : * if (!try_get_ref(obj)) // might fail for free objects
59 : * goto again;
60 : *
61 : * if (obj->key != key) { // not the object we expected
62 : * put_ref(obj);
63 : * goto again;
64 : * }
65 : * }
66 : * rcu_read_unlock();
67 : *
68 : * This is useful if we need to approach a kernel structure obliquely,
69 : * from its address obtained without the usual locking. We can lock
70 : * the structure to stabilize it and check it's still at the given address,
71 : * only if we can be sure that the memory has not been meanwhile reused
72 : * for some other kind of object (which our subsystem's lock might corrupt).
73 : *
74 : * rcu_read_lock before reading the address, then rcu_read_unlock after
75 : * taking the spinlock within the structure expected at that address.
76 : *
77 : * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78 : */
79 : /* Defer freeing slabs to RCU */
80 : #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
81 : /* Spread some memory over cpuset */
82 : #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
83 : /* Trace allocations and frees */
84 : #define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
85 :
86 : /* Flag to prevent checks on free */
87 : #ifdef CONFIG_DEBUG_OBJECTS
88 : # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
89 : #else
90 : # define SLAB_DEBUG_OBJECTS 0
91 : #endif
92 :
93 : /* Avoid kmemleak tracing */
94 : #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
95 :
96 : /* Fault injection mark */
97 : #ifdef CONFIG_FAILSLAB
98 : # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
99 : #else
100 : # define SLAB_FAILSLAB 0
101 : #endif
102 : /* Account to memcg */
103 : #ifdef CONFIG_MEMCG_KMEM
104 : # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
105 : #else
106 : # define SLAB_ACCOUNT 0
107 : #endif
108 :
109 : #ifdef CONFIG_KASAN
110 : #define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
111 : #else
112 : #define SLAB_KASAN 0
113 : #endif
114 :
115 : /* The following flags affect the page allocator grouping pages by mobility */
116 : /* Objects are reclaimable */
117 : #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
118 : #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
119 :
120 : /* Slab deactivation flag */
121 : #define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U)
122 :
123 : /*
124 : * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
125 : *
126 : * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
127 : *
128 : * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
129 : * Both make kfree a no-op.
130 : */
131 : #define ZERO_SIZE_PTR ((void *)16)
132 :
133 : #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
134 : (unsigned long)ZERO_SIZE_PTR)
135 :
136 : #include <linux/kasan.h>
137 :
138 : struct mem_cgroup;
139 : /*
140 : * struct kmem_cache related prototypes
141 : */
142 : void __init kmem_cache_init(void);
143 : bool slab_is_available(void);
144 :
145 : extern bool usercopy_fallback;
146 :
147 : struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
148 : unsigned int align, slab_flags_t flags,
149 : void (*ctor)(void *));
150 : struct kmem_cache *kmem_cache_create_usercopy(const char *name,
151 : unsigned int size, unsigned int align,
152 : slab_flags_t flags,
153 : unsigned int useroffset, unsigned int usersize,
154 : void (*ctor)(void *));
155 : void kmem_cache_destroy(struct kmem_cache *);
156 : int kmem_cache_shrink(struct kmem_cache *);
157 :
158 : /*
159 : * Please use this macro to create slab caches. Simply specify the
160 : * name of the structure and maybe some flags that are listed above.
161 : *
162 : * The alignment of the struct determines object alignment. If you
163 : * f.e. add ____cacheline_aligned_in_smp to the struct declaration
164 : * then the objects will be properly aligned in SMP configurations.
165 : */
166 : #define KMEM_CACHE(__struct, __flags) \
167 : kmem_cache_create(#__struct, sizeof(struct __struct), \
168 : __alignof__(struct __struct), (__flags), NULL)
169 :
170 : /*
171 : * To whitelist a single field for copying to/from usercopy, use this
172 : * macro instead for KMEM_CACHE() above.
173 : */
174 : #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
175 : kmem_cache_create_usercopy(#__struct, \
176 : sizeof(struct __struct), \
177 : __alignof__(struct __struct), (__flags), \
178 : offsetof(struct __struct, __field), \
179 : sizeof_field(struct __struct, __field), NULL)
180 :
181 : /*
182 : * Common kmalloc functions provided by all allocators
183 : */
184 : void * __must_check krealloc(const void *, size_t, gfp_t);
185 : void kfree(const void *);
186 : void kfree_sensitive(const void *);
187 : size_t __ksize(const void *);
188 : size_t ksize(const void *);
189 : bool kmem_valid_obj(void *object);
190 : void kmem_dump_obj(void *object);
191 :
192 : #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
193 : void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
194 : bool to_user);
195 : #else
196 : static inline void __check_heap_object(const void *ptr, unsigned long n,
197 : struct page *page, bool to_user) { }
198 : #endif
199 :
200 : /*
201 : * Some archs want to perform DMA into kmalloc caches and need a guaranteed
202 : * alignment larger than the alignment of a 64-bit integer.
203 : * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
204 : */
205 : #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
206 : #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
207 : #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
208 : #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
209 : #else
210 : #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
211 : #endif
212 :
213 : /*
214 : * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
215 : * Intended for arches that get misalignment faults even for 64 bit integer
216 : * aligned buffers.
217 : */
218 : #ifndef ARCH_SLAB_MINALIGN
219 : #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
220 : #endif
221 :
222 : /*
223 : * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
224 : * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
225 : * aligned pointers.
226 : */
227 : #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
228 : #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
229 : #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
230 :
231 : /*
232 : * Kmalloc array related definitions
233 : */
234 :
235 : #ifdef CONFIG_SLAB
236 : /*
237 : * The largest kmalloc size supported by the SLAB allocators is
238 : * 32 megabyte (2^25) or the maximum allocatable page order if that is
239 : * less than 32 MB.
240 : *
241 : * WARNING: Its not easy to increase this value since the allocators have
242 : * to do various tricks to work around compiler limitations in order to
243 : * ensure proper constant folding.
244 : */
245 : #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
246 : (MAX_ORDER + PAGE_SHIFT - 1) : 25)
247 : #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
248 : #ifndef KMALLOC_SHIFT_LOW
249 : #define KMALLOC_SHIFT_LOW 5
250 : #endif
251 : #endif
252 :
253 : #ifdef CONFIG_SLUB
254 : /*
255 : * SLUB directly allocates requests fitting in to an order-1 page
256 : * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
257 : */
258 : #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
259 : #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
260 : #ifndef KMALLOC_SHIFT_LOW
261 : #define KMALLOC_SHIFT_LOW 3
262 : #endif
263 : #endif
264 :
265 : #ifdef CONFIG_SLOB
266 : /*
267 : * SLOB passes all requests larger than one page to the page allocator.
268 : * No kmalloc array is necessary since objects of different sizes can
269 : * be allocated from the same page.
270 : */
271 : #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
272 : #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
273 : #ifndef KMALLOC_SHIFT_LOW
274 : #define KMALLOC_SHIFT_LOW 3
275 : #endif
276 : #endif
277 :
278 : /* Maximum allocatable size */
279 : #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
280 : /* Maximum size for which we actually use a slab cache */
281 : #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
282 : /* Maximum order allocatable via the slab allocator */
283 : #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
284 :
285 : /*
286 : * Kmalloc subsystem.
287 : */
288 : #ifndef KMALLOC_MIN_SIZE
289 : #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
290 : #endif
291 :
292 : /*
293 : * This restriction comes from byte sized index implementation.
294 : * Page size is normally 2^12 bytes and, in this case, if we want to use
295 : * byte sized index which can represent 2^8 entries, the size of the object
296 : * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
297 : * If minimum size of kmalloc is less than 16, we use it as minimum object
298 : * size and give up to use byte sized index.
299 : */
300 : #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
301 : (KMALLOC_MIN_SIZE) : 16)
302 :
303 : /*
304 : * Whenever changing this, take care of that kmalloc_type() and
305 : * create_kmalloc_caches() still work as intended.
306 : */
307 : enum kmalloc_cache_type {
308 : KMALLOC_NORMAL = 0,
309 : KMALLOC_RECLAIM,
310 : #ifdef CONFIG_ZONE_DMA
311 : KMALLOC_DMA,
312 : #endif
313 : NR_KMALLOC_TYPES
314 : };
315 :
316 : #ifndef CONFIG_SLOB
317 : extern struct kmem_cache *
318 : kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
319 :
320 106237 : static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
321 : {
322 : #ifdef CONFIG_ZONE_DMA
323 : /*
324 : * The most common case is KMALLOC_NORMAL, so test for it
325 : * with a single branch for both flags.
326 : */
327 : if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
328 : return KMALLOC_NORMAL;
329 :
330 : /*
331 : * At least one of the flags has to be set. If both are, __GFP_DMA
332 : * is more important.
333 : */
334 : return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
335 : #else
336 106237 : return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
337 : #endif
338 : }
339 :
340 : /*
341 : * Figure out which kmalloc slab an allocation of a certain size
342 : * belongs to.
343 : * 0 = zero alloc
344 : * 1 = 65 .. 96 bytes
345 : * 2 = 129 .. 192 bytes
346 : * n = 2^(n-1)+1 .. 2^n
347 : */
348 40746 : static __always_inline unsigned int kmalloc_index(size_t size)
349 : {
350 40746 : if (!size)
351 : return 0;
352 :
353 22816 : if (size <= KMALLOC_MIN_SIZE)
354 : return KMALLOC_SHIFT_LOW;
355 :
356 21634 : if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
357 : return 1;
358 21465 : if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
359 : return 2;
360 40394 : if (size <= 8) return 3;
361 21358 : if (size <= 16) return 4;
362 20151 : if (size <= 32) return 5;
363 19906 : if (size <= 64) return 6;
364 7843 : if (size <= 128) return 7;
365 7721 : if (size <= 256) return 8;
366 7103 : if (size <= 512) return 9;
367 2494 : if (size <= 1024) return 10;
368 2254 : if (size <= 2 * 1024) return 11;
369 2011 : if (size <= 4 * 1024) return 12;
370 : if (size <= 8 * 1024) return 13;
371 : if (size <= 16 * 1024) return 14;
372 : if (size <= 32 * 1024) return 15;
373 : if (size <= 64 * 1024) return 16;
374 : if (size <= 128 * 1024) return 17;
375 : if (size <= 256 * 1024) return 18;
376 : if (size <= 512 * 1024) return 19;
377 : if (size <= 1024 * 1024) return 20;
378 : if (size <= 2 * 1024 * 1024) return 21;
379 : if (size <= 4 * 1024 * 1024) return 22;
380 : if (size <= 8 * 1024 * 1024) return 23;
381 : if (size <= 16 * 1024 * 1024) return 24;
382 : if (size <= 32 * 1024 * 1024) return 25;
383 : if (size <= 64 * 1024 * 1024) return 26;
384 : BUG();
385 :
386 : /* Will never be reached. Needed because the compiler may complain */
387 : return -1;
388 : }
389 : #endif /* !CONFIG_SLOB */
390 :
391 : void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
392 : void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
393 : void kmem_cache_free(struct kmem_cache *, void *);
394 :
395 : /*
396 : * Bulk allocation and freeing operations. These are accelerated in an
397 : * allocator specific way to avoid taking locks repeatedly or building
398 : * metadata structures unnecessarily.
399 : *
400 : * Note that interrupts must be enabled when calling these functions.
401 : */
402 : void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
403 : int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
404 :
405 : /*
406 : * Caller must not use kfree_bulk() on memory not originally allocated
407 : * by kmalloc(), because the SLOB allocator cannot handle this.
408 : */
409 141 : static __always_inline void kfree_bulk(size_t size, void **p)
410 : {
411 141 : kmem_cache_free_bulk(NULL, size, p);
412 141 : }
413 :
414 : #ifdef CONFIG_NUMA
415 : void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
416 : void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
417 : #else
418 : static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
419 : {
420 : return __kmalloc(size, flags);
421 : }
422 :
423 : static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
424 : {
425 : return kmem_cache_alloc(s, flags);
426 : }
427 : #endif
428 :
429 : #ifdef CONFIG_TRACING
430 : extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
431 :
432 : #ifdef CONFIG_NUMA
433 : extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
434 : gfp_t gfpflags,
435 : int node, size_t size) __assume_slab_alignment __malloc;
436 : #else
437 : static __always_inline void *
438 : kmem_cache_alloc_node_trace(struct kmem_cache *s,
439 : gfp_t gfpflags,
440 : int node, size_t size)
441 : {
442 : return kmem_cache_alloc_trace(s, gfpflags, size);
443 : }
444 : #endif /* CONFIG_NUMA */
445 :
446 : #else /* CONFIG_TRACING */
447 : static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
448 : gfp_t flags, size_t size)
449 : {
450 : void *ret = kmem_cache_alloc(s, flags);
451 :
452 : ret = kasan_kmalloc(s, ret, size, flags);
453 : return ret;
454 : }
455 :
456 : static __always_inline void *
457 : kmem_cache_alloc_node_trace(struct kmem_cache *s,
458 : gfp_t gfpflags,
459 : int node, size_t size)
460 : {
461 : void *ret = kmem_cache_alloc_node(s, gfpflags, node);
462 :
463 : ret = kasan_kmalloc(s, ret, size, gfpflags);
464 : return ret;
465 : }
466 : #endif /* CONFIG_TRACING */
467 :
468 : extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
469 :
470 : #ifdef CONFIG_TRACING
471 : extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
472 : #else
473 : static __always_inline void *
474 : kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
475 : {
476 : return kmalloc_order(size, flags, order);
477 : }
478 : #endif
479 :
480 25 : static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
481 : {
482 26 : unsigned int order = get_order(size);
483 25 : return kmalloc_order_trace(size, flags, order);
484 : }
485 :
486 : /**
487 : * kmalloc - allocate memory
488 : * @size: how many bytes of memory are required.
489 : * @flags: the type of memory to allocate.
490 : *
491 : * kmalloc is the normal method of allocating memory
492 : * for objects smaller than page size in the kernel.
493 : *
494 : * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
495 : * bytes. For @size of power of two bytes, the alignment is also guaranteed
496 : * to be at least to the size.
497 : *
498 : * The @flags argument may be one of the GFP flags defined at
499 : * include/linux/gfp.h and described at
500 : * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
501 : *
502 : * The recommended usage of the @flags is described at
503 : * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
504 : *
505 : * Below is a brief outline of the most useful GFP flags
506 : *
507 : * %GFP_KERNEL
508 : * Allocate normal kernel ram. May sleep.
509 : *
510 : * %GFP_NOWAIT
511 : * Allocation will not sleep.
512 : *
513 : * %GFP_ATOMIC
514 : * Allocation will not sleep. May use emergency pools.
515 : *
516 : * %GFP_HIGHUSER
517 : * Allocate memory from high memory on behalf of user.
518 : *
519 : * Also it is possible to set different flags by OR'ing
520 : * in one or more of the following additional @flags:
521 : *
522 : * %__GFP_HIGH
523 : * This allocation has high priority and may use emergency pools.
524 : *
525 : * %__GFP_NOFAIL
526 : * Indicate that this allocation is in no way allowed to fail
527 : * (think twice before using).
528 : *
529 : * %__GFP_NORETRY
530 : * If memory is not immediately available,
531 : * then give up at once.
532 : *
533 : * %__GFP_NOWARN
534 : * If allocation fails, don't issue any warnings.
535 : *
536 : * %__GFP_RETRY_MAYFAIL
537 : * Try really hard to succeed the allocation but fail
538 : * eventually.
539 : */
540 61906 : static __always_inline void *kmalloc(size_t size, gfp_t flags)
541 : {
542 56674 : if (__builtin_constant_p(size)) {
543 : #ifndef CONFIG_SLOB
544 29828 : unsigned int index;
545 : #endif
546 11898 : if (size > KMALLOC_MAX_CACHE_SIZE)
547 22 : return kmalloc_large(size, flags);
548 : #ifndef CONFIG_SLOB
549 36022 : index = kmalloc_index(size);
550 :
551 2004 : if (!index)
552 : return ZERO_SIZE_PTR;
553 :
554 29807 : return kmem_cache_alloc_trace(
555 29807 : kmalloc_caches[kmalloc_type(flags)][index],
556 : flags, size);
557 : #endif
558 : }
559 32078 : return __kmalloc(size, flags);
560 : }
561 :
562 24053 : static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
563 : {
564 : #ifndef CONFIG_SLOB
565 23992 : if (__builtin_constant_p(size) &&
566 : size <= KMALLOC_MAX_CACHE_SIZE) {
567 23993 : unsigned int i = kmalloc_index(size);
568 :
569 4 : if (!i)
570 : return ZERO_SIZE_PTR;
571 :
572 10939 : return kmem_cache_alloc_node_trace(
573 10939 : kmalloc_caches[kmalloc_type(flags)][i],
574 : flags, node, size);
575 : }
576 : #endif
577 13114 : return __kmalloc_node(size, flags, node);
578 : }
579 :
580 : /**
581 : * kmalloc_array - allocate memory for an array.
582 : * @n: number of elements.
583 : * @size: element size.
584 : * @flags: the type of memory to allocate (see kmalloc).
585 : */
586 8552 : static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
587 : {
588 8552 : size_t bytes;
589 :
590 8552 : if (unlikely(check_mul_overflow(n, size, &bytes)))
591 : return NULL;
592 8552 : if (__builtin_constant_p(n) && __builtin_constant_p(size))
593 22 : return kmalloc(bytes, flags);
594 8541 : return __kmalloc(bytes, flags);
595 : }
596 :
597 : /**
598 : * krealloc_array - reallocate memory for an array.
599 : * @p: pointer to the memory chunk to reallocate
600 : * @new_n: new number of elements to alloc
601 : * @new_size: new size of a single member of the array
602 : * @flags: the type of memory to allocate (see kmalloc)
603 : */
604 : static __must_check inline void *
605 : krealloc_array(void *p, size_t new_n, size_t new_size, gfp_t flags)
606 : {
607 : size_t bytes;
608 :
609 : if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
610 : return NULL;
611 :
612 : return krealloc(p, bytes, flags);
613 : }
614 :
615 : /**
616 : * kcalloc - allocate memory for an array. The memory is set to zero.
617 : * @n: number of elements.
618 : * @size: element size.
619 : * @flags: the type of memory to allocate (see kmalloc).
620 : */
621 4863 : static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
622 : {
623 4860 : return kmalloc_array(n, size, flags | __GFP_ZERO);
624 : }
625 :
626 : /*
627 : * kmalloc_track_caller is a special version of kmalloc that records the
628 : * calling function of the routine calling it for slab leak tracking instead
629 : * of just the calling function (confusing, eh?).
630 : * It's useful when the call to kmalloc comes from a widely-used standard
631 : * allocator where we care about the real place the memory allocation
632 : * request comes from.
633 : */
634 : extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
635 : #define kmalloc_track_caller(size, flags) \
636 : __kmalloc_track_caller(size, flags, _RET_IP_)
637 :
638 96 : static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
639 : int node)
640 : {
641 96 : size_t bytes;
642 :
643 96 : if (unlikely(check_mul_overflow(n, size, &bytes)))
644 : return NULL;
645 96 : if (__builtin_constant_p(n) && __builtin_constant_p(size))
646 0 : return kmalloc_node(bytes, flags, node);
647 96 : return __kmalloc_node(bytes, flags, node);
648 : }
649 :
650 63 : static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
651 : {
652 63 : return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
653 : }
654 :
655 :
656 : #ifdef CONFIG_NUMA
657 : extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
658 : #define kmalloc_node_track_caller(size, flags, node) \
659 : __kmalloc_node_track_caller(size, flags, node, \
660 : _RET_IP_)
661 :
662 : #else /* CONFIG_NUMA */
663 :
664 : #define kmalloc_node_track_caller(size, flags, node) \
665 : kmalloc_track_caller(size, flags)
666 :
667 : #endif /* CONFIG_NUMA */
668 :
669 : /*
670 : * Shortcuts
671 : */
672 176549 : static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
673 : {
674 176549 : return kmem_cache_alloc(k, flags | __GFP_ZERO);
675 : }
676 :
677 : /**
678 : * kzalloc - allocate memory. The memory is set to zero.
679 : * @size: how many bytes of memory are required.
680 : * @flags: the type of memory to allocate (see kmalloc).
681 : */
682 35830 : static inline void *kzalloc(size_t size, gfp_t flags)
683 : {
684 35830 : return kmalloc(size, flags | __GFP_ZERO);
685 : }
686 :
687 : /**
688 : * kzalloc_node - allocate zeroed memory from a particular memory node.
689 : * @size: how many bytes of memory are required.
690 : * @flags: the type of memory to allocate (see kmalloc).
691 : * @node: memory node from which to allocate
692 : */
693 10999 : static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
694 : {
695 10999 : return kmalloc_node(size, flags | __GFP_ZERO, node);
696 : }
697 :
698 : unsigned int kmem_cache_size(struct kmem_cache *s);
699 : void __init kmem_cache_init_late(void);
700 :
701 : #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
702 : int slab_prepare_cpu(unsigned int cpu);
703 : int slab_dead_cpu(unsigned int cpu);
704 : #else
705 : #define slab_prepare_cpu NULL
706 : #define slab_dead_cpu NULL
707 : #endif
708 :
709 : #endif /* _LINUX_SLAB_H */
|