Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef __LINUX_UACCESS_H__
3 : #define __LINUX_UACCESS_H__
4 :
5 : #include <linux/fault-inject-usercopy.h>
6 : #include <linux/instrumented.h>
7 : #include <linux/minmax.h>
8 : #include <linux/sched.h>
9 : #include <linux/thread_info.h>
10 :
11 : #include <asm/uaccess.h>
12 :
13 : #ifdef CONFIG_SET_FS
14 : /*
15 : * Force the uaccess routines to be wired up for actual userspace access,
16 : * overriding any possible set_fs(KERNEL_DS) still lingering around. Undone
17 : * using force_uaccess_end below.
18 : */
19 : static inline mm_segment_t force_uaccess_begin(void)
20 : {
21 : mm_segment_t fs = get_fs();
22 :
23 : set_fs(USER_DS);
24 : return fs;
25 : }
26 :
27 : static inline void force_uaccess_end(mm_segment_t oldfs)
28 : {
29 : set_fs(oldfs);
30 : }
31 : #else /* CONFIG_SET_FS */
32 : typedef struct {
33 : /* empty dummy */
34 : } mm_segment_t;
35 :
36 : #ifndef TASK_SIZE_MAX
37 : #define TASK_SIZE_MAX TASK_SIZE
38 : #endif
39 :
40 : #define uaccess_kernel() (false)
41 : #define user_addr_max() (TASK_SIZE_MAX)
42 :
43 1021 : static inline mm_segment_t force_uaccess_begin(void)
44 : {
45 1021 : return (mm_segment_t) { };
46 : }
47 :
48 0 : static inline void force_uaccess_end(mm_segment_t oldfs)
49 : {
50 0 : }
51 : #endif /* CONFIG_SET_FS */
52 :
53 : /*
54 : * Architectures should provide two primitives (raw_copy_{to,from}_user())
55 : * and get rid of their private instances of copy_{to,from}_user() and
56 : * __copy_{to,from}_user{,_inatomic}().
57 : *
58 : * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
59 : * return the amount left to copy. They should assume that access_ok() has
60 : * already been checked (and succeeded); they should *not* zero-pad anything.
61 : * No KASAN or object size checks either - those belong here.
62 : *
63 : * Both of these functions should attempt to copy size bytes starting at from
64 : * into the area starting at to. They must not fetch or store anything
65 : * outside of those areas. Return value must be between 0 (everything
66 : * copied successfully) and size (nothing copied).
67 : *
68 : * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
69 : * at to must become equal to the bytes fetched from the corresponding area
70 : * starting at from. All data past to + size - N must be left unmodified.
71 : *
72 : * If copying succeeds, the return value must be 0. If some data cannot be
73 : * fetched, it is permitted to copy less than had been fetched; the only
74 : * hard requirement is that not storing anything at all (i.e. returning size)
75 : * should happen only when nothing could be copied. In other words, you don't
76 : * have to squeeze as much as possible - it is allowed, but not necessary.
77 : *
78 : * For raw_copy_from_user() to always points to kernel memory and no faults
79 : * on store should happen. Interpretation of from is affected by set_fs().
80 : * For raw_copy_to_user() it's the other way round.
81 : *
82 : * Both can be inlined - it's up to architectures whether it wants to bother
83 : * with that. They should not be used directly; they are used to implement
84 : * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
85 : * that are used instead. Out of those, __... ones are inlined. Plain
86 : * copy_{to,from}_user() might or might not be inlined. If you want them
87 : * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
88 : *
89 : * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
90 : * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
91 : * at all; their callers absolutely must check the return value.
92 : *
93 : * Biarch ones should also provide raw_copy_in_user() - similar to the above,
94 : * but both source and destination are __user pointers (affected by set_fs()
95 : * as usual) and both source and destination can trigger faults.
96 : */
97 :
98 : static __always_inline __must_check unsigned long
99 1 : __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
100 : {
101 1 : instrument_copy_from_user(to, from, n);
102 1 : check_object_size(to, n, false);
103 1 : return raw_copy_from_user(to, from, n);
104 : }
105 :
106 : static __always_inline __must_check unsigned long
107 1306 : __copy_from_user(void *to, const void __user *from, unsigned long n)
108 : {
109 1306 : might_fault();
110 1306 : if (should_fail_usercopy())
111 : return n;
112 1306 : instrument_copy_from_user(to, from, n);
113 1306 : check_object_size(to, n, false);
114 1306 : return raw_copy_from_user(to, from, n);
115 : }
116 :
117 : /**
118 : * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
119 : * @to: Destination address, in user space.
120 : * @from: Source address, in kernel space.
121 : * @n: Number of bytes to copy.
122 : *
123 : * Context: User context only.
124 : *
125 : * Copy data from kernel space to user space. Caller must check
126 : * the specified block with access_ok() before calling this function.
127 : * The caller should also make sure he pins the user space address
128 : * so that we don't result in page fault and sleep.
129 : */
130 : static __always_inline __must_check unsigned long
131 0 : __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
132 : {
133 0 : if (should_fail_usercopy())
134 : return n;
135 0 : instrument_copy_to_user(to, from, n);
136 0 : check_object_size(from, n, true);
137 0 : return raw_copy_to_user(to, from, n);
138 : }
139 :
140 : static __always_inline __must_check unsigned long
141 2406 : __copy_to_user(void __user *to, const void *from, unsigned long n)
142 : {
143 2406 : might_fault();
144 2406 : if (should_fail_usercopy())
145 : return n;
146 2406 : instrument_copy_to_user(to, from, n);
147 2406 : check_object_size(from, n, true);
148 2406 : return raw_copy_to_user(to, from, n);
149 : }
150 :
151 : #ifdef INLINE_COPY_FROM_USER
152 : static inline __must_check unsigned long
153 : _copy_from_user(void *to, const void __user *from, unsigned long n)
154 : {
155 : unsigned long res = n;
156 : might_fault();
157 : if (!should_fail_usercopy() && likely(access_ok(from, n))) {
158 : instrument_copy_from_user(to, from, n);
159 : res = raw_copy_from_user(to, from, n);
160 : }
161 : if (unlikely(res))
162 : memset(to + (n - res), 0, res);
163 : return res;
164 : }
165 : #else
166 : extern __must_check unsigned long
167 : _copy_from_user(void *, const void __user *, unsigned long);
168 : #endif
169 :
170 : #ifdef INLINE_COPY_TO_USER
171 : static inline __must_check unsigned long
172 : _copy_to_user(void __user *to, const void *from, unsigned long n)
173 : {
174 : might_fault();
175 : if (should_fail_usercopy())
176 : return n;
177 : if (access_ok(to, n)) {
178 : instrument_copy_to_user(to, from, n);
179 : n = raw_copy_to_user(to, from, n);
180 : }
181 : return n;
182 : }
183 : #else
184 : extern __must_check unsigned long
185 : _copy_to_user(void __user *, const void *, unsigned long);
186 : #endif
187 :
188 : static __always_inline unsigned long __must_check
189 98096 : copy_from_user(void *to, const void __user *from, unsigned long n)
190 : {
191 107363 : if (likely(check_copy_size(to, n, false)))
192 98096 : n = _copy_from_user(to, from, n);
193 98014 : return n;
194 : }
195 :
196 : static __always_inline unsigned long __must_check
197 61881 : copy_to_user(void __user *to, const void *from, unsigned long n)
198 : {
199 67483 : if (likely(check_copy_size(from, n, true)))
200 61881 : n = _copy_to_user(to, from, n);
201 61703 : return n;
202 : }
203 : #ifdef CONFIG_COMPAT
204 : static __always_inline unsigned long __must_check
205 0 : copy_in_user(void __user *to, const void __user *from, unsigned long n)
206 : {
207 0 : might_fault();
208 0 : if (access_ok(to, n) && access_ok(from, n))
209 0 : n = raw_copy_in_user(to, from, n);
210 0 : return n;
211 : }
212 : #endif
213 :
214 : #ifndef copy_mc_to_kernel
215 : /*
216 : * Without arch opt-in this generic copy_mc_to_kernel() will not handle
217 : * #MC (or arch equivalent) during source read.
218 : */
219 : static inline unsigned long __must_check
220 : copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
221 : {
222 : memcpy(dst, src, cnt);
223 : return 0;
224 : }
225 : #endif
226 :
227 193267 : static __always_inline void pagefault_disabled_inc(void)
228 : {
229 193267 : current->pagefault_disabled++;
230 : }
231 :
232 193262 : static __always_inline void pagefault_disabled_dec(void)
233 : {
234 193262 : current->pagefault_disabled--;
235 : }
236 :
237 : /*
238 : * These routines enable/disable the pagefault handler. If disabled, it will
239 : * not take any locks and go straight to the fixup table.
240 : *
241 : * User access methods will not sleep when called from a pagefault_disabled()
242 : * environment.
243 : */
244 193267 : static inline void pagefault_disable(void)
245 : {
246 193267 : pagefault_disabled_inc();
247 : /*
248 : * make sure to have issued the store before a pagefault
249 : * can hit.
250 : */
251 193267 : barrier();
252 98 : }
253 :
254 193261 : static inline void pagefault_enable(void)
255 : {
256 : /*
257 : * make sure to issue those last loads/stores before enabling
258 : * the pagefault handler again.
259 : */
260 193261 : barrier();
261 193261 : pagefault_disabled_dec();
262 1644 : }
263 :
264 : /*
265 : * Is the pagefault handler disabled? If so, user access methods will not sleep.
266 : */
267 715666 : static inline bool pagefault_disabled(void)
268 : {
269 715666 : return current->pagefault_disabled != 0;
270 : }
271 :
272 : /*
273 : * The pagefault handler is in general disabled by pagefault_disable() or
274 : * when in irq context (via in_atomic()).
275 : *
276 : * This function should only be used by the fault handlers. Other users should
277 : * stick to pagefault_disabled().
278 : * Please NEVER use preempt_disable() to disable the fault handler. With
279 : * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
280 : * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
281 : */
282 : #define faulthandler_disabled() (pagefault_disabled() || in_atomic())
283 :
284 : #ifndef ARCH_HAS_NOCACHE_UACCESS
285 :
286 : static inline __must_check unsigned long
287 : __copy_from_user_inatomic_nocache(void *to, const void __user *from,
288 : unsigned long n)
289 : {
290 : return __copy_from_user_inatomic(to, from, n);
291 : }
292 :
293 : #endif /* ARCH_HAS_NOCACHE_UACCESS */
294 :
295 : extern __must_check int check_zeroed_user(const void __user *from, size_t size);
296 :
297 : /**
298 : * copy_struct_from_user: copy a struct from userspace
299 : * @dst: Destination address, in kernel space. This buffer must be @ksize
300 : * bytes long.
301 : * @ksize: Size of @dst struct.
302 : * @src: Source address, in userspace.
303 : * @usize: (Alleged) size of @src struct.
304 : *
305 : * Copies a struct from userspace to kernel space, in a way that guarantees
306 : * backwards-compatibility for struct syscall arguments (as long as future
307 : * struct extensions are made such that all new fields are *appended* to the
308 : * old struct, and zeroed-out new fields have the same meaning as the old
309 : * struct).
310 : *
311 : * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
312 : * The recommended usage is something like the following:
313 : *
314 : * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
315 : * {
316 : * int err;
317 : * struct foo karg = {};
318 : *
319 : * if (usize > PAGE_SIZE)
320 : * return -E2BIG;
321 : * if (usize < FOO_SIZE_VER0)
322 : * return -EINVAL;
323 : *
324 : * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
325 : * if (err)
326 : * return err;
327 : *
328 : * // ...
329 : * }
330 : *
331 : * There are three cases to consider:
332 : * * If @usize == @ksize, then it's copied verbatim.
333 : * * If @usize < @ksize, then the userspace has passed an old struct to a
334 : * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
335 : * are to be zero-filled.
336 : * * If @usize > @ksize, then the userspace has passed a new struct to an
337 : * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
338 : * are checked to ensure they are zeroed, otherwise -E2BIG is returned.
339 : *
340 : * Returns (in all cases, some data may have been copied):
341 : * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src.
342 : * * -EFAULT: access to userspace failed.
343 : */
344 : static __always_inline __must_check int
345 82 : copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
346 : size_t usize)
347 : {
348 82 : size_t size = min(ksize, usize);
349 82 : size_t rest = max(ksize, usize) - size;
350 :
351 : /* Deal with trailing bytes. */
352 82 : if (usize < ksize) {
353 0 : memset(dst + size, 0, rest);
354 82 : } else if (usize > ksize) {
355 2 : int ret = check_zeroed_user(src + size, rest);
356 2 : if (ret <= 0)
357 1 : return ret ?: -E2BIG;
358 : }
359 : /* Copy the interoperable parts of the struct. */
360 81 : if (copy_from_user(dst, src, size))
361 : return -EFAULT;
362 : return 0;
363 : }
364 :
365 : bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
366 :
367 : long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
368 : long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
369 :
370 : long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
371 : long notrace copy_to_user_nofault(void __user *dst, const void *src,
372 : size_t size);
373 :
374 : long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
375 : long count);
376 :
377 : long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
378 : long count);
379 : long strnlen_user_nofault(const void __user *unsafe_addr, long count);
380 :
381 : /**
382 : * get_kernel_nofault(): safely attempt to read from a location
383 : * @val: read into this variable
384 : * @ptr: address to read from
385 : *
386 : * Returns 0 on success, or -EFAULT.
387 : */
388 : #define get_kernel_nofault(val, ptr) ({ \
389 : const typeof(val) *__gk_ptr = (ptr); \
390 : copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
391 : })
392 :
393 : #ifndef user_access_begin
394 : #define user_access_begin(ptr,len) access_ok(ptr, len)
395 : #define user_access_end() do { } while (0)
396 : #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
397 : #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
398 : #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
399 : #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
400 : static inline unsigned long user_access_save(void) { return 0UL; }
401 : static inline void user_access_restore(unsigned long flags) { }
402 : #endif
403 : #ifndef user_write_access_begin
404 : #define user_write_access_begin user_access_begin
405 : #define user_write_access_end user_access_end
406 : #endif
407 : #ifndef user_read_access_begin
408 : #define user_read_access_begin user_access_begin
409 : #define user_read_access_end user_access_end
410 : #endif
411 :
412 : #ifdef CONFIG_HARDENED_USERCOPY
413 : void usercopy_warn(const char *name, const char *detail, bool to_user,
414 : unsigned long offset, unsigned long len);
415 : void __noreturn usercopy_abort(const char *name, const char *detail,
416 : bool to_user, unsigned long offset,
417 : unsigned long len);
418 : #endif
419 :
420 : #endif /* __LINUX_UACCESS_H__ */
|