Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : /*
3 : * INET An implementation of the TCP/IP protocol suite for the LINUX
4 : * operating system. INET is implemented using the BSD Socket
5 : * interface as the means of communication with the user level.
6 : *
7 : * Definitions for the AF_INET socket handler.
8 : *
9 : * Version: @(#)sock.h 1.0.4 05/13/93
10 : *
11 : * Authors: Ross Biro
12 : * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 : * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 : * Florian La Roche <flla@stud.uni-sb.de>
15 : *
16 : * Fixes:
17 : * Alan Cox : Volatiles in skbuff pointers. See
18 : * skbuff comments. May be overdone,
19 : * better to prove they can be removed
20 : * than the reverse.
21 : * Alan Cox : Added a zapped field for tcp to note
22 : * a socket is reset and must stay shut up
23 : * Alan Cox : New fields for options
24 : * Pauline Middelink : identd support
25 : * Alan Cox : Eliminate low level recv/recvfrom
26 : * David S. Miller : New socket lookup architecture.
27 : * Steve Whitehouse: Default routines for sock_ops
28 : * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 : * protinfo be just a void pointer, as the
30 : * protocol specific parts were moved to
31 : * respective headers and ipv4/v6, etc now
32 : * use private slabcaches for its socks
33 : * Pedro Hortas : New flags field for socket options
34 : */
35 : #ifndef _SOCK_H
36 : #define _SOCK_H
37 :
38 : #include <linux/hardirq.h>
39 : #include <linux/kernel.h>
40 : #include <linux/list.h>
41 : #include <linux/list_nulls.h>
42 : #include <linux/timer.h>
43 : #include <linux/cache.h>
44 : #include <linux/bitops.h>
45 : #include <linux/lockdep.h>
46 : #include <linux/netdevice.h>
47 : #include <linux/skbuff.h> /* struct sk_buff */
48 : #include <linux/mm.h>
49 : #include <linux/security.h>
50 : #include <linux/slab.h>
51 : #include <linux/uaccess.h>
52 : #include <linux/page_counter.h>
53 : #include <linux/memcontrol.h>
54 : #include <linux/static_key.h>
55 : #include <linux/sched.h>
56 : #include <linux/wait.h>
57 : #include <linux/cgroup-defs.h>
58 : #include <linux/rbtree.h>
59 : #include <linux/filter.h>
60 : #include <linux/rculist_nulls.h>
61 : #include <linux/poll.h>
62 : #include <linux/sockptr.h>
63 : #include <linux/indirect_call_wrapper.h>
64 : #include <linux/atomic.h>
65 : #include <linux/refcount.h>
66 : #include <net/dst.h>
67 : #include <net/checksum.h>
68 : #include <net/tcp_states.h>
69 : #include <linux/net_tstamp.h>
70 : #include <net/l3mdev.h>
71 :
72 : /*
73 : * This structure really needs to be cleaned up.
74 : * Most of it is for TCP, and not used by any of
75 : * the other protocols.
76 : */
77 :
78 : /* Define this to get the SOCK_DBG debugging facility. */
79 : #define SOCK_DEBUGGING
80 : #ifdef SOCK_DEBUGGING
81 : #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 : printk(KERN_DEBUG msg); } while (0)
83 : #else
84 : /* Validate arguments and do nothing */
85 : static inline __printf(2, 3)
86 : void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87 : {
88 : }
89 : #endif
90 :
91 : /* This is the per-socket lock. The spinlock provides a synchronization
92 : * between user contexts and software interrupt processing, whereas the
93 : * mini-semaphore synchronizes multiple users amongst themselves.
94 : */
95 : typedef struct {
96 : spinlock_t slock;
97 : int owned;
98 : wait_queue_head_t wq;
99 : /*
100 : * We express the mutex-alike socket_lock semantics
101 : * to the lock validator by explicitly managing
102 : * the slock as a lock variant (in addition to
103 : * the slock itself):
104 : */
105 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 : struct lockdep_map dep_map;
107 : #endif
108 : } socket_lock_t;
109 :
110 : struct sock;
111 : struct proto;
112 : struct net;
113 :
114 : typedef __u32 __bitwise __portpair;
115 : typedef __u64 __bitwise __addrpair;
116 :
117 : /**
118 : * struct sock_common - minimal network layer representation of sockets
119 : * @skc_daddr: Foreign IPv4 addr
120 : * @skc_rcv_saddr: Bound local IPv4 addr
121 : * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
122 : * @skc_hash: hash value used with various protocol lookup tables
123 : * @skc_u16hashes: two u16 hash values used by UDP lookup tables
124 : * @skc_dport: placeholder for inet_dport/tw_dport
125 : * @skc_num: placeholder for inet_num/tw_num
126 : * @skc_portpair: __u32 union of @skc_dport & @skc_num
127 : * @skc_family: network address family
128 : * @skc_state: Connection state
129 : * @skc_reuse: %SO_REUSEADDR setting
130 : * @skc_reuseport: %SO_REUSEPORT setting
131 : * @skc_ipv6only: socket is IPV6 only
132 : * @skc_net_refcnt: socket is using net ref counting
133 : * @skc_bound_dev_if: bound device index if != 0
134 : * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 : * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 : * @skc_prot: protocol handlers inside a network family
137 : * @skc_net: reference to the network namespace of this socket
138 : * @skc_v6_daddr: IPV6 destination address
139 : * @skc_v6_rcv_saddr: IPV6 source address
140 : * @skc_cookie: socket's cookie value
141 : * @skc_node: main hash linkage for various protocol lookup tables
142 : * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
143 : * @skc_tx_queue_mapping: tx queue number for this connection
144 : * @skc_rx_queue_mapping: rx queue number for this connection
145 : * @skc_flags: place holder for sk_flags
146 : * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
147 : * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
148 : * @skc_listener: connection request listener socket (aka rsk_listener)
149 : * [union with @skc_flags]
150 : * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
151 : * [union with @skc_flags]
152 : * @skc_incoming_cpu: record/match cpu processing incoming packets
153 : * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
154 : * [union with @skc_incoming_cpu]
155 : * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
156 : * [union with @skc_incoming_cpu]
157 : * @skc_refcnt: reference count
158 : *
159 : * This is the minimal network layer representation of sockets, the header
160 : * for struct sock and struct inet_timewait_sock.
161 : */
162 : struct sock_common {
163 : /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 : * address on 64bit arches : cf INET_MATCH()
165 : */
166 : union {
167 : __addrpair skc_addrpair;
168 : struct {
169 : __be32 skc_daddr;
170 : __be32 skc_rcv_saddr;
171 : };
172 : };
173 : union {
174 : unsigned int skc_hash;
175 : __u16 skc_u16hashes[2];
176 : };
177 : /* skc_dport && skc_num must be grouped as well */
178 : union {
179 : __portpair skc_portpair;
180 : struct {
181 : __be16 skc_dport;
182 : __u16 skc_num;
183 : };
184 : };
185 :
186 : unsigned short skc_family;
187 : volatile unsigned char skc_state;
188 : unsigned char skc_reuse:4;
189 : unsigned char skc_reuseport:1;
190 : unsigned char skc_ipv6only:1;
191 : unsigned char skc_net_refcnt:1;
192 : int skc_bound_dev_if;
193 : union {
194 : struct hlist_node skc_bind_node;
195 : struct hlist_node skc_portaddr_node;
196 : };
197 : struct proto *skc_prot;
198 : possible_net_t skc_net;
199 :
200 : #if IS_ENABLED(CONFIG_IPV6)
201 : struct in6_addr skc_v6_daddr;
202 : struct in6_addr skc_v6_rcv_saddr;
203 : #endif
204 :
205 : atomic64_t skc_cookie;
206 :
207 : /* following fields are padding to force
208 : * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 : * assuming IPV6 is enabled. We use this padding differently
210 : * for different kind of 'sockets'
211 : */
212 : union {
213 : unsigned long skc_flags;
214 : struct sock *skc_listener; /* request_sock */
215 : struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 : };
217 : /*
218 : * fields between dontcopy_begin/dontcopy_end
219 : * are not copied in sock_copy()
220 : */
221 : /* private: */
222 : int skc_dontcopy_begin[0];
223 : /* public: */
224 : union {
225 : struct hlist_node skc_node;
226 : struct hlist_nulls_node skc_nulls_node;
227 : };
228 : unsigned short skc_tx_queue_mapping;
229 : #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
230 : unsigned short skc_rx_queue_mapping;
231 : #endif
232 : union {
233 : int skc_incoming_cpu;
234 : u32 skc_rcv_wnd;
235 : u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 : };
237 :
238 : refcount_t skc_refcnt;
239 : /* private: */
240 : int skc_dontcopy_end[0];
241 : union {
242 : u32 skc_rxhash;
243 : u32 skc_window_clamp;
244 : u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 : };
246 : /* public: */
247 : };
248 :
249 : struct bpf_local_storage;
250 :
251 : /**
252 : * struct sock - network layer representation of sockets
253 : * @__sk_common: shared layout with inet_timewait_sock
254 : * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
255 : * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
256 : * @sk_lock: synchronizer
257 : * @sk_kern_sock: True if sock is using kernel lock classes
258 : * @sk_rcvbuf: size of receive buffer in bytes
259 : * @sk_wq: sock wait queue and async head
260 : * @sk_rx_dst: receive input route used by early demux
261 : * @sk_dst_cache: destination cache
262 : * @sk_dst_pending_confirm: need to confirm neighbour
263 : * @sk_policy: flow policy
264 : * @sk_rx_skb_cache: cache copy of recently accessed RX skb
265 : * @sk_receive_queue: incoming packets
266 : * @sk_wmem_alloc: transmit queue bytes committed
267 : * @sk_tsq_flags: TCP Small Queues flags
268 : * @sk_write_queue: Packet sending queue
269 : * @sk_omem_alloc: "o" is "option" or "other"
270 : * @sk_wmem_queued: persistent queue size
271 : * @sk_forward_alloc: space allocated forward
272 : * @sk_napi_id: id of the last napi context to receive data for sk
273 : * @sk_ll_usec: usecs to busypoll when there is no data
274 : * @sk_allocation: allocation mode
275 : * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
276 : * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
277 : * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
278 : * @sk_sndbuf: size of send buffer in bytes
279 : * @__sk_flags_offset: empty field used to determine location of bitfield
280 : * @sk_padding: unused element for alignment
281 : * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
282 : * @sk_no_check_rx: allow zero checksum in RX packets
283 : * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
284 : * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
285 : * @sk_route_forced_caps: static, forced route capabilities
286 : * (set in tcp_init_sock())
287 : * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
288 : * @sk_gso_max_size: Maximum GSO segment size to build
289 : * @sk_gso_max_segs: Maximum number of GSO segments
290 : * @sk_pacing_shift: scaling factor for TCP Small Queues
291 : * @sk_lingertime: %SO_LINGER l_linger setting
292 : * @sk_backlog: always used with the per-socket spinlock held
293 : * @sk_callback_lock: used with the callbacks in the end of this struct
294 : * @sk_error_queue: rarely used
295 : * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
296 : * IPV6_ADDRFORM for instance)
297 : * @sk_err: last error
298 : * @sk_err_soft: errors that don't cause failure but are the cause of a
299 : * persistent failure not just 'timed out'
300 : * @sk_drops: raw/udp drops counter
301 : * @sk_ack_backlog: current listen backlog
302 : * @sk_max_ack_backlog: listen backlog set in listen()
303 : * @sk_uid: user id of owner
304 : * @sk_prefer_busy_poll: prefer busypolling over softirq processing
305 : * @sk_busy_poll_budget: napi processing budget when busypolling
306 : * @sk_priority: %SO_PRIORITY setting
307 : * @sk_type: socket type (%SOCK_STREAM, etc)
308 : * @sk_protocol: which protocol this socket belongs in this network family
309 : * @sk_peer_pid: &struct pid for this socket's peer
310 : * @sk_peer_cred: %SO_PEERCRED setting
311 : * @sk_rcvlowat: %SO_RCVLOWAT setting
312 : * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 : * @sk_sndtimeo: %SO_SNDTIMEO setting
314 : * @sk_txhash: computed flow hash for use on transmit
315 : * @sk_filter: socket filtering instructions
316 : * @sk_timer: sock cleanup timer
317 : * @sk_stamp: time stamp of last packet received
318 : * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
319 : * @sk_tsflags: SO_TIMESTAMPING socket options
320 : * @sk_tskey: counter to disambiguate concurrent tstamp requests
321 : * @sk_zckey: counter to order MSG_ZEROCOPY notifications
322 : * @sk_socket: Identd and reporting IO signals
323 : * @sk_user_data: RPC layer private data
324 : * @sk_frag: cached page frag
325 : * @sk_peek_off: current peek_offset value
326 : * @sk_send_head: front of stuff to transmit
327 : * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
328 : * @sk_tx_skb_cache: cache copy of recently accessed TX skb
329 : * @sk_security: used by security modules
330 : * @sk_mark: generic packet mark
331 : * @sk_cgrp_data: cgroup data for this cgroup
332 : * @sk_memcg: this socket's memory cgroup association
333 : * @sk_write_pending: a write to stream socket waits to start
334 : * @sk_state_change: callback to indicate change in the state of the sock
335 : * @sk_data_ready: callback to indicate there is data to be processed
336 : * @sk_write_space: callback to indicate there is bf sending space available
337 : * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
338 : * @sk_backlog_rcv: callback to process the backlog
339 : * @sk_validate_xmit_skb: ptr to an optional validate function
340 : * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
341 : * @sk_reuseport_cb: reuseport group container
342 : * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
343 : * @sk_rcu: used during RCU grace period
344 : * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
345 : * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
346 : * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
347 : * @sk_txtime_unused: unused txtime flags
348 : */
349 : struct sock {
350 : /*
351 : * Now struct inet_timewait_sock also uses sock_common, so please just
352 : * don't add nothing before this first member (__sk_common) --acme
353 : */
354 : struct sock_common __sk_common;
355 : #define sk_node __sk_common.skc_node
356 : #define sk_nulls_node __sk_common.skc_nulls_node
357 : #define sk_refcnt __sk_common.skc_refcnt
358 : #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
359 : #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
360 : #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
361 : #endif
362 :
363 : #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
364 : #define sk_dontcopy_end __sk_common.skc_dontcopy_end
365 : #define sk_hash __sk_common.skc_hash
366 : #define sk_portpair __sk_common.skc_portpair
367 : #define sk_num __sk_common.skc_num
368 : #define sk_dport __sk_common.skc_dport
369 : #define sk_addrpair __sk_common.skc_addrpair
370 : #define sk_daddr __sk_common.skc_daddr
371 : #define sk_rcv_saddr __sk_common.skc_rcv_saddr
372 : #define sk_family __sk_common.skc_family
373 : #define sk_state __sk_common.skc_state
374 : #define sk_reuse __sk_common.skc_reuse
375 : #define sk_reuseport __sk_common.skc_reuseport
376 : #define sk_ipv6only __sk_common.skc_ipv6only
377 : #define sk_net_refcnt __sk_common.skc_net_refcnt
378 : #define sk_bound_dev_if __sk_common.skc_bound_dev_if
379 : #define sk_bind_node __sk_common.skc_bind_node
380 : #define sk_prot __sk_common.skc_prot
381 : #define sk_net __sk_common.skc_net
382 : #define sk_v6_daddr __sk_common.skc_v6_daddr
383 : #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
384 : #define sk_cookie __sk_common.skc_cookie
385 : #define sk_incoming_cpu __sk_common.skc_incoming_cpu
386 : #define sk_flags __sk_common.skc_flags
387 : #define sk_rxhash __sk_common.skc_rxhash
388 :
389 : socket_lock_t sk_lock;
390 : atomic_t sk_drops;
391 : int sk_rcvlowat;
392 : struct sk_buff_head sk_error_queue;
393 : struct sk_buff *sk_rx_skb_cache;
394 : struct sk_buff_head sk_receive_queue;
395 : /*
396 : * The backlog queue is special, it is always used with
397 : * the per-socket spinlock held and requires low latency
398 : * access. Therefore we special case it's implementation.
399 : * Note : rmem_alloc is in this structure to fill a hole
400 : * on 64bit arches, not because its logically part of
401 : * backlog.
402 : */
403 : struct {
404 : atomic_t rmem_alloc;
405 : int len;
406 : struct sk_buff *head;
407 : struct sk_buff *tail;
408 : } sk_backlog;
409 : #define sk_rmem_alloc sk_backlog.rmem_alloc
410 :
411 : int sk_forward_alloc;
412 : #ifdef CONFIG_NET_RX_BUSY_POLL
413 : unsigned int sk_ll_usec;
414 : /* ===== mostly read cache line ===== */
415 : unsigned int sk_napi_id;
416 : #endif
417 : int sk_rcvbuf;
418 :
419 : struct sk_filter __rcu *sk_filter;
420 : union {
421 : struct socket_wq __rcu *sk_wq;
422 : /* private: */
423 : struct socket_wq *sk_wq_raw;
424 : /* public: */
425 : };
426 : #ifdef CONFIG_XFRM
427 : struct xfrm_policy __rcu *sk_policy[2];
428 : #endif
429 : struct dst_entry *sk_rx_dst;
430 : struct dst_entry __rcu *sk_dst_cache;
431 : atomic_t sk_omem_alloc;
432 : int sk_sndbuf;
433 :
434 : /* ===== cache line for TX ===== */
435 : int sk_wmem_queued;
436 : refcount_t sk_wmem_alloc;
437 : unsigned long sk_tsq_flags;
438 : union {
439 : struct sk_buff *sk_send_head;
440 : struct rb_root tcp_rtx_queue;
441 : };
442 : struct sk_buff *sk_tx_skb_cache;
443 : struct sk_buff_head sk_write_queue;
444 : __s32 sk_peek_off;
445 : int sk_write_pending;
446 : __u32 sk_dst_pending_confirm;
447 : u32 sk_pacing_status; /* see enum sk_pacing */
448 : long sk_sndtimeo;
449 : struct timer_list sk_timer;
450 : __u32 sk_priority;
451 : __u32 sk_mark;
452 : unsigned long sk_pacing_rate; /* bytes per second */
453 : unsigned long sk_max_pacing_rate;
454 : struct page_frag sk_frag;
455 : netdev_features_t sk_route_caps;
456 : netdev_features_t sk_route_nocaps;
457 : netdev_features_t sk_route_forced_caps;
458 : int sk_gso_type;
459 : unsigned int sk_gso_max_size;
460 : gfp_t sk_allocation;
461 : __u32 sk_txhash;
462 :
463 : /*
464 : * Because of non atomicity rules, all
465 : * changes are protected by socket lock.
466 : */
467 : u8 sk_padding : 1,
468 : sk_kern_sock : 1,
469 : sk_no_check_tx : 1,
470 : sk_no_check_rx : 1,
471 : sk_userlocks : 4;
472 : u8 sk_pacing_shift;
473 : u16 sk_type;
474 : u16 sk_protocol;
475 : u16 sk_gso_max_segs;
476 : unsigned long sk_lingertime;
477 : struct proto *sk_prot_creator;
478 : rwlock_t sk_callback_lock;
479 : int sk_err,
480 : sk_err_soft;
481 : u32 sk_ack_backlog;
482 : u32 sk_max_ack_backlog;
483 : kuid_t sk_uid;
484 : #ifdef CONFIG_NET_RX_BUSY_POLL
485 : u8 sk_prefer_busy_poll;
486 : u16 sk_busy_poll_budget;
487 : #endif
488 : struct pid *sk_peer_pid;
489 : const struct cred *sk_peer_cred;
490 : long sk_rcvtimeo;
491 : ktime_t sk_stamp;
492 : #if BITS_PER_LONG==32
493 : seqlock_t sk_stamp_seq;
494 : #endif
495 : u16 sk_tsflags;
496 : u8 sk_shutdown;
497 : u32 sk_tskey;
498 : atomic_t sk_zckey;
499 :
500 : u8 sk_clockid;
501 : u8 sk_txtime_deadline_mode : 1,
502 : sk_txtime_report_errors : 1,
503 : sk_txtime_unused : 6;
504 :
505 : struct socket *sk_socket;
506 : void *sk_user_data;
507 : #ifdef CONFIG_SECURITY
508 : void *sk_security;
509 : #endif
510 : struct sock_cgroup_data sk_cgrp_data;
511 : struct mem_cgroup *sk_memcg;
512 : void (*sk_state_change)(struct sock *sk);
513 : void (*sk_data_ready)(struct sock *sk);
514 : void (*sk_write_space)(struct sock *sk);
515 : void (*sk_error_report)(struct sock *sk);
516 : int (*sk_backlog_rcv)(struct sock *sk,
517 : struct sk_buff *skb);
518 : #ifdef CONFIG_SOCK_VALIDATE_XMIT
519 : struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
520 : struct net_device *dev,
521 : struct sk_buff *skb);
522 : #endif
523 : void (*sk_destruct)(struct sock *sk);
524 : struct sock_reuseport __rcu *sk_reuseport_cb;
525 : #ifdef CONFIG_BPF_SYSCALL
526 : struct bpf_local_storage __rcu *sk_bpf_storage;
527 : #endif
528 : struct rcu_head sk_rcu;
529 : };
530 :
531 : enum sk_pacing {
532 : SK_PACING_NONE = 0,
533 : SK_PACING_NEEDED = 1,
534 : SK_PACING_FQ = 2,
535 : };
536 :
537 : /* Pointer stored in sk_user_data might not be suitable for copying
538 : * when cloning the socket. For instance, it can point to a reference
539 : * counted object. sk_user_data bottom bit is set if pointer must not
540 : * be copied.
541 : */
542 : #define SK_USER_DATA_NOCOPY 1UL
543 : #define SK_USER_DATA_BPF 2UL /* Managed by BPF */
544 : #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
545 :
546 : /**
547 : * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
548 : * @sk: socket
549 : */
550 4 : static inline bool sk_user_data_is_nocopy(const struct sock *sk)
551 : {
552 4 : return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
553 : }
554 :
555 : #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
556 :
557 : #define rcu_dereference_sk_user_data(sk) \
558 : ({ \
559 : void *__tmp = rcu_dereference(__sk_user_data((sk))); \
560 : (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
561 : })
562 : #define rcu_assign_sk_user_data(sk, ptr) \
563 : ({ \
564 : uintptr_t __tmp = (uintptr_t)(ptr); \
565 : WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
566 : rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
567 : })
568 : #define rcu_assign_sk_user_data_nocopy(sk, ptr) \
569 : ({ \
570 : uintptr_t __tmp = (uintptr_t)(ptr); \
571 : WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
572 : rcu_assign_pointer(__sk_user_data((sk)), \
573 : __tmp | SK_USER_DATA_NOCOPY); \
574 : })
575 :
576 : /*
577 : * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
578 : * or not whether his port will be reused by someone else. SK_FORCE_REUSE
579 : * on a socket means that the socket will reuse everybody else's port
580 : * without looking at the other's sk_reuse value.
581 : */
582 :
583 : #define SK_NO_REUSE 0
584 : #define SK_CAN_REUSE 1
585 : #define SK_FORCE_REUSE 2
586 :
587 : int sk_set_peek_off(struct sock *sk, int val);
588 :
589 3982 : static inline int sk_peek_offset(struct sock *sk, int flags)
590 : {
591 3982 : if (unlikely(flags & MSG_PEEK)) {
592 0 : return READ_ONCE(sk->sk_peek_off);
593 : }
594 :
595 : return 0;
596 : }
597 :
598 3634 : static inline void sk_peek_offset_bwd(struct sock *sk, int val)
599 : {
600 3634 : s32 off = READ_ONCE(sk->sk_peek_off);
601 :
602 3634 : if (unlikely(off >= 0)) {
603 0 : off = max_t(s32, off - val, 0);
604 2816 : WRITE_ONCE(sk->sk_peek_off, off);
605 : }
606 : }
607 :
608 0 : static inline void sk_peek_offset_fwd(struct sock *sk, int val)
609 : {
610 0 : sk_peek_offset_bwd(sk, -val);
611 : }
612 :
613 : /*
614 : * Hashed lists helper routines
615 : */
616 0 : static inline struct sock *sk_entry(const struct hlist_node *node)
617 : {
618 0 : return hlist_entry(node, struct sock, sk_node);
619 : }
620 :
621 0 : static inline struct sock *__sk_head(const struct hlist_head *head)
622 : {
623 0 : return hlist_entry(head->first, struct sock, sk_node);
624 : }
625 :
626 468 : static inline struct sock *sk_head(const struct hlist_head *head)
627 : {
628 468 : return hlist_empty(head) ? NULL : __sk_head(head);
629 : }
630 :
631 0 : static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
632 : {
633 0 : return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
634 : }
635 :
636 0 : static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
637 : {
638 0 : return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
639 : }
640 :
641 0 : static inline struct sock *sk_next(const struct sock *sk)
642 : {
643 0 : return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
644 : }
645 :
646 0 : static inline struct sock *sk_nulls_next(const struct sock *sk)
647 : {
648 0 : return (!is_a_nulls(sk->sk_nulls_node.next)) ?
649 0 : hlist_nulls_entry(sk->sk_nulls_node.next,
650 0 : struct sock, sk_nulls_node) :
651 : NULL;
652 : }
653 :
654 2232 : static inline bool sk_unhashed(const struct sock *sk)
655 : {
656 1462 : return hlist_unhashed(&sk->sk_node);
657 : }
658 :
659 778 : static inline bool sk_hashed(const struct sock *sk)
660 : {
661 746 : return !sk_unhashed(sk);
662 : }
663 :
664 722 : static inline void sk_node_init(struct hlist_node *node)
665 : {
666 722 : node->pprev = NULL;
667 : }
668 :
669 0 : static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
670 : {
671 0 : node->pprev = NULL;
672 : }
673 :
674 714 : static inline void __sk_del_node(struct sock *sk)
675 : {
676 1428 : __hlist_del(&sk->sk_node);
677 : }
678 :
679 : /* NB: equivalent to hlist_del_init_rcu */
680 714 : static inline bool __sk_del_node_init(struct sock *sk)
681 : {
682 714 : if (sk_hashed(sk)) {
683 714 : __sk_del_node(sk);
684 714 : sk_node_init(&sk->sk_node);
685 714 : return true;
686 : }
687 : return false;
688 : }
689 :
690 : /* Grab socket reference count. This operation is valid only
691 : when sk is ALREADY grabbed f.e. it is found in hash table
692 : or a list and the lookup is made under lock preventing hash table
693 : modifications.
694 : */
695 :
696 1008 : static __always_inline void sock_hold(struct sock *sk)
697 : {
698 3691 : refcount_inc(&sk->sk_refcnt);
699 0 : }
700 :
701 : /* Ungrab socket in the context, which assumes that socket refcnt
702 : cannot hit zero, f.e. it is true in context of any socketcall.
703 : */
704 811 : static __always_inline void __sock_put(struct sock *sk)
705 : {
706 1374 : refcount_dec(&sk->sk_refcnt);
707 718 : }
708 :
709 714 : static inline bool sk_del_node_init(struct sock *sk)
710 : {
711 714 : bool rc = __sk_del_node_init(sk);
712 :
713 714 : if (rc) {
714 : /* paranoid for a while -acme */
715 714 : WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
716 714 : __sock_put(sk);
717 : }
718 714 : return rc;
719 : }
720 : #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
721 :
722 8 : static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
723 : {
724 4 : if (sk_hashed(sk)) {
725 4 : hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
726 4 : return true;
727 : }
728 : return false;
729 : }
730 :
731 4 : static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
732 : {
733 4 : bool rc = __sk_nulls_del_node_init_rcu(sk);
734 :
735 4 : if (rc) {
736 : /* paranoid for a while -acme */
737 4 : WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
738 4 : __sock_put(sk);
739 : }
740 4 : return rc;
741 : }
742 :
743 753 : static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
744 : {
745 1506 : hlist_add_head(&sk->sk_node, list);
746 : }
747 :
748 753 : static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
749 : {
750 753 : sock_hold(sk);
751 753 : __sk_add_node(sk, list);
752 753 : }
753 :
754 35 : static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
755 : {
756 35 : sock_hold(sk);
757 35 : if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
758 : sk->sk_family == AF_INET6)
759 : hlist_add_tail_rcu(&sk->sk_node, list);
760 : else
761 35 : hlist_add_head_rcu(&sk->sk_node, list);
762 35 : }
763 :
764 1 : static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
765 : {
766 1 : sock_hold(sk);
767 1 : hlist_add_tail_rcu(&sk->sk_node, list);
768 : }
769 :
770 11 : static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
771 : {
772 22 : hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
773 : }
774 :
775 : static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
776 : {
777 : hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
778 : }
779 :
780 : static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
781 : {
782 : sock_hold(sk);
783 : __sk_nulls_add_node_rcu(sk, list);
784 : }
785 :
786 4 : static inline void __sk_del_bind_node(struct sock *sk)
787 : {
788 7 : __hlist_del(&sk->sk_bind_node);
789 : }
790 :
791 14 : static inline void sk_add_bind_node(struct sock *sk,
792 : struct hlist_head *list)
793 : {
794 18 : hlist_add_head(&sk->sk_bind_node, list);
795 7 : }
796 :
797 : #define sk_for_each(__sk, list) \
798 : hlist_for_each_entry(__sk, list, sk_node)
799 : #define sk_for_each_rcu(__sk, list) \
800 : hlist_for_each_entry_rcu(__sk, list, sk_node)
801 : #define sk_nulls_for_each(__sk, node, list) \
802 : hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
803 : #define sk_nulls_for_each_rcu(__sk, node, list) \
804 : hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
805 : #define sk_for_each_from(__sk) \
806 : hlist_for_each_entry_from(__sk, sk_node)
807 : #define sk_nulls_for_each_from(__sk, node) \
808 : if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
809 : hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
810 : #define sk_for_each_safe(__sk, tmp, list) \
811 : hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
812 : #define sk_for_each_bound(__sk, list) \
813 : hlist_for_each_entry(__sk, list, sk_bind_node)
814 :
815 : /**
816 : * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
817 : * @tpos: the type * to use as a loop cursor.
818 : * @pos: the &struct hlist_node to use as a loop cursor.
819 : * @head: the head for your list.
820 : * @offset: offset of hlist_node within the struct.
821 : *
822 : */
823 : #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
824 : for (pos = rcu_dereference(hlist_first_rcu(head)); \
825 : pos != NULL && \
826 : ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
827 : pos = rcu_dereference(hlist_next_rcu(pos)))
828 :
829 : static inline struct user_namespace *sk_user_ns(struct sock *sk)
830 : {
831 : /* Careful only use this in a context where these parameters
832 : * can not change and must all be valid, such as recvmsg from
833 : * userspace.
834 : */
835 : return sk->sk_socket->file->f_cred->user_ns;
836 : }
837 :
838 : /* Sock flags */
839 : enum sock_flags {
840 : SOCK_DEAD,
841 : SOCK_DONE,
842 : SOCK_URGINLINE,
843 : SOCK_KEEPOPEN,
844 : SOCK_LINGER,
845 : SOCK_DESTROY,
846 : SOCK_BROADCAST,
847 : SOCK_TIMESTAMP,
848 : SOCK_ZAPPED,
849 : SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
850 : SOCK_DBG, /* %SO_DEBUG setting */
851 : SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
852 : SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
853 : SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
854 : SOCK_MEMALLOC, /* VM depends on this socket for swapping */
855 : SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
856 : SOCK_FASYNC, /* fasync() active */
857 : SOCK_RXQ_OVFL,
858 : SOCK_ZEROCOPY, /* buffers from userspace */
859 : SOCK_WIFI_STATUS, /* push wifi status to userspace */
860 : SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
861 : * Will use last 4 bytes of packet sent from
862 : * user-space instead.
863 : */
864 : SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
865 : SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
866 : SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
867 : SOCK_TXTIME,
868 : SOCK_XDP, /* XDP is attached */
869 : SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
870 : };
871 :
872 : #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
873 :
874 : static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
875 : {
876 : nsk->sk_flags = osk->sk_flags;
877 : }
878 :
879 1634 : static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
880 : {
881 1587 : __set_bit(flag, &sk->sk_flags);
882 4 : }
883 :
884 14 : static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
885 : {
886 8 : __clear_bit(flag, &sk->sk_flags);
887 6 : }
888 :
889 10 : static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
890 : int valbool)
891 : {
892 10 : if (valbool)
893 4 : sock_set_flag(sk, bit);
894 : else
895 6 : sock_reset_flag(sk, bit);
896 10 : }
897 :
898 22190 : static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
899 : {
900 14928 : return test_bit(flag, &sk->sk_flags);
901 : }
902 :
903 : #ifdef CONFIG_NET
904 : DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
905 5462 : static inline int sk_memalloc_socks(void)
906 : {
907 5604 : return static_branch_unlikely(&memalloc_socks_key);
908 : }
909 :
910 : void __receive_sock(struct file *file);
911 : #else
912 :
913 : static inline int sk_memalloc_socks(void)
914 : {
915 : return 0;
916 : }
917 :
918 : static inline void __receive_sock(struct file *file)
919 : { }
920 : #endif
921 :
922 426 : static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
923 : {
924 426 : return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
925 : }
926 :
927 4 : static inline void sk_acceptq_removed(struct sock *sk)
928 : {
929 4 : WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
930 : }
931 :
932 4 : static inline void sk_acceptq_added(struct sock *sk)
933 : {
934 4 : WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
935 4 : }
936 :
937 8 : static inline bool sk_acceptq_is_full(const struct sock *sk)
938 : {
939 8 : return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
940 : }
941 :
942 : /*
943 : * Compute minimal free write space needed to queue new packets.
944 : */
945 685 : static inline int sk_stream_min_wspace(const struct sock *sk)
946 : {
947 685 : return READ_ONCE(sk->sk_wmem_queued) >> 1;
948 : }
949 :
950 685 : static inline int sk_stream_wspace(const struct sock *sk)
951 : {
952 685 : return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
953 : }
954 :
955 1139 : static inline void sk_wmem_queued_add(struct sock *sk, int val)
956 : {
957 728 : WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
958 : }
959 :
960 : void sk_stream_write_space(struct sock *sk);
961 :
962 : /* OOB backlog add */
963 142 : static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
964 : {
965 : /* dont let skb dst not refcounted, we are going to leave rcu lock */
966 142 : skb_dst_force(skb);
967 :
968 142 : if (!sk->sk_backlog.tail)
969 141 : WRITE_ONCE(sk->sk_backlog.head, skb);
970 : else
971 1 : sk->sk_backlog.tail->next = skb;
972 :
973 142 : WRITE_ONCE(sk->sk_backlog.tail, skb);
974 142 : skb->next = NULL;
975 142 : }
976 :
977 : /*
978 : * Take into account size of receive queue and backlog queue
979 : * Do not take into account this skb truesize,
980 : * to allow even a single big packet to come.
981 : */
982 142 : static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
983 : {
984 284 : unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
985 :
986 142 : return qsize > limit;
987 : }
988 :
989 : /* The per-socket spinlock must be held here. */
990 142 : static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
991 : unsigned int limit)
992 : {
993 142 : if (sk_rcvqueues_full(sk, limit))
994 : return -ENOBUFS;
995 :
996 : /*
997 : * If the skb was allocated from pfmemalloc reserves, only
998 : * allow SOCK_MEMALLOC sockets to use it as this socket is
999 : * helping free memory
1000 : */
1001 142 : if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1002 : return -ENOMEM;
1003 :
1004 142 : __sk_add_backlog(sk, skb);
1005 142 : sk->sk_backlog.len += skb->truesize;
1006 142 : return 0;
1007 : }
1008 :
1009 : int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1010 :
1011 142 : static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1012 : {
1013 142 : if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1014 0 : return __sk_backlog_rcv(sk, skb);
1015 :
1016 142 : return sk->sk_backlog_rcv(sk, skb);
1017 : }
1018 :
1019 430 : static inline void sk_incoming_cpu_update(struct sock *sk)
1020 : {
1021 430 : int cpu = raw_smp_processor_id();
1022 :
1023 430 : if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1024 430 : WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1025 : }
1026 :
1027 0 : static inline void sock_rps_record_flow_hash(__u32 hash)
1028 : {
1029 : #ifdef CONFIG_RPS
1030 0 : struct rps_sock_flow_table *sock_flow_table;
1031 :
1032 0 : rcu_read_lock();
1033 0 : sock_flow_table = rcu_dereference(rps_sock_flow_table);
1034 0 : rps_record_sock_flow(sock_flow_table, hash);
1035 0 : rcu_read_unlock();
1036 : #endif
1037 0 : }
1038 :
1039 632 : static inline void sock_rps_record_flow(const struct sock *sk)
1040 : {
1041 : #ifdef CONFIG_RPS
1042 632 : if (static_branch_unlikely(&rfs_needed)) {
1043 : /* Reading sk->sk_rxhash might incur an expensive cache line
1044 : * miss.
1045 : *
1046 : * TCP_ESTABLISHED does cover almost all states where RFS
1047 : * might be useful, and is cheaper [1] than testing :
1048 : * IPv4: inet_sk(sk)->inet_daddr
1049 : * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1050 : * OR an additional socket flag
1051 : * [1] : sk_state and sk_prot are in the same cache line.
1052 : */
1053 0 : if (sk->sk_state == TCP_ESTABLISHED)
1054 0 : sock_rps_record_flow_hash(sk->sk_rxhash);
1055 : }
1056 : #endif
1057 632 : }
1058 :
1059 419 : static inline void sock_rps_save_rxhash(struct sock *sk,
1060 : const struct sk_buff *skb)
1061 : {
1062 : #ifdef CONFIG_RPS
1063 419 : if (unlikely(sk->sk_rxhash != skb->hash))
1064 0 : sk->sk_rxhash = skb->hash;
1065 : #endif
1066 : }
1067 :
1068 0 : static inline void sock_rps_reset_rxhash(struct sock *sk)
1069 : {
1070 : #ifdef CONFIG_RPS
1071 0 : sk->sk_rxhash = 0;
1072 : #endif
1073 : }
1074 :
1075 : #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1076 : ({ int __rc; \
1077 : release_sock(__sk); \
1078 : __rc = __condition; \
1079 : if (!__rc) { \
1080 : *(__timeo) = wait_woken(__wait, \
1081 : TASK_INTERRUPTIBLE, \
1082 : *(__timeo)); \
1083 : } \
1084 : sched_annotate_sleep(); \
1085 : lock_sock(__sk); \
1086 : __rc = __condition; \
1087 : __rc; \
1088 : })
1089 :
1090 : int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1091 : int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1092 : void sk_stream_wait_close(struct sock *sk, long timeo_p);
1093 : int sk_stream_error(struct sock *sk, int flags, int err);
1094 : void sk_stream_kill_queues(struct sock *sk);
1095 : void sk_set_memalloc(struct sock *sk);
1096 : void sk_clear_memalloc(struct sock *sk);
1097 :
1098 : void __sk_flush_backlog(struct sock *sk);
1099 :
1100 0 : static inline bool sk_flush_backlog(struct sock *sk)
1101 : {
1102 0 : if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1103 0 : __sk_flush_backlog(sk);
1104 0 : return true;
1105 : }
1106 : return false;
1107 : }
1108 :
1109 : int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1110 :
1111 : struct request_sock_ops;
1112 : struct timewait_sock_ops;
1113 : struct inet_hashinfo;
1114 : struct raw_hashinfo;
1115 : struct smc_hashinfo;
1116 : struct module;
1117 :
1118 : /*
1119 : * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1120 : * un-modified. Special care is taken when initializing object to zero.
1121 : */
1122 777 : static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1123 : {
1124 777 : if (offsetof(struct sock, sk_node.next) != 0)
1125 777 : memset(sk, 0, offsetof(struct sock, sk_node.next));
1126 777 : memset(&sk->sk_node.pprev, 0,
1127 : size - offsetof(struct sock, sk_node.pprev));
1128 777 : }
1129 :
1130 : /* Networking protocol blocks we attach to sockets.
1131 : * socket layer -> transport layer interface
1132 : */
1133 : struct proto {
1134 : void (*close)(struct sock *sk,
1135 : long timeout);
1136 : int (*pre_connect)(struct sock *sk,
1137 : struct sockaddr *uaddr,
1138 : int addr_len);
1139 : int (*connect)(struct sock *sk,
1140 : struct sockaddr *uaddr,
1141 : int addr_len);
1142 : int (*disconnect)(struct sock *sk, int flags);
1143 :
1144 : struct sock * (*accept)(struct sock *sk, int flags, int *err,
1145 : bool kern);
1146 :
1147 : int (*ioctl)(struct sock *sk, int cmd,
1148 : unsigned long arg);
1149 : int (*init)(struct sock *sk);
1150 : void (*destroy)(struct sock *sk);
1151 : void (*shutdown)(struct sock *sk, int how);
1152 : int (*setsockopt)(struct sock *sk, int level,
1153 : int optname, sockptr_t optval,
1154 : unsigned int optlen);
1155 : int (*getsockopt)(struct sock *sk, int level,
1156 : int optname, char __user *optval,
1157 : int __user *option);
1158 : void (*keepalive)(struct sock *sk, int valbool);
1159 : #ifdef CONFIG_COMPAT
1160 : int (*compat_ioctl)(struct sock *sk,
1161 : unsigned int cmd, unsigned long arg);
1162 : #endif
1163 : int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1164 : size_t len);
1165 : int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1166 : size_t len, int noblock, int flags,
1167 : int *addr_len);
1168 : int (*sendpage)(struct sock *sk, struct page *page,
1169 : int offset, size_t size, int flags);
1170 : int (*bind)(struct sock *sk,
1171 : struct sockaddr *addr, int addr_len);
1172 : int (*bind_add)(struct sock *sk,
1173 : struct sockaddr *addr, int addr_len);
1174 :
1175 : int (*backlog_rcv) (struct sock *sk,
1176 : struct sk_buff *skb);
1177 : bool (*bpf_bypass_getsockopt)(int level,
1178 : int optname);
1179 :
1180 : void (*release_cb)(struct sock *sk);
1181 :
1182 : /* Keeping track of sk's, looking them up, and port selection methods. */
1183 : int (*hash)(struct sock *sk);
1184 : void (*unhash)(struct sock *sk);
1185 : void (*rehash)(struct sock *sk);
1186 : int (*get_port)(struct sock *sk, unsigned short snum);
1187 :
1188 : /* Keeping track of sockets in use */
1189 : #ifdef CONFIG_PROC_FS
1190 : unsigned int inuse_idx;
1191 : #endif
1192 :
1193 : bool (*stream_memory_free)(const struct sock *sk, int wake);
1194 : bool (*stream_memory_read)(const struct sock *sk);
1195 : /* Memory pressure */
1196 : void (*enter_memory_pressure)(struct sock *sk);
1197 : void (*leave_memory_pressure)(struct sock *sk);
1198 : atomic_long_t *memory_allocated; /* Current allocated memory. */
1199 : struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1200 : /*
1201 : * Pressure flag: try to collapse.
1202 : * Technical note: it is used by multiple contexts non atomically.
1203 : * All the __sk_mem_schedule() is of this nature: accounting
1204 : * is strict, actions are advisory and have some latency.
1205 : */
1206 : unsigned long *memory_pressure;
1207 : long *sysctl_mem;
1208 :
1209 : int *sysctl_wmem;
1210 : int *sysctl_rmem;
1211 : u32 sysctl_wmem_offset;
1212 : u32 sysctl_rmem_offset;
1213 :
1214 : int max_header;
1215 : bool no_autobind;
1216 :
1217 : struct kmem_cache *slab;
1218 : unsigned int obj_size;
1219 : slab_flags_t slab_flags;
1220 : unsigned int useroffset; /* Usercopy region offset */
1221 : unsigned int usersize; /* Usercopy region size */
1222 :
1223 : struct percpu_counter *orphan_count;
1224 :
1225 : struct request_sock_ops *rsk_prot;
1226 : struct timewait_sock_ops *twsk_prot;
1227 :
1228 : union {
1229 : struct inet_hashinfo *hashinfo;
1230 : struct udp_table *udp_table;
1231 : struct raw_hashinfo *raw_hash;
1232 : struct smc_hashinfo *smc_hash;
1233 : } h;
1234 :
1235 : struct module *owner;
1236 :
1237 : char name[32];
1238 :
1239 : struct list_head node;
1240 : #ifdef SOCK_REFCNT_DEBUG
1241 : atomic_t socks;
1242 : #endif
1243 : int (*diag_destroy)(struct sock *sk, int err);
1244 : } __randomize_layout;
1245 :
1246 : int proto_register(struct proto *prot, int alloc_slab);
1247 : void proto_unregister(struct proto *prot);
1248 : int sock_load_diag_module(int family, int protocol);
1249 :
1250 : #ifdef SOCK_REFCNT_DEBUG
1251 : static inline void sk_refcnt_debug_inc(struct sock *sk)
1252 : {
1253 : atomic_inc(&sk->sk_prot->socks);
1254 : }
1255 :
1256 : static inline void sk_refcnt_debug_dec(struct sock *sk)
1257 : {
1258 : atomic_dec(&sk->sk_prot->socks);
1259 : printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1260 : sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1261 : }
1262 :
1263 : static inline void sk_refcnt_debug_release(const struct sock *sk)
1264 : {
1265 : if (refcount_read(&sk->sk_refcnt) != 1)
1266 : printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1267 : sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1268 : }
1269 : #else /* SOCK_REFCNT_DEBUG */
1270 : #define sk_refcnt_debug_inc(sk) do { } while (0)
1271 : #define sk_refcnt_debug_dec(sk) do { } while (0)
1272 : #define sk_refcnt_debug_release(sk) do { } while (0)
1273 : #endif /* SOCK_REFCNT_DEBUG */
1274 :
1275 : INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1276 :
1277 1046 : static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1278 : {
1279 1046 : if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1280 : return false;
1281 :
1282 : #ifdef CONFIG_INET
1283 1046 : return sk->sk_prot->stream_memory_free ?
1284 1046 : INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1285 : tcp_stream_memory_free,
1286 2092 : sk, wake) : true;
1287 : #else
1288 : return sk->sk_prot->stream_memory_free ?
1289 : sk->sk_prot->stream_memory_free(sk, wake) : true;
1290 : #endif
1291 : }
1292 :
1293 361 : static inline bool sk_stream_memory_free(const struct sock *sk)
1294 : {
1295 361 : return __sk_stream_memory_free(sk, 0);
1296 : }
1297 :
1298 685 : static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1299 : {
1300 1370 : return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1301 685 : __sk_stream_memory_free(sk, wake);
1302 : }
1303 :
1304 : static inline bool sk_stream_is_writeable(const struct sock *sk)
1305 : {
1306 : return __sk_stream_is_writeable(sk, 0);
1307 : }
1308 :
1309 0 : static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1310 : struct cgroup *ancestor)
1311 : {
1312 : #ifdef CONFIG_SOCK_CGROUP_DATA
1313 : return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1314 : ancestor);
1315 : #else
1316 0 : return -ENOTSUPP;
1317 : #endif
1318 : }
1319 :
1320 0 : static inline bool sk_has_memory_pressure(const struct sock *sk)
1321 : {
1322 0 : return sk->sk_prot->memory_pressure != NULL;
1323 : }
1324 :
1325 17 : static inline bool sk_under_memory_pressure(const struct sock *sk)
1326 : {
1327 17 : if (!sk->sk_prot->memory_pressure)
1328 : return false;
1329 :
1330 17 : if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1331 : mem_cgroup_under_socket_pressure(sk->sk_memcg))
1332 : return true;
1333 :
1334 17 : return !!*sk->sk_prot->memory_pressure;
1335 : }
1336 :
1337 : static inline long
1338 0 : sk_memory_allocated(const struct sock *sk)
1339 : {
1340 0 : return atomic_long_read(sk->sk_prot->memory_allocated);
1341 : }
1342 :
1343 : static inline long
1344 25 : sk_memory_allocated_add(struct sock *sk, int amt)
1345 : {
1346 25 : return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1347 : }
1348 :
1349 : static inline void
1350 17 : sk_memory_allocated_sub(struct sock *sk, int amt)
1351 : {
1352 17 : atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1353 17 : }
1354 :
1355 : #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1356 :
1357 4 : static inline void sk_sockets_allocated_dec(struct sock *sk)
1358 : {
1359 4 : percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1360 : SK_ALLOC_PERCPU_COUNTER_BATCH);
1361 4 : }
1362 :
1363 7 : static inline void sk_sockets_allocated_inc(struct sock *sk)
1364 : {
1365 7 : percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1366 : SK_ALLOC_PERCPU_COUNTER_BATCH);
1367 7 : }
1368 :
1369 : static inline u64
1370 0 : sk_sockets_allocated_read_positive(struct sock *sk)
1371 : {
1372 0 : return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1373 : }
1374 :
1375 : static inline int
1376 0 : proto_sockets_allocated_sum_positive(struct proto *prot)
1377 : {
1378 0 : return percpu_counter_sum_positive(prot->sockets_allocated);
1379 : }
1380 :
1381 : static inline long
1382 0 : proto_memory_allocated(struct proto *prot)
1383 : {
1384 0 : return atomic_long_read(prot->memory_allocated);
1385 : }
1386 :
1387 : static inline bool
1388 0 : proto_memory_pressure(struct proto *prot)
1389 : {
1390 0 : if (!prot->memory_pressure)
1391 : return false;
1392 0 : return !!*prot->memory_pressure;
1393 : }
1394 :
1395 :
1396 : #ifdef CONFIG_PROC_FS
1397 : /* Called with local bh disabled */
1398 : void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1399 : int sock_prot_inuse_get(struct net *net, struct proto *proto);
1400 : int sock_inuse_get(struct net *net);
1401 : #else
1402 : static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1403 : int inc)
1404 : {
1405 : }
1406 : #endif
1407 :
1408 :
1409 : /* With per-bucket locks this operation is not-atomic, so that
1410 : * this version is not worse.
1411 : */
1412 0 : static inline int __sk_prot_rehash(struct sock *sk)
1413 : {
1414 0 : sk->sk_prot->unhash(sk);
1415 0 : return sk->sk_prot->hash(sk);
1416 : }
1417 :
1418 : /* About 10 seconds */
1419 : #define SOCK_DESTROY_TIME (10*HZ)
1420 :
1421 : /* Sockets 0-1023 can't be bound to unless you are superuser */
1422 : #define PROT_SOCK 1024
1423 :
1424 : #define SHUTDOWN_MASK 3
1425 : #define RCV_SHUTDOWN 1
1426 : #define SEND_SHUTDOWN 2
1427 :
1428 : #define SOCK_SNDBUF_LOCK 1
1429 : #define SOCK_RCVBUF_LOCK 2
1430 : #define SOCK_BINDADDR_LOCK 4
1431 : #define SOCK_BINDPORT_LOCK 8
1432 :
1433 : struct socket_alloc {
1434 : struct socket socket;
1435 : struct inode vfs_inode;
1436 : };
1437 :
1438 1324 : static inline struct socket *SOCKET_I(struct inode *inode)
1439 : {
1440 1324 : return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1441 : }
1442 :
1443 2017 : static inline struct inode *SOCK_INODE(struct socket *socket)
1444 : {
1445 1930 : return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1446 : }
1447 :
1448 : /*
1449 : * Functions for memory accounting
1450 : */
1451 : int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1452 : int __sk_mem_schedule(struct sock *sk, int size, int kind);
1453 : void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1454 : void __sk_mem_reclaim(struct sock *sk, int amount);
1455 :
1456 : /* We used to have PAGE_SIZE here, but systems with 64KB pages
1457 : * do not necessarily have 16x time more memory than 4KB ones.
1458 : */
1459 : #define SK_MEM_QUANTUM 4096
1460 : #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1461 : #define SK_MEM_SEND 0
1462 : #define SK_MEM_RECV 1
1463 :
1464 : /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1465 14 : static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1466 : {
1467 14 : long val = sk->sk_prot->sysctl_mem[index];
1468 :
1469 : #if PAGE_SIZE > SK_MEM_QUANTUM
1470 : val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1471 : #elif PAGE_SIZE < SK_MEM_QUANTUM
1472 : val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1473 : #endif
1474 14 : return val;
1475 : }
1476 :
1477 25 : static inline int sk_mem_pages(int amt)
1478 : {
1479 25 : return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1480 : }
1481 :
1482 4651 : static inline bool sk_has_account(struct sock *sk)
1483 : {
1484 : /* return true if protocol supports memory accounting */
1485 4651 : return !!sk->sk_prot->memory_allocated;
1486 : }
1487 :
1488 555 : static inline bool sk_wmem_schedule(struct sock *sk, int size)
1489 : {
1490 555 : if (!sk_has_account(sk))
1491 : return true;
1492 571 : return size <= sk->sk_forward_alloc ||
1493 8 : __sk_mem_schedule(sk, size, SK_MEM_SEND);
1494 : }
1495 :
1496 : static inline bool
1497 7 : sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1498 : {
1499 7 : if (!sk_has_account(sk))
1500 : return true;
1501 5 : return size <= sk->sk_forward_alloc ||
1502 12 : __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1503 0 : skb_pfmemalloc(skb);
1504 : }
1505 :
1506 69 : static inline void sk_mem_reclaim(struct sock *sk)
1507 : {
1508 69 : if (!sk_has_account(sk))
1509 : return;
1510 69 : if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1511 13 : __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1512 : }
1513 :
1514 1375 : static inline void sk_mem_reclaim_partial(struct sock *sk)
1515 : {
1516 1375 : if (!sk_has_account(sk))
1517 : return;
1518 5 : if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1519 4 : __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1520 : }
1521 :
1522 1529 : static inline void sk_mem_charge(struct sock *sk, int size)
1523 : {
1524 1050 : if (!sk_has_account(sk))
1525 : return;
1526 845 : sk->sk_forward_alloc -= size;
1527 : }
1528 :
1529 1116 : static inline void sk_mem_uncharge(struct sock *sk, int size)
1530 : {
1531 1116 : if (!sk_has_account(sk))
1532 : return;
1533 432 : sk->sk_forward_alloc += size;
1534 :
1535 : /* Avoid a possible overflow.
1536 : * TCP send queues can make this happen, if sk_mem_reclaim()
1537 : * is not called and more than 2 GBytes are released at once.
1538 : *
1539 : * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1540 : * no need to hold that much forward allocation anyway.
1541 : */
1542 432 : if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1543 0 : __sk_mem_reclaim(sk, 1 << 20);
1544 : }
1545 :
1546 : DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1547 364 : static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1548 : {
1549 364 : sk_wmem_queued_add(sk, -skb->truesize);
1550 364 : sk_mem_uncharge(sk, skb->truesize);
1551 364 : if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1552 0 : !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1553 0 : skb_ext_reset(skb);
1554 0 : skb_zcopy_clear(skb, true);
1555 0 : sk->sk_tx_skb_cache = skb;
1556 0 : return;
1557 : }
1558 364 : __kfree_skb(skb);
1559 : }
1560 :
1561 1161 : static inline void sock_release_ownership(struct sock *sk)
1562 : {
1563 1161 : if (sk->sk_lock.owned) {
1564 1121 : sk->sk_lock.owned = 0;
1565 :
1566 : /* The sk_lock has mutex_unlock() semantics: */
1567 1121 : mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1568 : }
1569 1161 : }
1570 :
1571 : /*
1572 : * Macro so as to not evaluate some arguments when
1573 : * lockdep is not enabled.
1574 : *
1575 : * Mark both the sk_lock and the sk_lock.slock as a
1576 : * per-address-family lock class.
1577 : */
1578 : #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1579 : do { \
1580 : sk->sk_lock.owned = 0; \
1581 : init_waitqueue_head(&sk->sk_lock.wq); \
1582 : spin_lock_init(&(sk)->sk_lock.slock); \
1583 : debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1584 : sizeof((sk)->sk_lock)); \
1585 : lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1586 : (skey), (sname)); \
1587 : lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1588 : } while (0)
1589 :
1590 2293 : static inline bool lockdep_sock_is_held(const struct sock *sk)
1591 : {
1592 2293 : return lockdep_is_held(&sk->sk_lock) ||
1593 1129 : lockdep_is_held(&sk->sk_lock.slock);
1594 : }
1595 :
1596 : void lock_sock_nested(struct sock *sk, int subclass);
1597 :
1598 1121 : static inline void lock_sock(struct sock *sk)
1599 : {
1600 1121 : lock_sock_nested(sk, 0);
1601 5 : }
1602 :
1603 : void __lock_sock(struct sock *sk);
1604 : void __release_sock(struct sock *sk);
1605 : void release_sock(struct sock *sk);
1606 :
1607 : /* BH context may only use the following locking interface. */
1608 : #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1609 : #define bh_lock_sock_nested(__sk) \
1610 : spin_lock_nested(&((__sk)->sk_lock.slock), \
1611 : SINGLE_DEPTH_NESTING)
1612 : #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1613 :
1614 : bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1615 :
1616 : /**
1617 : * unlock_sock_fast - complement of lock_sock_fast
1618 : * @sk: socket
1619 : * @slow: slow mode
1620 : *
1621 : * fast unlock socket for user context.
1622 : * If slow mode is on, we call regular release_sock()
1623 : */
1624 39 : static inline void unlock_sock_fast(struct sock *sk, bool slow)
1625 : __releases(&sk->sk_lock.slock)
1626 : {
1627 39 : if (slow) {
1628 0 : release_sock(sk);
1629 0 : __release(&sk->sk_lock.slock);
1630 : } else {
1631 39 : spin_unlock_bh(&sk->sk_lock.slock);
1632 : }
1633 39 : }
1634 :
1635 : /* Used by processes to "lock" a socket state, so that
1636 : * interrupts and bottom half handlers won't change it
1637 : * from under us. It essentially blocks any incoming
1638 : * packets, so that we won't get any new data or any
1639 : * packets that change the state of the socket.
1640 : *
1641 : * While locked, BH processing will add new packets to
1642 : * the backlog queue. This queue is processed by the
1643 : * owner of the socket lock right before it is released.
1644 : *
1645 : * Since ~2.3.5 it is also exclusive sleep lock serializing
1646 : * accesses from user process context.
1647 : */
1648 :
1649 945 : static inline void sock_owned_by_me(const struct sock *sk)
1650 : {
1651 : #ifdef CONFIG_LOCKDEP
1652 1890 : WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1653 : #endif
1654 945 : }
1655 :
1656 502 : static inline bool sock_owned_by_user(const struct sock *sk)
1657 : {
1658 502 : sock_owned_by_me(sk);
1659 502 : return sk->sk_lock.owned;
1660 : }
1661 :
1662 : static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1663 : {
1664 : return sk->sk_lock.owned;
1665 : }
1666 :
1667 : /* no reclassification while locks are held */
1668 : static inline bool sock_allow_reclassification(const struct sock *csk)
1669 : {
1670 : struct sock *sk = (struct sock *)csk;
1671 :
1672 : return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1673 : }
1674 :
1675 : struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1676 : struct proto *prot, int kern);
1677 : void sk_free(struct sock *sk);
1678 : void sk_destruct(struct sock *sk);
1679 : struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1680 : void sk_free_unlock_clone(struct sock *sk);
1681 :
1682 : struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1683 : gfp_t priority);
1684 : void __sock_wfree(struct sk_buff *skb);
1685 : void sock_wfree(struct sk_buff *skb);
1686 : struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1687 : gfp_t priority);
1688 : void skb_orphan_partial(struct sk_buff *skb);
1689 : void sock_rfree(struct sk_buff *skb);
1690 : void sock_efree(struct sk_buff *skb);
1691 : #ifdef CONFIG_INET
1692 : void sock_edemux(struct sk_buff *skb);
1693 : void sock_pfree(struct sk_buff *skb);
1694 : #else
1695 : #define sock_edemux sock_efree
1696 : #endif
1697 :
1698 : int sock_setsockopt(struct socket *sock, int level, int op,
1699 : sockptr_t optval, unsigned int optlen);
1700 :
1701 : int sock_getsockopt(struct socket *sock, int level, int op,
1702 : char __user *optval, int __user *optlen);
1703 : int sock_gettstamp(struct socket *sock, void __user *userstamp,
1704 : bool timeval, bool time32);
1705 : struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1706 : int noblock, int *errcode);
1707 : struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1708 : unsigned long data_len, int noblock,
1709 : int *errcode, int max_page_order);
1710 : void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1711 : void sock_kfree_s(struct sock *sk, void *mem, int size);
1712 : void sock_kzfree_s(struct sock *sk, void *mem, int size);
1713 : void sk_send_sigurg(struct sock *sk);
1714 :
1715 : struct sockcm_cookie {
1716 : u64 transmit_time;
1717 : u32 mark;
1718 : u16 tsflags;
1719 : };
1720 :
1721 413 : static inline void sockcm_init(struct sockcm_cookie *sockc,
1722 : const struct sock *sk)
1723 : {
1724 413 : *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1725 : }
1726 :
1727 : int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1728 : struct sockcm_cookie *sockc);
1729 : int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1730 : struct sockcm_cookie *sockc);
1731 :
1732 : /*
1733 : * Functions to fill in entries in struct proto_ops when a protocol
1734 : * does not implement a particular function.
1735 : */
1736 : int sock_no_bind(struct socket *, struct sockaddr *, int);
1737 : int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1738 : int sock_no_socketpair(struct socket *, struct socket *);
1739 : int sock_no_accept(struct socket *, struct socket *, int, bool);
1740 : int sock_no_getname(struct socket *, struct sockaddr *, int);
1741 : int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1742 : int sock_no_listen(struct socket *, int);
1743 : int sock_no_shutdown(struct socket *, int);
1744 : int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1745 : int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1746 : int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1747 : int sock_no_mmap(struct file *file, struct socket *sock,
1748 : struct vm_area_struct *vma);
1749 : ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1750 : size_t size, int flags);
1751 : ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1752 : int offset, size_t size, int flags);
1753 :
1754 : /*
1755 : * Functions to fill in entries in struct proto_ops when a protocol
1756 : * uses the inet style.
1757 : */
1758 : int sock_common_getsockopt(struct socket *sock, int level, int optname,
1759 : char __user *optval, int __user *optlen);
1760 : int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1761 : int flags);
1762 : int sock_common_setsockopt(struct socket *sock, int level, int optname,
1763 : sockptr_t optval, unsigned int optlen);
1764 :
1765 : void sk_common_release(struct sock *sk);
1766 :
1767 : /*
1768 : * Default socket callbacks and setup code
1769 : */
1770 :
1771 : /* Initialise core socket variables */
1772 : void sock_init_data(struct socket *sock, struct sock *sk);
1773 :
1774 : /*
1775 : * Socket reference counting postulates.
1776 : *
1777 : * * Each user of socket SHOULD hold a reference count.
1778 : * * Each access point to socket (an hash table bucket, reference from a list,
1779 : * running timer, skb in flight MUST hold a reference count.
1780 : * * When reference count hits 0, it means it will never increase back.
1781 : * * When reference count hits 0, it means that no references from
1782 : * outside exist to this socket and current process on current CPU
1783 : * is last user and may/should destroy this socket.
1784 : * * sk_free is called from any context: process, BH, IRQ. When
1785 : * it is called, socket has no references from outside -> sk_free
1786 : * may release descendant resources allocated by the socket, but
1787 : * to the time when it is called, socket is NOT referenced by any
1788 : * hash tables, lists etc.
1789 : * * Packets, delivered from outside (from network or from another process)
1790 : * and enqueued on receive/error queues SHOULD NOT grab reference count,
1791 : * when they sit in queue. Otherwise, packets will leak to hole, when
1792 : * socket is looked up by one cpu and unhasing is made by another CPU.
1793 : * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1794 : * (leak to backlog). Packet socket does all the processing inside
1795 : * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1796 : * use separate SMP lock, so that they are prone too.
1797 : */
1798 :
1799 : /* Ungrab socket and destroy it, if it was the last reference. */
1800 3310 : static inline void sock_put(struct sock *sk)
1801 : {
1802 3310 : if (refcount_dec_and_test(&sk->sk_refcnt))
1803 695 : sk_free(sk);
1804 3311 : }
1805 : /* Generic version of sock_put(), dealing with all sockets
1806 : * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1807 : */
1808 : void sock_gen_put(struct sock *sk);
1809 :
1810 : int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1811 : unsigned int trim_cap, bool refcounted);
1812 : static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1813 : const int nested)
1814 : {
1815 : return __sk_receive_skb(sk, skb, nested, 1, true);
1816 : }
1817 :
1818 0 : static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1819 : {
1820 : /* sk_tx_queue_mapping accept only upto a 16-bit value */
1821 0 : if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1822 : return;
1823 0 : sk->sk_tx_queue_mapping = tx_queue;
1824 : }
1825 :
1826 : #define NO_QUEUE_MAPPING USHRT_MAX
1827 :
1828 907 : static inline void sk_tx_queue_clear(struct sock *sk)
1829 : {
1830 66 : sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1831 833 : }
1832 :
1833 0 : static inline int sk_tx_queue_get(const struct sock *sk)
1834 : {
1835 0 : if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1836 0 : return sk->sk_tx_queue_mapping;
1837 :
1838 : return -1;
1839 : }
1840 :
1841 420 : static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1842 : {
1843 : #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1844 420 : if (skb_rx_queue_recorded(skb)) {
1845 420 : u16 rx_queue = skb_get_rx_queue(skb);
1846 :
1847 420 : if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1848 : return;
1849 :
1850 420 : sk->sk_rx_queue_mapping = rx_queue;
1851 : }
1852 : #endif
1853 : }
1854 :
1855 833 : static inline void sk_rx_queue_clear(struct sock *sk)
1856 : {
1857 : #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1858 833 : sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1859 : #endif
1860 : }
1861 :
1862 0 : static inline int sk_rx_queue_get(const struct sock *sk)
1863 : {
1864 : #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1865 0 : if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1866 0 : return sk->sk_rx_queue_mapping;
1867 : #endif
1868 :
1869 : return -1;
1870 : }
1871 :
1872 1667 : static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1873 : {
1874 1628 : sk->sk_socket = sock;
1875 : }
1876 :
1877 173 : static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1878 : {
1879 173 : BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1880 173 : return &rcu_dereference_raw(sk->sk_wq)->wait;
1881 : }
1882 : /* Detach socket from process context.
1883 : * Announce socket dead, detach it from wait queue and inode.
1884 : * Note that parent inode held reference count on this struct sock,
1885 : * we do not release it in this function, because protocol
1886 : * probably wants some additional cleanups or even continuing
1887 : * to work with this socket (TCP).
1888 : */
1889 739 : static inline void sock_orphan(struct sock *sk)
1890 : {
1891 739 : write_lock_bh(&sk->sk_callback_lock);
1892 739 : sock_set_flag(sk, SOCK_DEAD);
1893 739 : sk_set_socket(sk, NULL);
1894 739 : sk->sk_wq = NULL;
1895 739 : write_unlock_bh(&sk->sk_callback_lock);
1896 739 : }
1897 :
1898 91 : static inline void sock_graft(struct sock *sk, struct socket *parent)
1899 : {
1900 91 : WARN_ON(parent->sk);
1901 91 : write_lock_bh(&sk->sk_callback_lock);
1902 91 : rcu_assign_pointer(sk->sk_wq, &parent->wq);
1903 91 : parent->sk = sk;
1904 91 : sk_set_socket(sk, parent);
1905 91 : sk->sk_uid = SOCK_INODE(parent)->i_uid;
1906 91 : security_sock_graft(sk, parent);
1907 91 : write_unlock_bh(&sk->sk_callback_lock);
1908 91 : }
1909 :
1910 : kuid_t sock_i_uid(struct sock *sk);
1911 : unsigned long sock_i_ino(struct sock *sk);
1912 :
1913 26 : static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1914 : {
1915 26 : return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1916 : }
1917 :
1918 17 : static inline u32 net_tx_rndhash(void)
1919 : {
1920 30 : u32 v = prandom_u32();
1921 :
1922 17 : return v ?: 1;
1923 : }
1924 :
1925 13 : static inline void sk_set_txhash(struct sock *sk)
1926 : {
1927 13 : sk->sk_txhash = net_tx_rndhash();
1928 : }
1929 :
1930 0 : static inline bool sk_rethink_txhash(struct sock *sk)
1931 : {
1932 0 : if (sk->sk_txhash) {
1933 0 : sk_set_txhash(sk);
1934 0 : return true;
1935 : }
1936 : return false;
1937 : }
1938 :
1939 : static inline struct dst_entry *
1940 1329 : __sk_dst_get(struct sock *sk)
1941 : {
1942 1329 : return rcu_dereference_check(sk->sk_dst_cache,
1943 : lockdep_sock_is_held(sk));
1944 : }
1945 :
1946 : static inline struct dst_entry *
1947 13 : sk_dst_get(struct sock *sk)
1948 : {
1949 13 : struct dst_entry *dst;
1950 :
1951 13 : rcu_read_lock();
1952 13 : dst = rcu_dereference(sk->sk_dst_cache);
1953 26 : if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1954 0 : dst = NULL;
1955 13 : rcu_read_unlock();
1956 13 : return dst;
1957 : }
1958 :
1959 0 : static inline void __dst_negative_advice(struct sock *sk)
1960 : {
1961 0 : struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1962 :
1963 0 : if (dst && dst->ops->negative_advice) {
1964 0 : ndst = dst->ops->negative_advice(dst);
1965 :
1966 0 : if (ndst != dst) {
1967 0 : rcu_assign_pointer(sk->sk_dst_cache, ndst);
1968 0 : sk_tx_queue_clear(sk);
1969 0 : sk->sk_dst_pending_confirm = 0;
1970 : }
1971 : }
1972 0 : }
1973 :
1974 0 : static inline void dst_negative_advice(struct sock *sk)
1975 : {
1976 0 : sk_rethink_txhash(sk);
1977 0 : __dst_negative_advice(sk);
1978 0 : }
1979 :
1980 : static inline void
1981 0 : __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1982 : {
1983 0 : struct dst_entry *old_dst;
1984 :
1985 0 : sk_tx_queue_clear(sk);
1986 0 : sk->sk_dst_pending_confirm = 0;
1987 0 : old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1988 : lockdep_sock_is_held(sk));
1989 0 : rcu_assign_pointer(sk->sk_dst_cache, dst);
1990 0 : dst_release(old_dst);
1991 0 : }
1992 :
1993 : static inline void
1994 66 : sk_dst_set(struct sock *sk, struct dst_entry *dst)
1995 : {
1996 66 : struct dst_entry *old_dst;
1997 :
1998 66 : sk_tx_queue_clear(sk);
1999 66 : sk->sk_dst_pending_confirm = 0;
2000 66 : old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2001 66 : dst_release(old_dst);
2002 66 : }
2003 :
2004 : static inline void
2005 0 : __sk_dst_reset(struct sock *sk)
2006 : {
2007 0 : __sk_dst_set(sk, NULL);
2008 0 : }
2009 :
2010 : static inline void
2011 45 : sk_dst_reset(struct sock *sk)
2012 : {
2013 45 : sk_dst_set(sk, NULL);
2014 4 : }
2015 :
2016 : struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2017 :
2018 : struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2019 :
2020 358 : static inline void sk_dst_confirm(struct sock *sk)
2021 : {
2022 358 : if (!READ_ONCE(sk->sk_dst_pending_confirm))
2023 267 : WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2024 : }
2025 :
2026 444 : static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2027 : {
2028 444 : if (skb_get_dst_pending_confirm(skb)) {
2029 260 : struct sock *sk = skb->sk;
2030 260 : unsigned long now = jiffies;
2031 :
2032 : /* avoid dirtying neighbour */
2033 260 : if (READ_ONCE(n->confirmed) != now)
2034 162 : WRITE_ONCE(n->confirmed, now);
2035 260 : if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2036 260 : WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2037 : }
2038 444 : }
2039 :
2040 : bool sk_mc_loop(struct sock *sk);
2041 :
2042 8 : static inline bool sk_can_gso(const struct sock *sk)
2043 : {
2044 8 : return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2045 : }
2046 :
2047 : void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2048 :
2049 : static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2050 : {
2051 : sk->sk_route_nocaps |= flags;
2052 : sk->sk_route_caps &= ~flags;
2053 : }
2054 :
2055 411 : static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2056 : struct iov_iter *from, char *to,
2057 : int copy, int offset)
2058 : {
2059 411 : if (skb->ip_summed == CHECKSUM_NONE) {
2060 0 : __wsum csum = 0;
2061 0 : if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2062 0 : return -EFAULT;
2063 0 : skb->csum = csum_block_add(skb->csum, csum, offset);
2064 411 : } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2065 0 : if (!copy_from_iter_full_nocache(to, copy, from))
2066 0 : return -EFAULT;
2067 822 : } else if (!copy_from_iter_full(to, copy, from))
2068 0 : return -EFAULT;
2069 :
2070 : return 0;
2071 : }
2072 :
2073 0 : static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2074 : struct iov_iter *from, int copy)
2075 : {
2076 0 : int err, offset = skb->len;
2077 :
2078 0 : err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2079 : copy, offset);
2080 0 : if (err)
2081 0 : __skb_trim(skb, offset);
2082 :
2083 0 : return err;
2084 : }
2085 :
2086 411 : static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2087 : struct sk_buff *skb,
2088 : struct page *page,
2089 : int off, int copy)
2090 : {
2091 411 : int err;
2092 :
2093 822 : err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2094 411 : copy, skb->len);
2095 411 : if (err)
2096 : return err;
2097 :
2098 411 : skb->len += copy;
2099 411 : skb->data_len += copy;
2100 411 : skb->truesize += copy;
2101 411 : sk_wmem_queued_add(sk, copy);
2102 411 : sk_mem_charge(sk, copy);
2103 : return 0;
2104 : }
2105 :
2106 : /**
2107 : * sk_wmem_alloc_get - returns write allocations
2108 : * @sk: socket
2109 : *
2110 : * Return: sk_wmem_alloc minus initial offset of one
2111 : */
2112 3564 : static inline int sk_wmem_alloc_get(const struct sock *sk)
2113 : {
2114 3564 : return refcount_read(&sk->sk_wmem_alloc) - 1;
2115 : }
2116 :
2117 : /**
2118 : * sk_rmem_alloc_get - returns read allocations
2119 : * @sk: socket
2120 : *
2121 : * Return: sk_rmem_alloc
2122 : */
2123 0 : static inline int sk_rmem_alloc_get(const struct sock *sk)
2124 : {
2125 0 : return atomic_read(&sk->sk_rmem_alloc);
2126 : }
2127 :
2128 : /**
2129 : * sk_has_allocations - check if allocations are outstanding
2130 : * @sk: socket
2131 : *
2132 : * Return: true if socket has write or read allocations
2133 : */
2134 : static inline bool sk_has_allocations(const struct sock *sk)
2135 : {
2136 : return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2137 : }
2138 :
2139 : /**
2140 : * skwq_has_sleeper - check if there are any waiting processes
2141 : * @wq: struct socket_wq
2142 : *
2143 : * Return: true if socket_wq has waiting processes
2144 : *
2145 : * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2146 : * barrier call. They were added due to the race found within the tcp code.
2147 : *
2148 : * Consider following tcp code paths::
2149 : *
2150 : * CPU1 CPU2
2151 : * sys_select receive packet
2152 : * ... ...
2153 : * __add_wait_queue update tp->rcv_nxt
2154 : * ... ...
2155 : * tp->rcv_nxt check sock_def_readable
2156 : * ... {
2157 : * schedule rcu_read_lock();
2158 : * wq = rcu_dereference(sk->sk_wq);
2159 : * if (wq && waitqueue_active(&wq->wait))
2160 : * wake_up_interruptible(&wq->wait)
2161 : * ...
2162 : * }
2163 : *
2164 : * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2165 : * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2166 : * could then endup calling schedule and sleep forever if there are no more
2167 : * data on the socket.
2168 : *
2169 : */
2170 6865 : static inline bool skwq_has_sleeper(struct socket_wq *wq)
2171 : {
2172 8389 : return wq && wq_has_sleeper(&wq->wait);
2173 : }
2174 :
2175 : /**
2176 : * sock_poll_wait - place memory barrier behind the poll_wait call.
2177 : * @filp: file
2178 : * @sock: socket to wait on
2179 : * @p: poll_table
2180 : *
2181 : * See the comments in the wq_has_sleeper function.
2182 : */
2183 6852 : static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2184 : poll_table *p)
2185 : {
2186 13704 : if (!poll_does_not_wait(p)) {
2187 1330 : poll_wait(filp, &sock->wq.wait, p);
2188 : /* We need to be sure we are in sync with the
2189 : * socket flags modification.
2190 : *
2191 : * This memory barrier is paired in the wq_has_sleeper.
2192 : */
2193 1330 : smp_mb();
2194 : }
2195 6852 : }
2196 :
2197 3432 : static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2198 : {
2199 3432 : if (sk->sk_txhash) {
2200 439 : skb->l4_hash = 1;
2201 439 : skb->hash = sk->sk_txhash;
2202 : }
2203 : }
2204 :
2205 : void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2206 :
2207 : /*
2208 : * Queue a received datagram if it will fit. Stream and sequenced
2209 : * protocols can't normally use this as they need to fit buffers in
2210 : * and play with them.
2211 : *
2212 : * Inlined as it's very short and called for pretty much every
2213 : * packet ever received.
2214 : */
2215 70 : static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2216 : {
2217 70 : skb_orphan(skb);
2218 70 : skb->sk = sk;
2219 70 : skb->destructor = sock_rfree;
2220 70 : atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2221 70 : sk_mem_charge(sk, skb->truesize);
2222 70 : }
2223 :
2224 : void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2225 : unsigned long expires);
2226 :
2227 : void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2228 :
2229 : void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2230 :
2231 : int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2232 : struct sk_buff *skb, unsigned int flags,
2233 : void (*destructor)(struct sock *sk,
2234 : struct sk_buff *skb));
2235 : int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2236 : int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2237 :
2238 : int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2239 : struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2240 :
2241 : /*
2242 : * Recover an error report and clear atomically
2243 : */
2244 :
2245 4959 : static inline int sock_error(struct sock *sk)
2246 : {
2247 4959 : int err;
2248 4959 : if (likely(!sk->sk_err))
2249 : return 0;
2250 0 : err = xchg(&sk->sk_err, 0);
2251 0 : return -err;
2252 : }
2253 :
2254 : static inline unsigned long sock_wspace(struct sock *sk)
2255 : {
2256 : int amt = 0;
2257 :
2258 : if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2259 : amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2260 : if (amt < 0)
2261 : amt = 0;
2262 : }
2263 : return amt;
2264 : }
2265 :
2266 : /* Note:
2267 : * We use sk->sk_wq_raw, from contexts knowing this
2268 : * pointer is not NULL and cannot disappear/change.
2269 : */
2270 83 : static inline void sk_set_bit(int nr, struct sock *sk)
2271 : {
2272 83 : if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2273 83 : !sock_flag(sk, SOCK_FASYNC))
2274 : return;
2275 :
2276 0 : set_bit(nr, &sk->sk_wq_raw->flags);
2277 : }
2278 :
2279 494 : static inline void sk_clear_bit(int nr, struct sock *sk)
2280 : {
2281 494 : if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2282 494 : !sock_flag(sk, SOCK_FASYNC))
2283 : return;
2284 :
2285 0 : clear_bit(nr, &sk->sk_wq_raw->flags);
2286 : }
2287 :
2288 6727 : static inline void sk_wake_async(const struct sock *sk, int how, int band)
2289 : {
2290 6727 : if (sock_flag(sk, SOCK_FASYNC)) {
2291 0 : rcu_read_lock();
2292 0 : sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2293 0 : rcu_read_unlock();
2294 : }
2295 6727 : }
2296 :
2297 : /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2298 : * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2299 : * Note: for send buffers, TCP works better if we can build two skbs at
2300 : * minimum.
2301 : */
2302 : #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2303 :
2304 : #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2305 : #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2306 :
2307 0 : static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2308 : {
2309 0 : u32 val;
2310 :
2311 0 : if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2312 : return;
2313 :
2314 0 : val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2315 :
2316 0 : WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2317 : }
2318 :
2319 : struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2320 : bool force_schedule);
2321 :
2322 : /**
2323 : * sk_page_frag - return an appropriate page_frag
2324 : * @sk: socket
2325 : *
2326 : * Use the per task page_frag instead of the per socket one for
2327 : * optimization when we know that we're in the normal context and owns
2328 : * everything that's associated with %current.
2329 : *
2330 : * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2331 : * inside other socket operations and end up recursing into sk_page_frag()
2332 : * while it's already in use.
2333 : *
2334 : * Return: a per task page_frag if context allows that,
2335 : * otherwise a per socket one.
2336 : */
2337 411 : static inline struct page_frag *sk_page_frag(struct sock *sk)
2338 : {
2339 411 : if (gfpflags_normal_context(sk->sk_allocation))
2340 411 : return ¤t->task_frag;
2341 :
2342 0 : return &sk->sk_frag;
2343 : }
2344 :
2345 : bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2346 :
2347 : /*
2348 : * Default write policy as shown to user space via poll/select/SIGIO
2349 : */
2350 869 : static inline bool sock_writeable(const struct sock *sk)
2351 : {
2352 869 : return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2353 : }
2354 :
2355 415 : static inline gfp_t gfp_any(void)
2356 : {
2357 415 : return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2358 : }
2359 :
2360 4722 : static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2361 : {
2362 4722 : return noblock ? 0 : sk->sk_rcvtimeo;
2363 : }
2364 :
2365 4650 : static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2366 : {
2367 4650 : return noblock ? 0 : sk->sk_sndtimeo;
2368 : }
2369 :
2370 3910 : static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2371 : {
2372 3225 : int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2373 :
2374 3910 : return v ?: 1;
2375 : }
2376 :
2377 : /* Alas, with timeout socket operations are not restartable.
2378 : * Compare this to poll().
2379 : */
2380 0 : static inline int sock_intr_errno(long timeo)
2381 : {
2382 0 : return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2383 : }
2384 :
2385 : struct sock_skb_cb {
2386 : u32 dropcount;
2387 : };
2388 :
2389 : /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2390 : * using skb->cb[] would keep using it directly and utilize its
2391 : * alignement guarantee.
2392 : */
2393 : #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2394 : sizeof(struct sock_skb_cb)))
2395 :
2396 : #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2397 : SOCK_SKB_CB_OFFSET))
2398 :
2399 : #define sock_skb_cb_check_size(size) \
2400 : BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2401 :
2402 : static inline void
2403 4 : sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2404 : {
2405 4 : SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2406 4 : atomic_read(&sk->sk_drops) : 0;
2407 4 : }
2408 :
2409 3 : static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2410 : {
2411 3 : int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2412 :
2413 3 : atomic_add(segs, &sk->sk_drops);
2414 3 : }
2415 :
2416 0 : static inline ktime_t sock_read_timestamp(struct sock *sk)
2417 : {
2418 : #if BITS_PER_LONG==32
2419 : unsigned int seq;
2420 : ktime_t kt;
2421 :
2422 : do {
2423 : seq = read_seqbegin(&sk->sk_stamp_seq);
2424 : kt = sk->sk_stamp;
2425 : } while (read_seqretry(&sk->sk_stamp_seq, seq));
2426 :
2427 : return kt;
2428 : #else
2429 0 : return READ_ONCE(sk->sk_stamp);
2430 : #endif
2431 : }
2432 :
2433 2 : static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2434 : {
2435 : #if BITS_PER_LONG==32
2436 : write_seqlock(&sk->sk_stamp_seq);
2437 : sk->sk_stamp = kt;
2438 : write_sequnlock(&sk->sk_stamp_seq);
2439 : #else
2440 2 : WRITE_ONCE(sk->sk_stamp, kt);
2441 : #endif
2442 2 : }
2443 :
2444 : void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2445 : struct sk_buff *skb);
2446 : void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2447 : struct sk_buff *skb);
2448 :
2449 : static inline void
2450 0 : sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2451 : {
2452 0 : ktime_t kt = skb->tstamp;
2453 0 : struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2454 :
2455 : /*
2456 : * generate control messages if
2457 : * - receive time stamping in software requested
2458 : * - software time stamp available and wanted
2459 : * - hardware time stamps available and wanted
2460 : */
2461 0 : if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2462 0 : (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2463 0 : (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2464 0 : (hwtstamps->hwtstamp &&
2465 : (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2466 0 : __sock_recv_timestamp(msg, sk, skb);
2467 : else
2468 0 : sock_write_timestamp(sk, kt);
2469 :
2470 0 : if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2471 0 : __sock_recv_wifi_status(msg, sk, skb);
2472 0 : }
2473 :
2474 : void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2475 : struct sk_buff *skb);
2476 :
2477 : #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2478 4 : static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2479 : struct sk_buff *skb)
2480 : {
2481 : #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2482 : (1UL << SOCK_RCVTSTAMP))
2483 : #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2484 : SOF_TIMESTAMPING_RAW_HARDWARE)
2485 :
2486 4 : if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2487 0 : __sock_recv_ts_and_drops(msg, sk, skb);
2488 4 : else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2489 0 : sock_write_timestamp(sk, skb->tstamp);
2490 4 : else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2491 2 : sock_write_timestamp(sk, 0);
2492 4 : }
2493 :
2494 : void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2495 :
2496 : /**
2497 : * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2498 : * @sk: socket sending this packet
2499 : * @tsflags: timestamping flags to use
2500 : * @tx_flags: completed with instructions for time stamping
2501 : * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2502 : *
2503 : * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2504 : */
2505 16 : static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2506 : __u8 *tx_flags, __u32 *tskey)
2507 : {
2508 16 : if (unlikely(tsflags)) {
2509 0 : __sock_tx_timestamp(tsflags, tx_flags);
2510 0 : if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2511 : tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2512 0 : *tskey = sk->sk_tskey++;
2513 : }
2514 16 : if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2515 0 : *tx_flags |= SKBTX_WIFI_STATUS;
2516 16 : }
2517 :
2518 14 : static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2519 : __u8 *tx_flags)
2520 : {
2521 14 : _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2522 : }
2523 :
2524 2 : static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2525 : {
2526 2 : _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2527 2 : &skb_shinfo(skb)->tskey);
2528 2 : }
2529 :
2530 : DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2531 : /**
2532 : * sk_eat_skb - Release a skb if it is no longer needed
2533 : * @sk: socket to eat this skb from
2534 : * @skb: socket buffer to eat
2535 : *
2536 : * This routine must be called with interrupts disabled or with the socket
2537 : * locked so that the sk_buff queue operation is ok.
2538 : */
2539 67 : static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2540 : {
2541 67 : __skb_unlink(skb, &sk->sk_receive_queue);
2542 67 : if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2543 0 : !sk->sk_rx_skb_cache) {
2544 0 : sk->sk_rx_skb_cache = skb;
2545 0 : skb_orphan(skb);
2546 0 : return;
2547 : }
2548 67 : __kfree_skb(skb);
2549 : }
2550 :
2551 : static inline
2552 19687 : struct net *sock_net(const struct sock *sk)
2553 : {
2554 20454 : return read_pnet(&sk->sk_net);
2555 : }
2556 :
2557 : static inline
2558 833 : void sock_net_set(struct sock *sk, struct net *net)
2559 : {
2560 833 : write_pnet(&sk->sk_net, net);
2561 : }
2562 :
2563 : static inline bool
2564 839 : skb_sk_is_prefetched(struct sk_buff *skb)
2565 : {
2566 : #ifdef CONFIG_INET
2567 839 : return skb->destructor == sock_pfree;
2568 : #else
2569 : return false;
2570 : #endif /* CONFIG_INET */
2571 : }
2572 :
2573 : /* This helper checks if a socket is a full socket,
2574 : * ie _not_ a timewait or request socket.
2575 : */
2576 3854 : static inline bool sk_fullsock(const struct sock *sk)
2577 : {
2578 3854 : return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2579 : }
2580 :
2581 : static inline bool
2582 0 : sk_is_refcounted(struct sock *sk)
2583 : {
2584 : /* Only full sockets have sk->sk_flags. */
2585 0 : return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2586 : }
2587 :
2588 : /**
2589 : * skb_steal_sock - steal a socket from an sk_buff
2590 : * @skb: sk_buff to steal the socket from
2591 : * @refcounted: is set to true if the socket is reference-counted
2592 : */
2593 : static inline struct sock *
2594 440 : skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2595 : {
2596 440 : if (skb->sk) {
2597 385 : struct sock *sk = skb->sk;
2598 :
2599 385 : *refcounted = true;
2600 385 : if (skb_sk_is_prefetched(skb))
2601 0 : *refcounted = sk_is_refcounted(sk);
2602 385 : skb->destructor = NULL;
2603 385 : skb->sk = NULL;
2604 385 : return sk;
2605 : }
2606 55 : *refcounted = false;
2607 55 : return NULL;
2608 : }
2609 :
2610 : /* Checks if this SKB belongs to an HW offloaded socket
2611 : * and whether any SW fallbacks are required based on dev.
2612 : * Check decrypted mark in case skb_orphan() cleared socket.
2613 : */
2614 448 : static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2615 : struct net_device *dev)
2616 : {
2617 : #ifdef CONFIG_SOCK_VALIDATE_XMIT
2618 : struct sock *sk = skb->sk;
2619 :
2620 : if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2621 : skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2622 : #ifdef CONFIG_TLS_DEVICE
2623 : } else if (unlikely(skb->decrypted)) {
2624 : pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2625 : kfree_skb(skb);
2626 : skb = NULL;
2627 : #endif
2628 : }
2629 : #endif
2630 :
2631 448 : return skb;
2632 : }
2633 :
2634 : /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2635 : * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2636 : */
2637 : static inline bool sk_listener(const struct sock *sk)
2638 : {
2639 : return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2640 : }
2641 :
2642 : void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2643 : int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2644 : int type);
2645 :
2646 : bool sk_ns_capable(const struct sock *sk,
2647 : struct user_namespace *user_ns, int cap);
2648 : bool sk_capable(const struct sock *sk, int cap);
2649 : bool sk_net_capable(const struct sock *sk, int cap);
2650 :
2651 : void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2652 :
2653 : /* Take into consideration the size of the struct sk_buff overhead in the
2654 : * determination of these values, since that is non-constant across
2655 : * platforms. This makes socket queueing behavior and performance
2656 : * not depend upon such differences.
2657 : */
2658 : #define _SK_MEM_PACKETS 256
2659 : #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2660 : #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2661 : #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2662 :
2663 : extern __u32 sysctl_wmem_max;
2664 : extern __u32 sysctl_rmem_max;
2665 :
2666 : extern int sysctl_tstamp_allow_data;
2667 : extern int sysctl_optmem_max;
2668 :
2669 : extern __u32 sysctl_wmem_default;
2670 : extern __u32 sysctl_rmem_default;
2671 :
2672 : DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2673 :
2674 0 : static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2675 : {
2676 : /* Does this proto have per netns sysctl_wmem ? */
2677 0 : if (proto->sysctl_wmem_offset)
2678 0 : return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2679 :
2680 0 : return *proto->sysctl_wmem;
2681 : }
2682 :
2683 0 : static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2684 : {
2685 : /* Does this proto have per netns sysctl_rmem ? */
2686 0 : if (proto->sysctl_rmem_offset)
2687 0 : return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2688 :
2689 0 : return *proto->sysctl_rmem;
2690 : }
2691 :
2692 : /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2693 : * Some wifi drivers need to tweak it to get more chunks.
2694 : * They can use this helper from their ndo_start_xmit()
2695 : */
2696 : static inline void sk_pacing_shift_update(struct sock *sk, int val)
2697 : {
2698 : if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2699 : return;
2700 : WRITE_ONCE(sk->sk_pacing_shift, val);
2701 : }
2702 :
2703 : /* if a socket is bound to a device, check that the given device
2704 : * index is either the same or that the socket is bound to an L3
2705 : * master device and the given device index is also enslaved to
2706 : * that L3 master
2707 : */
2708 : static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2709 : {
2710 : int mdif;
2711 :
2712 : if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2713 : return true;
2714 :
2715 : mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2716 : if (mdif && mdif == sk->sk_bound_dev_if)
2717 : return true;
2718 :
2719 : return false;
2720 : }
2721 :
2722 : void sock_def_readable(struct sock *sk);
2723 :
2724 : int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2725 : void sock_enable_timestamps(struct sock *sk);
2726 : void sock_no_linger(struct sock *sk);
2727 : void sock_set_keepalive(struct sock *sk);
2728 : void sock_set_priority(struct sock *sk, u32 priority);
2729 : void sock_set_rcvbuf(struct sock *sk, int val);
2730 : void sock_set_mark(struct sock *sk, u32 val);
2731 : void sock_set_reuseaddr(struct sock *sk);
2732 : void sock_set_reuseport(struct sock *sk);
2733 : void sock_set_sndtimeo(struct sock *sk, s64 secs);
2734 :
2735 : int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2736 :
2737 : #endif /* _SOCK_H */
|