Line data Source code
1 : /*
2 : * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 : * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 : *
5 : * This software is available to you under a choice of one of two
6 : * licenses. You may choose to be licensed under the terms of the GNU
7 : * General Public License (GPL) Version 2, available from the file
8 : * COPYING in the main directory of this source tree, or the
9 : * OpenIB.org BSD license below:
10 : *
11 : * Redistribution and use in source and binary forms, with or
12 : * without modification, are permitted provided that the following
13 : * conditions are met:
14 : *
15 : * - Redistributions of source code must retain the above
16 : * copyright notice, this list of conditions and the following
17 : * disclaimer.
18 : *
19 : * - Redistributions in binary form must reproduce the above
20 : * copyright notice, this list of conditions and the following
21 : * disclaimer in the documentation and/or other materials
22 : * provided with the distribution.
23 : *
24 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 : * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 : * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 : * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 : * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 : * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 : * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 : * SOFTWARE.
32 : */
33 :
34 : #ifndef _TLS_OFFLOAD_H
35 : #define _TLS_OFFLOAD_H
36 :
37 : #include <linux/types.h>
38 : #include <asm/byteorder.h>
39 : #include <linux/crypto.h>
40 : #include <linux/socket.h>
41 : #include <linux/tcp.h>
42 : #include <linux/skmsg.h>
43 : #include <linux/mutex.h>
44 : #include <linux/netdevice.h>
45 : #include <linux/rcupdate.h>
46 :
47 : #include <net/net_namespace.h>
48 : #include <net/tcp.h>
49 : #include <net/strparser.h>
50 : #include <crypto/aead.h>
51 : #include <uapi/linux/tls.h>
52 :
53 :
54 : /* Maximum data size carried in a TLS record */
55 : #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56 :
57 : #define TLS_HEADER_SIZE 5
58 : #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59 :
60 : #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61 :
62 : #define TLS_RECORD_TYPE_DATA 0x17
63 :
64 : #define TLS_AAD_SPACE_SIZE 13
65 :
66 : #define MAX_IV_SIZE 16
67 : #define TLS_MAX_REC_SEQ_SIZE 8
68 :
69 : /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70 : *
71 : * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 : *
73 : * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 : * Hence b0 contains (3 - 1) = 2.
75 : */
76 : #define TLS_AES_CCM_IV_B0_BYTE 2
77 :
78 : #define __TLS_INC_STATS(net, field) \
79 : __SNMP_INC_STATS((net)->mib.tls_statistics, field)
80 : #define TLS_INC_STATS(net, field) \
81 : SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 : #define __TLS_DEC_STATS(net, field) \
83 : __SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84 : #define TLS_DEC_STATS(net, field) \
85 : SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86 :
87 : enum {
88 : TLS_BASE,
89 : TLS_SW,
90 : TLS_HW,
91 : TLS_HW_RECORD,
92 : TLS_NUM_CONFIG,
93 : };
94 :
95 : /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96 : * allocated or mapped for each TLS record. After encryption, the records are
97 : * stores in a linked list.
98 : */
99 : struct tls_rec {
100 : struct list_head list;
101 : int tx_ready;
102 : int tx_flags;
103 :
104 : struct sk_msg msg_plaintext;
105 : struct sk_msg msg_encrypted;
106 :
107 : /* AAD | msg_plaintext.sg.data | sg_tag */
108 : struct scatterlist sg_aead_in[2];
109 : /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 : struct scatterlist sg_aead_out[2];
111 :
112 : char content_type;
113 : struct scatterlist sg_content_type;
114 :
115 : char aad_space[TLS_AAD_SPACE_SIZE];
116 : u8 iv_data[MAX_IV_SIZE];
117 : struct aead_request aead_req;
118 : u8 aead_req_ctx[];
119 : };
120 :
121 : struct tls_msg {
122 : struct strp_msg rxm;
123 : u8 control;
124 : };
125 :
126 : struct tx_work {
127 : struct delayed_work work;
128 : struct sock *sk;
129 : };
130 :
131 : struct tls_sw_context_tx {
132 : struct crypto_aead *aead_send;
133 : struct crypto_wait async_wait;
134 : struct tx_work tx_work;
135 : struct tls_rec *open_rec;
136 : struct list_head tx_list;
137 : atomic_t encrypt_pending;
138 : /* protect crypto_wait with encrypt_pending */
139 : spinlock_t encrypt_compl_lock;
140 : int async_notify;
141 : u8 async_capable:1;
142 :
143 : #define BIT_TX_SCHEDULED 0
144 : #define BIT_TX_CLOSING 1
145 : unsigned long tx_bitmask;
146 : };
147 :
148 : struct tls_sw_context_rx {
149 : struct crypto_aead *aead_recv;
150 : struct crypto_wait async_wait;
151 : struct strparser strp;
152 : struct sk_buff_head rx_list; /* list of decrypted 'data' records */
153 : void (*saved_data_ready)(struct sock *sk);
154 :
155 : struct sk_buff *recv_pkt;
156 : u8 control;
157 : u8 async_capable:1;
158 : u8 decrypted:1;
159 : atomic_t decrypt_pending;
160 : /* protect crypto_wait with decrypt_pending*/
161 : spinlock_t decrypt_compl_lock;
162 : bool async_notify;
163 : };
164 :
165 : struct tls_record_info {
166 : struct list_head list;
167 : u32 end_seq;
168 : int len;
169 : int num_frags;
170 : skb_frag_t frags[MAX_SKB_FRAGS];
171 : };
172 :
173 : struct tls_offload_context_tx {
174 : struct crypto_aead *aead_send;
175 : spinlock_t lock; /* protects records list */
176 : struct list_head records_list;
177 : struct tls_record_info *open_record;
178 : struct tls_record_info *retransmit_hint;
179 : u64 hint_record_sn;
180 : u64 unacked_record_sn;
181 :
182 : struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
183 : void (*sk_destruct)(struct sock *sk);
184 : u8 driver_state[] __aligned(8);
185 : /* The TLS layer reserves room for driver specific state
186 : * Currently the belief is that there is not enough
187 : * driver specific state to justify another layer of indirection
188 : */
189 : #define TLS_DRIVER_STATE_SIZE_TX 16
190 : };
191 :
192 : #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
193 : (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
194 :
195 : enum tls_context_flags {
196 : TLS_RX_SYNC_RUNNING = 0,
197 : /* Unlike RX where resync is driven entirely by the core in TX only
198 : * the driver knows when things went out of sync, so we need the flag
199 : * to be atomic.
200 : */
201 : TLS_TX_SYNC_SCHED = 1,
202 : /* tls_dev_del was called for the RX side, device state was released,
203 : * but tls_ctx->netdev might still be kept, because TX-side driver
204 : * resources might not be released yet. Used to prevent the second
205 : * tls_dev_del call in tls_device_down if it happens simultaneously.
206 : */
207 : TLS_RX_DEV_CLOSED = 2,
208 : };
209 :
210 : struct cipher_context {
211 : char *iv;
212 : char *rec_seq;
213 : };
214 :
215 : union tls_crypto_context {
216 : struct tls_crypto_info info;
217 : union {
218 : struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
219 : struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
220 : struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
221 : };
222 : };
223 :
224 : struct tls_prot_info {
225 : u16 version;
226 : u16 cipher_type;
227 : u16 prepend_size;
228 : u16 tag_size;
229 : u16 overhead_size;
230 : u16 iv_size;
231 : u16 salt_size;
232 : u16 rec_seq_size;
233 : u16 aad_size;
234 : u16 tail_size;
235 : };
236 :
237 : struct tls_context {
238 : /* read-only cache line */
239 : struct tls_prot_info prot_info;
240 :
241 : u8 tx_conf:3;
242 : u8 rx_conf:3;
243 :
244 : int (*push_pending_record)(struct sock *sk, int flags);
245 : void (*sk_write_space)(struct sock *sk);
246 :
247 : void *priv_ctx_tx;
248 : void *priv_ctx_rx;
249 :
250 : struct net_device *netdev;
251 :
252 : /* rw cache line */
253 : struct cipher_context tx;
254 : struct cipher_context rx;
255 :
256 : struct scatterlist *partially_sent_record;
257 : u16 partially_sent_offset;
258 :
259 : bool in_tcp_sendpages;
260 : bool pending_open_record_frags;
261 :
262 : struct mutex tx_lock; /* protects partially_sent_* fields and
263 : * per-type TX fields
264 : */
265 : unsigned long flags;
266 :
267 : /* cache cold stuff */
268 : struct proto *sk_proto;
269 :
270 : void (*sk_destruct)(struct sock *sk);
271 :
272 : union tls_crypto_context crypto_send;
273 : union tls_crypto_context crypto_recv;
274 :
275 : struct list_head list;
276 : refcount_t refcount;
277 : struct rcu_head rcu;
278 : };
279 :
280 : enum tls_offload_ctx_dir {
281 : TLS_OFFLOAD_CTX_DIR_RX,
282 : TLS_OFFLOAD_CTX_DIR_TX,
283 : };
284 :
285 : struct tlsdev_ops {
286 : int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
287 : enum tls_offload_ctx_dir direction,
288 : struct tls_crypto_info *crypto_info,
289 : u32 start_offload_tcp_sn);
290 : void (*tls_dev_del)(struct net_device *netdev,
291 : struct tls_context *ctx,
292 : enum tls_offload_ctx_dir direction);
293 : int (*tls_dev_resync)(struct net_device *netdev,
294 : struct sock *sk, u32 seq, u8 *rcd_sn,
295 : enum tls_offload_ctx_dir direction);
296 : };
297 :
298 : enum tls_offload_sync_type {
299 : TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
300 : TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
301 : TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
302 : };
303 :
304 : #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
305 : #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
306 :
307 : #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
308 : struct tls_offload_resync_async {
309 : atomic64_t req;
310 : u16 loglen;
311 : u16 rcd_delta;
312 : u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
313 : };
314 :
315 : struct tls_offload_context_rx {
316 : /* sw must be the first member of tls_offload_context_rx */
317 : struct tls_sw_context_rx sw;
318 : enum tls_offload_sync_type resync_type;
319 : /* this member is set regardless of resync_type, to avoid branches */
320 : u8 resync_nh_reset:1;
321 : /* CORE_NEXT_HINT-only member, but use the hole here */
322 : u8 resync_nh_do_now:1;
323 : union {
324 : /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
325 : struct {
326 : atomic64_t resync_req;
327 : };
328 : /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
329 : struct {
330 : u32 decrypted_failed;
331 : u32 decrypted_tgt;
332 : } resync_nh;
333 : /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
334 : struct {
335 : struct tls_offload_resync_async *resync_async;
336 : };
337 : };
338 : u8 driver_state[] __aligned(8);
339 : /* The TLS layer reserves room for driver specific state
340 : * Currently the belief is that there is not enough
341 : * driver specific state to justify another layer of indirection
342 : */
343 : #define TLS_DRIVER_STATE_SIZE_RX 8
344 : };
345 :
346 : #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
347 : (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
348 :
349 : struct tls_context *tls_ctx_create(struct sock *sk);
350 : void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
351 : void update_sk_prot(struct sock *sk, struct tls_context *ctx);
352 :
353 : int wait_on_pending_writer(struct sock *sk, long *timeo);
354 : int tls_sk_query(struct sock *sk, int optname, char __user *optval,
355 : int __user *optlen);
356 : int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
357 : unsigned int optlen);
358 :
359 : int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
360 : void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
361 : void tls_sw_strparser_done(struct tls_context *tls_ctx);
362 : int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
363 : int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
364 : int offset, size_t size, int flags);
365 : int tls_sw_sendpage(struct sock *sk, struct page *page,
366 : int offset, size_t size, int flags);
367 : void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
368 : void tls_sw_release_resources_tx(struct sock *sk);
369 : void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
370 : void tls_sw_free_resources_rx(struct sock *sk);
371 : void tls_sw_release_resources_rx(struct sock *sk);
372 : void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
373 : int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
374 : int nonblock, int flags, int *addr_len);
375 : bool tls_sw_stream_read(const struct sock *sk);
376 : ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
377 : struct pipe_inode_info *pipe,
378 : size_t len, unsigned int flags);
379 :
380 : int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
381 : int tls_device_sendpage(struct sock *sk, struct page *page,
382 : int offset, size_t size, int flags);
383 : int tls_tx_records(struct sock *sk, int flags);
384 :
385 : struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
386 : u32 seq, u64 *p_record_sn);
387 :
388 : static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
389 : {
390 : return rec->len == 0;
391 : }
392 :
393 : static inline u32 tls_record_start_seq(struct tls_record_info *rec)
394 : {
395 : return rec->end_seq - rec->len;
396 : }
397 :
398 : int tls_push_sg(struct sock *sk, struct tls_context *ctx,
399 : struct scatterlist *sg, u16 first_offset,
400 : int flags);
401 : int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
402 : int flags);
403 : void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
404 :
405 : static inline struct tls_msg *tls_msg(struct sk_buff *skb)
406 : {
407 : return (struct tls_msg *)strp_msg(skb);
408 : }
409 :
410 : static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
411 : {
412 : return !!ctx->partially_sent_record;
413 : }
414 :
415 : static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
416 : {
417 : return tls_ctx->pending_open_record_frags;
418 : }
419 :
420 : static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
421 : {
422 : struct tls_rec *rec;
423 :
424 : rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
425 : if (!rec)
426 : return false;
427 :
428 : return READ_ONCE(rec->tx_ready);
429 : }
430 :
431 : static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
432 : {
433 : u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
434 :
435 : switch (config) {
436 : case TLS_BASE:
437 : return TLS_CONF_BASE;
438 : case TLS_SW:
439 : return TLS_CONF_SW;
440 : case TLS_HW:
441 : return TLS_CONF_HW;
442 : case TLS_HW_RECORD:
443 : return TLS_CONF_HW_RECORD;
444 : }
445 : return 0;
446 : }
447 :
448 : struct sk_buff *
449 : tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
450 : struct sk_buff *skb);
451 :
452 : static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
453 : {
454 : #ifdef CONFIG_SOCK_VALIDATE_XMIT
455 : return sk_fullsock(sk) &&
456 : (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
457 : &tls_validate_xmit_skb);
458 : #else
459 : return false;
460 : #endif
461 : }
462 :
463 : static inline void tls_err_abort(struct sock *sk, int err)
464 : {
465 : sk->sk_err = err;
466 : sk->sk_error_report(sk);
467 : }
468 :
469 : static inline bool tls_bigint_increment(unsigned char *seq, int len)
470 : {
471 : int i;
472 :
473 : for (i = len - 1; i >= 0; i--) {
474 : ++seq[i];
475 : if (seq[i] != 0)
476 : break;
477 : }
478 :
479 : return (i == -1);
480 : }
481 :
482 : static inline void tls_bigint_subtract(unsigned char *seq, int n)
483 : {
484 : u64 rcd_sn;
485 : __be64 *p;
486 :
487 : BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
488 :
489 : p = (__be64 *)seq;
490 : rcd_sn = be64_to_cpu(*p);
491 : *p = cpu_to_be64(rcd_sn - n);
492 : }
493 :
494 0 : static inline struct tls_context *tls_get_ctx(const struct sock *sk)
495 : {
496 0 : struct inet_connection_sock *icsk = inet_csk(sk);
497 :
498 : /* Use RCU on icsk_ulp_data only for sock diag code,
499 : * TLS data path doesn't need rcu_dereference().
500 : */
501 0 : return (__force void *)icsk->icsk_ulp_data;
502 : }
503 :
504 : static inline void tls_advance_record_sn(struct sock *sk,
505 : struct tls_prot_info *prot,
506 : struct cipher_context *ctx)
507 : {
508 : if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
509 : tls_err_abort(sk, EBADMSG);
510 :
511 : if (prot->version != TLS_1_3_VERSION &&
512 : prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
513 : tls_bigint_increment(ctx->iv + prot->salt_size,
514 : prot->iv_size);
515 : }
516 :
517 : static inline void tls_fill_prepend(struct tls_context *ctx,
518 : char *buf,
519 : size_t plaintext_len,
520 : unsigned char record_type)
521 : {
522 : struct tls_prot_info *prot = &ctx->prot_info;
523 : size_t pkt_len, iv_size = prot->iv_size;
524 :
525 : pkt_len = plaintext_len + prot->tag_size;
526 : if (prot->version != TLS_1_3_VERSION &&
527 : prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
528 : pkt_len += iv_size;
529 :
530 : memcpy(buf + TLS_NONCE_OFFSET,
531 : ctx->tx.iv + prot->salt_size, iv_size);
532 : }
533 :
534 : /* we cover nonce explicit here as well, so buf should be of
535 : * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
536 : */
537 : buf[0] = prot->version == TLS_1_3_VERSION ?
538 : TLS_RECORD_TYPE_DATA : record_type;
539 : /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
540 : buf[1] = TLS_1_2_VERSION_MINOR;
541 : buf[2] = TLS_1_2_VERSION_MAJOR;
542 : /* we can use IV for nonce explicit according to spec */
543 : buf[3] = pkt_len >> 8;
544 : buf[4] = pkt_len & 0xFF;
545 : }
546 :
547 : static inline void tls_make_aad(char *buf,
548 : size_t size,
549 : char *record_sequence,
550 : unsigned char record_type,
551 : struct tls_prot_info *prot)
552 : {
553 : if (prot->version != TLS_1_3_VERSION) {
554 : memcpy(buf, record_sequence, prot->rec_seq_size);
555 : buf += 8;
556 : } else {
557 : size += prot->tag_size;
558 : }
559 :
560 : buf[0] = prot->version == TLS_1_3_VERSION ?
561 : TLS_RECORD_TYPE_DATA : record_type;
562 : buf[1] = TLS_1_2_VERSION_MAJOR;
563 : buf[2] = TLS_1_2_VERSION_MINOR;
564 : buf[3] = size >> 8;
565 : buf[4] = size & 0xFF;
566 : }
567 :
568 : static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
569 : {
570 : int i;
571 :
572 : if (prot->version == TLS_1_3_VERSION ||
573 : prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
574 : for (i = 0; i < 8; i++)
575 : iv[i + 4] ^= seq[i];
576 : }
577 : }
578 :
579 :
580 0 : static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
581 : const struct tls_context *tls_ctx)
582 : {
583 0 : return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
584 : }
585 :
586 : static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
587 : const struct tls_context *tls_ctx)
588 : {
589 : return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
590 : }
591 :
592 : static inline struct tls_offload_context_tx *
593 : tls_offload_ctx_tx(const struct tls_context *tls_ctx)
594 : {
595 : return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
596 : }
597 :
598 : static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
599 : {
600 : struct tls_context *ctx = tls_get_ctx(sk);
601 :
602 : if (!ctx)
603 : return false;
604 : return !!tls_sw_ctx_tx(ctx);
605 : }
606 :
607 0 : static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
608 : {
609 0 : struct tls_context *ctx = tls_get_ctx(sk);
610 :
611 0 : if (!ctx)
612 : return false;
613 0 : return !!tls_sw_ctx_rx(ctx);
614 : }
615 :
616 : void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
617 : void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
618 :
619 : static inline struct tls_offload_context_rx *
620 : tls_offload_ctx_rx(const struct tls_context *tls_ctx)
621 : {
622 : return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
623 : }
624 :
625 : #if IS_ENABLED(CONFIG_TLS_DEVICE)
626 : static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
627 : enum tls_offload_ctx_dir direction)
628 : {
629 : if (direction == TLS_OFFLOAD_CTX_DIR_TX)
630 : return tls_offload_ctx_tx(tls_ctx)->driver_state;
631 : else
632 : return tls_offload_ctx_rx(tls_ctx)->driver_state;
633 : }
634 :
635 : static inline void *
636 : tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
637 : {
638 : return __tls_driver_ctx(tls_get_ctx(sk), direction);
639 : }
640 : #endif
641 :
642 : #define RESYNC_REQ BIT(0)
643 : #define RESYNC_REQ_ASYNC BIT(1)
644 : /* The TLS context is valid until sk_destruct is called */
645 : static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
646 : {
647 : struct tls_context *tls_ctx = tls_get_ctx(sk);
648 : struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
649 :
650 : atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
651 : }
652 :
653 : /* Log all TLS record header TCP sequences in [seq, seq+len] */
654 : static inline void
655 : tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
656 : {
657 : struct tls_context *tls_ctx = tls_get_ctx(sk);
658 : struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
659 :
660 : atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
661 : ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
662 : rx_ctx->resync_async->loglen = 0;
663 : rx_ctx->resync_async->rcd_delta = 0;
664 : }
665 :
666 : static inline void
667 : tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
668 : {
669 : struct tls_context *tls_ctx = tls_get_ctx(sk);
670 : struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
671 :
672 : atomic64_set(&rx_ctx->resync_async->req,
673 : ((u64)ntohl(seq) << 32) | RESYNC_REQ);
674 : }
675 :
676 : static inline void
677 : tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
678 : {
679 : struct tls_context *tls_ctx = tls_get_ctx(sk);
680 :
681 : tls_offload_ctx_rx(tls_ctx)->resync_type = type;
682 : }
683 :
684 : /* Driver's seq tracking has to be disabled until resync succeeded */
685 : static inline bool tls_offload_tx_resync_pending(struct sock *sk)
686 : {
687 : struct tls_context *tls_ctx = tls_get_ctx(sk);
688 : bool ret;
689 :
690 : ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
691 : smp_mb__after_atomic();
692 : return ret;
693 : }
694 :
695 : int __net_init tls_proc_init(struct net *net);
696 : void __net_exit tls_proc_fini(struct net *net);
697 :
698 : int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
699 : unsigned char *record_type);
700 : int decrypt_skb(struct sock *sk, struct sk_buff *skb,
701 : struct scatterlist *sgout);
702 : struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
703 :
704 : int tls_sw_fallback_init(struct sock *sk,
705 : struct tls_offload_context_tx *offload_ctx,
706 : struct tls_crypto_info *crypto_info);
707 :
708 : #ifdef CONFIG_TLS_DEVICE
709 : void tls_device_init(void);
710 : void tls_device_cleanup(void);
711 : void tls_device_sk_destruct(struct sock *sk);
712 : int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
713 : void tls_device_free_resources_tx(struct sock *sk);
714 : int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
715 : void tls_device_offload_cleanup_rx(struct sock *sk);
716 : void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
717 : void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
718 : int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
719 : struct sk_buff *skb, struct strp_msg *rxm);
720 :
721 : static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
722 : {
723 : if (!sk_fullsock(sk) ||
724 : smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
725 : return false;
726 : return tls_get_ctx(sk)->rx_conf == TLS_HW;
727 : }
728 : #else
729 : static inline void tls_device_init(void) {}
730 : static inline void tls_device_cleanup(void) {}
731 :
732 : static inline int
733 : tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
734 : {
735 : return -EOPNOTSUPP;
736 : }
737 :
738 : static inline void tls_device_free_resources_tx(struct sock *sk) {}
739 :
740 : static inline int
741 : tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
742 : {
743 : return -EOPNOTSUPP;
744 : }
745 :
746 : static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
747 : static inline void
748 : tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
749 :
750 : static inline int
751 : tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
752 : struct sk_buff *skb, struct strp_msg *rxm)
753 : {
754 : return 0;
755 : }
756 : #endif
757 : #endif /* _TLS_OFFLOAD_H */
|