LCOV - code coverage report
Current view: top level - ipc - sem.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 37 1048 3.5 %
Date: 2021-04-22 12:43:58 Functions: 4 54 7.4 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * linux/ipc/sem.c
       4             :  * Copyright (C) 1992 Krishna Balasubramanian
       5             :  * Copyright (C) 1995 Eric Schenk, Bruno Haible
       6             :  *
       7             :  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
       8             :  *
       9             :  * SMP-threaded, sysctl's added
      10             :  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
      11             :  * Enforced range limit on SEM_UNDO
      12             :  * (c) 2001 Red Hat Inc
      13             :  * Lockless wakeup
      14             :  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
      15             :  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
      16             :  * Further wakeup optimizations, documentation
      17             :  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
      18             :  *
      19             :  * support for audit of ipc object properties and permission changes
      20             :  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
      21             :  *
      22             :  * namespaces support
      23             :  * OpenVZ, SWsoft Inc.
      24             :  * Pavel Emelianov <xemul@openvz.org>
      25             :  *
      26             :  * Implementation notes: (May 2010)
      27             :  * This file implements System V semaphores.
      28             :  *
      29             :  * User space visible behavior:
      30             :  * - FIFO ordering for semop() operations (just FIFO, not starvation
      31             :  *   protection)
      32             :  * - multiple semaphore operations that alter the same semaphore in
      33             :  *   one semop() are handled.
      34             :  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
      35             :  *   SETALL calls.
      36             :  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
      37             :  * - undo adjustments at process exit are limited to 0..SEMVMX.
      38             :  * - namespace are supported.
      39             :  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
      40             :  *   to /proc/sys/kernel/sem.
      41             :  * - statistics about the usage are reported in /proc/sysvipc/sem.
      42             :  *
      43             :  * Internals:
      44             :  * - scalability:
      45             :  *   - all global variables are read-mostly.
      46             :  *   - semop() calls and semctl(RMID) are synchronized by RCU.
      47             :  *   - most operations do write operations (actually: spin_lock calls) to
      48             :  *     the per-semaphore array structure.
      49             :  *   Thus: Perfect SMP scaling between independent semaphore arrays.
      50             :  *         If multiple semaphores in one array are used, then cache line
      51             :  *         trashing on the semaphore array spinlock will limit the scaling.
      52             :  * - semncnt and semzcnt are calculated on demand in count_semcnt()
      53             :  * - the task that performs a successful semop() scans the list of all
      54             :  *   sleeping tasks and completes any pending operations that can be fulfilled.
      55             :  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
      56             :  *   (see update_queue())
      57             :  * - To improve the scalability, the actual wake-up calls are performed after
      58             :  *   dropping all locks. (see wake_up_sem_queue_prepare())
      59             :  * - All work is done by the waker, the woken up task does not have to do
      60             :  *   anything - not even acquiring a lock or dropping a refcount.
      61             :  * - A woken up task may not even touch the semaphore array anymore, it may
      62             :  *   have been destroyed already by a semctl(RMID).
      63             :  * - UNDO values are stored in an array (one per process and per
      64             :  *   semaphore array, lazily allocated). For backwards compatibility, multiple
      65             :  *   modes for the UNDO variables are supported (per process, per thread)
      66             :  *   (see copy_semundo, CLONE_SYSVSEM)
      67             :  * - There are two lists of the pending operations: a per-array list
      68             :  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
      69             :  *   ordering without always scanning all pending operations.
      70             :  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
      71             :  */
      72             : 
      73             : #include <linux/compat.h>
      74             : #include <linux/slab.h>
      75             : #include <linux/spinlock.h>
      76             : #include <linux/init.h>
      77             : #include <linux/proc_fs.h>
      78             : #include <linux/time.h>
      79             : #include <linux/security.h>
      80             : #include <linux/syscalls.h>
      81             : #include <linux/audit.h>
      82             : #include <linux/capability.h>
      83             : #include <linux/seq_file.h>
      84             : #include <linux/rwsem.h>
      85             : #include <linux/nsproxy.h>
      86             : #include <linux/ipc_namespace.h>
      87             : #include <linux/sched/wake_q.h>
      88             : #include <linux/nospec.h>
      89             : #include <linux/rhashtable.h>
      90             : 
      91             : #include <linux/uaccess.h>
      92             : #include "util.h"
      93             : 
      94             : /* One semaphore structure for each semaphore in the system. */
      95             : struct sem {
      96             :         int     semval;         /* current value */
      97             :         /*
      98             :          * PID of the process that last modified the semaphore. For
      99             :          * Linux, specifically these are:
     100             :          *  - semop
     101             :          *  - semctl, via SETVAL and SETALL.
     102             :          *  - at task exit when performing undo adjustments (see exit_sem).
     103             :          */
     104             :         struct pid *sempid;
     105             :         spinlock_t      lock;   /* spinlock for fine-grained semtimedop */
     106             :         struct list_head pending_alter; /* pending single-sop operations */
     107             :                                         /* that alter the semaphore */
     108             :         struct list_head pending_const; /* pending single-sop operations */
     109             :                                         /* that do not alter the semaphore*/
     110             :         time64_t         sem_otime;     /* candidate for sem_otime */
     111             : } ____cacheline_aligned_in_smp;
     112             : 
     113             : /* One sem_array data structure for each set of semaphores in the system. */
     114             : struct sem_array {
     115             :         struct kern_ipc_perm    sem_perm;       /* permissions .. see ipc.h */
     116             :         time64_t                sem_ctime;      /* create/last semctl() time */
     117             :         struct list_head        pending_alter;  /* pending operations */
     118             :                                                 /* that alter the array */
     119             :         struct list_head        pending_const;  /* pending complex operations */
     120             :                                                 /* that do not alter semvals */
     121             :         struct list_head        list_id;        /* undo requests on this array */
     122             :         int                     sem_nsems;      /* no. of semaphores in array */
     123             :         int                     complex_count;  /* pending complex operations */
     124             :         unsigned int            use_global_lock;/* >0: global lock required */
     125             : 
     126             :         struct sem              sems[];
     127             : } __randomize_layout;
     128             : 
     129             : /* One queue for each sleeping process in the system. */
     130             : struct sem_queue {
     131             :         struct list_head        list;    /* queue of pending operations */
     132             :         struct task_struct      *sleeper; /* this process */
     133             :         struct sem_undo         *undo;   /* undo structure */
     134             :         struct pid              *pid;    /* process id of requesting process */
     135             :         int                     status;  /* completion status of operation */
     136             :         struct sembuf           *sops;   /* array of pending operations */
     137             :         struct sembuf           *blocking; /* the operation that blocked */
     138             :         int                     nsops;   /* number of operations */
     139             :         bool                    alter;   /* does *sops alter the array? */
     140             :         bool                    dupsop;  /* sops on more than one sem_num */
     141             : };
     142             : 
     143             : /* Each task has a list of undo requests. They are executed automatically
     144             :  * when the process exits.
     145             :  */
     146             : struct sem_undo {
     147             :         struct list_head        list_proc;      /* per-process list: *
     148             :                                                  * all undos from one process
     149             :                                                  * rcu protected */
     150             :         struct rcu_head         rcu;            /* rcu struct for sem_undo */
     151             :         struct sem_undo_list    *ulp;           /* back ptr to sem_undo_list */
     152             :         struct list_head        list_id;        /* per semaphore array list:
     153             :                                                  * all undos for one array */
     154             :         int                     semid;          /* semaphore set identifier */
     155             :         short                   *semadj;        /* array of adjustments */
     156             :                                                 /* one per semaphore */
     157             : };
     158             : 
     159             : /* sem_undo_list controls shared access to the list of sem_undo structures
     160             :  * that may be shared among all a CLONE_SYSVSEM task group.
     161             :  */
     162             : struct sem_undo_list {
     163             :         refcount_t              refcnt;
     164             :         spinlock_t              lock;
     165             :         struct list_head        list_proc;
     166             : };
     167             : 
     168             : 
     169             : #define sem_ids(ns)     ((ns)->ids[IPC_SEM_IDS])
     170             : 
     171             : static int newary(struct ipc_namespace *, struct ipc_params *);
     172             : static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
     173             : #ifdef CONFIG_PROC_FS
     174             : static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
     175             : #endif
     176             : 
     177             : #define SEMMSL_FAST     256 /* 512 bytes on stack */
     178             : #define SEMOPM_FAST     64  /* ~ 372 bytes on stack */
     179             : 
     180             : /*
     181             :  * Switching from the mode suitable for simple ops
     182             :  * to the mode for complex ops is costly. Therefore:
     183             :  * use some hysteresis
     184             :  */
     185             : #define USE_GLOBAL_LOCK_HYSTERESIS      10
     186             : 
     187             : /*
     188             :  * Locking:
     189             :  * a) global sem_lock() for read/write
     190             :  *      sem_undo.id_next,
     191             :  *      sem_array.complex_count,
     192             :  *      sem_array.pending{_alter,_const},
     193             :  *      sem_array.sem_undo
     194             :  *
     195             :  * b) global or semaphore sem_lock() for read/write:
     196             :  *      sem_array.sems[i].pending_{const,alter}:
     197             :  *
     198             :  * c) special:
     199             :  *      sem_undo_list.list_proc:
     200             :  *      * undo_list->lock for write
     201             :  *      * rcu for read
     202             :  *      use_global_lock:
     203             :  *      * global sem_lock() for write
     204             :  *      * either local or global sem_lock() for read.
     205             :  *
     206             :  * Memory ordering:
     207             :  * Most ordering is enforced by using spin_lock() and spin_unlock().
     208             :  *
     209             :  * Exceptions:
     210             :  * 1) use_global_lock: (SEM_BARRIER_1)
     211             :  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
     212             :  * using smp_store_release(): Immediately after setting it to 0,
     213             :  * a simple op can start.
     214             :  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
     215             :  * smp_load_acquire().
     216             :  * Setting it from 0 to non-zero must be ordered with regards to
     217             :  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
     218             :  * is inside a spin_lock() and after a write from 0 to non-zero a
     219             :  * spin_lock()+spin_unlock() is done.
     220             :  *
     221             :  * 2) queue.status: (SEM_BARRIER_2)
     222             :  * Initialization is done while holding sem_lock(), so no further barrier is
     223             :  * required.
     224             :  * Setting it to a result code is a RELEASE, this is ensured by both a
     225             :  * smp_store_release() (for case a) and while holding sem_lock()
     226             :  * (for case b).
     227             :  * The AQUIRE when reading the result code without holding sem_lock() is
     228             :  * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
     229             :  * (case a above).
     230             :  * Reading the result code while holding sem_lock() needs no further barriers,
     231             :  * the locks inside sem_lock() enforce ordering (case b above)
     232             :  *
     233             :  * 3) current->state:
     234             :  * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
     235             :  * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
     236             :  * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
     237             :  * when holding sem_lock(), no further barriers are required.
     238             :  *
     239             :  * See also ipc/mqueue.c for more details on the covered races.
     240             :  */
     241             : 
     242             : #define sc_semmsl       sem_ctls[0]
     243             : #define sc_semmns       sem_ctls[1]
     244             : #define sc_semopm       sem_ctls[2]
     245             : #define sc_semmni       sem_ctls[3]
     246             : 
     247           1 : void sem_init_ns(struct ipc_namespace *ns)
     248             : {
     249           1 :         ns->sc_semmsl = SEMMSL;
     250           1 :         ns->sc_semmns = SEMMNS;
     251           1 :         ns->sc_semopm = SEMOPM;
     252           1 :         ns->sc_semmni = SEMMNI;
     253           1 :         ns->used_sems = 0;
     254           0 :         ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
     255           0 : }
     256             : 
     257             : #ifdef CONFIG_IPC_NS
     258             : void sem_exit_ns(struct ipc_namespace *ns)
     259             : {
     260             :         free_ipcs(ns, &sem_ids(ns), freeary);
     261             :         idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
     262             :         rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
     263             : }
     264             : #endif
     265             : 
     266           1 : void __init sem_init(void)
     267             : {
     268           1 :         sem_init_ns(&init_ipc_ns);
     269           1 :         ipc_init_proc_interface("sysvipc/sem",
     270             :                                 "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
     271             :                                 IPC_SEM_IDS, sysvipc_sem_proc_show);
     272           1 : }
     273             : 
     274             : /**
     275             :  * unmerge_queues - unmerge queues, if possible.
     276             :  * @sma: semaphore array
     277             :  *
     278             :  * The function unmerges the wait queues if complex_count is 0.
     279             :  * It must be called prior to dropping the global semaphore array lock.
     280             :  */
     281           0 : static void unmerge_queues(struct sem_array *sma)
     282             : {
     283           0 :         struct sem_queue *q, *tq;
     284             : 
     285             :         /* complex operations still around? */
     286           0 :         if (sma->complex_count)
     287             :                 return;
     288             :         /*
     289             :          * We will switch back to simple mode.
     290             :          * Move all pending operation back into the per-semaphore
     291             :          * queues.
     292             :          */
     293           0 :         list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
     294           0 :                 struct sem *curr;
     295           0 :                 curr = &sma->sems[q->sops[0].sem_num];
     296             : 
     297           0 :                 list_add_tail(&q->list, &curr->pending_alter);
     298             :         }
     299           0 :         INIT_LIST_HEAD(&sma->pending_alter);
     300             : }
     301             : 
     302             : /**
     303             :  * merge_queues - merge single semop queues into global queue
     304             :  * @sma: semaphore array
     305             :  *
     306             :  * This function merges all per-semaphore queues into the global queue.
     307             :  * It is necessary to achieve FIFO ordering for the pending single-sop
     308             :  * operations when a multi-semop operation must sleep.
     309             :  * Only the alter operations must be moved, the const operations can stay.
     310             :  */
     311           0 : static void merge_queues(struct sem_array *sma)
     312             : {
     313           0 :         int i;
     314           0 :         for (i = 0; i < sma->sem_nsems; i++) {
     315           0 :                 struct sem *sem = &sma->sems[i];
     316             : 
     317           0 :                 list_splice_init(&sem->pending_alter, &sma->pending_alter);
     318             :         }
     319           0 : }
     320             : 
     321           0 : static void sem_rcu_free(struct rcu_head *head)
     322             : {
     323           0 :         struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
     324           0 :         struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
     325             : 
     326           0 :         security_sem_free(&sma->sem_perm);
     327           0 :         kvfree(sma);
     328           0 : }
     329             : 
     330             : /*
     331             :  * Enter the mode suitable for non-simple operations:
     332             :  * Caller must own sem_perm.lock.
     333             :  */
     334           0 : static void complexmode_enter(struct sem_array *sma)
     335             : {
     336           0 :         int i;
     337           0 :         struct sem *sem;
     338             : 
     339           0 :         if (sma->use_global_lock > 0)  {
     340             :                 /*
     341             :                  * We are already in global lock mode.
     342             :                  * Nothing to do, just reset the
     343             :                  * counter until we return to simple mode.
     344             :                  */
     345           0 :                 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
     346           0 :                 return;
     347             :         }
     348           0 :         sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
     349             : 
     350           0 :         for (i = 0; i < sma->sem_nsems; i++) {
     351           0 :                 sem = &sma->sems[i];
     352           0 :                 spin_lock(&sem->lock);
     353           0 :                 spin_unlock(&sem->lock);
     354             :         }
     355             : }
     356             : 
     357             : /*
     358             :  * Try to leave the mode that disallows simple operations:
     359             :  * Caller must own sem_perm.lock.
     360             :  */
     361           0 : static void complexmode_tryleave(struct sem_array *sma)
     362             : {
     363           0 :         if (sma->complex_count)  {
     364             :                 /* Complex ops are sleeping.
     365             :                  * We must stay in complex mode
     366             :                  */
     367             :                 return;
     368             :         }
     369           0 :         if (sma->use_global_lock == 1) {
     370             : 
     371             :                 /* See SEM_BARRIER_1 for purpose/pairing */
     372           0 :                 smp_store_release(&sma->use_global_lock, 0);
     373             :         } else {
     374           0 :                 sma->use_global_lock--;
     375             :         }
     376             : }
     377             : 
     378             : #define SEM_GLOBAL_LOCK (-1)
     379             : /*
     380             :  * If the request contains only one semaphore operation, and there are
     381             :  * no complex transactions pending, lock only the semaphore involved.
     382             :  * Otherwise, lock the entire semaphore array, since we either have
     383             :  * multiple semaphores in our own semops, or we need to look at
     384             :  * semaphores from other pending complex operations.
     385             :  */
     386           0 : static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
     387             :                               int nsops)
     388             : {
     389           0 :         struct sem *sem;
     390           0 :         int idx;
     391             : 
     392           0 :         if (nsops != 1) {
     393             :                 /* Complex operation - acquire a full lock */
     394           0 :                 ipc_lock_object(&sma->sem_perm);
     395             : 
     396             :                 /* Prevent parallel simple ops */
     397           0 :                 complexmode_enter(sma);
     398           0 :                 return SEM_GLOBAL_LOCK;
     399             :         }
     400             : 
     401             :         /*
     402             :          * Only one semaphore affected - try to optimize locking.
     403             :          * Optimized locking is possible if no complex operation
     404             :          * is either enqueued or processed right now.
     405             :          *
     406             :          * Both facts are tracked by use_global_mode.
     407             :          */
     408           0 :         idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
     409           0 :         sem = &sma->sems[idx];
     410             : 
     411             :         /*
     412             :          * Initial check for use_global_lock. Just an optimization,
     413             :          * no locking, no memory barrier.
     414             :          */
     415           0 :         if (!sma->use_global_lock) {
     416             :                 /*
     417             :                  * It appears that no complex operation is around.
     418             :                  * Acquire the per-semaphore lock.
     419             :                  */
     420           0 :                 spin_lock(&sem->lock);
     421             : 
     422             :                 /* see SEM_BARRIER_1 for purpose/pairing */
     423           0 :                 if (!smp_load_acquire(&sma->use_global_lock)) {
     424             :                         /* fast path successful! */
     425           0 :                         return sops->sem_num;
     426             :                 }
     427           0 :                 spin_unlock(&sem->lock);
     428             :         }
     429             : 
     430             :         /* slow path: acquire the full lock */
     431           0 :         ipc_lock_object(&sma->sem_perm);
     432             : 
     433           0 :         if (sma->use_global_lock == 0) {
     434             :                 /*
     435             :                  * The use_global_lock mode ended while we waited for
     436             :                  * sma->sem_perm.lock. Thus we must switch to locking
     437             :                  * with sem->lock.
     438             :                  * Unlike in the fast path, there is no need to recheck
     439             :                  * sma->use_global_lock after we have acquired sem->lock:
     440             :                  * We own sma->sem_perm.lock, thus use_global_lock cannot
     441             :                  * change.
     442             :                  */
     443           0 :                 spin_lock(&sem->lock);
     444             : 
     445           0 :                 ipc_unlock_object(&sma->sem_perm);
     446           0 :                 return sops->sem_num;
     447             :         } else {
     448             :                 /*
     449             :                  * Not a false alarm, thus continue to use the global lock
     450             :                  * mode. No need for complexmode_enter(), this was done by
     451             :                  * the caller that has set use_global_mode to non-zero.
     452             :                  */
     453             :                 return SEM_GLOBAL_LOCK;
     454             :         }
     455             : }
     456             : 
     457           0 : static inline void sem_unlock(struct sem_array *sma, int locknum)
     458             : {
     459           0 :         if (locknum == SEM_GLOBAL_LOCK) {
     460           0 :                 unmerge_queues(sma);
     461           0 :                 complexmode_tryleave(sma);
     462           0 :                 ipc_unlock_object(&sma->sem_perm);
     463             :         } else {
     464           0 :                 struct sem *sem = &sma->sems[locknum];
     465           0 :                 spin_unlock(&sem->lock);
     466             :         }
     467           0 : }
     468             : 
     469             : /*
     470             :  * sem_lock_(check_) routines are called in the paths where the rwsem
     471             :  * is not held.
     472             :  *
     473             :  * The caller holds the RCU read lock.
     474             :  */
     475           0 : static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
     476             : {
     477           0 :         struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
     478             : 
     479           0 :         if (IS_ERR(ipcp))
     480             :                 return ERR_CAST(ipcp);
     481             : 
     482           0 :         return container_of(ipcp, struct sem_array, sem_perm);
     483             : }
     484             : 
     485           0 : static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
     486             :                                                         int id)
     487             : {
     488           0 :         struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
     489             : 
     490           0 :         if (IS_ERR(ipcp))
     491             :                 return ERR_CAST(ipcp);
     492             : 
     493           0 :         return container_of(ipcp, struct sem_array, sem_perm);
     494             : }
     495             : 
     496           0 : static inline void sem_lock_and_putref(struct sem_array *sma)
     497             : {
     498           0 :         sem_lock(sma, NULL, -1);
     499           0 :         ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
     500           0 : }
     501             : 
     502           0 : static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
     503             : {
     504           0 :         ipc_rmid(&sem_ids(ns), &s->sem_perm);
     505             : }
     506             : 
     507           0 : static struct sem_array *sem_alloc(size_t nsems)
     508             : {
     509           0 :         struct sem_array *sma;
     510             : 
     511           0 :         if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
     512             :                 return NULL;
     513             : 
     514           0 :         sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
     515           0 :         if (unlikely(!sma))
     516           0 :                 return NULL;
     517             : 
     518             :         return sma;
     519             : }
     520             : 
     521             : /**
     522             :  * newary - Create a new semaphore set
     523             :  * @ns: namespace
     524             :  * @params: ptr to the structure that contains key, semflg and nsems
     525             :  *
     526             :  * Called with sem_ids.rwsem held (as a writer)
     527             :  */
     528           0 : static int newary(struct ipc_namespace *ns, struct ipc_params *params)
     529             : {
     530           0 :         int retval;
     531           0 :         struct sem_array *sma;
     532           0 :         key_t key = params->key;
     533           0 :         int nsems = params->u.nsems;
     534           0 :         int semflg = params->flg;
     535           0 :         int i;
     536             : 
     537           0 :         if (!nsems)
     538             :                 return -EINVAL;
     539           0 :         if (ns->used_sems + nsems > ns->sc_semmns)
     540             :                 return -ENOSPC;
     541             : 
     542           0 :         sma = sem_alloc(nsems);
     543           0 :         if (!sma)
     544             :                 return -ENOMEM;
     545             : 
     546           0 :         sma->sem_perm.mode = (semflg & S_IRWXUGO);
     547           0 :         sma->sem_perm.key = key;
     548             : 
     549           0 :         sma->sem_perm.security = NULL;
     550           0 :         retval = security_sem_alloc(&sma->sem_perm);
     551           0 :         if (retval) {
     552           0 :                 kvfree(sma);
     553           0 :                 return retval;
     554             :         }
     555             : 
     556           0 :         for (i = 0; i < nsems; i++) {
     557           0 :                 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
     558           0 :                 INIT_LIST_HEAD(&sma->sems[i].pending_const);
     559           0 :                 spin_lock_init(&sma->sems[i].lock);
     560             :         }
     561             : 
     562           0 :         sma->complex_count = 0;
     563           0 :         sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
     564           0 :         INIT_LIST_HEAD(&sma->pending_alter);
     565           0 :         INIT_LIST_HEAD(&sma->pending_const);
     566           0 :         INIT_LIST_HEAD(&sma->list_id);
     567           0 :         sma->sem_nsems = nsems;
     568           0 :         sma->sem_ctime = ktime_get_real_seconds();
     569             : 
     570             :         /* ipc_addid() locks sma upon success. */
     571           0 :         retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
     572           0 :         if (retval < 0) {
     573           0 :                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
     574           0 :                 return retval;
     575             :         }
     576           0 :         ns->used_sems += nsems;
     577             : 
     578           0 :         sem_unlock(sma, -1);
     579           0 :         rcu_read_unlock();
     580             : 
     581           0 :         return sma->sem_perm.id;
     582             : }
     583             : 
     584             : 
     585             : /*
     586             :  * Called with sem_ids.rwsem and ipcp locked.
     587             :  */
     588           0 : static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
     589             : {
     590           0 :         struct sem_array *sma;
     591             : 
     592           0 :         sma = container_of(ipcp, struct sem_array, sem_perm);
     593           0 :         if (params->u.nsems > sma->sem_nsems)
     594           0 :                 return -EINVAL;
     595             : 
     596             :         return 0;
     597             : }
     598             : 
     599           0 : long ksys_semget(key_t key, int nsems, int semflg)
     600             : {
     601           0 :         struct ipc_namespace *ns;
     602           0 :         static const struct ipc_ops sem_ops = {
     603             :                 .getnew = newary,
     604             :                 .associate = security_sem_associate,
     605             :                 .more_checks = sem_more_checks,
     606             :         };
     607           0 :         struct ipc_params sem_params;
     608             : 
     609           0 :         ns = current->nsproxy->ipc_ns;
     610             : 
     611           0 :         if (nsems < 0 || nsems > ns->sc_semmsl)
     612             :                 return -EINVAL;
     613             : 
     614           0 :         sem_params.key = key;
     615           0 :         sem_params.flg = semflg;
     616           0 :         sem_params.u.nsems = nsems;
     617             : 
     618           0 :         return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
     619             : }
     620             : 
     621           0 : SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
     622             : {
     623           0 :         return ksys_semget(key, nsems, semflg);
     624             : }
     625             : 
     626             : /**
     627             :  * perform_atomic_semop[_slow] - Attempt to perform semaphore
     628             :  *                               operations on a given array.
     629             :  * @sma: semaphore array
     630             :  * @q: struct sem_queue that describes the operation
     631             :  *
     632             :  * Caller blocking are as follows, based the value
     633             :  * indicated by the semaphore operation (sem_op):
     634             :  *
     635             :  *  (1) >0 never blocks.
     636             :  *  (2)  0 (wait-for-zero operation): semval is non-zero.
     637             :  *  (3) <0 attempting to decrement semval to a value smaller than zero.
     638             :  *
     639             :  * Returns 0 if the operation was possible.
     640             :  * Returns 1 if the operation is impossible, the caller must sleep.
     641             :  * Returns <0 for error codes.
     642             :  */
     643           0 : static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
     644             : {
     645           0 :         int result, sem_op, nsops;
     646           0 :         struct pid *pid;
     647           0 :         struct sembuf *sop;
     648           0 :         struct sem *curr;
     649           0 :         struct sembuf *sops;
     650           0 :         struct sem_undo *un;
     651             : 
     652           0 :         sops = q->sops;
     653           0 :         nsops = q->nsops;
     654           0 :         un = q->undo;
     655             : 
     656           0 :         for (sop = sops; sop < sops + nsops; sop++) {
     657           0 :                 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
     658           0 :                 curr = &sma->sems[idx];
     659           0 :                 sem_op = sop->sem_op;
     660           0 :                 result = curr->semval;
     661             : 
     662           0 :                 if (!sem_op && result)
     663           0 :                         goto would_block;
     664             : 
     665           0 :                 result += sem_op;
     666           0 :                 if (result < 0)
     667           0 :                         goto would_block;
     668           0 :                 if (result > SEMVMX)
     669           0 :                         goto out_of_range;
     670             : 
     671           0 :                 if (sop->sem_flg & SEM_UNDO) {
     672           0 :                         int undo = un->semadj[sop->sem_num] - sem_op;
     673             :                         /* Exceeding the undo range is an error. */
     674           0 :                         if (undo < (-SEMAEM - 1) || undo > SEMAEM)
     675           0 :                                 goto out_of_range;
     676           0 :                         un->semadj[sop->sem_num] = undo;
     677             :                 }
     678             : 
     679           0 :                 curr->semval = result;
     680             :         }
     681             : 
     682           0 :         sop--;
     683           0 :         pid = q->pid;
     684           0 :         while (sop >= sops) {
     685           0 :                 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
     686           0 :                 sop--;
     687             :         }
     688             : 
     689             :         return 0;
     690             : 
     691           0 : out_of_range:
     692           0 :         result = -ERANGE;
     693           0 :         goto undo;
     694             : 
     695           0 : would_block:
     696           0 :         q->blocking = sop;
     697             : 
     698           0 :         if (sop->sem_flg & IPC_NOWAIT)
     699             :                 result = -EAGAIN;
     700             :         else
     701           0 :                 result = 1;
     702             : 
     703           0 : undo:
     704           0 :         sop--;
     705           0 :         while (sop >= sops) {
     706           0 :                 sem_op = sop->sem_op;
     707           0 :                 sma->sems[sop->sem_num].semval -= sem_op;
     708           0 :                 if (sop->sem_flg & SEM_UNDO)
     709           0 :                         un->semadj[sop->sem_num] += sem_op;
     710           0 :                 sop--;
     711             :         }
     712             : 
     713             :         return result;
     714             : }
     715             : 
     716           0 : static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
     717             : {
     718           0 :         int result, sem_op, nsops;
     719           0 :         struct sembuf *sop;
     720           0 :         struct sem *curr;
     721           0 :         struct sembuf *sops;
     722           0 :         struct sem_undo *un;
     723             : 
     724           0 :         sops = q->sops;
     725           0 :         nsops = q->nsops;
     726           0 :         un = q->undo;
     727             : 
     728           0 :         if (unlikely(q->dupsop))
     729           0 :                 return perform_atomic_semop_slow(sma, q);
     730             : 
     731             :         /*
     732             :          * We scan the semaphore set twice, first to ensure that the entire
     733             :          * operation can succeed, therefore avoiding any pointless writes
     734             :          * to shared memory and having to undo such changes in order to block
     735             :          * until the operations can go through.
     736             :          */
     737           0 :         for (sop = sops; sop < sops + nsops; sop++) {
     738           0 :                 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
     739             : 
     740           0 :                 curr = &sma->sems[idx];
     741           0 :                 sem_op = sop->sem_op;
     742           0 :                 result = curr->semval;
     743             : 
     744           0 :                 if (!sem_op && result)
     745           0 :                         goto would_block; /* wait-for-zero */
     746             : 
     747           0 :                 result += sem_op;
     748           0 :                 if (result < 0)
     749           0 :                         goto would_block;
     750             : 
     751           0 :                 if (result > SEMVMX)
     752             :                         return -ERANGE;
     753             : 
     754           0 :                 if (sop->sem_flg & SEM_UNDO) {
     755           0 :                         int undo = un->semadj[sop->sem_num] - sem_op;
     756             : 
     757             :                         /* Exceeding the undo range is an error. */
     758           0 :                         if (undo < (-SEMAEM - 1) || undo > SEMAEM)
     759             :                                 return -ERANGE;
     760             :                 }
     761             :         }
     762             : 
     763           0 :         for (sop = sops; sop < sops + nsops; sop++) {
     764           0 :                 curr = &sma->sems[sop->sem_num];
     765           0 :                 sem_op = sop->sem_op;
     766           0 :                 result = curr->semval;
     767             : 
     768           0 :                 if (sop->sem_flg & SEM_UNDO) {
     769           0 :                         int undo = un->semadj[sop->sem_num] - sem_op;
     770             : 
     771           0 :                         un->semadj[sop->sem_num] = undo;
     772             :                 }
     773           0 :                 curr->semval += sem_op;
     774           0 :                 ipc_update_pid(&curr->sempid, q->pid);
     775             :         }
     776             : 
     777             :         return 0;
     778             : 
     779           0 : would_block:
     780           0 :         q->blocking = sop;
     781           0 :         return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
     782             : }
     783             : 
     784           0 : static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
     785             :                                              struct wake_q_head *wake_q)
     786             : {
     787           0 :         get_task_struct(q->sleeper);
     788             : 
     789             :         /* see SEM_BARRIER_2 for purpuse/pairing */
     790           0 :         smp_store_release(&q->status, error);
     791             : 
     792           0 :         wake_q_add_safe(wake_q, q->sleeper);
     793           0 : }
     794             : 
     795           0 : static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
     796             : {
     797           0 :         list_del(&q->list);
     798           0 :         if (q->nsops > 1)
     799           0 :                 sma->complex_count--;
     800             : }
     801             : 
     802             : /** check_restart(sma, q)
     803             :  * @sma: semaphore array
     804             :  * @q: the operation that just completed
     805             :  *
     806             :  * update_queue is O(N^2) when it restarts scanning the whole queue of
     807             :  * waiting operations. Therefore this function checks if the restart is
     808             :  * really necessary. It is called after a previously waiting operation
     809             :  * modified the array.
     810             :  * Note that wait-for-zero operations are handled without restart.
     811             :  */
     812           0 : static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
     813             : {
     814             :         /* pending complex alter operations are too difficult to analyse */
     815           0 :         if (!list_empty(&sma->pending_alter))
     816             :                 return 1;
     817             : 
     818             :         /* we were a sleeping complex operation. Too difficult */
     819           0 :         if (q->nsops > 1)
     820           0 :                 return 1;
     821             : 
     822             :         /* It is impossible that someone waits for the new value:
     823             :          * - complex operations always restart.
     824             :          * - wait-for-zero are handled seperately.
     825             :          * - q is a previously sleeping simple operation that
     826             :          *   altered the array. It must be a decrement, because
     827             :          *   simple increments never sleep.
     828             :          * - If there are older (higher priority) decrements
     829             :          *   in the queue, then they have observed the original
     830             :          *   semval value and couldn't proceed. The operation
     831             :          *   decremented to value - thus they won't proceed either.
     832             :          */
     833             :         return 0;
     834             : }
     835             : 
     836             : /**
     837             :  * wake_const_ops - wake up non-alter tasks
     838             :  * @sma: semaphore array.
     839             :  * @semnum: semaphore that was modified.
     840             :  * @wake_q: lockless wake-queue head.
     841             :  *
     842             :  * wake_const_ops must be called after a semaphore in a semaphore array
     843             :  * was set to 0. If complex const operations are pending, wake_const_ops must
     844             :  * be called with semnum = -1, as well as with the number of each modified
     845             :  * semaphore.
     846             :  * The tasks that must be woken up are added to @wake_q. The return code
     847             :  * is stored in q->pid.
     848             :  * The function returns 1 if at least one operation was completed successfully.
     849             :  */
     850           0 : static int wake_const_ops(struct sem_array *sma, int semnum,
     851             :                           struct wake_q_head *wake_q)
     852             : {
     853           0 :         struct sem_queue *q, *tmp;
     854           0 :         struct list_head *pending_list;
     855           0 :         int semop_completed = 0;
     856             : 
     857           0 :         if (semnum == -1)
     858           0 :                 pending_list = &sma->pending_const;
     859             :         else
     860           0 :                 pending_list = &sma->sems[semnum].pending_const;
     861             : 
     862           0 :         list_for_each_entry_safe(q, tmp, pending_list, list) {
     863           0 :                 int error = perform_atomic_semop(sma, q);
     864             : 
     865           0 :                 if (error > 0)
     866           0 :                         continue;
     867             :                 /* operation completed, remove from queue & wakeup */
     868           0 :                 unlink_queue(sma, q);
     869             : 
     870           0 :                 wake_up_sem_queue_prepare(q, error, wake_q);
     871           0 :                 if (error == 0)
     872           0 :                         semop_completed = 1;
     873             :         }
     874             : 
     875           0 :         return semop_completed;
     876             : }
     877             : 
     878             : /**
     879             :  * do_smart_wakeup_zero - wakeup all wait for zero tasks
     880             :  * @sma: semaphore array
     881             :  * @sops: operations that were performed
     882             :  * @nsops: number of operations
     883             :  * @wake_q: lockless wake-queue head
     884             :  *
     885             :  * Checks all required queue for wait-for-zero operations, based
     886             :  * on the actual changes that were performed on the semaphore array.
     887             :  * The function returns 1 if at least one operation was completed successfully.
     888             :  */
     889           0 : static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
     890             :                                 int nsops, struct wake_q_head *wake_q)
     891             : {
     892           0 :         int i;
     893           0 :         int semop_completed = 0;
     894           0 :         int got_zero = 0;
     895             : 
     896             :         /* first: the per-semaphore queues, if known */
     897           0 :         if (sops) {
     898           0 :                 for (i = 0; i < nsops; i++) {
     899           0 :                         int num = sops[i].sem_num;
     900             : 
     901           0 :                         if (sma->sems[num].semval == 0) {
     902           0 :                                 got_zero = 1;
     903           0 :                                 semop_completed |= wake_const_ops(sma, num, wake_q);
     904             :                         }
     905             :                 }
     906             :         } else {
     907             :                 /*
     908             :                  * No sops means modified semaphores not known.
     909             :                  * Assume all were changed.
     910             :                  */
     911           0 :                 for (i = 0; i < sma->sem_nsems; i++) {
     912           0 :                         if (sma->sems[i].semval == 0) {
     913           0 :                                 got_zero = 1;
     914           0 :                                 semop_completed |= wake_const_ops(sma, i, wake_q);
     915             :                         }
     916             :                 }
     917             :         }
     918             :         /*
     919             :          * If one of the modified semaphores got 0,
     920             :          * then check the global queue, too.
     921             :          */
     922           0 :         if (got_zero)
     923           0 :                 semop_completed |= wake_const_ops(sma, -1, wake_q);
     924             : 
     925           0 :         return semop_completed;
     926             : }
     927             : 
     928             : 
     929             : /**
     930             :  * update_queue - look for tasks that can be completed.
     931             :  * @sma: semaphore array.
     932             :  * @semnum: semaphore that was modified.
     933             :  * @wake_q: lockless wake-queue head.
     934             :  *
     935             :  * update_queue must be called after a semaphore in a semaphore array
     936             :  * was modified. If multiple semaphores were modified, update_queue must
     937             :  * be called with semnum = -1, as well as with the number of each modified
     938             :  * semaphore.
     939             :  * The tasks that must be woken up are added to @wake_q. The return code
     940             :  * is stored in q->pid.
     941             :  * The function internally checks if const operations can now succeed.
     942             :  *
     943             :  * The function return 1 if at least one semop was completed successfully.
     944             :  */
     945           0 : static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
     946             : {
     947           0 :         struct sem_queue *q, *tmp;
     948           0 :         struct list_head *pending_list;
     949           0 :         int semop_completed = 0;
     950             : 
     951           0 :         if (semnum == -1)
     952           0 :                 pending_list = &sma->pending_alter;
     953             :         else
     954           0 :                 pending_list = &sma->sems[semnum].pending_alter;
     955             : 
     956           0 : again:
     957           0 :         list_for_each_entry_safe(q, tmp, pending_list, list) {
     958           0 :                 int error, restart;
     959             : 
     960             :                 /* If we are scanning the single sop, per-semaphore list of
     961             :                  * one semaphore and that semaphore is 0, then it is not
     962             :                  * necessary to scan further: simple increments
     963             :                  * that affect only one entry succeed immediately and cannot
     964             :                  * be in the  per semaphore pending queue, and decrements
     965             :                  * cannot be successful if the value is already 0.
     966             :                  */
     967           0 :                 if (semnum != -1 && sma->sems[semnum].semval == 0)
     968             :                         break;
     969             : 
     970           0 :                 error = perform_atomic_semop(sma, q);
     971             : 
     972             :                 /* Does q->sleeper still need to sleep? */
     973           0 :                 if (error > 0)
     974           0 :                         continue;
     975             : 
     976           0 :                 unlink_queue(sma, q);
     977             : 
     978           0 :                 if (error) {
     979             :                         restart = 0;
     980             :                 } else {
     981           0 :                         semop_completed = 1;
     982           0 :                         do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
     983           0 :                         restart = check_restart(sma, q);
     984             :                 }
     985             : 
     986           0 :                 wake_up_sem_queue_prepare(q, error, wake_q);
     987           0 :                 if (restart)
     988           0 :                         goto again;
     989             :         }
     990           0 :         return semop_completed;
     991             : }
     992             : 
     993             : /**
     994             :  * set_semotime - set sem_otime
     995             :  * @sma: semaphore array
     996             :  * @sops: operations that modified the array, may be NULL
     997             :  *
     998             :  * sem_otime is replicated to avoid cache line trashing.
     999             :  * This function sets one instance to the current time.
    1000             :  */
    1001           0 : static void set_semotime(struct sem_array *sma, struct sembuf *sops)
    1002             : {
    1003           0 :         if (sops == NULL) {
    1004           0 :                 sma->sems[0].sem_otime = ktime_get_real_seconds();
    1005             :         } else {
    1006           0 :                 sma->sems[sops[0].sem_num].sem_otime =
    1007           0 :                                                 ktime_get_real_seconds();
    1008             :         }
    1009           0 : }
    1010             : 
    1011             : /**
    1012             :  * do_smart_update - optimized update_queue
    1013             :  * @sma: semaphore array
    1014             :  * @sops: operations that were performed
    1015             :  * @nsops: number of operations
    1016             :  * @otime: force setting otime
    1017             :  * @wake_q: lockless wake-queue head
    1018             :  *
    1019             :  * do_smart_update() does the required calls to update_queue and wakeup_zero,
    1020             :  * based on the actual changes that were performed on the semaphore array.
    1021             :  * Note that the function does not do the actual wake-up: the caller is
    1022             :  * responsible for calling wake_up_q().
    1023             :  * It is safe to perform this call after dropping all locks.
    1024             :  */
    1025           0 : static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
    1026             :                             int otime, struct wake_q_head *wake_q)
    1027             : {
    1028           0 :         int i;
    1029             : 
    1030           0 :         otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
    1031             : 
    1032           0 :         if (!list_empty(&sma->pending_alter)) {
    1033             :                 /* semaphore array uses the global queue - just process it. */
    1034           0 :                 otime |= update_queue(sma, -1, wake_q);
    1035             :         } else {
    1036           0 :                 if (!sops) {
    1037             :                         /*
    1038             :                          * No sops, thus the modified semaphores are not
    1039             :                          * known. Check all.
    1040             :                          */
    1041           0 :                         for (i = 0; i < sma->sem_nsems; i++)
    1042           0 :                                 otime |= update_queue(sma, i, wake_q);
    1043             :                 } else {
    1044             :                         /*
    1045             :                          * Check the semaphores that were increased:
    1046             :                          * - No complex ops, thus all sleeping ops are
    1047             :                          *   decrease.
    1048             :                          * - if we decreased the value, then any sleeping
    1049             :                          *   semaphore ops wont be able to run: If the
    1050             :                          *   previous value was too small, then the new
    1051             :                          *   value will be too small, too.
    1052             :                          */
    1053           0 :                         for (i = 0; i < nsops; i++) {
    1054           0 :                                 if (sops[i].sem_op > 0) {
    1055           0 :                                         otime |= update_queue(sma,
    1056           0 :                                                               sops[i].sem_num, wake_q);
    1057             :                                 }
    1058             :                         }
    1059             :                 }
    1060             :         }
    1061           0 :         if (otime)
    1062           0 :                 set_semotime(sma, sops);
    1063           0 : }
    1064             : 
    1065             : /*
    1066             :  * check_qop: Test if a queued operation sleeps on the semaphore semnum
    1067             :  */
    1068           0 : static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
    1069             :                         bool count_zero)
    1070             : {
    1071           0 :         struct sembuf *sop = q->blocking;
    1072             : 
    1073             :         /*
    1074             :          * Linux always (since 0.99.10) reported a task as sleeping on all
    1075             :          * semaphores. This violates SUS, therefore it was changed to the
    1076             :          * standard compliant behavior.
    1077             :          * Give the administrators a chance to notice that an application
    1078             :          * might misbehave because it relies on the Linux behavior.
    1079             :          */
    1080           0 :         pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
    1081             :                         "The task %s (%d) triggered the difference, watch for misbehavior.\n",
    1082             :                         current->comm, task_pid_nr(current));
    1083             : 
    1084           0 :         if (sop->sem_num != semnum)
    1085             :                 return 0;
    1086             : 
    1087           0 :         if (count_zero && sop->sem_op == 0)
    1088             :                 return 1;
    1089           0 :         if (!count_zero && sop->sem_op < 0)
    1090           0 :                 return 1;
    1091             : 
    1092             :         return 0;
    1093             : }
    1094             : 
    1095             : /* The following counts are associated to each semaphore:
    1096             :  *   semncnt        number of tasks waiting on semval being nonzero
    1097             :  *   semzcnt        number of tasks waiting on semval being zero
    1098             :  *
    1099             :  * Per definition, a task waits only on the semaphore of the first semop
    1100             :  * that cannot proceed, even if additional operation would block, too.
    1101             :  */
    1102           0 : static int count_semcnt(struct sem_array *sma, ushort semnum,
    1103             :                         bool count_zero)
    1104             : {
    1105           0 :         struct list_head *l;
    1106           0 :         struct sem_queue *q;
    1107           0 :         int semcnt;
    1108             : 
    1109           0 :         semcnt = 0;
    1110             :         /* First: check the simple operations. They are easy to evaluate */
    1111           0 :         if (count_zero)
    1112           0 :                 l = &sma->sems[semnum].pending_const;
    1113             :         else
    1114           0 :                 l = &sma->sems[semnum].pending_alter;
    1115             : 
    1116           0 :         list_for_each_entry(q, l, list) {
    1117             :                 /* all task on a per-semaphore list sleep on exactly
    1118             :                  * that semaphore
    1119             :                  */
    1120           0 :                 semcnt++;
    1121             :         }
    1122             : 
    1123             :         /* Then: check the complex operations. */
    1124           0 :         list_for_each_entry(q, &sma->pending_alter, list) {
    1125           0 :                 semcnt += check_qop(sma, semnum, q, count_zero);
    1126             :         }
    1127           0 :         if (count_zero) {
    1128           0 :                 list_for_each_entry(q, &sma->pending_const, list) {
    1129           0 :                         semcnt += check_qop(sma, semnum, q, count_zero);
    1130             :                 }
    1131             :         }
    1132           0 :         return semcnt;
    1133             : }
    1134             : 
    1135             : /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
    1136             :  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
    1137             :  * remains locked on exit.
    1138             :  */
    1139           0 : static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
    1140             : {
    1141           0 :         struct sem_undo *un, *tu;
    1142           0 :         struct sem_queue *q, *tq;
    1143           0 :         struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
    1144           0 :         int i;
    1145           0 :         DEFINE_WAKE_Q(wake_q);
    1146             : 
    1147             :         /* Free the existing undo structures for this semaphore set.  */
    1148           0 :         ipc_assert_locked_object(&sma->sem_perm);
    1149           0 :         list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
    1150           0 :                 list_del(&un->list_id);
    1151           0 :                 spin_lock(&un->ulp->lock);
    1152           0 :                 un->semid = -1;
    1153           0 :                 list_del_rcu(&un->list_proc);
    1154           0 :                 spin_unlock(&un->ulp->lock);
    1155           0 :                 kfree_rcu(un, rcu);
    1156             :         }
    1157             : 
    1158             :         /* Wake up all pending processes and let them fail with EIDRM. */
    1159           0 :         list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
    1160           0 :                 unlink_queue(sma, q);
    1161           0 :                 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
    1162             :         }
    1163             : 
    1164           0 :         list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
    1165           0 :                 unlink_queue(sma, q);
    1166           0 :                 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
    1167             :         }
    1168           0 :         for (i = 0; i < sma->sem_nsems; i++) {
    1169           0 :                 struct sem *sem = &sma->sems[i];
    1170           0 :                 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
    1171           0 :                         unlink_queue(sma, q);
    1172           0 :                         wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
    1173             :                 }
    1174           0 :                 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
    1175           0 :                         unlink_queue(sma, q);
    1176           0 :                         wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
    1177             :                 }
    1178           0 :                 ipc_update_pid(&sem->sempid, NULL);
    1179             :         }
    1180             : 
    1181             :         /* Remove the semaphore set from the IDR */
    1182           0 :         sem_rmid(ns, sma);
    1183           0 :         sem_unlock(sma, -1);
    1184           0 :         rcu_read_unlock();
    1185             : 
    1186           0 :         wake_up_q(&wake_q);
    1187           0 :         ns->used_sems -= sma->sem_nsems;
    1188           0 :         ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    1189           0 : }
    1190             : 
    1191           0 : static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
    1192             : {
    1193           0 :         switch (version) {
    1194             :         case IPC_64:
    1195           0 :                 return copy_to_user(buf, in, sizeof(*in));
    1196           0 :         case IPC_OLD:
    1197             :             {
    1198           0 :                 struct semid_ds out;
    1199             : 
    1200           0 :                 memset(&out, 0, sizeof(out));
    1201             : 
    1202           0 :                 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
    1203             : 
    1204           0 :                 out.sem_otime   = in->sem_otime;
    1205           0 :                 out.sem_ctime   = in->sem_ctime;
    1206           0 :                 out.sem_nsems   = in->sem_nsems;
    1207             : 
    1208           0 :                 return copy_to_user(buf, &out, sizeof(out));
    1209             :             }
    1210             :         default:
    1211             :                 return -EINVAL;
    1212             :         }
    1213             : }
    1214             : 
    1215           0 : static time64_t get_semotime(struct sem_array *sma)
    1216             : {
    1217           0 :         int i;
    1218           0 :         time64_t res;
    1219             : 
    1220           0 :         res = sma->sems[0].sem_otime;
    1221           0 :         for (i = 1; i < sma->sem_nsems; i++) {
    1222           0 :                 time64_t to = sma->sems[i].sem_otime;
    1223             : 
    1224           0 :                 if (to > res)
    1225             :                         res = to;
    1226             :         }
    1227           0 :         return res;
    1228             : }
    1229             : 
    1230           0 : static int semctl_stat(struct ipc_namespace *ns, int semid,
    1231             :                          int cmd, struct semid64_ds *semid64)
    1232             : {
    1233           0 :         struct sem_array *sma;
    1234           0 :         time64_t semotime;
    1235           0 :         int err;
    1236             : 
    1237           0 :         memset(semid64, 0, sizeof(*semid64));
    1238             : 
    1239           0 :         rcu_read_lock();
    1240           0 :         if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
    1241           0 :                 sma = sem_obtain_object(ns, semid);
    1242           0 :                 if (IS_ERR(sma)) {
    1243           0 :                         err = PTR_ERR(sma);
    1244           0 :                         goto out_unlock;
    1245             :                 }
    1246             :         } else { /* IPC_STAT */
    1247           0 :                 sma = sem_obtain_object_check(ns, semid);
    1248           0 :                 if (IS_ERR(sma)) {
    1249           0 :                         err = PTR_ERR(sma);
    1250           0 :                         goto out_unlock;
    1251             :                 }
    1252             :         }
    1253             : 
    1254             :         /* see comment for SHM_STAT_ANY */
    1255           0 :         if (cmd == SEM_STAT_ANY)
    1256           0 :                 audit_ipc_obj(&sma->sem_perm);
    1257             :         else {
    1258           0 :                 err = -EACCES;
    1259           0 :                 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
    1260           0 :                         goto out_unlock;
    1261             :         }
    1262             : 
    1263           0 :         err = security_sem_semctl(&sma->sem_perm, cmd);
    1264           0 :         if (err)
    1265           0 :                 goto out_unlock;
    1266             : 
    1267           0 :         ipc_lock_object(&sma->sem_perm);
    1268             : 
    1269           0 :         if (!ipc_valid_object(&sma->sem_perm)) {
    1270           0 :                 ipc_unlock_object(&sma->sem_perm);
    1271           0 :                 err = -EIDRM;
    1272           0 :                 goto out_unlock;
    1273             :         }
    1274             : 
    1275           0 :         kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
    1276           0 :         semotime = get_semotime(sma);
    1277           0 :         semid64->sem_otime = semotime;
    1278           0 :         semid64->sem_ctime = sma->sem_ctime;
    1279             : #ifndef CONFIG_64BIT
    1280             :         semid64->sem_otime_high = semotime >> 32;
    1281             :         semid64->sem_ctime_high = sma->sem_ctime >> 32;
    1282             : #endif
    1283           0 :         semid64->sem_nsems = sma->sem_nsems;
    1284             : 
    1285           0 :         if (cmd == IPC_STAT) {
    1286             :                 /*
    1287             :                  * As defined in SUS:
    1288             :                  * Return 0 on success
    1289             :                  */
    1290             :                 err = 0;
    1291             :         } else {
    1292             :                 /*
    1293             :                  * SEM_STAT and SEM_STAT_ANY (both Linux specific)
    1294             :                  * Return the full id, including the sequence number
    1295             :                  */
    1296           0 :                 err = sma->sem_perm.id;
    1297             :         }
    1298           0 :         ipc_unlock_object(&sma->sem_perm);
    1299           0 : out_unlock:
    1300           0 :         rcu_read_unlock();
    1301           0 :         return err;
    1302             : }
    1303             : 
    1304           0 : static int semctl_info(struct ipc_namespace *ns, int semid,
    1305             :                          int cmd, void __user *p)
    1306             : {
    1307           0 :         struct seminfo seminfo;
    1308           0 :         int max_idx;
    1309           0 :         int err;
    1310             : 
    1311           0 :         err = security_sem_semctl(NULL, cmd);
    1312           0 :         if (err)
    1313             :                 return err;
    1314             : 
    1315           0 :         memset(&seminfo, 0, sizeof(seminfo));
    1316           0 :         seminfo.semmni = ns->sc_semmni;
    1317           0 :         seminfo.semmns = ns->sc_semmns;
    1318           0 :         seminfo.semmsl = ns->sc_semmsl;
    1319           0 :         seminfo.semopm = ns->sc_semopm;
    1320           0 :         seminfo.semvmx = SEMVMX;
    1321           0 :         seminfo.semmnu = SEMMNU;
    1322           0 :         seminfo.semmap = SEMMAP;
    1323           0 :         seminfo.semume = SEMUME;
    1324           0 :         down_read(&sem_ids(ns).rwsem);
    1325           0 :         if (cmd == SEM_INFO) {
    1326           0 :                 seminfo.semusz = sem_ids(ns).in_use;
    1327           0 :                 seminfo.semaem = ns->used_sems;
    1328             :         } else {
    1329           0 :                 seminfo.semusz = SEMUSZ;
    1330           0 :                 seminfo.semaem = SEMAEM;
    1331             :         }
    1332           0 :         max_idx = ipc_get_maxidx(&sem_ids(ns));
    1333           0 :         up_read(&sem_ids(ns).rwsem);
    1334           0 :         if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
    1335             :                 return -EFAULT;
    1336           0 :         return (max_idx < 0) ? 0 : max_idx;
    1337             : }
    1338             : 
    1339           0 : static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
    1340             :                 int val)
    1341             : {
    1342           0 :         struct sem_undo *un;
    1343           0 :         struct sem_array *sma;
    1344           0 :         struct sem *curr;
    1345           0 :         int err;
    1346           0 :         DEFINE_WAKE_Q(wake_q);
    1347             : 
    1348           0 :         if (val > SEMVMX || val < 0)
    1349             :                 return -ERANGE;
    1350             : 
    1351           0 :         rcu_read_lock();
    1352           0 :         sma = sem_obtain_object_check(ns, semid);
    1353           0 :         if (IS_ERR(sma)) {
    1354           0 :                 rcu_read_unlock();
    1355           0 :                 return PTR_ERR(sma);
    1356             :         }
    1357             : 
    1358           0 :         if (semnum < 0 || semnum >= sma->sem_nsems) {
    1359           0 :                 rcu_read_unlock();
    1360           0 :                 return -EINVAL;
    1361             :         }
    1362             : 
    1363             : 
    1364           0 :         if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
    1365           0 :                 rcu_read_unlock();
    1366           0 :                 return -EACCES;
    1367             :         }
    1368             : 
    1369           0 :         err = security_sem_semctl(&sma->sem_perm, SETVAL);
    1370           0 :         if (err) {
    1371           0 :                 rcu_read_unlock();
    1372           0 :                 return -EACCES;
    1373             :         }
    1374             : 
    1375           0 :         sem_lock(sma, NULL, -1);
    1376             : 
    1377           0 :         if (!ipc_valid_object(&sma->sem_perm)) {
    1378           0 :                 sem_unlock(sma, -1);
    1379           0 :                 rcu_read_unlock();
    1380           0 :                 return -EIDRM;
    1381             :         }
    1382             : 
    1383           0 :         semnum = array_index_nospec(semnum, sma->sem_nsems);
    1384           0 :         curr = &sma->sems[semnum];
    1385             : 
    1386           0 :         ipc_assert_locked_object(&sma->sem_perm);
    1387           0 :         list_for_each_entry(un, &sma->list_id, list_id)
    1388           0 :                 un->semadj[semnum] = 0;
    1389             : 
    1390           0 :         curr->semval = val;
    1391           0 :         ipc_update_pid(&curr->sempid, task_tgid(current));
    1392           0 :         sma->sem_ctime = ktime_get_real_seconds();
    1393             :         /* maybe some queued-up processes were waiting for this */
    1394           0 :         do_smart_update(sma, NULL, 0, 0, &wake_q);
    1395           0 :         sem_unlock(sma, -1);
    1396           0 :         rcu_read_unlock();
    1397           0 :         wake_up_q(&wake_q);
    1398           0 :         return 0;
    1399             : }
    1400             : 
    1401           0 : static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
    1402             :                 int cmd, void __user *p)
    1403             : {
    1404           0 :         struct sem_array *sma;
    1405           0 :         struct sem *curr;
    1406           0 :         int err, nsems;
    1407           0 :         ushort fast_sem_io[SEMMSL_FAST];
    1408           0 :         ushort *sem_io = fast_sem_io;
    1409           0 :         DEFINE_WAKE_Q(wake_q);
    1410             : 
    1411           0 :         rcu_read_lock();
    1412           0 :         sma = sem_obtain_object_check(ns, semid);
    1413           0 :         if (IS_ERR(sma)) {
    1414           0 :                 rcu_read_unlock();
    1415           0 :                 return PTR_ERR(sma);
    1416             :         }
    1417             : 
    1418           0 :         nsems = sma->sem_nsems;
    1419             : 
    1420           0 :         err = -EACCES;
    1421           0 :         if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
    1422           0 :                 goto out_rcu_wakeup;
    1423             : 
    1424           0 :         err = security_sem_semctl(&sma->sem_perm, cmd);
    1425           0 :         if (err)
    1426           0 :                 goto out_rcu_wakeup;
    1427             : 
    1428           0 :         err = -EACCES;
    1429           0 :         switch (cmd) {
    1430           0 :         case GETALL:
    1431             :         {
    1432           0 :                 ushort __user *array = p;
    1433           0 :                 int i;
    1434             : 
    1435           0 :                 sem_lock(sma, NULL, -1);
    1436           0 :                 if (!ipc_valid_object(&sma->sem_perm)) {
    1437           0 :                         err = -EIDRM;
    1438           0 :                         goto out_unlock;
    1439             :                 }
    1440           0 :                 if (nsems > SEMMSL_FAST) {
    1441           0 :                         if (!ipc_rcu_getref(&sma->sem_perm)) {
    1442           0 :                                 err = -EIDRM;
    1443           0 :                                 goto out_unlock;
    1444             :                         }
    1445           0 :                         sem_unlock(sma, -1);
    1446           0 :                         rcu_read_unlock();
    1447           0 :                         sem_io = kvmalloc_array(nsems, sizeof(ushort),
    1448             :                                                 GFP_KERNEL);
    1449           0 :                         if (sem_io == NULL) {
    1450           0 :                                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    1451           0 :                                 return -ENOMEM;
    1452             :                         }
    1453             : 
    1454           0 :                         rcu_read_lock();
    1455           0 :                         sem_lock_and_putref(sma);
    1456           0 :                         if (!ipc_valid_object(&sma->sem_perm)) {
    1457           0 :                                 err = -EIDRM;
    1458           0 :                                 goto out_unlock;
    1459             :                         }
    1460             :                 }
    1461           0 :                 for (i = 0; i < sma->sem_nsems; i++)
    1462           0 :                         sem_io[i] = sma->sems[i].semval;
    1463           0 :                 sem_unlock(sma, -1);
    1464           0 :                 rcu_read_unlock();
    1465           0 :                 err = 0;
    1466           0 :                 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
    1467           0 :                         err = -EFAULT;
    1468           0 :                 goto out_free;
    1469             :         }
    1470           0 :         case SETALL:
    1471             :         {
    1472           0 :                 int i;
    1473           0 :                 struct sem_undo *un;
    1474             : 
    1475           0 :                 if (!ipc_rcu_getref(&sma->sem_perm)) {
    1476           0 :                         err = -EIDRM;
    1477           0 :                         goto out_rcu_wakeup;
    1478             :                 }
    1479           0 :                 rcu_read_unlock();
    1480             : 
    1481           0 :                 if (nsems > SEMMSL_FAST) {
    1482           0 :                         sem_io = kvmalloc_array(nsems, sizeof(ushort),
    1483             :                                                 GFP_KERNEL);
    1484           0 :                         if (sem_io == NULL) {
    1485           0 :                                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    1486           0 :                                 return -ENOMEM;
    1487             :                         }
    1488             :                 }
    1489             : 
    1490           0 :                 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
    1491           0 :                         ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    1492           0 :                         err = -EFAULT;
    1493           0 :                         goto out_free;
    1494             :                 }
    1495             : 
    1496           0 :                 for (i = 0; i < nsems; i++) {
    1497           0 :                         if (sem_io[i] > SEMVMX) {
    1498           0 :                                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    1499           0 :                                 err = -ERANGE;
    1500           0 :                                 goto out_free;
    1501             :                         }
    1502             :                 }
    1503           0 :                 rcu_read_lock();
    1504           0 :                 sem_lock_and_putref(sma);
    1505           0 :                 if (!ipc_valid_object(&sma->sem_perm)) {
    1506           0 :                         err = -EIDRM;
    1507           0 :                         goto out_unlock;
    1508             :                 }
    1509             : 
    1510           0 :                 for (i = 0; i < nsems; i++) {
    1511           0 :                         sma->sems[i].semval = sem_io[i];
    1512           0 :                         ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
    1513             :                 }
    1514             : 
    1515           0 :                 ipc_assert_locked_object(&sma->sem_perm);
    1516           0 :                 list_for_each_entry(un, &sma->list_id, list_id) {
    1517           0 :                         for (i = 0; i < nsems; i++)
    1518           0 :                                 un->semadj[i] = 0;
    1519             :                 }
    1520           0 :                 sma->sem_ctime = ktime_get_real_seconds();
    1521             :                 /* maybe some queued-up processes were waiting for this */
    1522           0 :                 do_smart_update(sma, NULL, 0, 0, &wake_q);
    1523           0 :                 err = 0;
    1524           0 :                 goto out_unlock;
    1525             :         }
    1526             :         /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
    1527             :         }
    1528           0 :         err = -EINVAL;
    1529           0 :         if (semnum < 0 || semnum >= nsems)
    1530           0 :                 goto out_rcu_wakeup;
    1531             : 
    1532           0 :         sem_lock(sma, NULL, -1);
    1533           0 :         if (!ipc_valid_object(&sma->sem_perm)) {
    1534           0 :                 err = -EIDRM;
    1535           0 :                 goto out_unlock;
    1536             :         }
    1537             : 
    1538           0 :         semnum = array_index_nospec(semnum, nsems);
    1539           0 :         curr = &sma->sems[semnum];
    1540             : 
    1541           0 :         switch (cmd) {
    1542           0 :         case GETVAL:
    1543           0 :                 err = curr->semval;
    1544           0 :                 goto out_unlock;
    1545           0 :         case GETPID:
    1546           0 :                 err = pid_vnr(curr->sempid);
    1547           0 :                 goto out_unlock;
    1548           0 :         case GETNCNT:
    1549           0 :                 err = count_semcnt(sma, semnum, 0);
    1550           0 :                 goto out_unlock;
    1551           0 :         case GETZCNT:
    1552           0 :                 err = count_semcnt(sma, semnum, 1);
    1553           0 :                 goto out_unlock;
    1554             :         }
    1555             : 
    1556           0 : out_unlock:
    1557           0 :         sem_unlock(sma, -1);
    1558           0 : out_rcu_wakeup:
    1559           0 :         rcu_read_unlock();
    1560           0 :         wake_up_q(&wake_q);
    1561           0 : out_free:
    1562           0 :         if (sem_io != fast_sem_io)
    1563           0 :                 kvfree(sem_io);
    1564             :         return err;
    1565             : }
    1566             : 
    1567             : static inline unsigned long
    1568           0 : copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
    1569             : {
    1570           0 :         switch (version) {
    1571             :         case IPC_64:
    1572           0 :                 if (copy_from_user(out, buf, sizeof(*out)))
    1573           0 :                         return -EFAULT;
    1574             :                 return 0;
    1575             :         case IPC_OLD:
    1576             :             {
    1577           0 :                 struct semid_ds tbuf_old;
    1578             : 
    1579           0 :                 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
    1580             :                         return -EFAULT;
    1581             : 
    1582           0 :                 out->sem_perm.uid    = tbuf_old.sem_perm.uid;
    1583           0 :                 out->sem_perm.gid    = tbuf_old.sem_perm.gid;
    1584           0 :                 out->sem_perm.mode   = tbuf_old.sem_perm.mode;
    1585             : 
    1586           0 :                 return 0;
    1587             :             }
    1588             :         default:
    1589             :                 return -EINVAL;
    1590             :         }
    1591             : }
    1592             : 
    1593             : /*
    1594             :  * This function handles some semctl commands which require the rwsem
    1595             :  * to be held in write mode.
    1596             :  * NOTE: no locks must be held, the rwsem is taken inside this function.
    1597             :  */
    1598           0 : static int semctl_down(struct ipc_namespace *ns, int semid,
    1599             :                        int cmd, struct semid64_ds *semid64)
    1600             : {
    1601           0 :         struct sem_array *sma;
    1602           0 :         int err;
    1603           0 :         struct kern_ipc_perm *ipcp;
    1604             : 
    1605           0 :         down_write(&sem_ids(ns).rwsem);
    1606           0 :         rcu_read_lock();
    1607             : 
    1608           0 :         ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
    1609             :                                       &semid64->sem_perm, 0);
    1610           0 :         if (IS_ERR(ipcp)) {
    1611           0 :                 err = PTR_ERR(ipcp);
    1612           0 :                 goto out_unlock1;
    1613             :         }
    1614             : 
    1615           0 :         sma = container_of(ipcp, struct sem_array, sem_perm);
    1616             : 
    1617           0 :         err = security_sem_semctl(&sma->sem_perm, cmd);
    1618           0 :         if (err)
    1619           0 :                 goto out_unlock1;
    1620             : 
    1621           0 :         switch (cmd) {
    1622             :         case IPC_RMID:
    1623           0 :                 sem_lock(sma, NULL, -1);
    1624             :                 /* freeary unlocks the ipc object and rcu */
    1625           0 :                 freeary(ns, ipcp);
    1626           0 :                 goto out_up;
    1627             :         case IPC_SET:
    1628           0 :                 sem_lock(sma, NULL, -1);
    1629           0 :                 err = ipc_update_perm(&semid64->sem_perm, ipcp);
    1630           0 :                 if (err)
    1631           0 :                         goto out_unlock0;
    1632           0 :                 sma->sem_ctime = ktime_get_real_seconds();
    1633           0 :                 break;
    1634           0 :         default:
    1635           0 :                 err = -EINVAL;
    1636           0 :                 goto out_unlock1;
    1637             :         }
    1638             : 
    1639           0 : out_unlock0:
    1640           0 :         sem_unlock(sma, -1);
    1641           0 : out_unlock1:
    1642           0 :         rcu_read_unlock();
    1643           0 : out_up:
    1644           0 :         up_write(&sem_ids(ns).rwsem);
    1645           0 :         return err;
    1646             : }
    1647             : 
    1648           0 : static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
    1649             : {
    1650           0 :         struct ipc_namespace *ns;
    1651           0 :         void __user *p = (void __user *)arg;
    1652           0 :         struct semid64_ds semid64;
    1653           0 :         int err;
    1654             : 
    1655           0 :         if (semid < 0)
    1656             :                 return -EINVAL;
    1657             : 
    1658           0 :         ns = current->nsproxy->ipc_ns;
    1659             : 
    1660           0 :         switch (cmd) {
    1661           0 :         case IPC_INFO:
    1662             :         case SEM_INFO:
    1663           0 :                 return semctl_info(ns, semid, cmd, p);
    1664           0 :         case IPC_STAT:
    1665             :         case SEM_STAT:
    1666             :         case SEM_STAT_ANY:
    1667           0 :                 err = semctl_stat(ns, semid, cmd, &semid64);
    1668           0 :                 if (err < 0)
    1669           0 :                         return err;
    1670           0 :                 if (copy_semid_to_user(p, &semid64, version))
    1671           0 :                         err = -EFAULT;
    1672           0 :                 return err;
    1673           0 :         case GETALL:
    1674             :         case GETVAL:
    1675             :         case GETPID:
    1676             :         case GETNCNT:
    1677             :         case GETZCNT:
    1678             :         case SETALL:
    1679           0 :                 return semctl_main(ns, semid, semnum, cmd, p);
    1680           0 :         case SETVAL: {
    1681           0 :                 int val;
    1682             : #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
    1683             :                 /* big-endian 64bit */
    1684             :                 val = arg >> 32;
    1685             : #else
    1686             :                 /* 32bit or little-endian 64bit */
    1687           0 :                 val = arg;
    1688             : #endif
    1689           0 :                 return semctl_setval(ns, semid, semnum, val);
    1690             :         }
    1691           0 :         case IPC_SET:
    1692           0 :                 if (copy_semid_from_user(&semid64, p, version))
    1693             :                         return -EFAULT;
    1694           0 :                 fallthrough;
    1695             :         case IPC_RMID:
    1696           0 :                 return semctl_down(ns, semid, cmd, &semid64);
    1697             :         default:
    1698             :                 return -EINVAL;
    1699             :         }
    1700             : }
    1701             : 
    1702           0 : SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
    1703             : {
    1704           0 :         return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
    1705             : }
    1706             : 
    1707             : #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
    1708             : long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
    1709             : {
    1710             :         int version = ipc_parse_version(&cmd);
    1711             : 
    1712             :         return ksys_semctl(semid, semnum, cmd, arg, version);
    1713             : }
    1714             : 
    1715             : SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
    1716             : {
    1717             :         return ksys_old_semctl(semid, semnum, cmd, arg);
    1718             : }
    1719             : #endif
    1720             : 
    1721             : #ifdef CONFIG_COMPAT
    1722             : 
    1723             : struct compat_semid_ds {
    1724             :         struct compat_ipc_perm sem_perm;
    1725             :         old_time32_t sem_otime;
    1726             :         old_time32_t sem_ctime;
    1727             :         compat_uptr_t sem_base;
    1728             :         compat_uptr_t sem_pending;
    1729             :         compat_uptr_t sem_pending_last;
    1730             :         compat_uptr_t undo;
    1731             :         unsigned short sem_nsems;
    1732             : };
    1733             : 
    1734           0 : static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
    1735             :                                         int version)
    1736             : {
    1737           0 :         memset(out, 0, sizeof(*out));
    1738           0 :         if (version == IPC_64) {
    1739           0 :                 struct compat_semid64_ds __user *p = buf;
    1740           0 :                 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
    1741             :         } else {
    1742           0 :                 struct compat_semid_ds __user *p = buf;
    1743           0 :                 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
    1744             :         }
    1745             : }
    1746             : 
    1747           0 : static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
    1748             :                                         int version)
    1749             : {
    1750           0 :         if (version == IPC_64) {
    1751           0 :                 struct compat_semid64_ds v;
    1752           0 :                 memset(&v, 0, sizeof(v));
    1753           0 :                 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
    1754           0 :                 v.sem_otime      = lower_32_bits(in->sem_otime);
    1755           0 :                 v.sem_otime_high = upper_32_bits(in->sem_otime);
    1756           0 :                 v.sem_ctime      = lower_32_bits(in->sem_ctime);
    1757           0 :                 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
    1758           0 :                 v.sem_nsems = in->sem_nsems;
    1759           0 :                 return copy_to_user(buf, &v, sizeof(v));
    1760             :         } else {
    1761           0 :                 struct compat_semid_ds v;
    1762           0 :                 memset(&v, 0, sizeof(v));
    1763           0 :                 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
    1764           0 :                 v.sem_otime = in->sem_otime;
    1765           0 :                 v.sem_ctime = in->sem_ctime;
    1766           0 :                 v.sem_nsems = in->sem_nsems;
    1767           0 :                 return copy_to_user(buf, &v, sizeof(v));
    1768             :         }
    1769             : }
    1770             : 
    1771           0 : static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
    1772             : {
    1773           0 :         void __user *p = compat_ptr(arg);
    1774           0 :         struct ipc_namespace *ns;
    1775           0 :         struct semid64_ds semid64;
    1776           0 :         int err;
    1777             : 
    1778           0 :         ns = current->nsproxy->ipc_ns;
    1779             : 
    1780           0 :         if (semid < 0)
    1781             :                 return -EINVAL;
    1782             : 
    1783           0 :         switch (cmd & (~IPC_64)) {
    1784           0 :         case IPC_INFO:
    1785             :         case SEM_INFO:
    1786           0 :                 return semctl_info(ns, semid, cmd, p);
    1787           0 :         case IPC_STAT:
    1788             :         case SEM_STAT:
    1789             :         case SEM_STAT_ANY:
    1790           0 :                 err = semctl_stat(ns, semid, cmd, &semid64);
    1791           0 :                 if (err < 0)
    1792           0 :                         return err;
    1793           0 :                 if (copy_compat_semid_to_user(p, &semid64, version))
    1794           0 :                         err = -EFAULT;
    1795           0 :                 return err;
    1796           0 :         case GETVAL:
    1797             :         case GETPID:
    1798             :         case GETNCNT:
    1799             :         case GETZCNT:
    1800             :         case GETALL:
    1801             :         case SETALL:
    1802           0 :                 return semctl_main(ns, semid, semnum, cmd, p);
    1803           0 :         case SETVAL:
    1804           0 :                 return semctl_setval(ns, semid, semnum, arg);
    1805           0 :         case IPC_SET:
    1806           0 :                 if (copy_compat_semid_from_user(&semid64, p, version))
    1807             :                         return -EFAULT;
    1808           0 :                 fallthrough;
    1809             :         case IPC_RMID:
    1810           0 :                 return semctl_down(ns, semid, cmd, &semid64);
    1811             :         default:
    1812             :                 return -EINVAL;
    1813             :         }
    1814             : }
    1815             : 
    1816           0 : COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
    1817             : {
    1818           0 :         return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
    1819             : }
    1820             : 
    1821             : #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
    1822           0 : long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
    1823             : {
    1824           0 :         int version = compat_ipc_parse_version(&cmd);
    1825             : 
    1826           0 :         return compat_ksys_semctl(semid, semnum, cmd, arg, version);
    1827             : }
    1828             : 
    1829           0 : COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
    1830             : {
    1831           0 :         return compat_ksys_old_semctl(semid, semnum, cmd, arg);
    1832             : }
    1833             : #endif
    1834             : #endif
    1835             : 
    1836             : /* If the task doesn't already have a undo_list, then allocate one
    1837             :  * here.  We guarantee there is only one thread using this undo list,
    1838             :  * and current is THE ONE
    1839             :  *
    1840             :  * If this allocation and assignment succeeds, but later
    1841             :  * portions of this code fail, there is no need to free the sem_undo_list.
    1842             :  * Just let it stay associated with the task, and it'll be freed later
    1843             :  * at exit time.
    1844             :  *
    1845             :  * This can block, so callers must hold no locks.
    1846             :  */
    1847           6 : static inline int get_undo_list(struct sem_undo_list **undo_listp)
    1848             : {
    1849           6 :         struct sem_undo_list *undo_list;
    1850             : 
    1851           6 :         undo_list = current->sysvsem.undo_list;
    1852           6 :         if (!undo_list) {
    1853           3 :                 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
    1854           3 :                 if (undo_list == NULL)
    1855             :                         return -ENOMEM;
    1856           3 :                 spin_lock_init(&undo_list->lock);
    1857           3 :                 refcount_set(&undo_list->refcnt, 1);
    1858           3 :                 INIT_LIST_HEAD(&undo_list->list_proc);
    1859             : 
    1860           3 :                 current->sysvsem.undo_list = undo_list;
    1861             :         }
    1862           6 :         *undo_listp = undo_list;
    1863           6 :         return 0;
    1864             : }
    1865             : 
    1866           0 : static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
    1867             : {
    1868           0 :         struct sem_undo *un;
    1869             : 
    1870           0 :         list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
    1871             :                                 spin_is_locked(&ulp->lock)) {
    1872           0 :                 if (un->semid == semid)
    1873             :                         return un;
    1874             :         }
    1875             :         return NULL;
    1876             : }
    1877             : 
    1878           0 : static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
    1879             : {
    1880           0 :         struct sem_undo *un;
    1881             : 
    1882           0 :         assert_spin_locked(&ulp->lock);
    1883             : 
    1884           0 :         un = __lookup_undo(ulp, semid);
    1885           0 :         if (un) {
    1886           0 :                 list_del_rcu(&un->list_proc);
    1887           0 :                 list_add_rcu(&un->list_proc, &ulp->list_proc);
    1888             :         }
    1889           0 :         return un;
    1890             : }
    1891             : 
    1892             : /**
    1893             :  * find_alloc_undo - lookup (and if not present create) undo array
    1894             :  * @ns: namespace
    1895             :  * @semid: semaphore array id
    1896             :  *
    1897             :  * The function looks up (and if not present creates) the undo structure.
    1898             :  * The size of the undo structure depends on the size of the semaphore
    1899             :  * array, thus the alloc path is not that straightforward.
    1900             :  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
    1901             :  * performs a rcu_read_lock().
    1902             :  */
    1903           0 : static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
    1904             : {
    1905           0 :         struct sem_array *sma;
    1906           0 :         struct sem_undo_list *ulp;
    1907           0 :         struct sem_undo *un, *new;
    1908           0 :         int nsems, error;
    1909             : 
    1910           0 :         error = get_undo_list(&ulp);
    1911           0 :         if (error)
    1912           0 :                 return ERR_PTR(error);
    1913             : 
    1914           0 :         rcu_read_lock();
    1915           0 :         spin_lock(&ulp->lock);
    1916           0 :         un = lookup_undo(ulp, semid);
    1917           0 :         spin_unlock(&ulp->lock);
    1918           0 :         if (likely(un != NULL))
    1919           0 :                 goto out;
    1920             : 
    1921             :         /* no undo structure around - allocate one. */
    1922             :         /* step 1: figure out the size of the semaphore array */
    1923           0 :         sma = sem_obtain_object_check(ns, semid);
    1924           0 :         if (IS_ERR(sma)) {
    1925           0 :                 rcu_read_unlock();
    1926           0 :                 return ERR_CAST(sma);
    1927             :         }
    1928             : 
    1929           0 :         nsems = sma->sem_nsems;
    1930           0 :         if (!ipc_rcu_getref(&sma->sem_perm)) {
    1931           0 :                 rcu_read_unlock();
    1932           0 :                 un = ERR_PTR(-EIDRM);
    1933           0 :                 goto out;
    1934             :         }
    1935           0 :         rcu_read_unlock();
    1936             : 
    1937             :         /* step 2: allocate new undo structure */
    1938           0 :         new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
    1939           0 :         if (!new) {
    1940           0 :                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    1941           0 :                 return ERR_PTR(-ENOMEM);
    1942             :         }
    1943             : 
    1944             :         /* step 3: Acquire the lock on semaphore array */
    1945           0 :         rcu_read_lock();
    1946           0 :         sem_lock_and_putref(sma);
    1947           0 :         if (!ipc_valid_object(&sma->sem_perm)) {
    1948           0 :                 sem_unlock(sma, -1);
    1949           0 :                 rcu_read_unlock();
    1950           0 :                 kfree(new);
    1951           0 :                 un = ERR_PTR(-EIDRM);
    1952           0 :                 goto out;
    1953             :         }
    1954           0 :         spin_lock(&ulp->lock);
    1955             : 
    1956             :         /*
    1957             :          * step 4: check for races: did someone else allocate the undo struct?
    1958             :          */
    1959           0 :         un = lookup_undo(ulp, semid);
    1960           0 :         if (un) {
    1961           0 :                 kfree(new);
    1962           0 :                 goto success;
    1963             :         }
    1964             :         /* step 5: initialize & link new undo structure */
    1965           0 :         new->semadj = (short *) &new[1];
    1966           0 :         new->ulp = ulp;
    1967           0 :         new->semid = semid;
    1968           0 :         assert_spin_locked(&ulp->lock);
    1969           0 :         list_add_rcu(&new->list_proc, &ulp->list_proc);
    1970           0 :         ipc_assert_locked_object(&sma->sem_perm);
    1971           0 :         list_add(&new->list_id, &sma->list_id);
    1972           0 :         un = new;
    1973             : 
    1974           0 : success:
    1975           0 :         spin_unlock(&ulp->lock);
    1976           0 :         sem_unlock(sma, -1);
    1977             : out:
    1978             :         return un;
    1979             : }
    1980             : 
    1981           0 : static long do_semtimedop(int semid, struct sembuf __user *tsops,
    1982             :                 unsigned nsops, const struct timespec64 *timeout)
    1983             : {
    1984           0 :         int error = -EINVAL;
    1985           0 :         struct sem_array *sma;
    1986           0 :         struct sembuf fast_sops[SEMOPM_FAST];
    1987           0 :         struct sembuf *sops = fast_sops, *sop;
    1988           0 :         struct sem_undo *un;
    1989           0 :         int max, locknum;
    1990           0 :         bool undos = false, alter = false, dupsop = false;
    1991           0 :         struct sem_queue queue;
    1992           0 :         unsigned long dup = 0, jiffies_left = 0;
    1993           0 :         struct ipc_namespace *ns;
    1994             : 
    1995           0 :         ns = current->nsproxy->ipc_ns;
    1996             : 
    1997           0 :         if (nsops < 1 || semid < 0)
    1998             :                 return -EINVAL;
    1999           0 :         if (nsops > ns->sc_semopm)
    2000             :                 return -E2BIG;
    2001           0 :         if (nsops > SEMOPM_FAST) {
    2002           0 :                 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
    2003           0 :                 if (sops == NULL)
    2004             :                         return -ENOMEM;
    2005             :         }
    2006             : 
    2007           0 :         if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
    2008           0 :                 error =  -EFAULT;
    2009           0 :                 goto out_free;
    2010             :         }
    2011             : 
    2012           0 :         if (timeout) {
    2013           0 :                 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
    2014             :                         timeout->tv_nsec >= 1000000000L) {
    2015           0 :                         error = -EINVAL;
    2016           0 :                         goto out_free;
    2017             :                 }
    2018           0 :                 jiffies_left = timespec64_to_jiffies(timeout);
    2019             :         }
    2020             : 
    2021           0 :         max = 0;
    2022           0 :         for (sop = sops; sop < sops + nsops; sop++) {
    2023           0 :                 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
    2024             : 
    2025           0 :                 if (sop->sem_num >= max)
    2026             :                         max = sop->sem_num;
    2027           0 :                 if (sop->sem_flg & SEM_UNDO)
    2028           0 :                         undos = true;
    2029           0 :                 if (dup & mask) {
    2030             :                         /*
    2031             :                          * There was a previous alter access that appears
    2032             :                          * to have accessed the same semaphore, thus use
    2033             :                          * the dupsop logic. "appears", because the detection
    2034             :                          * can only check % BITS_PER_LONG.
    2035             :                          */
    2036           0 :                         dupsop = true;
    2037             :                 }
    2038           0 :                 if (sop->sem_op != 0) {
    2039           0 :                         alter = true;
    2040           0 :                         dup |= mask;
    2041             :                 }
    2042             :         }
    2043             : 
    2044           0 :         if (undos) {
    2045             :                 /* On success, find_alloc_undo takes the rcu_read_lock */
    2046           0 :                 un = find_alloc_undo(ns, semid);
    2047           0 :                 if (IS_ERR(un)) {
    2048           0 :                         error = PTR_ERR(un);
    2049           0 :                         goto out_free;
    2050             :                 }
    2051             :         } else {
    2052           0 :                 un = NULL;
    2053           0 :                 rcu_read_lock();
    2054             :         }
    2055             : 
    2056           0 :         sma = sem_obtain_object_check(ns, semid);
    2057           0 :         if (IS_ERR(sma)) {
    2058           0 :                 rcu_read_unlock();
    2059           0 :                 error = PTR_ERR(sma);
    2060           0 :                 goto out_free;
    2061             :         }
    2062             : 
    2063           0 :         error = -EFBIG;
    2064           0 :         if (max >= sma->sem_nsems) {
    2065           0 :                 rcu_read_unlock();
    2066           0 :                 goto out_free;
    2067             :         }
    2068             : 
    2069           0 :         error = -EACCES;
    2070           0 :         if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
    2071           0 :                 rcu_read_unlock();
    2072           0 :                 goto out_free;
    2073             :         }
    2074             : 
    2075           0 :         error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
    2076           0 :         if (error) {
    2077           0 :                 rcu_read_unlock();
    2078           0 :                 goto out_free;
    2079             :         }
    2080             : 
    2081           0 :         error = -EIDRM;
    2082           0 :         locknum = sem_lock(sma, sops, nsops);
    2083             :         /*
    2084             :          * We eventually might perform the following check in a lockless
    2085             :          * fashion, considering ipc_valid_object() locking constraints.
    2086             :          * If nsops == 1 and there is no contention for sem_perm.lock, then
    2087             :          * only a per-semaphore lock is held and it's OK to proceed with the
    2088             :          * check below. More details on the fine grained locking scheme
    2089             :          * entangled here and why it's RMID race safe on comments at sem_lock()
    2090             :          */
    2091           0 :         if (!ipc_valid_object(&sma->sem_perm))
    2092           0 :                 goto out_unlock_free;
    2093             :         /*
    2094             :          * semid identifiers are not unique - find_alloc_undo may have
    2095             :          * allocated an undo structure, it was invalidated by an RMID
    2096             :          * and now a new array with received the same id. Check and fail.
    2097             :          * This case can be detected checking un->semid. The existence of
    2098             :          * "un" itself is guaranteed by rcu.
    2099             :          */
    2100           0 :         if (un && un->semid == -1)
    2101           0 :                 goto out_unlock_free;
    2102             : 
    2103           0 :         queue.sops = sops;
    2104           0 :         queue.nsops = nsops;
    2105           0 :         queue.undo = un;
    2106           0 :         queue.pid = task_tgid(current);
    2107           0 :         queue.alter = alter;
    2108           0 :         queue.dupsop = dupsop;
    2109             : 
    2110           0 :         error = perform_atomic_semop(sma, &queue);
    2111           0 :         if (error == 0) { /* non-blocking succesfull path */
    2112           0 :                 DEFINE_WAKE_Q(wake_q);
    2113             : 
    2114             :                 /*
    2115             :                  * If the operation was successful, then do
    2116             :                  * the required updates.
    2117             :                  */
    2118           0 :                 if (alter)
    2119           0 :                         do_smart_update(sma, sops, nsops, 1, &wake_q);
    2120             :                 else
    2121           0 :                         set_semotime(sma, sops);
    2122             : 
    2123           0 :                 sem_unlock(sma, locknum);
    2124           0 :                 rcu_read_unlock();
    2125           0 :                 wake_up_q(&wake_q);
    2126             : 
    2127           0 :                 goto out_free;
    2128             :         }
    2129           0 :         if (error < 0) /* non-blocking error path */
    2130           0 :                 goto out_unlock_free;
    2131             : 
    2132             :         /*
    2133             :          * We need to sleep on this operation, so we put the current
    2134             :          * task into the pending queue and go to sleep.
    2135             :          */
    2136           0 :         if (nsops == 1) {
    2137           0 :                 struct sem *curr;
    2138           0 :                 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
    2139           0 :                 curr = &sma->sems[idx];
    2140             : 
    2141           0 :                 if (alter) {
    2142           0 :                         if (sma->complex_count) {
    2143           0 :                                 list_add_tail(&queue.list,
    2144             :                                                 &sma->pending_alter);
    2145             :                         } else {
    2146             : 
    2147           0 :                                 list_add_tail(&queue.list,
    2148             :                                                 &curr->pending_alter);
    2149             :                         }
    2150             :                 } else {
    2151           0 :                         list_add_tail(&queue.list, &curr->pending_const);
    2152             :                 }
    2153             :         } else {
    2154           0 :                 if (!sma->complex_count)
    2155           0 :                         merge_queues(sma);
    2156             : 
    2157           0 :                 if (alter)
    2158           0 :                         list_add_tail(&queue.list, &sma->pending_alter);
    2159             :                 else
    2160           0 :                         list_add_tail(&queue.list, &sma->pending_const);
    2161             : 
    2162           0 :                 sma->complex_count++;
    2163             :         }
    2164             : 
    2165           0 :         do {
    2166             :                 /* memory ordering ensured by the lock in sem_lock() */
    2167           0 :                 WRITE_ONCE(queue.status, -EINTR);
    2168           0 :                 queue.sleeper = current;
    2169             : 
    2170             :                 /* memory ordering is ensured by the lock in sem_lock() */
    2171           0 :                 __set_current_state(TASK_INTERRUPTIBLE);
    2172           0 :                 sem_unlock(sma, locknum);
    2173           0 :                 rcu_read_unlock();
    2174             : 
    2175           0 :                 if (timeout)
    2176           0 :                         jiffies_left = schedule_timeout(jiffies_left);
    2177             :                 else
    2178           0 :                         schedule();
    2179             : 
    2180             :                 /*
    2181             :                  * fastpath: the semop has completed, either successfully or
    2182             :                  * not, from the syscall pov, is quite irrelevant to us at this
    2183             :                  * point; we're done.
    2184             :                  *
    2185             :                  * We _do_ care, nonetheless, about being awoken by a signal or
    2186             :                  * spuriously.  The queue.status is checked again in the
    2187             :                  * slowpath (aka after taking sem_lock), such that we can detect
    2188             :                  * scenarios where we were awakened externally, during the
    2189             :                  * window between wake_q_add() and wake_up_q().
    2190             :                  */
    2191           0 :                 error = READ_ONCE(queue.status);
    2192           0 :                 if (error != -EINTR) {
    2193             :                         /* see SEM_BARRIER_2 for purpose/pairing */
    2194           0 :                         smp_acquire__after_ctrl_dep();
    2195           0 :                         goto out_free;
    2196             :                 }
    2197             : 
    2198           0 :                 rcu_read_lock();
    2199           0 :                 locknum = sem_lock(sma, sops, nsops);
    2200             : 
    2201           0 :                 if (!ipc_valid_object(&sma->sem_perm))
    2202           0 :                         goto out_unlock_free;
    2203             : 
    2204             :                 /*
    2205             :                  * No necessity for any barrier: We are protect by sem_lock()
    2206             :                  */
    2207           0 :                 error = READ_ONCE(queue.status);
    2208             : 
    2209             :                 /*
    2210             :                  * If queue.status != -EINTR we are woken up by another process.
    2211             :                  * Leave without unlink_queue(), but with sem_unlock().
    2212             :                  */
    2213           0 :                 if (error != -EINTR)
    2214           0 :                         goto out_unlock_free;
    2215             : 
    2216             :                 /*
    2217             :                  * If an interrupt occurred we have to clean up the queue.
    2218             :                  */
    2219           0 :                 if (timeout && jiffies_left == 0)
    2220             :                         error = -EAGAIN;
    2221           0 :         } while (error == -EINTR && !signal_pending(current)); /* spurious */
    2222             : 
    2223           0 :         unlink_queue(sma, &queue);
    2224             : 
    2225           0 : out_unlock_free:
    2226           0 :         sem_unlock(sma, locknum);
    2227           0 :         rcu_read_unlock();
    2228           0 : out_free:
    2229           0 :         if (sops != fast_sops)
    2230           0 :                 kvfree(sops);
    2231           0 :         return error;
    2232             : }
    2233             : 
    2234           0 : long ksys_semtimedop(int semid, struct sembuf __user *tsops,
    2235             :                      unsigned int nsops, const struct __kernel_timespec __user *timeout)
    2236             : {
    2237           0 :         if (timeout) {
    2238           0 :                 struct timespec64 ts;
    2239           0 :                 if (get_timespec64(&ts, timeout))
    2240             :                         return -EFAULT;
    2241           0 :                 return do_semtimedop(semid, tsops, nsops, &ts);
    2242             :         }
    2243           0 :         return do_semtimedop(semid, tsops, nsops, NULL);
    2244             : }
    2245             : 
    2246           0 : SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
    2247             :                 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
    2248             : {
    2249           0 :         return ksys_semtimedop(semid, tsops, nsops, timeout);
    2250             : }
    2251             : 
    2252             : #ifdef CONFIG_COMPAT_32BIT_TIME
    2253             : long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
    2254             :                             unsigned int nsops,
    2255             :                             const struct old_timespec32 __user *timeout)
    2256             : {
    2257             :         if (timeout) {
    2258             :                 struct timespec64 ts;
    2259             :                 if (get_old_timespec32(&ts, timeout))
    2260             :                         return -EFAULT;
    2261             :                 return do_semtimedop(semid, tsems, nsops, &ts);
    2262             :         }
    2263             :         return do_semtimedop(semid, tsems, nsops, NULL);
    2264             : }
    2265             : 
    2266             : SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
    2267             :                        unsigned int, nsops,
    2268             :                        const struct old_timespec32 __user *, timeout)
    2269             : {
    2270             :         return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
    2271             : }
    2272             : #endif
    2273             : 
    2274           0 : SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
    2275             :                 unsigned, nsops)
    2276             : {
    2277           0 :         return do_semtimedop(semid, tsops, nsops, NULL);
    2278             : }
    2279             : 
    2280             : /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
    2281             :  * parent and child tasks.
    2282             :  */
    2283             : 
    2284        1720 : int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
    2285             : {
    2286        1720 :         struct sem_undo_list *undo_list;
    2287        1720 :         int error;
    2288             : 
    2289        1720 :         if (clone_flags & CLONE_SYSVSEM) {
    2290           6 :                 error = get_undo_list(&undo_list);
    2291           6 :                 if (error)
    2292             :                         return error;
    2293           6 :                 refcount_inc(&undo_list->refcnt);
    2294           6 :                 tsk->sysvsem.undo_list = undo_list;
    2295             :         } else
    2296        1714 :                 tsk->sysvsem.undo_list = NULL;
    2297             : 
    2298             :         return 0;
    2299             : }
    2300             : 
    2301             : /*
    2302             :  * add semadj values to semaphores, free undo structures.
    2303             :  * undo structures are not freed when semaphore arrays are destroyed
    2304             :  * so some of them may be out of date.
    2305             :  * IMPLEMENTATION NOTE: There is some confusion over whether the
    2306             :  * set of adjustments that needs to be done should be done in an atomic
    2307             :  * manner or not. That is, if we are attempting to decrement the semval
    2308             :  * should we queue up and wait until we can do so legally?
    2309             :  * The original implementation attempted to do this (queue and wait).
    2310             :  * The current implementation does not do so. The POSIX standard
    2311             :  * and SVID should be consulted to determine what behavior is mandated.
    2312             :  */
    2313        1643 : void exit_sem(struct task_struct *tsk)
    2314             : {
    2315        1643 :         struct sem_undo_list *ulp;
    2316             : 
    2317        1643 :         ulp = tsk->sysvsem.undo_list;
    2318        1643 :         if (!ulp)
    2319             :                 return;
    2320           2 :         tsk->sysvsem.undo_list = NULL;
    2321             : 
    2322           2 :         if (!refcount_dec_and_test(&ulp->refcnt))
    2323             :                 return;
    2324             : 
    2325           0 :         for (;;) {
    2326           0 :                 struct sem_array *sma;
    2327           0 :                 struct sem_undo *un;
    2328           0 :                 int semid, i;
    2329           0 :                 DEFINE_WAKE_Q(wake_q);
    2330             : 
    2331           0 :                 cond_resched();
    2332             : 
    2333           0 :                 rcu_read_lock();
    2334           0 :                 un = list_entry_rcu(ulp->list_proc.next,
    2335             :                                     struct sem_undo, list_proc);
    2336           0 :                 if (&un->list_proc == &ulp->list_proc) {
    2337             :                         /*
    2338             :                          * We must wait for freeary() before freeing this ulp,
    2339             :                          * in case we raced with last sem_undo. There is a small
    2340             :                          * possibility where we exit while freeary() didn't
    2341             :                          * finish unlocking sem_undo_list.
    2342             :                          */
    2343           0 :                         spin_lock(&ulp->lock);
    2344           0 :                         spin_unlock(&ulp->lock);
    2345           0 :                         rcu_read_unlock();
    2346           0 :                         break;
    2347             :                 }
    2348           0 :                 spin_lock(&ulp->lock);
    2349           0 :                 semid = un->semid;
    2350           0 :                 spin_unlock(&ulp->lock);
    2351             : 
    2352             :                 /* exit_sem raced with IPC_RMID, nothing to do */
    2353           0 :                 if (semid == -1) {
    2354           0 :                         rcu_read_unlock();
    2355           0 :                         continue;
    2356             :                 }
    2357             : 
    2358           0 :                 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
    2359             :                 /* exit_sem raced with IPC_RMID, nothing to do */
    2360           0 :                 if (IS_ERR(sma)) {
    2361           0 :                         rcu_read_unlock();
    2362           0 :                         continue;
    2363             :                 }
    2364             : 
    2365           0 :                 sem_lock(sma, NULL, -1);
    2366             :                 /* exit_sem raced with IPC_RMID, nothing to do */
    2367           0 :                 if (!ipc_valid_object(&sma->sem_perm)) {
    2368           0 :                         sem_unlock(sma, -1);
    2369           0 :                         rcu_read_unlock();
    2370           0 :                         continue;
    2371             :                 }
    2372           0 :                 un = __lookup_undo(ulp, semid);
    2373           0 :                 if (un == NULL) {
    2374             :                         /* exit_sem raced with IPC_RMID+semget() that created
    2375             :                          * exactly the same semid. Nothing to do.
    2376             :                          */
    2377           0 :                         sem_unlock(sma, -1);
    2378           0 :                         rcu_read_unlock();
    2379           0 :                         continue;
    2380             :                 }
    2381             : 
    2382             :                 /* remove un from the linked lists */
    2383           0 :                 ipc_assert_locked_object(&sma->sem_perm);
    2384           0 :                 list_del(&un->list_id);
    2385             : 
    2386           0 :                 spin_lock(&ulp->lock);
    2387           0 :                 list_del_rcu(&un->list_proc);
    2388           0 :                 spin_unlock(&ulp->lock);
    2389             : 
    2390             :                 /* perform adjustments registered in un */
    2391           0 :                 for (i = 0; i < sma->sem_nsems; i++) {
    2392           0 :                         struct sem *semaphore = &sma->sems[i];
    2393           0 :                         if (un->semadj[i]) {
    2394           0 :                                 semaphore->semval += un->semadj[i];
    2395             :                                 /*
    2396             :                                  * Range checks of the new semaphore value,
    2397             :                                  * not defined by sus:
    2398             :                                  * - Some unices ignore the undo entirely
    2399             :                                  *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
    2400             :                                  * - some cap the value (e.g. FreeBSD caps
    2401             :                                  *   at 0, but doesn't enforce SEMVMX)
    2402             :                                  *
    2403             :                                  * Linux caps the semaphore value, both at 0
    2404             :                                  * and at SEMVMX.
    2405             :                                  *
    2406             :                                  *      Manfred <manfred@colorfullife.com>
    2407             :                                  */
    2408           0 :                                 if (semaphore->semval < 0)
    2409           0 :                                         semaphore->semval = 0;
    2410           0 :                                 if (semaphore->semval > SEMVMX)
    2411           0 :                                         semaphore->semval = SEMVMX;
    2412           0 :                                 ipc_update_pid(&semaphore->sempid, task_tgid(current));
    2413             :                         }
    2414             :                 }
    2415             :                 /* maybe some queued-up processes were waiting for this */
    2416           0 :                 do_smart_update(sma, NULL, 0, 1, &wake_q);
    2417           0 :                 sem_unlock(sma, -1);
    2418           0 :                 rcu_read_unlock();
    2419           0 :                 wake_up_q(&wake_q);
    2420             : 
    2421           0 :                 kfree_rcu(un, rcu);
    2422             :         }
    2423           0 :         kfree(ulp);
    2424             : }
    2425             : 
    2426             : #ifdef CONFIG_PROC_FS
    2427           0 : static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
    2428             : {
    2429           0 :         struct user_namespace *user_ns = seq_user_ns(s);
    2430           0 :         struct kern_ipc_perm *ipcp = it;
    2431           0 :         struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
    2432           0 :         time64_t sem_otime;
    2433             : 
    2434             :         /*
    2435             :          * The proc interface isn't aware of sem_lock(), it calls
    2436             :          * ipc_lock_object() directly (in sysvipc_find_ipc).
    2437             :          * In order to stay compatible with sem_lock(), we must
    2438             :          * enter / leave complex_mode.
    2439             :          */
    2440           0 :         complexmode_enter(sma);
    2441             : 
    2442           0 :         sem_otime = get_semotime(sma);
    2443             : 
    2444           0 :         seq_printf(s,
    2445             :                    "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
    2446             :                    sma->sem_perm.key,
    2447             :                    sma->sem_perm.id,
    2448           0 :                    sma->sem_perm.mode,
    2449             :                    sma->sem_nsems,
    2450             :                    from_kuid_munged(user_ns, sma->sem_perm.uid),
    2451             :                    from_kgid_munged(user_ns, sma->sem_perm.gid),
    2452             :                    from_kuid_munged(user_ns, sma->sem_perm.cuid),
    2453             :                    from_kgid_munged(user_ns, sma->sem_perm.cgid),
    2454             :                    sem_otime,
    2455             :                    sma->sem_ctime);
    2456             : 
    2457           0 :         complexmode_tryleave(sma);
    2458             : 
    2459           0 :         return 0;
    2460             : }
    2461             : #endif

Generated by: LCOV version 1.14