LCOV - code coverage report
Current view: top level - kernel/dma - direct.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 3 192 1.6 %
Date: 2021-04-22 12:43:58 Functions: 1 21 4.8 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (C) 2018-2020 Christoph Hellwig.
       4             :  *
       5             :  * DMA operations that map physical memory directly without using an IOMMU.
       6             :  */
       7             : #include <linux/memblock.h> /* for max_pfn */
       8             : #include <linux/export.h>
       9             : #include <linux/mm.h>
      10             : #include <linux/dma-map-ops.h>
      11             : #include <linux/scatterlist.h>
      12             : #include <linux/pfn.h>
      13             : #include <linux/vmalloc.h>
      14             : #include <linux/set_memory.h>
      15             : #include <linux/slab.h>
      16             : #include "direct.h"
      17             : 
      18             : /*
      19             :  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
      20             :  * it for entirely different regions. In that case the arch code needs to
      21             :  * override the variable below for dma-direct to work properly.
      22             :  */
      23             : unsigned int zone_dma_bits __ro_after_init = 24;
      24             : 
      25           0 : static inline dma_addr_t phys_to_dma_direct(struct device *dev,
      26             :                 phys_addr_t phys)
      27             : {
      28           0 :         if (force_dma_unencrypted(dev))
      29             :                 return phys_to_dma_unencrypted(dev, phys);
      30           0 :         return phys_to_dma(dev, phys);
      31             : }
      32             : 
      33           0 : static inline struct page *dma_direct_to_page(struct device *dev,
      34             :                 dma_addr_t dma_addr)
      35             : {
      36           0 :         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
      37             : }
      38             : 
      39           0 : u64 dma_direct_get_required_mask(struct device *dev)
      40             : {
      41           0 :         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
      42           0 :         u64 max_dma = phys_to_dma_direct(dev, phys);
      43             : 
      44           0 :         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
      45             : }
      46             : 
      47           0 : static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
      48             :                                   u64 *phys_limit)
      49             : {
      50           0 :         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
      51             : 
      52             :         /*
      53             :          * Optimistically try the zone that the physical address mask falls
      54             :          * into first.  If that returns memory that isn't actually addressable
      55             :          * we will fallback to the next lower zone and try again.
      56             :          *
      57             :          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
      58             :          * zones.
      59             :          */
      60           0 :         *phys_limit = dma_to_phys(dev, dma_limit);
      61           0 :         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
      62             :                 return GFP_DMA;
      63           0 :         if (*phys_limit <= DMA_BIT_MASK(32))
      64           0 :                 return GFP_DMA32;
      65             :         return 0;
      66             : }
      67             : 
      68           0 : static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
      69             : {
      70           0 :         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
      71             : 
      72           0 :         if (dma_addr == DMA_MAPPING_ERROR)
      73             :                 return false;
      74           0 :         return dma_addr + size - 1 <=
      75           0 :                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
      76             : }
      77             : 
      78           0 : static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
      79             :                 gfp_t gfp)
      80             : {
      81           0 :         int node = dev_to_node(dev);
      82           0 :         struct page *page = NULL;
      83           0 :         u64 phys_limit;
      84             : 
      85           0 :         WARN_ON_ONCE(!PAGE_ALIGNED(size));
      86             : 
      87           0 :         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
      88             :                                            &phys_limit);
      89           0 :         page = dma_alloc_contiguous(dev, size, gfp);
      90           0 :         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
      91             :                 dma_free_contiguous(dev, page, size);
      92             :                 page = NULL;
      93             :         }
      94           0 : again:
      95           0 :         if (!page)
      96           0 :                 page = alloc_pages_node(node, gfp, get_order(size));
      97           0 :         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
      98           0 :                 dma_free_contiguous(dev, page, size);
      99           0 :                 page = NULL;
     100             : 
     101           0 :                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
     102           0 :                     phys_limit < DMA_BIT_MASK(64) &&
     103           0 :                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
     104           0 :                         gfp |= GFP_DMA32;
     105           0 :                         goto again;
     106             :                 }
     107             : 
     108             :                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
     109             :                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
     110             :                         goto again;
     111             :                 }
     112             :         }
     113             : 
     114           0 :         return page;
     115             : }
     116             : 
     117             : static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
     118             :                 dma_addr_t *dma_handle, gfp_t gfp)
     119             : {
     120             :         struct page *page;
     121             :         u64 phys_mask;
     122             :         void *ret;
     123             : 
     124             :         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
     125             :                                            &phys_mask);
     126             :         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
     127             :         if (!page)
     128             :                 return NULL;
     129             :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     130             :         return ret;
     131             : }
     132             : 
     133           0 : void *dma_direct_alloc(struct device *dev, size_t size,
     134             :                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
     135             : {
     136           0 :         struct page *page;
     137           0 :         void *ret;
     138           0 :         int err;
     139             : 
     140           0 :         size = PAGE_ALIGN(size);
     141           0 :         if (attrs & DMA_ATTR_NO_WARN)
     142           0 :                 gfp |= __GFP_NOWARN;
     143             : 
     144           0 :         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
     145           0 :             !force_dma_unencrypted(dev)) {
     146           0 :                 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
     147           0 :                 if (!page)
     148             :                         return NULL;
     149             :                 /* remove any dirty cache lines on the kernel alias */
     150           0 :                 if (!PageHighMem(page))
     151           0 :                         arch_dma_prep_coherent(page, size);
     152           0 :                 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     153             :                 /* return the page pointer as the opaque cookie */
     154           0 :                 return page;
     155             :         }
     156             : 
     157           0 :         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
     158             :             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
     159           0 :             !dev_is_dma_coherent(dev))
     160             :                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
     161             : 
     162             :         /*
     163             :          * Remapping or decrypting memory may block. If either is required and
     164             :          * we can't block, allocate the memory from the atomic pools.
     165             :          */
     166           0 :         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
     167             :             !gfpflags_allow_blocking(gfp) &&
     168             :             (force_dma_unencrypted(dev) ||
     169             :              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
     170             :                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
     171             : 
     172             :         /* we always manually zero the memory once we are done */
     173           0 :         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
     174           0 :         if (!page)
     175             :                 return NULL;
     176             : 
     177           0 :         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
     178             :              !dev_is_dma_coherent(dev)) ||
     179             :             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
     180             :                 /* remove any dirty cache lines on the kernel alias */
     181             :                 arch_dma_prep_coherent(page, size);
     182             : 
     183             :                 /* create a coherent mapping */
     184             :                 ret = dma_common_contiguous_remap(page, size,
     185             :                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
     186             :                                 __builtin_return_address(0));
     187             :                 if (!ret)
     188             :                         goto out_free_pages;
     189             :                 if (force_dma_unencrypted(dev)) {
     190             :                         err = set_memory_decrypted((unsigned long)ret,
     191             :                                                    1 << get_order(size));
     192             :                         if (err)
     193             :                                 goto out_free_pages;
     194             :                 }
     195             :                 memset(ret, 0, size);
     196             :                 goto done;
     197             :         }
     198             : 
     199           0 :         if (PageHighMem(page)) {
     200             :                 /*
     201             :                  * Depending on the cma= arguments and per-arch setup
     202             :                  * dma_alloc_contiguous could return highmem pages.
     203             :                  * Without remapping there is no way to return them here,
     204             :                  * so log an error and fail.
     205             :                  */
     206             :                 dev_info(dev, "Rejecting highmem page from CMA.\n");
     207             :                 goto out_free_pages;
     208             :         }
     209             : 
     210           0 :         ret = page_address(page);
     211           0 :         if (force_dma_unencrypted(dev)) {
     212             :                 err = set_memory_decrypted((unsigned long)ret,
     213             :                                            1 << get_order(size));
     214             :                 if (err)
     215             :                         goto out_free_pages;
     216             :         }
     217             : 
     218           0 :         memset(ret, 0, size);
     219             : 
     220           0 :         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
     221             :             !dev_is_dma_coherent(dev)) {
     222             :                 arch_dma_prep_coherent(page, size);
     223             :                 ret = arch_dma_set_uncached(ret, size);
     224             :                 if (IS_ERR(ret))
     225             :                         goto out_encrypt_pages;
     226             :         }
     227           0 : done:
     228           0 :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     229           0 :         return ret;
     230             : 
     231             : out_encrypt_pages:
     232             :         if (force_dma_unencrypted(dev)) {
     233             :                 err = set_memory_encrypted((unsigned long)page_address(page),
     234             :                                            1 << get_order(size));
     235             :                 /* If memory cannot be re-encrypted, it must be leaked */
     236             :                 if (err)
     237             :                         return NULL;
     238             :         }
     239             : out_free_pages:
     240             :         dma_free_contiguous(dev, page, size);
     241             :         return NULL;
     242             : }
     243             : 
     244           0 : void dma_direct_free(struct device *dev, size_t size,
     245             :                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
     246             : {
     247           0 :         unsigned int page_order = get_order(size);
     248             : 
     249           0 :         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
     250           0 :             !force_dma_unencrypted(dev)) {
     251             :                 /* cpu_addr is a struct page cookie, not a kernel address */
     252           0 :                 dma_free_contiguous(dev, cpu_addr, size);
     253           0 :                 return;
     254             :         }
     255             : 
     256           0 :         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
     257             :             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
     258           0 :             !dev_is_dma_coherent(dev)) {
     259             :                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
     260             :                 return;
     261             :         }
     262             : 
     263             :         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
     264           0 :         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
     265             :             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
     266             :                 return;
     267             : 
     268           0 :         if (force_dma_unencrypted(dev))
     269             :                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
     270             : 
     271           0 :         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
     272             :                 vunmap(cpu_addr);
     273           0 :         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
     274             :                 arch_dma_clear_uncached(cpu_addr, size);
     275             : 
     276           0 :         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
     277             : }
     278             : 
     279           0 : struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
     280             :                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
     281             : {
     282           0 :         struct page *page;
     283           0 :         void *ret;
     284             : 
     285           0 :         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
     286             :             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
     287             :                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
     288             : 
     289           0 :         page = __dma_direct_alloc_pages(dev, size, gfp);
     290           0 :         if (!page)
     291             :                 return NULL;
     292           0 :         if (PageHighMem(page)) {
     293             :                 /*
     294             :                  * Depending on the cma= arguments and per-arch setup
     295             :                  * dma_alloc_contiguous could return highmem pages.
     296             :                  * Without remapping there is no way to return them here,
     297             :                  * so log an error and fail.
     298             :                  */
     299             :                 dev_info(dev, "Rejecting highmem page from CMA.\n");
     300             :                 goto out_free_pages;
     301             :         }
     302             : 
     303           0 :         ret = page_address(page);
     304           0 :         if (force_dma_unencrypted(dev)) {
     305             :                 if (set_memory_decrypted((unsigned long)ret,
     306             :                                 1 << get_order(size)))
     307             :                         goto out_free_pages;
     308             :         }
     309           0 :         memset(ret, 0, size);
     310           0 :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     311           0 :         return page;
     312             : out_free_pages:
     313             :         dma_free_contiguous(dev, page, size);
     314             :         return NULL;
     315             : }
     316             : 
     317           0 : void dma_direct_free_pages(struct device *dev, size_t size,
     318             :                 struct page *page, dma_addr_t dma_addr,
     319             :                 enum dma_data_direction dir)
     320             : {
     321           0 :         unsigned int page_order = get_order(size);
     322           0 :         void *vaddr = page_address(page);
     323             : 
     324             :         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
     325           0 :         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
     326             :             dma_free_from_pool(dev, vaddr, size))
     327             :                 return;
     328             : 
     329           0 :         if (force_dma_unencrypted(dev))
     330             :                 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
     331             : 
     332           0 :         dma_free_contiguous(dev, page, size);
     333             : }
     334             : 
     335             : #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
     336             :     defined(CONFIG_SWIOTLB)
     337           0 : void dma_direct_sync_sg_for_device(struct device *dev,
     338             :                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
     339             : {
     340           0 :         struct scatterlist *sg;
     341           0 :         int i;
     342             : 
     343           0 :         for_each_sg(sgl, sg, nents, i) {
     344           0 :                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
     345             : 
     346           0 :                 if (unlikely(is_swiotlb_buffer(paddr)))
     347           0 :                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
     348             :                                         dir, SYNC_FOR_DEVICE);
     349             : 
     350           0 :                 if (!dev_is_dma_coherent(dev))
     351           0 :                         arch_sync_dma_for_device(paddr, sg->length,
     352             :                                         dir);
     353             :         }
     354           0 : }
     355             : #endif
     356             : 
     357             : #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
     358             :     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
     359             :     defined(CONFIG_SWIOTLB)
     360           0 : void dma_direct_sync_sg_for_cpu(struct device *dev,
     361             :                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
     362             : {
     363           0 :         struct scatterlist *sg;
     364           0 :         int i;
     365             : 
     366           0 :         for_each_sg(sgl, sg, nents, i) {
     367           0 :                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
     368             : 
     369           0 :                 if (!dev_is_dma_coherent(dev))
     370           0 :                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
     371             : 
     372           0 :                 if (unlikely(is_swiotlb_buffer(paddr)))
     373           0 :                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
     374             :                                         SYNC_FOR_CPU);
     375             : 
     376           0 :                 if (dir == DMA_FROM_DEVICE)
     377           0 :                         arch_dma_mark_clean(paddr, sg->length);
     378             :         }
     379             : 
     380           0 :         if (!dev_is_dma_coherent(dev))
     381             :                 arch_sync_dma_for_cpu_all();
     382           0 : }
     383             : 
     384           0 : void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
     385             :                 int nents, enum dma_data_direction dir, unsigned long attrs)
     386             : {
     387           0 :         struct scatterlist *sg;
     388           0 :         int i;
     389             : 
     390           0 :         for_each_sg(sgl, sg, nents, i)
     391           0 :                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
     392             :                              attrs);
     393           0 : }
     394             : #endif
     395             : 
     396           0 : int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
     397             :                 enum dma_data_direction dir, unsigned long attrs)
     398             : {
     399           0 :         int i;
     400           0 :         struct scatterlist *sg;
     401             : 
     402           0 :         for_each_sg(sgl, sg, nents, i) {
     403           0 :                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
     404           0 :                                 sg->offset, sg->length, dir, attrs);
     405           0 :                 if (sg->dma_address == DMA_MAPPING_ERROR)
     406           0 :                         goto out_unmap;
     407           0 :                 sg_dma_len(sg) = sg->length;
     408             :         }
     409             : 
     410             :         return nents;
     411             : 
     412           0 : out_unmap:
     413           0 :         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
     414           0 :         return 0;
     415             : }
     416             : 
     417           0 : dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
     418             :                 size_t size, enum dma_data_direction dir, unsigned long attrs)
     419             : {
     420           0 :         dma_addr_t dma_addr = paddr;
     421             : 
     422           0 :         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
     423           0 :                 dev_err_once(dev,
     424             :                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
     425             :                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
     426           0 :                 WARN_ON_ONCE(1);
     427           0 :                 return DMA_MAPPING_ERROR;
     428             :         }
     429             : 
     430             :         return dma_addr;
     431             : }
     432             : 
     433           0 : int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
     434             :                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
     435             :                 unsigned long attrs)
     436             : {
     437           0 :         struct page *page = dma_direct_to_page(dev, dma_addr);
     438           0 :         int ret;
     439             : 
     440           0 :         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
     441           0 :         if (!ret)
     442           0 :                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
     443           0 :         return ret;
     444             : }
     445             : 
     446           0 : bool dma_direct_can_mmap(struct device *dev)
     447             : {
     448           0 :         return dev_is_dma_coherent(dev) ||
     449             :                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
     450             : }
     451             : 
     452           0 : int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
     453             :                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
     454             :                 unsigned long attrs)
     455             : {
     456           0 :         unsigned long user_count = vma_pages(vma);
     457           0 :         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
     458           0 :         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
     459           0 :         int ret = -ENXIO;
     460             : 
     461           0 :         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
     462             : 
     463           0 :         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
     464             :                 return ret;
     465             : 
     466           0 :         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
     467             :                 return -ENXIO;
     468           0 :         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
     469             :                         user_count << PAGE_SHIFT, vma->vm_page_prot);
     470             : }
     471             : 
     472           4 : int dma_direct_supported(struct device *dev, u64 mask)
     473             : {
     474           4 :         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
     475             : 
     476             :         /*
     477             :          * Because 32-bit DMA masks are so common we expect every architecture
     478             :          * to be able to satisfy them - either by not supporting more physical
     479             :          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
     480             :          * architecture needs to use an IOMMU instead of the direct mapping.
     481             :          */
     482           4 :         if (mask >= DMA_BIT_MASK(32))
     483             :                 return 1;
     484             : 
     485             :         /*
     486             :          * This check needs to be against the actual bit mask value, so use
     487             :          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
     488             :          * part of the check.
     489             :          */
     490           0 :         if (IS_ENABLED(CONFIG_ZONE_DMA))
     491             :                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
     492           0 :         return mask >= phys_to_dma_unencrypted(dev, min_mask);
     493             : }
     494             : 
     495           0 : size_t dma_direct_max_mapping_size(struct device *dev)
     496             : {
     497             :         /* If SWIOTLB is active, use its maximum mapping size */
     498           0 :         if (is_swiotlb_active() &&
     499           0 :             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
     500           0 :                 return swiotlb_max_mapping_size(dev);
     501             :         return SIZE_MAX;
     502             : }
     503             : 
     504           0 : bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
     505             : {
     506           0 :         return !dev_is_dma_coherent(dev) ||
     507           0 :                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
     508             : }
     509             : 
     510             : /**
     511             :  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
     512             :  * @dev:        device pointer; needed to "own" the alloced memory.
     513             :  * @cpu_start:  beginning of memory region covered by this offset.
     514             :  * @dma_start:  beginning of DMA/PCI region covered by this offset.
     515             :  * @size:       size of the region.
     516             :  *
     517             :  * This is for the simple case of a uniform offset which cannot
     518             :  * be discovered by "dma-ranges".
     519             :  *
     520             :  * It returns -ENOMEM if out of memory, -EINVAL if a map
     521             :  * already exists, 0 otherwise.
     522             :  *
     523             :  * Note: any call to this from a driver is a bug.  The mapping needs
     524             :  * to be described by the device tree or other firmware interfaces.
     525             :  */
     526           0 : int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
     527             :                          dma_addr_t dma_start, u64 size)
     528             : {
     529           0 :         struct bus_dma_region *map;
     530           0 :         u64 offset = (u64)cpu_start - (u64)dma_start;
     531             : 
     532           0 :         if (dev->dma_range_map) {
     533           0 :                 dev_err(dev, "attempt to add DMA range to existing map\n");
     534           0 :                 return -EINVAL;
     535             :         }
     536             : 
     537           0 :         if (!offset)
     538             :                 return 0;
     539             : 
     540           0 :         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
     541           0 :         if (!map)
     542             :                 return -ENOMEM;
     543           0 :         map[0].cpu_start = cpu_start;
     544           0 :         map[0].dma_start = dma_start;
     545           0 :         map[0].offset = offset;
     546           0 :         map[0].size = size;
     547           0 :         dev->dma_range_map = map;
     548           0 :         return 0;
     549             : }

Generated by: LCOV version 1.14