Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * Queued spinlock
4 : *
5 : * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
6 : * (C) Copyright 2013-2014,2018 Red Hat, Inc.
7 : * (C) Copyright 2015 Intel Corp.
8 : * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
9 : *
10 : * Authors: Waiman Long <longman@redhat.com>
11 : * Peter Zijlstra <peterz@infradead.org>
12 : */
13 :
14 : #ifndef _GEN_PV_LOCK_SLOWPATH
15 :
16 : #include <linux/smp.h>
17 : #include <linux/bug.h>
18 : #include <linux/cpumask.h>
19 : #include <linux/percpu.h>
20 : #include <linux/hardirq.h>
21 : #include <linux/mutex.h>
22 : #include <linux/prefetch.h>
23 : #include <asm/byteorder.h>
24 : #include <asm/qspinlock.h>
25 :
26 : /*
27 : * Include queued spinlock statistics code
28 : */
29 : #include "qspinlock_stat.h"
30 :
31 : /*
32 : * The basic principle of a queue-based spinlock can best be understood
33 : * by studying a classic queue-based spinlock implementation called the
34 : * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
35 : * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
36 : * Scott") is available at
37 : *
38 : * https://bugzilla.kernel.org/show_bug.cgi?id=206115
39 : *
40 : * This queued spinlock implementation is based on the MCS lock, however to
41 : * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
42 : * existing API, we must modify it somehow.
43 : *
44 : * In particular; where the traditional MCS lock consists of a tail pointer
45 : * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
46 : * unlock the next pending (next->locked), we compress both these: {tail,
47 : * next->locked} into a single u32 value.
48 : *
49 : * Since a spinlock disables recursion of its own context and there is a limit
50 : * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
51 : * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
52 : * we can encode the tail by combining the 2-bit nesting level with the cpu
53 : * number. With one byte for the lock value and 3 bytes for the tail, only a
54 : * 32-bit word is now needed. Even though we only need 1 bit for the lock,
55 : * we extend it to a full byte to achieve better performance for architectures
56 : * that support atomic byte write.
57 : *
58 : * We also change the first spinner to spin on the lock bit instead of its
59 : * node; whereby avoiding the need to carry a node from lock to unlock, and
60 : * preserving existing lock API. This also makes the unlock code simpler and
61 : * faster.
62 : *
63 : * N.B. The current implementation only supports architectures that allow
64 : * atomic operations on smaller 8-bit and 16-bit data types.
65 : *
66 : */
67 :
68 : #include "mcs_spinlock.h"
69 : #define MAX_NODES 4
70 :
71 : /*
72 : * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
73 : * size and four of them will fit nicely in one 64-byte cacheline. For
74 : * pvqspinlock, however, we need more space for extra data. To accommodate
75 : * that, we insert two more long words to pad it up to 32 bytes. IOW, only
76 : * two of them can fit in a cacheline in this case. That is OK as it is rare
77 : * to have more than 2 levels of slowpath nesting in actual use. We don't
78 : * want to penalize pvqspinlocks to optimize for a rare case in native
79 : * qspinlocks.
80 : */
81 : struct qnode {
82 : struct mcs_spinlock mcs;
83 : #ifdef CONFIG_PARAVIRT_SPINLOCKS
84 : long reserved[2];
85 : #endif
86 : };
87 :
88 : /*
89 : * The pending bit spinning loop count.
90 : * This heuristic is used to limit the number of lockword accesses
91 : * made by atomic_cond_read_relaxed when waiting for the lock to
92 : * transition out of the "== _Q_PENDING_VAL" state. We don't spin
93 : * indefinitely because there's no guarantee that we'll make forward
94 : * progress.
95 : */
96 : #ifndef _Q_PENDING_LOOPS
97 : #define _Q_PENDING_LOOPS 1
98 : #endif
99 :
100 : /*
101 : * Per-CPU queue node structures; we can never have more than 4 nested
102 : * contexts: task, softirq, hardirq, nmi.
103 : *
104 : * Exactly fits one 64-byte cacheline on a 64-bit architecture.
105 : *
106 : * PV doubles the storage and uses the second cacheline for PV state.
107 : */
108 : static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
109 :
110 : /*
111 : * We must be able to distinguish between no-tail and the tail at 0:0,
112 : * therefore increment the cpu number by one.
113 : */
114 :
115 379143 : static inline __pure u32 encode_tail(int cpu, int idx)
116 : {
117 379143 : u32 tail;
118 :
119 379143 : tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
120 379143 : tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
121 :
122 379143 : return tail;
123 : }
124 :
125 3989 : static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
126 : {
127 3989 : int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
128 3989 : int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
129 :
130 3989 : return per_cpu_ptr(&qnodes[idx].mcs, cpu);
131 : }
132 :
133 : static inline __pure
134 379143 : struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
135 : {
136 379143 : return &((struct qnode *)base + idx)->mcs;
137 : }
138 :
139 : #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
140 :
141 : #if _Q_PENDING_BITS == 8
142 : /**
143 : * clear_pending - clear the pending bit.
144 : * @lock: Pointer to queued spinlock structure
145 : *
146 : * *,1,* -> *,0,*
147 : */
148 57 : static __always_inline void clear_pending(struct qspinlock *lock)
149 : {
150 57 : WRITE_ONCE(lock->pending, 0);
151 0 : }
152 :
153 : /**
154 : * clear_pending_set_locked - take ownership and clear the pending bit.
155 : * @lock: Pointer to queued spinlock structure
156 : *
157 : * *,1,0 -> *,0,1
158 : *
159 : * Lock stealing is not allowed if this function is used.
160 : */
161 0 : static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
162 : {
163 0 : WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
164 0 : }
165 :
166 : /*
167 : * xchg_tail - Put in the new queue tail code word & retrieve previous one
168 : * @lock : Pointer to queued spinlock structure
169 : * @tail : The new queue tail code word
170 : * Return: The previous queue tail code word
171 : *
172 : * xchg(lock, tail), which heads an address dependency
173 : *
174 : * p,*,* -> n,*,* ; prev = xchg(lock, node)
175 : */
176 321316 : static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177 : {
178 : /*
179 : * We can use relaxed semantics since the caller ensures that the
180 : * MCS node is properly initialized before updating the tail.
181 : */
182 321330 : return (u32)xchg_relaxed(&lock->tail,
183 321351 : tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
184 : }
185 :
186 : #else /* _Q_PENDING_BITS == 8 */
187 :
188 : /**
189 : * clear_pending - clear the pending bit.
190 : * @lock: Pointer to queued spinlock structure
191 : *
192 : * *,1,* -> *,0,*
193 : */
194 : static __always_inline void clear_pending(struct qspinlock *lock)
195 : {
196 : atomic_andnot(_Q_PENDING_VAL, &lock->val);
197 : }
198 :
199 : /**
200 : * clear_pending_set_locked - take ownership and clear the pending bit.
201 : * @lock: Pointer to queued spinlock structure
202 : *
203 : * *,1,0 -> *,0,1
204 : */
205 : static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
206 : {
207 : atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
208 : }
209 :
210 : /**
211 : * xchg_tail - Put in the new queue tail code word & retrieve previous one
212 : * @lock : Pointer to queued spinlock structure
213 : * @tail : The new queue tail code word
214 : * Return: The previous queue tail code word
215 : *
216 : * xchg(lock, tail)
217 : *
218 : * p,*,* -> n,*,* ; prev = xchg(lock, node)
219 : */
220 : static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
221 : {
222 : u32 old, new, val = atomic_read(&lock->val);
223 :
224 : for (;;) {
225 : new = (val & _Q_LOCKED_PENDING_MASK) | tail;
226 : /*
227 : * We can use relaxed semantics since the caller ensures that
228 : * the MCS node is properly initialized before updating the
229 : * tail.
230 : */
231 : old = atomic_cmpxchg_relaxed(&lock->val, val, new);
232 : if (old == val)
233 : break;
234 :
235 : val = old;
236 : }
237 : return old;
238 : }
239 : #endif /* _Q_PENDING_BITS == 8 */
240 :
241 : /**
242 : * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
243 : * @lock : Pointer to queued spinlock structure
244 : * Return: The previous lock value
245 : *
246 : * *,*,* -> *,1,*
247 : */
248 : #ifndef queued_fetch_set_pending_acquire
249 : static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
250 : {
251 : return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
252 : }
253 : #endif
254 :
255 : /**
256 : * set_locked - Set the lock bit and own the lock
257 : * @lock: Pointer to queued spinlock structure
258 : *
259 : * *,*,0 -> *,0,1
260 : */
261 3991 : static __always_inline void set_locked(struct qspinlock *lock)
262 : {
263 3991 : WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
264 : }
265 :
266 :
267 : /*
268 : * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
269 : * all the PV callbacks.
270 : */
271 :
272 0 : static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
273 0 : static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
274 0 : struct mcs_spinlock *prev) { }
275 0 : static __always_inline void __pv_kick_node(struct qspinlock *lock,
276 0 : struct mcs_spinlock *node) { }
277 0 : static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
278 : struct mcs_spinlock *node)
279 0 : { return 0; }
280 :
281 : #define pv_enabled() false
282 :
283 : #define pv_init_node __pv_init_node
284 : #define pv_wait_node __pv_wait_node
285 : #define pv_kick_node __pv_kick_node
286 : #define pv_wait_head_or_lock __pv_wait_head_or_lock
287 :
288 : #ifdef CONFIG_PARAVIRT_SPINLOCKS
289 : #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
290 : #endif
291 :
292 : #endif /* _GEN_PV_LOCK_SLOWPATH */
293 :
294 : /**
295 : * queued_spin_lock_slowpath - acquire the queued spinlock
296 : * @lock: Pointer to queued spinlock structure
297 : * @val: Current value of the queued spinlock 32-bit word
298 : *
299 : * (queue tail, pending bit, lock value)
300 : *
301 : * fast : slow : unlock
302 : * : :
303 : * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
304 : * : | ^--------.------. / :
305 : * : v \ \ | :
306 : * pending : (0,1,1) +--> (0,1,0) \ | :
307 : * : | ^--' | | :
308 : * : v | | :
309 : * uncontended : (n,x,y) +--> (n,0,0) --' | :
310 : * queue : | ^--' | :
311 : * : v | :
312 : * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
313 : * queue : ^--' :
314 : */
315 379081 : void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
316 : {
317 379081 : struct mcs_spinlock *prev, *next, *node;
318 379081 : u32 old, tail;
319 379081 : int idx;
320 :
321 379081 : BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
322 :
323 379081 : if (pv_enabled())
324 379081 : goto pv_queue;
325 :
326 0 : if (virt_spin_lock(lock))
327 : return;
328 :
329 : /*
330 : * Wait for in-progress pending->locked hand-overs with a bounded
331 : * number of spins so that we guarantee forward progress.
332 : *
333 : * 0,1,0 -> 0,0,1
334 : */
335 0 : if (val == _Q_PENDING_VAL) {
336 : int cnt = _Q_PENDING_LOOPS;
337 0 : val = atomic_cond_read_relaxed(&lock->val,
338 : (VAL != _Q_PENDING_VAL) || !cnt--);
339 : }
340 :
341 : /*
342 : * If we observe any contention; queue.
343 : */
344 0 : if (val & ~_Q_LOCKED_MASK)
345 0 : goto queue;
346 :
347 : /*
348 : * trylock || pending
349 : *
350 : * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
351 : */
352 0 : val = queued_fetch_set_pending_acquire(lock);
353 :
354 : /*
355 : * If we observe contention, there is a concurrent locker.
356 : *
357 : * Undo and queue; our setting of PENDING might have made the
358 : * n,0,0 -> 0,0,0 transition fail and it will now be waiting
359 : * on @next to become !NULL.
360 : */
361 0 : if (unlikely(val & ~_Q_LOCKED_MASK)) {
362 :
363 : /* Undo PENDING if we set it. */
364 0 : if (!(val & _Q_PENDING_MASK))
365 0 : clear_pending(lock);
366 :
367 0 : goto queue;
368 : }
369 :
370 : /*
371 : * We're pending, wait for the owner to go away.
372 : *
373 : * 0,1,1 -> 0,1,0
374 : *
375 : * this wait loop must be a load-acquire such that we match the
376 : * store-release that clears the locked bit and create lock
377 : * sequentiality; this is because not all
378 : * clear_pending_set_locked() implementations imply full
379 : * barriers.
380 : */
381 0 : if (val & _Q_LOCKED_MASK)
382 0 : atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
383 :
384 : /*
385 : * take ownership and clear the pending bit.
386 : *
387 : * 0,1,0 -> 0,0,1
388 : */
389 0 : clear_pending_set_locked(lock);
390 : lockevent_inc(lock_pending);
391 : return;
392 :
393 : /*
394 : * End of pending bit optimistic spinning and beginning of MCS
395 : * queuing.
396 : */
397 0 : queue:
398 379081 : lockevent_inc(lock_slowpath);
399 379081 : pv_queue:
400 379081 : node = this_cpu_ptr(&qnodes[0].mcs);
401 379143 : idx = node->count++;
402 379143 : tail = encode_tail(smp_processor_id(), idx);
403 :
404 : /*
405 : * 4 nodes are allocated based on the assumption that there will
406 : * not be nested NMIs taking spinlocks. That may not be true in
407 : * some architectures even though the chance of needing more than
408 : * 4 nodes will still be extremely unlikely. When that happens,
409 : * we fall back to spinning on the lock directly without using
410 : * any MCS node. This is not the most elegant solution, but is
411 : * simple enough.
412 : */
413 379143 : if (unlikely(idx >= MAX_NODES)) {
414 : lockevent_inc(lock_no_node);
415 0 : while (!queued_spin_trylock(lock))
416 0 : cpu_relax();
417 0 : goto release;
418 : }
419 :
420 379143 : node = grab_mcs_node(node, idx);
421 :
422 : /*
423 : * Keep counts of non-zero index values:
424 : */
425 379143 : lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
426 :
427 : /*
428 : * Ensure that we increment the head node->count before initialising
429 : * the actual node. If the compiler is kind enough to reorder these
430 : * stores, then an IRQ could overwrite our assignments.
431 : */
432 379143 : barrier();
433 :
434 379159 : node->locked = 0;
435 379159 : node->next = NULL;
436 379159 : pv_init_node(node);
437 :
438 : /*
439 : * We touched a (possibly) cold cacheline in the per-cpu queue node;
440 : * attempt the trylock once more in the hope someone let go while we
441 : * weren't watching.
442 : */
443 379159 : if (queued_spin_trylock(lock))
444 57864 : goto release;
445 :
446 : /*
447 : * Ensure that the initialisation of @node is complete before we
448 : * publish the updated tail via xchg_tail() and potentially link
449 : * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
450 : */
451 321308 : smp_wmb();
452 :
453 : /*
454 : * Publish the updated tail.
455 : * We have already touched the queueing cacheline; don't bother with
456 : * pending stuff.
457 : *
458 : * p,*,* -> n,*,*
459 : */
460 321316 : old = xchg_tail(lock, tail);
461 321351 : next = NULL;
462 :
463 : /*
464 : * if there was a previous node; link it and wait until reaching the
465 : * head of the waitqueue.
466 : */
467 321351 : if (old & _Q_TAIL_MASK) {
468 3989 : prev = decode_tail(old);
469 :
470 : /* Link @node into the waitqueue. */
471 3989 : WRITE_ONCE(prev->next, node);
472 :
473 3989 : pv_wait_node(node, prev);
474 3989 : arch_mcs_spin_lock_contended(&node->locked);
475 :
476 : /*
477 : * While waiting for the MCS lock, the next pointer may have
478 : * been set by another lock waiter. We optimistically load
479 : * the next pointer & prefetch the cacheline for writing
480 : * to reduce latency in the upcoming MCS unlock operation.
481 : */
482 3991 : next = READ_ONCE(node->next);
483 3991 : if (next)
484 34 : prefetchw(next);
485 : }
486 :
487 : /*
488 : * we're at the head of the waitqueue, wait for the owner & pending to
489 : * go away.
490 : *
491 : * *,x,y -> *,0,0
492 : *
493 : * this wait loop must use a load-acquire such that we match the
494 : * store-release that clears the locked bit and create lock
495 : * sequentiality; this is because the set_locked() function below
496 : * does not imply a full barrier.
497 : *
498 : * The PV pv_wait_head_or_lock function, if active, will acquire
499 : * the lock and return a non-zero value. So we have to skip the
500 : * atomic_cond_read_acquire() call. As the next PV queue head hasn't
501 : * been designated yet, there is no way for the locked value to become
502 : * _Q_SLOW_VAL. So both the set_locked() and the
503 : * atomic_cmpxchg_relaxed() calls will be safe.
504 : *
505 : * If PV isn't active, 0 will be returned instead.
506 : *
507 : */
508 321353 : if ((val = pv_wait_head_or_lock(lock, node)))
509 321365 : goto locked;
510 :
511 0 : val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
512 :
513 321365 : locked:
514 : /*
515 : * claim the lock:
516 : *
517 : * n,0,0 -> 0,0,1 : lock, uncontended
518 : * *,*,0 -> *,*,1 : lock, contended
519 : *
520 : * If the queue head is the only one in the queue (lock value == tail)
521 : * and nobody is pending, clear the tail code and grab the lock.
522 : * Otherwise, we only need to grab the lock.
523 : */
524 :
525 : /*
526 : * In the PV case we might already have _Q_LOCKED_VAL set, because
527 : * of lock stealing; therefore we must also allow:
528 : *
529 : * n,0,1 -> 0,0,1
530 : *
531 : * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
532 : * above wait condition, therefore any concurrent setting of
533 : * PENDING will make the uncontended transition fail.
534 : */
535 321365 : if ((val & _Q_TAIL_MASK) == tail) {
536 639210 : if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
537 317374 : goto release; /* No contention */
538 : }
539 :
540 : /*
541 : * Either somebody is queued behind us or _Q_PENDING_VAL got set
542 : * which will then detect the remaining tail and queue behind us
543 : * ensuring we'll see a @next.
544 : */
545 3991 : set_locked(lock);
546 :
547 : /*
548 : * contended path; wait for next if not observed yet, release.
549 : */
550 3991 : if (!next)
551 4642 : next = smp_cond_load_relaxed(&node->next, (VAL));
552 :
553 3991 : arch_mcs_spin_unlock_contended(&next->locked);
554 3991 : pv_kick_node(lock, next);
555 :
556 379229 : release:
557 : /*
558 : * release the node
559 : */
560 379229 : __this_cpu_dec(qnodes[0].mcs.count);
561 : }
562 : EXPORT_SYMBOL(queued_spin_lock_slowpath);
563 :
564 : /*
565 : * Generate the paravirt code for queued_spin_unlock_slowpath().
566 : */
567 : #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
568 : #define _GEN_PV_LOCK_SLOWPATH
569 :
570 : #undef pv_enabled
571 : #define pv_enabled() true
572 :
573 : #undef pv_init_node
574 : #undef pv_wait_node
575 : #undef pv_kick_node
576 : #undef pv_wait_head_or_lock
577 :
578 : #undef queued_spin_lock_slowpath
579 : #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
580 :
581 : #include "qspinlock_paravirt.h"
582 : #include "qspinlock.c"
583 :
584 : bool nopvspin __initdata;
585 0 : static __init int parse_nopvspin(char *arg)
586 : {
587 0 : nopvspin = true;
588 0 : return 0;
589 : }
590 : early_param("nopvspin", parse_nopvspin);
591 : #endif
|